
A Tool Suite for the Automated Synthesis
of Security Function Chains

Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, and Stephan Merz
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

{schnepf, badonnel, lahmadi, merz}@inria.fr

ABSTRACT

Software-defined networking may serve as a support for the
elaboration of security chains capable of protecting end-user
devices. These chains may be composed of different security
functions, such as firewalls and intrusion detection systems.
This demonstration showcases a tool suite for automating such
a generation, from the learning of the behavior of applications,
to the factoring and instanciation of security chains.

I. BACKGROUND

The programmability that characterizes software-defined
networking (SDN) [1] simplifies the definition and enforce-
ment of network policies by decoupling the control and the
data planes. In particular, end users can be protected by means
of chains of security functions, as described in [2]. These
chains are built up by combining (in sequence or in paral-
lel) elementary security functions such as intrusion detection
systems, firewalls or data leakage prevention mechanisms.
The chains can conveniently be described using high level
programming languages such as Pyretic [3]. This language,
part of the Frenetic family of languages [4], is embedded
in Python and provides support for compiling the specified
policies into low-level OpenFlow rules.

However, the complexity of such security chains induces
the risk of introducing misconfigurations and security holes in
the network. Several authors proposed the use of formal meth-
ods [5], [6], and Pyretic also supports such methods through its
extension Kinetic [7] that integrates model checking support
for the verification of the control plane. Unfortunately, ap-
plying such verification mechanisms at runtime is prohibitive
because of the excessive execution time they require. We
therefore propose a framework for the automated synthesis of
chains based on specifications of generic network policies and
the observed behavior of applications. The chains generated
in this way are guaranteed to satisfy certain properties such as
shadowing freedom and coherence with the network policies,
as well as the absence of routing cycles and black holes. We
developed the framework with the objective of protecting An-
droid applications, although it could in principle be instantiated
for other applicative contexts.

II. THE SYNAPTIC PLATFORM

Our system, called Synaptic, mainly relies on an orches-
trator that integrates several functionalities for automating
the generation of security chains, as illustrated in Fig. 2. It

first supports process learning for building Markov models of
the applications to be protected [2]. These models are built
by aggregating application flows collected through a network
probe [8]. States of our Markov models represent organizations
that own IP addresses contacted by the application, and
state transitions are obtained by computing the probability of
moving from one state to another. Figure 1 presents a simple
automaton computed in this way, each state corresponding to
a collection of network flows to destinations owned by the
organization labelling the state.

These automata, together with generic specifications of
network policies provided by the network administrator and
the set of permissions requested by the application, serve as
an input for classifying flows as either safe or representing
potential attacks such as denial of service, port scanning,
worms or botnets [10]. The classification is performed through
declarative logic programming rules and results in predicates
in first-order logic that identify potential attacks. From there,
another set of rules generates a high-level representation
of a chain of security functions specific to the considered
application that is finally compiled to a Pyretic program.

Although the chains obtained in this way could in principle
be deployed in an SDN environment, there may be redundan-
cies between chains generated for different applications. The
last step of our orchestration process, illustrated in Fig. 3,
therefore consists in factorizing the chains generated for
different applications. The combination of chains of security
functions before their deployment is non-trivial. Rather than
simply composing the different chains in parallel, our factor-
ization algorithm [9] identifies and integrates common security
functions across applications. It relies on the fixed order in

Figure 1. Automaton describing the behavior of an Android application.



Figure 2. Proposed system for generating and merging security chains [9].

which security functions appear in the chains generated by
our synthesis module for preserving correctness. Experimental
evaluation showed the potential for significant reductions in
the number of security functions to be deployed after factor-
ization, while preserving the accuracy of the chains.

Figure 3. Overall process for generating and merging security chains.

III. THE DEMONSTRATION

In this demo we will present the whole process of security
chain generation, from learning the behavior of applications to
the factorization of the corresponding chains. We will illustrate
this process with several applications that can be either safe
or contain malicious traffic that must be blocked. We will
show how these different security chains can be combined in
practice to build a larger security chain protecting every input
application provided to our orchestrator and how such a chain
can be compiled and deployed in the network.

We will also demonstrate how we integrate logic program-
ming in our overall orchestration process and how this logic
based inference model can be used with different detection

methods by decoupling the specification of the chain from the
representation of security requirements of end users. Finally,
we will give some examples of such requirements, specified
as first order predicates and how they are used to generate
security chains. We will present different approaches for the
generation of chains of security functions, explain their advan-
tages and limits and illustrate the effectiveness and efficiency
of our factorization algorithm for combining chains.

REFERENCES

[1] N. Feamster and H. Kim, “Software-Defined Networks: Improving
Network Management with SDN,” in IEEE Communications Magazine,
February 2013.

[2] N. Schnepf, S. Merz, R. Badonnel, and A. Lahmadi, “Towards Gener-
ation of SDN Policies for Protecting Android Environments based on
Automata Learning,” in Proceedings of the 16th Network Operations
and Management Symposium (IEEE/IFIP NOMS’18), 2018.

[3] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P. Kata, C. Mon-
santo, J. Reich, M. Reitblatt, R. Jennifer, C. Schlesinger, A. Story, and
D. Walker, “Languages for Software-Defined Networks,” in Software
Technology Group, 2016.

[4] N. Foster, M. J. Freedman, R. Harrison, C. Monsanto, and D. Walker,
“Frenetic, a Network Programming Language,” in Proceedings of the
16th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’11), 2011.

[5] E. Al-Shaer and S. Al-Haj, “FlowChecker, Configuration Analysis and
Verification of Federated OpenFlow Infrastructures,” in Proceedings of
the 3rd ACM Workshop on Assurable and Usable Security Configuration
(CCS’10), 2010.

[6] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “Vericon: Towards Verifying Controller
Programs in Software-Defined Networks,” in Proc. 35th ACM SIGPLAN
Intl. Conf. Programming Language Design (PLDI’14), Edinburgh, UK,
2014, pp. 282–293.

[7] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable Dynamic Network Control,” in Proceedings of the
12th USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI’15), 2015.

[8] A. Lahmadi, F. Beck, E. Finickel, and O. Festor, “A platform for
the analysis and visualization of network flow data of android envi-
ronments,” IFIP/IEEE International Symposium on Integrated Network
Management (IM), May 2015, poster.

[9] N. Schnepf, S. Merz, R. Badonnel, and A. Lahmadi, “Automated factor-
ization of security chains in software-defined networks,” in Proceedings
of the 16th IFIP/IEEE Symposium on Integrated Network and Service
Management (IM 2019), 2019.

[10] ——, “Rule-Based Synthesis of Chains of Security Functions for
Software-Defined Networks,” in Proceedings of the 18th International
Workshop on Automated Verification of Critical Systems (AVOCS’18),
2018.


