
Formal Proofs of Tarjan’s Strongly Connected1

Components Algorithm in Why3, Coq and Isabelle2

Ran Chen3

Institute of Software of the Chinese Academy of Sciences, Beijing4

chenr@ios.ac.cn5

Cyril Cohen6

Université Côte d’Azur, Inria7

cyril.cohen@inria.fr8

Jean-Jacques Lévy9

Irif & Inria Paris10

jean-jacques.levy@inria.fr11

Stephan Merz12

Université de Lorraine, CNRS, Inria, LORIA13

stephan.merz@inria.fr14

Laurent Théry15

Université Côte d’Azur, Inria16

laurent.thery@inria.fr17

Abstract18

Comparing provers on a formalization of the same problem is always a valuable exercise. In this19

paper, we present the formal proof of correctness of a non-trivial algorithm from graph theory that20

was carried out in three proof assistants: Why3, Coq, and Isabelle.21

2012 ACM Subject Classification Logic and verification, Automated reasoning, Higher order logic22

Keywords and phrases Mathematical logic, Formal proof, Graph algorithm, Program verification23

1 Introduction24

Graph algorithms are notoriously obscure in the sense that it is hard to grasp why exactly25

they work. Therefore proof of correctness are more than welcome in this domain. In this26

paper, we consider Tarjan’s algorithm [28] for discovering the strongly connected components27

in a directed graph and present a formal proof of its correctness in three different systems:28

Why3, Coq and Isabelle/HOL. The algorithm is treated at an abstract level with a functional29

programming style manipulating finite sets, stacks and mappings, but it respects the linear30

time behaviour of the original presentation.31

To our knowledge this is the first time that the formal correctness proof of a non-trivial32

program is carried out in three very different proof assistants: Why3 is based on a first-order33

logic with inductive predicates and automatic provers, Coq on an expressive theory of34

higher-order logic and dependent types, and Isabelle/HOL combines higher-order logic with35

automatic provers. We claim that our proof is direct, readable, elegant, and follows Tarjan’s36

presentation. Crucially for our comparison, the algorithm is defined at the same level of37

abstraction in all three systems, and the proof relies on the same arguments in the three38

formal systems. Note that a similar exercise but for a much more elementary proof (the39

irrationality of square root of 2) and using many more proof assistants (17) was presented40

in [32].41

Formal and informal proofs of algorithms about graphs were already performed in [24,42

30, 25, 13, 17, 29, 19, 27, 26, 15, 8]. Some of them are part of a larger library, others focus43

on the treatment of pointers or on concurrent algorithms. In particular, only Lammich and44

mailto:chenr@ios.ac.cn
mailto:cyril.cohen@inria.fr
mailto:jean-jacques.levy@inria.fr
mailto:stephan.merz@inria.fr
mailto:laurent.thery@inria.fr

2 Formal proofs of Tarjan’s SCC algorithm

Neumann [17] gave an alternative formal proof of Tarjan’s algorithm within their framework45

for verifying graph algorithms in Isabelle/HOL.46

We expose here the key parts of the proofs. The interested reader can access the details47

of the proofs and run them on the web [7, 9, 20]. In this paper, we recall the principles of the48

algorithm in section 2; we describe the proofs in the three systems in sections 3, 4, and 5 by49

emphasizing the differences induced by the logics which are used; we conclude in sections 650

and 7 by commenting the developments and advantages of each proof system.51

2 The algorithm52

In a directed graph, two vertices x and y are strongly connected if there exists a path from
x to y and a path from y to x. A strongly connected component (scc) is a maximal set of
vertices where all pairs of vertices are strongly connected. A fundamental property relates
sccs and depth-first search (DFS) traversal in a directed graph: each scc is a prefix of a single
subtree in the corresponding spanning forest (see figure 1c). Its root is named the base of
the scc. Tarjan’s algorithm [28] relies on the detection of these bases and collects the sccs in
a pushdown stack. It performs a single DFS traversal of the graph assigning a serial number
num[x] to any vertex x in the order of the visit. It computes the following function for every
vertex x:

LOWLINK(x) = min{num[y] | x
∗=⇒ z ↪→ y ∧ x and y are in the same scc}

The relation x =⇒ z means that z is a son of x in the spanning forest, the relation ∗=⇒ is53

its transitive and reflexive closure, and z ↪→ y means that there is a cross-edge from z to54

y in the spanning forest (a cross-edge is an edge of the graph which is not an edge in the55

spanning forest). In figure 1c, =⇒ is drawn in thick lines and ↪→ in dotted lines; in figure 1b56

the table of the values of the LOWLINK function is shown. The minimum of the empty set57

is assumed to be +∞ (this is a slight simplification w.r.t. the original algorithm).58

The base x of an scc is found when LOWLINK(x) ≥ num[x], and the component is
formed by the nodes of the subtree rooted at x and pruned of the sccs already discovered in
that subtree. Notice that LOWLINK(x) need neither be the lowest serial number of a vertex
accessible from x, nor of an ancestor of x in the spanning forest. Take for instance, vertices 8
or 9 in figure 1c. Moreover, the DFS traversal sets to +∞ the serial numbers of vertices in
already discovered sccs. The definition of LOWLINK can therefore be written as:

LOWLINK(x) = min{num[y] | x
∗=⇒ z ↪→ y}

Our implementation of graphs uses an abstract type vertex for vertices, a constant vertices59

for the finite set of all vertices in the graph, and a successors function from vertices to their60

adjacency set. The algorithm maintains an environment e implemented as a record of type61

env with four fields: a stack e.stack, a set e.sccs of strongly connected components, a fresh62

serial number e.sn, and a function e.num from vertices to serial numbers.63

64
type vertex65

constant vertices: set vertex66

function successors vertex : set vertex67

type env = {stack: list vertex; sccs: set (set vertex); sn: int; num: map vertex int}6869

The DFS traversal is organized by two mutually recursive functions dfs1 and dfs. The70

function dfs1 visits a new vertex x and computes LOWLINK(x). Furthermore it adds a new71

scc when x is the base of a new scc. The function dfs takes as argument a set r of roots and72

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 3

2 83

4 9

1 7

5 6

0

(a) A graph example

x =
0 1 2 3 4 5 6 7 8 9

LOWLINK(x) =
+∞ 1 1 1 2 5 5 5 4 4

(b) LOWLINK

2 8

3

4

9

1

7

5

6

0

(c) Spanning forest

Figure 1 The vertices are numbered and pushed onto the stack in the order of their visit by the
recursive function dfs1. When the first component {0} is discovered, vertex 0 is popped; similarly when
the second component {5, 6, 7} is found, its vertices are popped; finally all vertices are popped when the
third component {1, 2, 3, 4, 8, 9} is found. Notice that there is no cross-edge to a vertex with a number
less than 5 when the second component is discovered. Similarly in the first component, there is no edge to
a vertex with a number less than 0. In the third component, there is no edge to a vertex less than 1 since
we have set the serial number of vertex 0 to +∞ when 0 was popped.

an environment e. It calls dfs1 on non-visited vertices in r and returns a pair consisting of an73

integer and the modified environment. The integer is the minimum of the values computed74

by dfs1 on non-visited vertices in r and the serial numbers of already visited vertices in r. If75

the set of roots is empty, the returned integer is +∞.76

The main procedure tarjan initializes the environment with an empty stack, an empty set77

of sccs, the fresh serial number 0 and the constant function giving the number −1 to each78

vertex. The result is the set of components returned by the function dfs called on all vertices79

in the graph.80

81
let rec dfs1 x e =82

let n0 = e.sn in83

let (n1, e1) = dfs (successors x) (add_stack_incr x e) in84

if n1 < n0 then (n1, e1) else85

let (s2, s3) = split x e1.stack in86

(+∞, {stack = s3; sccs = add (elements s2) e1.sccs;87

sn = e1.sn; num = set_infty s2 e1.num})88

89

with dfs r e = if is_empty r then (+∞, e) else90

let x = choose r in let r’ = remove x r in91

let (n1, e1) = if e.num[x] 6= -1 then (e.num[x], e) else dfs1 x e in92

let (n2, e2) = dfs r’ e1 in (min n1 n2, e2)93

94

let tarjan () =95

let e = {stack = Nil; sccs = empty; sn = 0; num = const (-1)} in96

let (_, e’) = dfs vertices e in e’.sccs9798

In the body of dfs1, the auxiliary function add_stack_incr updates the environment by99

pushing x on the stack, assigning it the current fresh serial number, and incrementing that100

number in view of future calls. The function dfs1 performs a recursive call to dfs for the101

adjacent vertices of x as roots and the updated environment. If the returned integer value n1102

is less than the number n0 assigned to x, the function simply returns n1 and the current103

environment. Otherwise, the function declares that a new scc has been found, consisting of104

all vertices that are contained on top of x in the current stack. Therefore the stack is popped105

until x ; the popped vertices are stored as a new set in e.sccs; and their serial numbers are all106

set to +∞, ensuring that they do not interfere with future calculations of min values. The107

auxiliary functions split and set_infty are used to carry out these updates.108

109
let add_stack_incr x e = let n = e.sn in110

{stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x ← n]}111

4 Formal proofs of Tarjan’s SCC algorithm

let rec set_infty s f = match s with Nil → f112

| Cons x s’ → (set_infty s’ f)[x ← +∞] end113

let rec split x s = match s with Nil → (Nil, Nil)114

| Cons y s’ → if x = y then (Cons x Nil, s’)115

else let (s1’, s2) = split x s’ in (Cons y s1’, s2) end116117

Figure 1 illustrates the behavior of the algorithm by an example. We presented the118

algorithm as a functional program, using data structures available in the Why3 standard119

library [3]. For lists we have the constructors Nil and Cons; the function elements returns120

the set of elements of a list. For finite sets, we have the empty set empty, and the functions121

add to add an element to a set, remove to remove an element from a set, choose to pick an122

arbitrary element in a (non-empty) set, and is_empty to test for emptiness. We also use123

maps with functions const denoting the constant function, _[_] to access the value of an124

element, and _[_ ← _] for creating a map obtained from an existing map by setting an125

element to a given value.126

For a correspondence between our presentation and the imperative programs used in127

standard textbooks, the reader is referred to [8]. The present version can be directly translated128

into Coq or Isabelle functions, and it respects the linear running time behaviour of the129

algorithm, since vertices could be easily implemented by integers, +∞ by the cardinal of130

vertices, finite sets by lists of integers and mappings by mutable arrays (see for instance [7]).131

Thus for each environment e in the algorithm, the working stack e.stack corresponds to a132

cut of the spanning forest where strongly connected components to its left are pruned and133

stored in e.sccs. In this stack, any vertex can reach any vertex higher in the stack. And if a134

vertex is a base of an scc, no cross-edge can reach some vertex lower than this base in the135

stack, otherwise that last vertex would be in the same scc with a strictly lower serial number.136

We therefore have to organize the proofs of the algorithm around these arguments. To137

maintain these invariants we will distinguish, as is common for DFS algorithms, three sets of138

vertices: white vertices are the non-visited ones, black vertices are those that are already139

fully visited, and gray vertices are those that are still being visited. Clearly, these sets are140

disjoint and white vertices can be considered as forming the complement in vertices of the141

union of the gray and black ones.142

The previously mentioned invariant properties can now be expressed for vertices in the143

stack: no such vertex is white, any vertex can reach all vertices higher in the stack, any144

vertex can reach some gray vertex lower in the stack. Moreover, vertices in the stack respect145

the numbering order, i.e. a vertex x is lower than y in the stack if and only if the number146

assigned to x is strictly less than the number assigned to y.147

3 The proof in Why3148

The Why3 system comprises the programming language WhyML used in previous section and149

a many sorted first-order logic with inductive data types and inductive predicates to express150

the logical assertions. The system generates proof obligations w.r.t. the assertions, pre- and151

post-conditions and lemmas inserted in the WhyML program. The system is interfaced with152

off-the-shelf automatic provers and interactive proof assistants.153

From the Why3 library, we use pre-defined theories for integer arithmetic, polymorphic154

lists, finite sets and mappings. There is also a small theory for paths in graphs. Here we155

define graphs, paths and sccs as follows.156

157
axiom successors_vertices: ∀x. mem x vertices → subset (successors x) vertices158

predicate edge (x y: vertex) = mem x vertices ∧ mem y (successors x)159

inductive path vertex (list vertex) vertex =160

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 5

| Path_empty: ∀x: vertex. path x Nil x161

| Path_cons: ∀x y z: vertex, l: list vertex.162

edge x y → path y l z → path x (Cons x l) z163

164

predicate reachable (x y: vertex) = ∃l. path x l y165

predicate in_same_scc (x y: vertex) = reachable x y ∧ reachable y x166

predicate is_subscc (s: set vertex) = ∀x y. mem x s → mem y s → in_same_scc x y167

predicate is_scc (s: set vertex) = not is_empty s168

∧ is_subscc s ∧ (∀s’. subset s s’ → is_subscc s’ → s == s’)169170

where mem and subset denote membership and the subset relation for finite sets.171

We add two ghost fields in environments for the black and gray sets of vertices. These172

fields are used in the proofs but not used in the calculation of the sccs, which is checked by173

the type-checker of the language.1174

175
type env = {ghost black: set vertex; ghost gray: set vertex;176

stack: list vertex; sccs: set (set vertex); sn: int; num: map vertex int}177178

The functions now become:179

180
let rec dfs1 x e =181

let n0 = e.sn in182

let (n1, e1) = dfs (successors x) (add_stack_incr x e) in183

if n1 < n0 then (n1, add_black x e1) else184

let (s2, s3) = split x e1.stack in185

(+∞, {black = add x e1.black; gray = e.gray; stack = s3;186

sccs = add (elements s2) e1.sccs; sn = e1.sn; num = set_infty s2 e1.num})187

with dfs r e = ... (* unmodified *)188

let tarjan () =189

let e = {black = empty; gray = empty;190

stack = Nil; sccs = empty; sn = 0; num = const (-1)} in191

let (_, e’) = dfs vertices e in e’.sccs192193

with a new function add_black turning a vertex from gray to black and the modified194

add_stack_incr adding a new gray vertex with a fresh serial number to the current stack.195

196
let add_black x e =197

{black = add x e.black; gray = remove x e.gray;198

stack = e.stack; sccs = e.sccs; sn = e.sn; num = e.num}199

let add_stack_incr x e =200

let n = e.sn in201

{black = e.black; gray = add x e.gray;202

stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x ←n]}203204

The main invariant (I) of our program states that the environment is well-formed:205

206
predicate wf_env (e: env) =207

let {stack = s; black = b; gray = g} = e in208

wf_color e ∧ wf_num e ∧ simplelist s ∧ no_black_to_white b g ∧209

(∀x y. lmem x s → lmem y s → e.num[x] ≤ e.num[y] → reachable x y) ∧210

(∀y. lmem y s → ∃x. mem x g ∧ e.num[x] ≤ e.num[y] ∧ reachable y x) ∧211

(∀cc. mem cc e.sccs ↔ subset cc b ∧ is_scc cc)212213

where lmem stands for membership in a list. The well-formedness property is the conjunction214

of seven clauses. The two first clauses express elementary conditions about the colored sets215

of vertices and the numbering function (see [7, 8] for a detailed description). The third clause216

states that there are no repetitions in the stack, and the fourth that there is no edge from a217

1 In Why3-1.2.0, this check is performed differently

6 Formal proofs of Tarjan’s SCC algorithm

black vertex to a white vertex. The next two clauses formally express the property already218

stated above: any vertex in the stack reaches all higher vertices and any vertex in the stack219

can reach a lower gray vertex. The last clause states that the sccs field is the set of all sccs220

all of whose vertices are black.221

Since at the end of the tarjan function, all vertices are black, the sccs field will contain222

exactly the set of all strongly connected components.223

224
let tarjan () = returns{r → ∀cc. mem cc r ↔ subset cc vertices ∧ is_scc cc}225

let e = {black = empty; gray = empty;226

stack = Nil; sccs = empty; sn = 0; num = const (-1)} in227

let (_, e’) = dfs vertices e in assert{subset vertices e’.black};228

e’.sccs229230

Our functions dfs1 and dfs modify the environment in a monotonic way. Namely they231

augment the set of visited vertices (the black ones); they keep invariant the set of the ones232

currently under visit (the gray set); they increase the stack with new black vertices; they233

also discover new sccs and they keep invariant the serial numbers of vertices in the stack,234

235
predicate subenv (e e’: env) =236

subset e.black e’.black ∧ e.gray == e’.gray237

∧ (∃s. e’.stack = s ++ e.stack ∧ subset (elements s) e’.black)238

∧ subset e.sccs e’.sccs ∧ (∀x. lmem x e.stack → e.num[x] = e’.num[x])239240

Once these invariants are expressed, it remains to locate them in the program text and241

to add assertions which help to prove them. The pre-conditions of dfs1 are quite natural:242

the vertex x must be a white vertex of the graph, and it must be reachable from all gray243

vertices. Moreover invariant (I) must hold. The post-conditions of dfs1 are of three kinds.244

Firstly (I) and the monotony property subenv hold in the resulting environment. Vertex245

x is black at the end of dfs1. Finally we express properties of the integer value n returned246

by this function which should be LOWLINK(x) as noted previously. In this proof, we give247

three implicit properties for characterizing n. First, the returned value is never higher than248

the number of x in the final environment. Secondly, the returned value is either +∞ or the249

number of a vertex in the stack reachable from x. Finally, if there is an edge from a vertex y’250

in the new part of the stack to a vertex y in its old part, the resulting value n must be lower251

or equal to the serial number of y.252

253
let rec dfs1 x e =254

(* pre-condition *)255

requires{mem x vertices ∧ not mem x (union e.black e.gray)}256

requires{∀y. mem y e.gray → reachable y x}257

requires{wf_env e} (* I *)258

(* post-condition *)259

returns{(_, e’) → wf_env e’ ∧ subenv e e’}260

returns{(_, e’) → mem x e’.black}261

returns{(n, e’) → n ≤ e’.num[x]}262

returns{(n, e’) → n = +∞ ∨ num_of_reachable_in_stack n x e’}263

returns{(n, e’) → ∀y. xedge_to e’.stack e.stack y → n ≤ e’.num[y]}264265

The auxiliary predicates used above are formally defined in the following way.266

267
predicate num_of_reachable_in_stack (n: int) (x: vertex)(e: env) =268

∃y. lmem y e.stack ∧ n = e.num[y] ∧ reachable x y269

predicate xedge_to (s1 s3: list vertex) (y: vertex) =270

(∃s2. s1 = s2 ++ s3 ∧ ∃y’. lmem y’ s2 ∧ edge y’ y) ∧ lmem y s3271272

Notice that the definition of xedge_to fits the definition of LOWLINK when the cross edge273

ends at a vertex residing in the stack before the call of dfs1. The pre- and post-conditions274

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 7

for the function dfs are quite similar up to a generalization to sets of vertices considered as275

the roots of the algorithm (see [7]).276

We now add seven assertions in the body of the dfs1 function to help the automatic277

provers. In contrast, the function dfs needs no extra assertions in its body. In dfs1, when the278

number n0 of x is strictly greater than the number n1 resulting from the call to its successors,279

the first assertion states that n1 cannot be +∞; it helps proving the next assertion. The280

second assertion states that a lower gray vertex is reachable from x and that thus the scc of281

x is not fully black at end of dfs1. In that assertion the inequality y 6= x is redundant, but282

helps showing the sccs constraint at the end of dfs1. When n1 ≥ n0, the next four assertions283

show that the strongly connected component elements s2 of x is on top of x in the current284

stack and that then x is the base of that scc. The seventh assertion helps proving that the285

coloring constraint is preserved at the end of dfs1.286

287
let n0 = e.sn in288

let (n1, e1) = dfs (successors x) (add_stack_incr x e) in289

if n1 < n0 then begin290

assert{n1 6= +∞};291

assert{∃y. y 6= x ∧ mem y e1.gray ∧ e1.num[y] < e1.num[x] ∧ in_same_scc x y};292

(n1, add_black x e1) end293

else294

let (s2, s3) = split x e1.stack in295

assert{is_last x s2 ∧ s3 = e.stack ∧ subset (elements s2) (add x e1.black)};296

assert{is_subscc (elements s2)};297

assert{∀y. in_same_scc y x → lmem y s2};298

assert{is_scc (elements s2)};299

assert{inter e.gray (elements s2) == empty};300

(+∞, {black = add x e1.black; gray = e.gray; stack = s3;301

sccs = add (elements s2) e1.sccs; sn = e1.sn; num = set_infty s2 e1.num})302303

where inter is set intersection, and is_last is defined below.304

305
predicate is_last (x: α) (s: list α) = ∃s’. s = s’ ++ Cons x Nil306307

All proofs are discovered by the automatic provers except for two proofs carried out308

interactively in Coq. One is the proof of the black extension of the stack in case n1 < n0.309

The provers could not work with the existential quantifier, although the Coq proof is quite310

short. The second Coq proof is the fifth assertion in the body of dfs1, which asserts that any311

y in the scc of x belongs to s2. It is a maximality assertion which states that the set elements312

s2 is a complete scc. The proof of that assertion is by contradiction. If y is not in s2, there313

must be an edge from x’ in s2 to some y’ not in s2 such that x reaches x’ and y’ reaches y.314

There are three cases, depending on the position of y’. Case 1 is when y’ is in sccs: this is315

not possible since x would then be in sccs which contradicts x being gray. Case 2 is when y’316

is an element of s3 : the serial number of y’ is strictly less than the one of x which is n0. If317

x’ 6= x, the cross-edge from x’ to y’ contradicts n1 ≥ n0 (post-condition 5); if x’ = x, then y’318

is a successor of x and again it contradicts n1 ≥ n0 (post-condition 3). Case 3 is when y’319

is white, then x’ 6= x is impossible since x’ is then black in s2 and would be the origin of a320

black-to-white edge to y’ ; if x’ = x, then y’ is not white by post-condition 2 of dfs.321

Some quantitative information about the Why3 proof is listed in table 1. Alt-Ergo 2.3322

and CVC4 1.5 proved the bulk of the proof obligations.2 The proof uses 49 lemmas that were323

all proved automatically, but with an interactive interface providing hints to apply inlining,324

splitting, or induction strategies. This includes 13 lemmas on sets, 16 on lists, 5 on lists325

2 In addition to the results reported in the table, Spass was used to discharge one proof obligation.

8 Formal proofs of Tarjan’s SCC algorithm

provers Alt-Ergo CVC4 E-prover Z3 #VC #PO
49 lemmas 1.91 26.11 3.33 70 49
split 0.09 0.16 6 6
add_stack_incr 0.01 1 1
add_black 0.02 1 1
set_infty 0.03 1 1
dfs1 77.89 150.2 19.99 13.67 79 20
dfs 4.71 3.52 0.26 58 25
tarjan 0.85 15 5
total 85.51 179.99 23.32 13.93 231 108

Table 1 Performance results with provers in Why3-0.88.3 (in seconds, on a 3.3 GHz Intel Core i5
processor). Total time is 341.15 seconds. The two last columns contain the numbers of verification
conditions and proof obligations. Notice that there may be several VCs per proof obligation.

without repetitions, 3 on paths, 5 on sccs and 7 very specialized lemmas directly involved326

in the proof obligations of the algorithm. Among the lemmas, a critical one is the lemma327

xpath_xedge on paths which reduces a predicate on paths to a predicate on edges. In fact,328

most of the Why3 proof works on edges which are handled more robustly by the automatic329

provers than paths. Another important lemma is subscc_after_last_gray which shows that330

the stack elements on top of the last gray vertex form a subset of an scc. This means that331

another program with the split call before the if-statement would make a simpler proof, but332

it would be a non-linear-time program. The two Coq proofs are only 9 and 81 lines long (the333

Coq files of 677 and 680 lines include preambles that are automatically generated during334

the translation from Why3 to Coq). The interested reader is refered to [7] where the full335

proof is available.336

The proof explained so far only showed the partial correctness of the algorithm. But after337

adding two lemmas about union and difference for finite sets, termination is automatically338

proved by the following lexicographic ordering on the number of white vertices and roots.339

340
let rec dfs1 x e = variant{cardinal (diff vertices (union e.black e.gray)), 0}341

with dfs r e = variant{cardinal (diff vertices (union e.black e.gray)), 1, cardinal r}342343

4 The proof in Coq344

Coq is based on type theory and the calculus of constructions, a higher order lambda-calculus,345

for expressing formulae and proofs. Some basic notions of graph theory are provided by346

the Mathematical Components Library [18]. Our formalization is parameterized by a finite347

type V for the vertices and the function successors such that successors x is the adjacency348

set of any vertex x. The boolean gconnect x y indicates that a path connects the vertex349

x to the vertex y. It is straightforward to define the set gsccs of the sccs using gconnect.350

Components are represented as sets of sets ({set {set V}}). We use library operations for351

creating singletons ([set x]), taking unions (S1 ∪ S2), differences (S1 \ S2), complements352

(∼: S), and unions of all sets of a set of sets (cover S).353

Coq proposes several mechanisms to put together properties (boolean conjunction,354

propositional conjunction, record, inductive family) that have their own specificities. In order355

to make the presentation more readable for a non-Coq expert, we write them all with the356

propositional conjunction [∧ P1, . . . & Pn]. We refer to [9] for the actual code.357

The Coq proof differs from the one in Why3: it uses natural numbers only and does358

not mention colors (white, gray and black). In particular, the number ∞ is defined as the359

cardinality of V, vertices with ∞.+1 as serial number correspond to the white vertices of the360

previous section and the environment is defined as a record with only two fields, a set of sccs361

and the mapping assigning serial numbers to vertices:362

363

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 9

Record env := Env {esccs : {set {set V}}; num: {ffun V → nat}}.364365

Given an environment e, the set of visited vertices is visited e (the vertices with serial number366

less or equal to ∞), the current fresh serial number is sn e (the cardinal of visited vertices),367

and the stack is stack e (the list of elements x which satisfy num e x < sn e, sorted by368

increasing serial number).369

Another difference with the Why3 algorithm is the disentanglement of the mutually370

recursive function tarjan into two separate functions The first one dfs1 treats a vertex x and371

the second one dfs a set of vertices roots in an environment e.372

373
Definition dfs1 dfs x e :=374

let: (n1, e1) as res := dfs (successors x) (visit x e) in375

if n1 < sn e then res else (∞, store (stack e1 \ stack e) e1).376

377

Definition dfs dfs1 dfs (roots : {set V}) e :=378

if [pick x in roots] isn’t Some x then (∞, e) else379

let: (n1, e1) := if num e x ≤ ∞ then (num e x, e) else dfs1 x e in380

let: (n2, e2) := dfs (roots \ [set x]) e1 in (minn n1 n2, e2).381382

where visit x e produces the environment where x gets the next serial number, store stores a383

new strongly connected component.384

Then, the two functions are glued together in a recursive function rec where the parameter385

k controls the maximal recursive height.386

387
Fixpoint rec k r e := if k is k’.+1 then dfs (dfs1 (rec k’)) (rec k’) r e else (∞, e).388389

If k is not zero (i.e. it is a successor of some k’), rec calls dfs taking care that its parameters390

can only use recursive calls to rec with a smaller recursive height, here k’. This ensures391

termination. A dummy value is returned in the case where k is zero. Finally, the top level392

tarjan calls rec with the proper initial arguments.393

394
Definition tarjan := let: (_, e) := rec (∞ ∗ ∞.+2) V (Env ∅ [ffun⇒ ∞.+1]) in esccs e.395396

Initially, the roots are all the vertices (V) and the environment has no component and all397

vertices are not visited (their number is ∞.+1). As both dfs and dfs1 cannot be applied398

more than the number of vertices, the value ∞ ∗ ∞.+2 encodes the lexicographic product399

of the two maximal heights. It gives rec enough fuel to never encounter the dummy value400

so tarjan correctly terminates the computation. This allows us to separate the proof of the401

termination from the algorithm itself, and this last statement is of course proved formally402

later and named rec_terminates.403

The invariants of the Coq proof are usually shorter than in the Why3 proof since they404

do not mention colors. We first define well-formed environments and their valid extension:405

406
Definition wf_env e := [∧ esccs e ⊆ gsccs,407

∀ x, num e x < ∞ → num e x < sn e,408

∀ x, (num e x = ∞) = (x ∈ cover (esccs e)) &409

∀ x y, num e x ≤ num e y < sn e → gconnect x y].410

411

Definition subenv e1 e2 := [∧ esccs e1 ⊆ esccs e2,412

∀ x, num e1 x < ∞ → num e2 x = num e1 x & ∀ x, num e2 x < sn e1 → num e1 x < sn e1].413414

Then we state that new visited vertices are the ones reachable by paths accessible from roots415

with non-visited vertices (i.e. by white paths in the colored setting). The function nexts such416

that nexts D X returns the set of vertices reachable from the set X by a path which only417

contains vertices in D except maybe the last one.418

10 Formal proofs of Tarjan’s SCC algorithm

419
Definition outenv (roots : {set V}) (e e’ : env) := [∧420

∀ x y, x ∈ stack e’ \ stack e → y ∈ stack e’ \ stack e → gconnect x y,421

∀ x, x ∈ stack e’ \ stack e → ∃ y, y ∈ stack e ∧ gconnect x y &422

visited e’ = visited e ∪ nexts (∼: visited e) roots].423424

The post-condition is the conjunction of these three properties and the characterization of425

the output rank:426

427
Definition dfs_spec (ne’ : nat ∗ env) (roots : {set V}) e := let: (n, e’) := ne’ in428

[∧ n = \min_(x in nexts (∼: visited e) roots) inord (num e’ x),429

wf_env e’, subenv e e’ & outenv roots e e’].430431

Here, the argument ne’ is the result of a dfs. The output rank n is the minimum of the serial432

numbers of the vertices which can be reached from the roots through a path where all the433

vertices except maybe the last one were not already visited. Note that this characterization434

differs from the notion of LOWLINK which requires that the last vertex was visited.435

Finally, we express correctness as the implication between pre- and post-conditions:436

437
Definition dfs_correct dfs (roots : {set V}) e := wf_env e →438

(∀ x y, x ∈ stack e → y ∈ roots → gconnect x y) → dfs_spec (dfs roots e) roots e.439

Definition dfs1_correct dfs1 x e := wf_env e → x /∈ visited e →440

(∀ x y, x ∈ stack e → y ∈ [set x] → gconnect x y) → dfs_spec (dfs1 x e) [set x] e.441442

These invariants are expressed differently from the formulation in Why3, but they reflect essen-443

tially the same ideas. Rephrasing the invariants made it possible to reduce by approximately444

50% the size of the Coq proofs. The two central theorems are:445

446
Lemma dfsP dfs1 dfsrec (roots : {set V}) e : (∀ x, x ∈ roots → dfs1_correct dfs1 x e) →447

(∀ x, x ∈ roots → ∀ e1, subenv e e1 → dfs_correct dfsrec (roots \ [set x]) e1) →448

dfs_correct (dfs dfs1 dfsrec) roots e.449

450

Lemma dfs1P dfs x e : dfs_correct dfs (successors x) (visit x e) →451

dfs1_correct (dfs1 dfs) x e.452453

They state that dfs and dfs1 are correct if their respective recursive calls are correct. The454

proof of the first lemma is straightforward since dfs simply iterates on a list. It mostly455

requires book-keeping between what is known and what needs to be proved. This is done in456

about 54 lines. The second one is more intricate and requires 124 lines. Gluing these two457

theorems together and proving termination gives us an extra 12 lines to prove the theorem458

459
Theorem rec_terminates k (roots : {set V}) e :460

k ≥ #|∼: visited e| ∗ ∞.+1 + #|roots| → dfs_correct (rec k) roots e.461462

The correctness of tarjan follows directly in 19 lines of straightforward proof.463

464
Theorem tarjan_correct : tarjan = gsccs.465466

We now provide some quantitative information. The Coq contribution is composed of467

two files. The extra_nocolors file defines the bigmin operator and some notions of graph468

theory that we intend to add to Mathematical Components. This file is 294 lines long. The469

main file is tarjan_nocolors and is 605 lines long. It is compiled in 12 seconds with a memory470

footprint of 800 Mb (3/4 of which is resident) on a Intel® i7 2.60GHz quad-core laptop471

running Linux. The proofs are performed in the SSReflect proof language [14] with very472

little automation. The proof script is mostly procedural, alternating book-keeping tactics473

(move) with transformational ones (mostly rewrite and apply), but often intermediate steps474

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 11

Number of lines 1 2 3 4 5 6 11 12 16 19 54 124
Number of proofs 19 7 5 2 1 2 2 1 1 1 1 1

Table 2 Distribution of the numbers of lines of the 43 proofs in the file tarjan_nocolors.

are explicitly declared with the have tactic. There are more than fifty of such intermediate475

steps in the 320 lines of proof of the file tarjan_nocolors. Table 2 gives the distribution of476

the numbers of lines of these proofs. Most of them are very short (26 are less than 2 lines)477

and the only complicated proof is the one corresponding to the lemma dfs1P.478

5 The proof in Isabelle/HOL479

Isabelle/HOL [21] is the encoding of simply typed higher-order logic in the logical framework480

Isabelle [23]. Unlike Why3, it is not primarily intended as an environment for program481

verification and does not contain specific syntax for stating pre- and post-conditions or482

intermediate assertions in function definitions. Logics and formalisms for program verification483

have been developed within Isabelle/HOL (e.g., [16]), but they target imperative rather484

than functional programming, so we simply formalize the algorithm as an Isabelle function.485

Isabelle/HOL provides an extensive library of data structures and proofs. In this development486

we mainly rely on the set and list libraries. We start by introducing a locale, fixing parameters487

and assumptions for the remainder of the proof. We explicitly assume that the set of vertices488

is finite.489

490
locale graph =491

fixes vertices :: ν set and successors :: ν ⇒ ν set492

assumes finite vertices and ∀v ∈ vertices. successors v ⊆ vertices493494

We introduce reachability in graphs using an inductive predicate definition, rather than via495

an explicit reference to paths as in the Why3 definition. Isabelle then generates appropriate496

induction theorems for use in proofs.497

498
inductive reachable where499

reachable x x500

| [[y ∈ successors x; reachable y z]] =⇒ reachable x z501502

The definition of strongly connected components mirrors that used in Why3. The follow-503

ing lemma states that SCCs are disjoint; its one-line proof is found automatically using504

Sledgehammer [2], which heuristically selects suitable lemmas from the set of available facts505

(including Isabelle’s library), invokes several automatic provers, and finally reconstructs a506

proof that is checked by the Isabelle kernel.507

508
lemma scc-partition:509

assumes is-scc S and is-scc S’ and x ∈ S ∩ S’510

shows S = S’511512

Environments are represented by records, similar to the formalization in Why3, except513

that there is no distinction between regular and “ghost” fields. Also, the definition of the514

well-formedness predicate closely mirrors that used in Why3.3515

516
record ν env =517

black :: ν set gray :: ν set518

stack :: ν list sccs :: ν set set sn :: nat num :: ν ⇒ int519

definition wf_env where wf_env e ≡520

wf_color e ∧ wf_num e ∧ distinct (stack e) ∧ no_black_to_white e521

3 We use the infix operator � to denote precedence in lists.

12 Formal proofs of Tarjan’s SCC algorithm

∧ (∀x y. y � x in (stack e) −→ reachable x y)522

∧ (∀y ∈ set (stack e). ∃g ∈ gray e. y � g in (stack e) ∧ reachable y g)523

∧ sccs e = { C . C ⊆ black e ∧ is_scc C }524525

The definition of the two mutually recursive functions dfs1 and dfs again closely follows their526

representation in Why3.527

528
function (domintros) dfs1 and dfs where529

dfs1 x e =530

(let (n1,e1) = dfs (successors x) (add_stack_incr x e) in531

if n1 < int (sn e) then (n1, add_black x e1)532

else (let (l,r) = split_list x (stack e1) in533

(+∞, (| black = insert x (black e1), gray = gray e,534

stack = r, sn = sn e1, sccs = insert (set l) (sccs e1),535

num = set_infty l (num e1) |)))) and536

dfs roots e =537

(if roots = {} then (+∞, e)538

else (let x = SOME x. x ∈ roots;539

res1 = (if num e x 6= -1 then (num e x, e) else dfs1 x e);540

res2 = dfs (roots - {x}) (snd res1)541

in (min (fst res1) (fst res2), snd res2)))542543

The function keyword introduces the definition of a recursive function. Isabelle checks that544

the definition is well-formed and generates appropriate simplification and induction theorems.545

Because HOL is a logic of total functions, it introduces two proof obligations: the first one546

requires the user to prove that the cases in the function definitions cover all type-correct547

arguments; this holds trivially for the above definitions. The second obligation requires548

exhibiting a well-founded ordering on the function parameters that ensures the termination549

of recursive function invocations, and Isabelle provides a number of heuristics that work in550

many cases. However, the functions defined above will in fact not terminate for arbitrary551

calls, in particular for environments that assign sequence number −1 to non-white vertices.552

The domintros attribute instructs Isabelle to consider these functions as “partial”. More553

precisely, it introduces an explicit predicate representing the domains for which the functions554

are defined. This “domain condition” appears as a hypothesis in the simplification rules555

that mirror the function definitions so that the user can assert the equality of the left- and556

right-hand sides of the definitions only if the domain predicate holds. Isabelle also proves557

(mutually inductive) rules for proving when the domain condition is guaranteed to hold. Our558

first objective is therefore to establish sufficient conditions that ensure the termination of the559

two functions. Assuming the domain condition, we prove that the functions never decrease560

the set of colored vertices and that vertices are never explicitly assigned the number −1 by561

our functions. Denoting the union of gray and black vertices as colored, we introduce the562

predicate563

564
definition colored_num where colored_num e ≡565

∀v ∈ colored e. v ∈ vertices ∧ num e v 6= -1566567

and show that this predicate is an invariant of the functions. We then prove that the triple568

defined as569

570
(vertices - colored e, {x}, 1)571

(vertices - colored e, roots, 2)572573

for the arguments of dfs1 and dfs, respectively, decreases w.r.t. lexicographical ordering on574

finite subset inclusion and < on natural numbers across recursive function calls, provided575

that colored_num holds when the function is called and x is a white vertex. These conditions576

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 13

are therefore sufficient to ensure that the domain condition holds:4577

578
theorem dfs1_dfs_termination:579

[[x ∈ vertices - colored e; colored_num e]] =⇒ dfs1_dfs_dom (Inl(x,e))580

[[roots ⊆ vertices; colored_num e]] =⇒ dfs1_dfs_dom (Inr(roots,e))581582

The proof of partial correctness follows the same ideas as the proof presented for Why3.583

We define the pre- and post-conditions of the two functions as predicates in Isabelle. For584

example, the predicates for dfs1 are defined as follows:585

586
definition dfs1_pre where dfs1_pre e ≡587

wf_env e ∧ x ∈ vertices ∧ x /∈ colored e ∧ (∀g ∈ gray e. reachable g x)588

definition dfs1_post where dfs1_post x e res ≡589

let n = fst res; e’ = snd res590

in wf_env e’ ∧ subenv e e’ ∧ roots ⊆ colored e’591

∧ (∀x ∈ roots. n ≤ num e’ x)592

∧ (n = +∞ ∨ (∃x ∈ roots. ∃y in set (stack e’). num e’ y = n ∧ reachable x y))593594

We now show the following theorems:595

The pre-condition of each function establishes the pre-condition of every recursive call596

appearing in the body of that function. For the second recursive call in the body of dfs597

we also assume the post-condition of the first recursive call.598

The pre-condition of each function, plus the post-conditions of each recursive call in the599

body of that function, establishes the post-condition of the function.600

Combining these results, we establish partial correctness:601

602
theorem dfs_partial_correct:603

[[dfs1_dfs_dom (Inl(x,e)); dfs1_pre x e]] =⇒ dfs1_post x e (dfs1 x e)604

[[dfs1_dfs_dom (Inr(roots,e)); dfs_pre roots e]] =⇒ dfs_post roots e (dfs roots e)605606

We define the initial environment and the overall function.607

608
definition init_env where init_env ≡609

(| black = {}, gray = {}, stack = [], sccs = {}, sn = 0, num = λ_. -1 |)610

definition tarjan where tarjan ≡611

sccs (snd (dfs vertices init_env))612613

It is trivial to show that the arguments to the call of dfs in the definition of tarjan satisfy614

the pre-condition of dfs. Putting together the theorems establishing termination and partial615

correctness, we obtain the desired total correctness results.616

617
theorem dfs_correct:618

dfs1_pre x e =⇒ dfs1_post x e (dfs1 x e)619

dfs_pre roots e =⇒ dfs_post roots e (dfs roots e)620

theorem tarjan_correct:621

tarjan = { C . is_scc C ∧ C ⊆ vertices }622623

The intermediate assertions appearing in the Why3 code guided the overall proof: they624

are established either as separate lemmas or as intermediate steps within the proofs of the625

above theorems. Similarly to the Coq proof, the overall induction proof was explicitly626

decomposed into individual lemmas as laid out above. In particular, whereas Why3 identifies627

the predicates that can be used from the function code and its annotation with pre- and628

post-conditions, these assertions appear explicitly in the intermediate lemmas used in the629

4 Observe that Isabelle introduces a single operator corresponding to the two mutually recursive functions
whose domain is the disjoint sum of the domains of both functions.

14 Formal proofs of Tarjan’s SCC algorithm

i = 1 i ≤ 5 i ≤ 10 i ≤ 20 i ≤ 30 i = 35 i = 43 i = 48
28 8 4 1 2 1 1 1

Table 3 Distribution of interactions in the Isabelle proofs.

proof of theorem dfs_partial_correct. The induction rules that Isabelle generated from the630

function definitions were helpful for finding the appropriate decomposition of the overall631

correctness proof.632

Despite the extensive use of Sledgehammer for invoking automatic back-end provers,633

including the SMT solvers CVC4 and Z3, from Isabelle, we found that in comparison to Why3,634

significantly more user interactions were necessary in order to guide the proof. Although635

many of those were straightforward, a few required thinking about how a given assertion636

could be derived from the facts available in the context. Table 3 indicates the distribution637

of the number of interactions used for the proofs of the 46 lemmas the theory contains.638

These numbers cannot be compared directly to those shown in Table 2 for the Coq proof639

because an Isabelle interaction is typically much coarser-grained than a line in a Coq proof.640

As in the case of Why3 and Coq, the proofs of partial correctness of dfs1 (split into two641

lemmas following the case distinction) and of dfs required the most effort. It took about one642

person-month to carry out the case study, starting from an initial version of the Why3 proof.643

Processing the entire Isabelle theory on a laptop with a 2.7 GHz Intel® Core i5 (dual-core)644

processor and 8 GB of RAM takes 35 seconds of CPU time.645

6 General comments about the proof646

Our formal proofs refer to colors, finite sets, and the stack, although the informal correctness647

argument is about properties of strongly connected components in spanning trees. The648

algorithmician would explain the algorithm with spanning trees as in Tarjan’s article. It649

would be nice to extract a program from such a proof, but programmers like to understand650

the proof in terms of variables and data that their program is using.651

A first version of the formal proof used ranks in the working stack and a flat representation652

of environments by adding extra arguments to functions for the black, gray, scc sets and the653

stack. That was perfect for the automatic provers of Why3. But after remodelling the proof654

in Coq and Isabelle/HOL, it was simpler to gather these extra arguments in records and655

have a single extra argument for environments. Also ranks disappeared in favor of the num656

function and the precedence relation, which are easier to understand. The automatic provers657

have more difficulties with the inlining of environments, but with a few hints they could still658

succeed.659

Our proof is mainly about the correctness of Tarjan’s algorithm. It relies on surprisingly660

few and elementary concepts of finite graphs. With the exception of the use of the Mathem-661

atical Components library for Coq, we therefore did not use existing libraries formalizing662

advanced concepts of graph theory [11, 22].663

Finally, coloring of vertices is usual for graph algorithms. The stack used in our algorithm664

is also not necessary since it is just used to efficiently output new strongly connected665

components. The Coq formalization actually shows that proof can be done with just serial666

numbers and the store of connected components. The stack and current serial number could667

be added back using a program refinement, in order to recover a linear time computation.668

There is always a tension between the concision of the proof, its clarity and its relation669

to the real program. In our presentation, we have allowed for a few redundancies.670

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 15

Why3 Coq Isabelle/HOL
expressivity - + +
readability + - +
stability - + +
ease of use - - -
automation + - +
ignore termination + - -
trusted base - + +
automatic proof line-count 395 0 314 ui
manual proof line-count 90 898 1690

Table 4 Compared usage of the three formal systems in the case of our three proofs

7 Conclusion671

The formal proof expressed in this article was initially designed and implemented in Why3 [8]672

as the result of a long process, nearly a 2-year half-time work with many attempts of673

proofs about various graph algorithms (depth first search, Kosaraju strong connectivity,674

bi-connectivity, articulation points, minimum spanning tree). Why3 has a clear separation675

between programs and the logic. It makes the correctness proof quite readable for a676

programmer. Also first-order logic is easy to understand. Moreover, one can prove partial677

correctness without caring about termination.678

Another important feature of Why3 is its interface with various off-the-shelf theorem679

provers (mainly SMT provers). Thus the system benefits from the current technology in680

theorem provers and clerical sub-goals can be delegated to these provers, which makes the681

overall proof shorter and easier to understand. Although the proof must be split in more682

elementary pieces, this has the benefit of improving its readability. Several hints about683

inlining or induction reasoning are still needed and two Coq proofs were used. The system684

records sessions and facilitates incremental proofs. However, the automatic provers are685

sometimes no longer able to handle a proof obligation after seemingly minor modifications to686

the formulation of the algorithm or the predicates, making the proof somewhat unstable.687

The Coq and Isabelle proofs were inspired by the Why3 proof. Their development688

therefore required much less time although their text is longer. The Coq proof uses689

SSReflect and the Mathematical Components library, which helps reduce the size of the690

proof compared to classical Coq. The proof also uses the bigops library and several other691

higher-order features which makes it more abstract and closer to Tarjan’s original proof.692

In Coq, one could prove termination using well-foundedness [1, 4], but because of nested693

recursion the Function command fails, and both Equations and Program Fixpoint require the694

addition of an extra proof argument to the function. Instead, we define the functionals dfs1695

and dfs and recombine them in rec and tarjan by recursion on a natural number used as fuel.696

We prove partial correctness on functionals and postpone termination on rec.697

Our Coq proof does not use significant automation.5 All details are explicitly expressed,698

but many of them were already present in the Mathematical Components library. Moreover,699

a proof certificate is produced and a functional program could in principle be extracted. The700

absence of automation makes the system very stable to use since the proof script is explicit,701

but it requires a higher degree of expertise from the user.702

The Isabelle/HOL proof can be seen as a mid-point between the Why3 and Coq proofs.703

It uses higher order logic and the level of abstraction is close to the one of the Coq proof,704

5 Hammers exist for Coq [10, 12] but unfortunately they currently perform badly when used in conjunction
with the Mathematical Components library.

16 Formal proofs of Tarjan’s SCC algorithm

although more readable in this case study. The proof makes use of Isabelle’s extensive support705

for automation. In particular, Sledgehammer [2] was very useful for finding individual proof706

steps. It heuristically selects lemmas and facts available in the context and then calls707

automatic provers (SMT solvers and superposition-based provers for first-order logic). When708

one of these provers finds a proof, Sledgehammer attempts to find a proof that can be709

certified by the Isabelle kernel, using various proof methods such as combinations of rewriting710

and first-order reasoning (blast, fastforce etc.), calls to the metis prover or reconstruction of711

SMT proofs through the smt proof method. Unlike in Why3, the automatic provers used to712

find the initial proof are not part of the trusted code base because ultimately the proof is713

checked by the kernel. The price to pay is that the degree of automation in Isabelle is still714

significantly lower compared to Why3. Adapting the proof to modified definitions was fast:715

the Isabelle/jEdit GUI eagerly processes the proof script and quickly indicates those steps716

that require attention.717

The Isabelle proof also faces the termination problem to achieve general consistency.718

We chose to delay handling termination, using the domintros attribute. The proofs of719

termination and of partial correctness are independent; in particular, we obtain a weaker720

predicate ensuring termination than the one used for partial correctness. Although the basic721

principle of the termination proof is very similar to the Coq proof and relies on considering722

functionals of which the recursive functions are fixpoints, the technical formulation is more723

flexible because we rely on proving well-foundedness of an appropriate relation rather than724

computing an explicit upper bound on the number of recursive calls.725

One strong point of Isabelle/HOL is its nice LATEX output and the flexibility of its parser,726

supporting mathematical symbols. Combined with the hierarchical Isar proof language [31],727

the proof is in principle understandable without actually running the system, although some728

familiarity with the system is still required.729

In the end, the three systems Why3, Coq, and Isabelle/HOL are mature, and each one730

has its own advantages w.r.t. readability, expressivity, stability, ease of use, automation,731

partial-correctness, code extraction, trusted base and length of proof (see table 4). Coming732

up with invariants that are both strong enough and understandable was by far the hardest733

part in this work. This effort requires creativity and understanding, although proof assistants734

provide some help: missing predicates can be discovered by understanding which parts of735

the proof fail. We think that formalizing the proof in all three systems was very rewarding736

and helped us better understand the state of the art in computer-aided deductive program737

verification. It could be also interesting to implement this proof in other formal systems and738

establish comparisons based on this quite challenging example.6739

Another interesting work would be to verify an implementation of this algorithm with740

imperative programs and concrete data structures. This will make the proof more complex,741

since mutable variables and mutable data structures have to be considered. There is support742

for verifying imperative programs in general-purpose proof assistants [5, 6, 16], and it would be743

interesting to also develop them simultaneously in various formal systems and to understand744

how these proofs can be derived from ours.745

A final and totally different remark is about teaching of algorithms. Do we want students to746

formally prove algorithms, or to present algorithms with assertions, pre- and post-conditions,747

and make them prove these assertions informally as exercises? In both cases, we believe that748

our work could make a useful contribution.749

6 We have set up a Web page http://www-sop.inria.fr/marelle/Tarjan/contributions.html in order
to collect formalizations.

http://www-sop.inria.fr/marelle/Tarjan/contributions.html

R. Chen, C. Cohen, J.-J. Lévy, S. Merz, L. Théry 17

References750

1 G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about recursive751

functions: a practical tool for the coq proof assistant. In Functional and LOgic Programming752

Systems (FLOPS’06), volume 3945 of LNCS, pages 114–129, Fuji Susono, Japan, April 2006.753

2 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledgeham-754

mer with SMT solvers. J. Automated Reasoning, 51(1):109–128, 2013.755

3 François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond, and Andrei756

Paskevich. The Why3 platform, version 0.86.1. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay,757

version 0.86.1 edition, May 2015. Available at why3.lri.fr/download/manual-0.86.1.pdf.758

4 Ana Bove, Alexander Krauss, and Matthieu Sozeau. Partiality and recursion in interactive759

theorem provers - an overview. Mathematical Structures in Computer Science, 26(1):38–88,760

2016.761

5 Arthur Charguéraud. Characteristic formulae for the verification of imperative programs.762

In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proc. 16th ACM763

SIGPLAN Intl. Conf. Functional Programming, pages 418–430, Tokyo, Japan, 2011. ACM.764

6 Arthur Charguéraud. Higher-order representation predicates in separation logic. In Proc. 5th765

ACM SIGPLAN Conf. Certified Programs and Proofs, CPP 2016, pages 3–14, New York, NY,766

USA, 2016. ACM.767

7 Ran Chen and Jean-Jacques Lévy. Full scripts of Tarjan SCC Why3 proof. Technical report,768

Iscas and Inria, 2017. jeanjacqueslevy.net/why3.769

8 Ran Chen and Jean-Jacques Lévy. A semi-automatic proof of strong connectivity. In Andrei770

Paskevich and Thomas Wies, editors, Proc. 9th Working Conf. Verified Software: Theories,771

Tools, and Experiments (VSTTE 2017), volume 10712 of Lecture Notes in Computer Science,772

pages 49–65. Springer, 2017.773

9 Cyril Cohen and Laurent Théry. Full script of Tarjan SCC Coq/ssreflect proof, 2017. Available774

at https://www-sop.inria.fr/marelle/Tarjan/.775

10 Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for dependent type theory.776

J. Autom. Reasoning, 61(1-4):423–453, 2018.777

11 Christian Doczkal, Guillaume Combette, and Damien Pous. A formal proof of the minor-778

exclusion property for treewidth-two graphs. In Jeremy Avigad and Assia Mahboubi, editors,779

Proc. 9th Intl. Conf. Interactive Theorem Proving (ITP 2018), volume 10895 of LNCS, pages780

178–195. Springer, 2018.781

12 Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds,782

and Clark W. Barrett. SMTCoq: A plug-in for integrating SMT solvers into Coq. In CAV783

(2), volume 10427 of LNCS, pages 126–133. Springer, 2017.784

13 Jean-Christophe Filliâtre et al. The Why3 gallery of verified programs. Technical report,785

CNRS, Inria, U. Paris-Sud, 2015. toccata.lri.fr/gallery/why3.en.html.786

14 Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection in Coq. J.787

Formalized Reasoning, 3(2):95–152, 2010.788

15 Aquinas Hobor and Jules Villard. The ramifications of sharing in data structures. In Proc.789

40th Ann. ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages, POPL ’13,790

pages 523–536, New York, NY, USA, 2013. ACM.791

16 Peter Lammich. Refinement to Imperative/HOL. In Christian Urban and Xingyuan Zhang,792

editors, Proc. 6th Intl. Conf. Interactive Theorem Proving (ITP 2015), volume 9236 of LNCS,793

pages 253–269, Nanjing, China, 2015. Springer.794

17 Peter Lammich and René Neumann. A framework for verifying depth-first search algorithms.795

In Proc. 4th ACM SIGPLAN Conf. Certified Programs and Proofs, CPP ’15, pages 137–146,796

New York, NY, USA, 2015. ACM.797

18 Assia Mahboubi and Enrico Tassi. Mathematical Components. Available at: https://798

math-comp.github.io/mcb/, 2016.799

19 Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic. In CADE,800

2003.801

why3.lri.fr/download/manual-0.86.1.pdf
jeanjacqueslevy.net/why3
https://www-sop.inria.fr/marelle/Tarjan/
toccata.lri.fr/gallery/why3.en.html
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/

18 Formal proofs of Tarjan’s SCC algorithm

20 Stephan Merz. Isabelle formalization of Tarjan’s algorithm, 2018. Available at https://802

members.loria.fr/SMerz/papers/cpp2019.html.803

21 Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant for804

Higher-Order Logic. Number 2283 in Lecture Notes in Computer Science. Springer Verlag,805

2002.806

22 Lars Noschinski. A graph library for isabelle. Mathematics in Computer Science, 9(1):23–39,807

2015.808

23 Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in809

Computer Science. Springer Verlag, 1994.810

24 Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph programs. Funda-811

menta Informaticae, 118(1-2):135–175, 2012.812

25 François Pottier. Depth-first search and strong connectivity in Coq. In Journées Francophones813

des Langages Applicatifs (JFLA 2015), January 2015.814

26 Azalea Raad, Aquinas Hobor, Jules Villard, and Philippa Gardner. Verifying concurrent graph815

algorithms. In Atsushi Igarashi, editor, Proc. 14th Asian Symp. Programming Languages816

and Systems (APLAS 2016), volume 10017 of LNCS, pages 314–334, Hanoi, Vietnam, 2016.817

Springer.818

27 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-819

grained concurrent programs. In Proc. 36th ACM SIGPLAN Conf. Programming Language820

Design and Implementation, PLDI ’15, pages 77–87, New York, NY, USA, 2015. ACM.821

28 Robert Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing,822

1972.823

29 Laurent Théry. Formally-proven Kosaraju’s algorithm. Inria report, Hal-01095533, 2015.824

30 Ingo Wengener. A simplified correctness proof for a well-known algorithm computing strongly825

connected components. Information Processing Letters, 83(1):17–19, 2002.826

31 Markus Wenzel. Isar – a generic interpretative approach to readable formal proof documents. In827

Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent Théry,828

editors, 12th Intl. Conf. Theorem Proving in Higher-Order Logics (TPHOLS’99), volume 1690829

of LNCS, pages 167–184, Nice, France, 1999. Springer.830

32 Freek Wiedijk. The Seventeen Provers of the World, volume 3600 of LNCS. Springer, Berlin,831

Heidelberg, 2006.832

https://members.loria.fr/SMerz/papers/cpp2019.html
https://members.loria.fr/SMerz/papers/cpp2019.html
https://members.loria.fr/SMerz/papers/cpp2019.html

	Introduction
	The algorithm
	The proof in Why3
	The proof in Coq
	The proof in Isabelle/HOL
	General comments about the proof
	Conclusion

