Robustness issues in CGAL: arithmetics and the kernel

Sylvain Pion

INRIA Sophia Antipolis

Plan

- Links between geometry and arithmetics
- Floating point arithmetic
- Exact arithmetic
- Arithmetic filters
- CGAL implementation

Introduction

Examples of geometric predicates

$$\begin{aligned} & \mathsf{orientation}\big(p,q,r\big) = \\ & \mathsf{sign}\big((x(p)-x(r))\times(y(q)-y(r)) - (x(q)-x(r))\times(y(p)-y(r))\big) \end{aligned}$$

Predicate of degree 2.

Examples of geometric constructions

From geometry to arithmetic

Geometric algorithm

- ⇒ Geometric operations (predicates and constructions)
 - ⇒ Algebraic operations over coordinates/coefficients
 - \Rightarrow Arithmetic operations $(+, -, \times, \div, \sqrt{\ldots})$

Arithmetic ⇒ **Geometry**

Cost of arithmetic ⇒ Time complexity of geometric algorithms

Approximate arithmetic ⇒ robustness problems of geometric algorithms

The Real-RAM model

Real computer model with random access (RAM = Random access machine). Theoretical model specifying the behavior of real arithmetic on computers.

- All arithmetic operations over reals cost O(1) time (and are exact).
- All real variables take O(1) memory space.

Complexity analyses of geometric algorithms are traditionnaly performed within this model.

Relationship with the reality of computers?

Two approaches:

- Floating point arithmetic, approximate.
- Exact arithmetic, slower.

For geometry: which approach is the best in practice?

What is the precise cost of the exact approach?

Floating point arithmetic

IEEE 754 Standard

Standardization of basic FP operations on computers (1985).

Machine representation of $(-1)^s \times 1.m \times 2^e$ (for double precision, 64 bits):

S	exponent	mantissa
1	11	52

- 5 operations : $+, -, \times, \div, \checkmark$
- 4 rounding modes : to nearest (representable number), towards 0, towards $+\infty$, towards $-\infty$.
- Special values : $+\infty$, $-\infty$, denormals, NaNs.
- Relatively well supported by the industry (languages, compilers, processors).

Ref: http://stevehollasch.com/cgindex/coding/ieeefloat.html

Rounding errors

Definition: x being a positive FP value, and y the smallest FP value greater than x, we define ulp(x) = y - x (Unit in the Last Place).

Remark 1 : ulp(x) is a power of 2 (or ∞). Remark 2 : In normal cases : $ulp(x) \simeq x2^{-53}$

Property: For all operations $+,-,\times,\div,\sqrt{}$, the difference between the computed value r and the exact value, the rounding error, is smaller than: $\mathrm{ulp}(r)/2$ for the rounding to nearest mode, and $\mathrm{ulp}(r)$ otherwise.

Attention: This is only true for operations taken one at a time.

Some properties of FP arithmetic

The is no underflow for
$$+,-:$$
 $a-b=0 \iff a=b$

Detection of NaNs:

$$a = a \iff a \text{ is not a NaN}$$

Monotonicity for a given rounding mode: $a+b \le c+d$ computed $\iff a+b \le c+d$ exact (idem for the other operations)

Geometry of the approximate orientation predicate

[Kettner-Mehlhorn-Schirra-P-Yap 04]

Multiple precision computation

Multiple precision

Exact computing over integers (\mathbb{Z}) :

- $O(n = \log N)$ memory
- +,-: O(n) time.

Exact evaluation of polynomials over integral inputs of size O(n): $\geq O(nd)$

Libraries : GMP, LEDA, CGAL, BigNum...

Karatsuba multiplication

We cut the operands x and y in two parts of equal size (most and least significant bits) :

MSBs	LSBs
x_1	x_0

Let b the power of 2 such that $x = x_1b + x_0$ and $y = y_1b + y_0$. We see that :

$$xy = (b^2 + b)x_1y_1 - b(x_1 - x_0)(y_1 - y_0) + (b+1)x_0y_0$$

So, we use 3 multiplications of numbers of size n/2 (instead of 4).

Asymptotic complexity : $O(n^{log(3)/log(2)=1.585})$

To know more: http://www.swox.com/gmp/manual/Algorithms.html

Rational numbers

Just a pair of exact integers : numerator / denominator.

Attention : even the addition doubles the number of bits !

Normalization can be used (not free...) to reduce the size :

- Either we are lucky (small probability).
- Either we missed an algebraic simplification.
- Other cases ?

Otherwise: exponential growth with the depth of operations.

Multiple precision floating point numbers

 $m2^e$, where m and e are multiple precision integers.

It's possible to add a precision p to x such that :

$$m2^e - 2^p \le x \le m2^e + 2^p$$

p can be specified to each operation, or globally.

p can be propagated.

Libraries: MPFR, CGAL::MP_Float.

Error propagation

Let (x, p_x) be a multiprecision FP number and an associated precision corresponding to a real X. Similarly for (y, p_y) .

Then we can get an approximation of X + Y by $(x + y, p_{x+y})$, where:

$$|(X - x) + (Y - y)| <= |X - x| + |Y - y|$$

$$|(X - x) + (Y - y)| <= 2^{p_x} + 2^{p_y}$$

$$|(X + Y) - (x + y)| <= 2^{p_{x+y}}$$

$$\implies p_{x+y} = 1 + max(p_x, p_y)$$

This is true if x + y is not rounded. Otherwise, it has to be taken into account.

Other arithmetic techniques in brief

- Modular arithmetic
- Separation bounds

The other extreme: filters

Optimize easy cases

Separation bounds: treat the worst cases.

Most expected case: "easy" cases, to be optimized.

Control the FP rounding errors \Rightarrow we use the costly exact computations rarely.

In the "good cases", we get a solution geometrically exact for nearly the cost of FP computation.

Dynamic filters: interval arithmetic

Idea: we replace each FP operation by an operation over an interval of FP values $[\underline{x}; \overline{x}]$ which encodes the rounding error.

Inclusion property: at each operation, the interval contains the exact value X.

Operations: we use the IEEE 754 rounding modes:

$$X + Y \longrightarrow [\underline{x} + \underline{y}; \overline{x} + \overline{y}]$$

$$X - Y \longrightarrow [\underline{x} - \overline{y}; \overline{x} - y]$$

Optimization:

$$X + Y \longrightarrow [-((-\underline{x})\overline{-}y); \overline{x}\overline{+}\overline{y}]$$

Less rounding mode changes.

Multiplication and division of intervals

Multiplication:

$$X \times Y \longrightarrow \left[\min(\underline{x} \underline{\times} \underline{y}, \ \underline{x} \underline{\times} \overline{y}, \ \overline{x} \underline{\times} \underline{y}, \ \overline{x} \underline{\times} \overline{y}); \ \max(\underline{x} \overline{\times} \underline{y}, \ \overline{x} \overline{\times} \overline{y}, \ \overline{x} \overline{\times} \overline{y}) \right]$$

In practice, we use comparison tests for the different cases before doing the multiplications.

Division: similar.

Division by zero treatment.

Comparisons

Thanks to the inclusion property, if

$$[\underline{x};\overline{x}]\cap[y;\overline{y}]=\emptyset$$

then we can decide if X < Y or X > Y.

Otherwise, we can not decide the comparison.

⇒ Filter failure

Static filters

Static analysis of the rounding error propagation over the evaluation of a polynomial, supposing bounds on the inputs.

Notations : x is a real variable, x its value computed with doubles, e_x and b_x are doubles such that :

$$\begin{cases} e_{x} \ge |x - x| \\ b_{x} \ge |x| \end{cases}$$

Initially, we can get a rounded value to the nearest (if the values are not representable by a double):

$$\begin{cases} b_x = |x| \\ e_x = \frac{1}{2}ulp(x) \end{cases}$$

Addition and subtraction

Error propagation over an addition z = x + y is the following :

$$\begin{cases} b_z = b_x + b_y \\ e_z = e_x + e_y + \frac{1}{2}ulp(z) \end{cases}$$

Indeed:

$$|z - \mathbf{z}| = |\underbrace{(z - (x + y))}_{=0} + \underbrace{((x + y) - (\mathbf{x} + \mathbf{y}))}_{\leq \mathbf{e_x} + \mathbf{e_y}} + \underbrace{((\mathbf{x} + \mathbf{y}) - \mathbf{z})}_{\leq \frac{1}{2}\mathbf{ulp}(\mathbf{z})}|$$

$$\leq \mathbf{e_x} + \mathbf{e_y} + \underbrace{1}_{2}\mathbf{ulp}(\mathbf{z})$$

Multiplication

Error propagation for a multiplication $z = x \times y$ is the following :

$$\begin{cases} b_z = b_x \times b_y \\ e_z = e_x \overline{\times} e_y + e_y \overline{\times} |x| + e_x \overline{\times} |y| + \frac{1}{2} ulp(z) \end{cases}$$

Indeed:

$$|z - \mathbf{z}| = |\underbrace{(z - (x \times y))}_{=0} + \underbrace{((x \times y) - (\mathbf{x} \times \mathbf{y}))}_{=(\mathbf{x} - x)(\mathbf{y} - y) - (\mathbf{x} - x) \times \mathbf{y} - (\mathbf{y} - y) \times \mathbf{x}} + \underbrace{((\mathbf{x} \times \mathbf{y}) - \mathbf{z})}_{\leq \frac{1}{2} \mathbf{u} \mathbf{1} \mathbf{p}(\mathbf{z})}|$$

$$\leq \mathbf{e}_{\mathbf{x}} + \mathbf{e}_{\mathbf{y}} + \mathbf{e}_{\mathbf{x}} + \mathbf{e}_{\mathbf{y}} +$$

Application: orientation predicate

Approximate FP code:

Application: orientation predicate

```
Code with static filters (for inputs bounded by 1):
int filtered_orientation(double px, double py,
                         double qx, double qy,
                         double rx, double ry)
 double pqx = qx - px, pqy = qy - py;
 double prx = rx - px, pry = ry - py;
 double det = pqx * pry - pqy * prx;
 const double E = 1.33292e-15;
 if (det > E) return 1;
 if (det < -E) return -1;
  ... // can't decide => call the exact version
```

Variants: Ex: computing the bound at run time

```
int filtered_orientation(double px, double py,
                         double qx, double qy,
                         double rx, double ry)
 double b = max_abs(px, py, qx, qy, rx, ry);
 double pqx = qx - px, pqy = qy - py;
 double prx = rx - px, pry = ry - py;
 double det = pqx * pry - pqy * prx;
 const double E = 1.33292e-15;
 if (det > E*b*b) return 1;
 if (det < -E*b*b) return -1;
  ... // can't decide => call the exact version
```

Filter failure rates probabilities

Theoretical study: [Devillers-Preparata-99]

Inputs uniformly distributed in a unit square/cube :

```
orientation 2D 10^{-15} orientation 3D 5.10^{-14} in_circle 2D 10^{-11} in_sphere 3D 7.10^{-10}
```

... for data homogeneously distributed.

On more degenerate cases

	Dynamic	Semi-static
Random	0	870
$\varepsilon = 2^{-5}$	0	1942
$\varepsilon = 2^{-10}$	0	662
$\varepsilon = 2^{-15}$	0	8833
$\varepsilon = 2^{-20}$	0	132153
$\varepsilon = 2^{-25}$	10	192011
$\varepsilon = 2^{-30}$	19536	308522
Grid	49756	299505

Number of failures of dynamic and static filters during the computation of Delaunay (10^5 points). Inputs on a integer grid of 30 bits, with relative perturbation.

Comparison: dynamic vs static filters

Can fail more often that interval arithmetic (less precise), but faster.

Static filters harder to write: needs analysis of each predicate.

Fastest scheme: cascade several methods.

Filters: remarks

Fragile: try to avoid bad cases in algorithms!

- Avoid cascaded computations (use original inputs)
- Avoid testing degenerate cases if you know them (created by the algorithm).
- Avoid constructions, because faster solutions are available for predicates.

Current work

- Automatic code generation, from a generic version, for the best methods.
- Filtering of geometric constructions.
- Rounding of constructions.

Implementation in CGAL

Algorithms and traits classes

Algorithms are parameterized (templates) by geometric traits classes, which provide :

- types of the objects manipulated by the algorithm : Point_2, Tetrahedron_3...
- predicates that the algorithm applies to the objects: Orientation_2,
 Side_of_oriented_sphere_3...
- constructions: Mid_point_2, Construct_circumcenter_3, Compute_squared_length_2...

The last 2 are provided as function objects.

Needs of algorithms are described towards its trais parameter as a concept.

Kernels

The kernel gathers many objects types, predicates and constructions, and can be used as parameter for the traits classes directly to many algorithms.

Classical kernels, parameterized by number types:

Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian < double > is a model for the concept TriangulationTraits_3.

The kernel functionality is also available via global functions : CGAL::orientation(p, q, r)..

Number types

Valid parameters for the kernels Cartesian...

```
FP:
double, float

Multi-precision:
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...

Number types including some filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>
```

Internal tools

Interval arithmetic : CGAL::Interval_nt, boost::interval

Generator of filtered predicates (dynamic) using C++ exceptions : $CGAL::Filtered_predicate<>$

Sylvain Pion 41

Filtered kernels

CGAL::Filtered_kernel < K > provides some predicates with static filters, and all others with dynamic filters.

Recommended kernels:

CGAL::Exact_predicates_exact_constructions_kernel

 $CGAL :: Exact_predicates_inexact_constructions_kernel$

Sylvain Pion 42

Example

```
template < typename K >
struct My_orientation_2
  typedef typename K::RT
                                RT;
  typedef typename K::Point_2 Point_2;
  CGAL:: Orientation
  operator()(const Point_2 &p, const Point_2 &q,
               const Point_2 &r) const
    RT prx = p.x() - r.x(); RT pry = p.y() - r.y(); RT qrx = q.x() - r.x(); RT qry = q.y() - r.y();
    return static_cast < CGAL:: Orientation > (
              CGAL::sign(prx*qry - qrx*pqy));
```

Example

```
// Using it
typedef CGAL::Cartesian < double > Kernel;
Kernel::Point_2 p(1, 2), q(2, 3), r(4, 5);
My_orientation_2 < Kernel > orientation;
CGAL::Orientation ori = orientation(p, q, r);
```

Using Filtered_predicate

```
typedef CGAL::Simple_cartesian < double > K;
typedef CGAL::Simple_cartesian < CGAL::Interval_nt_advanced > FK;
typedef CGAL::Simple_cartesian < CGAL::MP_Float > EK;
typedef CGAL:: Cartesian_converter < K, EK > C2E;
typedef CGAL:: Cartesian_converter < K, FK > C2F;
typedef CGAL:: Filtered_predicate < My_orientation_2 < EK>,
                                   My_{orientation_2} < FK >,
                                   C2E, C2F> Orientation_2;
 K:: Point_2 p(1,2), q(2,3), r(3,4);
  Orientation_2 orientation;
  orientation(p, q, r);
  return 0;
```

Sylvain Pion