Robustness issues in CGAL :
arithmetics and the kernel

Sylvain Pion

INRIA Sophia Antipolis

Links between geometry and arithmetics
Floating point arithmetic

Exact arithmetic

Arithmetic filters

CGAL implementation

Introduction

Examples of geometric predicates |

positive
orientation

negative
orientation

<y

x(p) <?x(p)

orientation(p, q,7) =

sign((z(p) —2(r)) x (y(q) = y(r)) — (z(q) = 2(r)) x (y(p) — y(r)))

Predicate of degree 2.

Sylvain Pion

Examples of geometric constructions |

Sylvain Pion

y(p)

X(p)

<y

From geometry to arithmetic \

Geometric algorithm
= Geometric operations (predicates and constructions)
= Algebraic operations over coordinates/coefficients

= Arithmetic operations (4, —, X, =, Vo)

Sylvain Pion

Arithmetic = Geometry |

Cost of arithmetic = Time complexity of geometric algorithms

Approximate arithmetic = robustness problems of geometric algorithms

Sylvain Pion

The Real-RAM model |

Real computer model with random access (RAM = Random access machine).

Theoretical model specifying the behavior of real arithmetic on computers.

e All arithmetic operations over reals cost O(1) time (and are exact).

e All real variables take O(1) memory space.

Complexity analyses of geometric algorithms are traditionnaly performed within
this model.

Sylvain Pion 7

Relationship with the reality of computers ? |

Two approaches :

e Floating point arithmetic, approximate.

e Exact arithmetic, slower.

For geometry : which approach is the best in practice ?

What is the precise cost of the exact approach ?

Floating point arithmetic

IEEE 754 Standard I

Standardization of basic FP operations on computers (1985).

Machine representation of (—1)® x 1.m x 2¢ (for double precision, 64 bits):

s | exponent mantissa
1 11 52

® 5 operations : 4, —, X, =,/

e 4 rounding modes : to nearest (representable number), towards 0, towards
+o00, towards —oo.

e Special values : 400, —00, denormals, NaNs.

e Relatively well supported by the industry (languages, compilers, processors).

Ref : http://stevehollasch.com/cgindex/coding/ieeefloat.html

Sylvain Pion 10

Rounding errors |

Definition : = being a positive FP value, and y the smallest FP value greater

than z, we define ulp(x) = y — = (Unit in the Last Place).

Remark 1 : ulp(x) is a power of 2 (or o).
Remark 2 : In normal cases : ulp(z) ~ 227°3

Property : For all operations +, —, X, =+, V'

the difference between the computed value r and the exact value,
the rounding error, is smaller than :

ulp(r)/2 for the rounding to nearest mode, and

ulp(r) otherwise.

Attention : This is only true for operations taken one at a time.

Sylvain Pion

11

Some properties of FP arithmetic |

The is no underflow for +, — :
a—b=0<a=0>

Detection of NaNs:
a=a <= ais not a NaN

Monotonicity for a given rounding mode:
a+b<=c+d computed <= a + b <= c+ d exact
(idem for the other operations)

Sylvain Pion

12

Geometry of the approximate orientation predicate |

[Kettner-Mehlhorn-Schirra-P-Yap 04]

13

Multiple precision computation

Multiple precision |

Exact computing over integers (Z) :
e O(n =log N) memory
e +,— : O(n) time.

O(n?) if n small
e X,+: O(n~H9) if n average (Karatsuba)
O(nlognloglogn) if n large (Schonhage Strassen)

Exact evaluation of polynomials over integral inputs of size O(n) : > O(nd)

Libraries : GMP, LEDA, CGAL, BigNum...

Sylvain Pion

15

Karatsuba multiplication |

We cut the operands = and y in two parts of equal size (most and least significant
bits) :

MSBs LSBs
I Wiy

Let b the power of 2 such that © = 10 + xg and y = y1b + yo. We see that :

zy = (b% + b)zyyr — by — 20)(y1 — yo) + (b + 1)zoyo
So, we use 3 multiplications of numbers of size n/2 (instead of 4).
Asymptotic complexity : O(n!l09(3)/log(2)=1.585)

To know more : http://www.swox.com/gmp/manual/Algorithms.html

Sylvain Pion 16

Rational numbers I

Just a pair of exact integers : numerator / denominator.
Attention : even the addition doubles the number of bits !

Normalization can be used (not free...) to reduce the size :

e Either we are lucky (small probability).
e Either we missed an algebraic simplification.

e Other cases ?

Otherwise : exponential growth with the depth of operations.

Sylvain Pion

17

Multiple precision floating point numbers

m2¢, where m and e are multiple precision integers.

It's possible to add a precision p to x such that :

m2¢ — 2P < x < m2°+ 2P

p can be specified to each operation, or globally.

p can be propagated.

Libraries : MPFR, CGAL::MP_Float.

Sylvain Pion

18

Error propagation |

Let (x,p,) be a multiprecision FP number and an associated precision
corresponding to a real X. Similarly for (y,p,).

Then we can get an approximation of X +Y by (z + y, py4,), where:
(X —2)+ Y —y)| <= [X—z[+]V -y

(X —2)+ (Y —y)| <= 2Pz 4 2P
(X+Y)—(@ty)| <= 2o

— Paty — 1+ mafx(pacapy)

This is true if x + vy is not rounded. Otherwise, it has to be taken into account.

Sylvain Pion 19

Other arithmetic techniques in brief \

e Modular arithmetic

e Separation bounds

20

The other extreme : filters

21

Optimize easy cases |

Separation bounds : treat the worst cases.

Most expected case : "easy’ cases, to be optimized.
Control the FP rounding errors = we use the costly exact computations rarely.

In the "good cases’, we get a solution geometricaly exact for nearly the cost of
FP computation.

Sylvain Pion 22

Dynamic filters : interval arithmetic

ldea : we replace each FP operation by an operation over an interval of FP
values [x;Z| which encodes the rounding error.

Inclusion property : at each operation, the interval contains the exact value X.

Operations : we use the I[EEE 754 rounding modes :

X+Y — [gig, T+Y]

X—-Y — [2=7y; 7~y

Optimization : B B
X+Y — [-((—2z)-y);T+Y]
Less rounding mode changes.

Sylvain Pion 23

Multiplication and division of intervals

Multiplication :

In practice, we use comparison tests for the different cases before doing the
multiplications.

Division : similar.

Division by zero treatment.

Sylvain Pion 24

Comparisons |

Thanks to the inclusion property, if

z; T N [y; 7] =0

then we can decide if X <Y or X >Y.

Otherwise, we can not decide the comparison.

— Filter failure

Sylvain Pion

25

Static filters |

Static analysis of the rounding error propagation over the evaluation of a
polynomial, supposing bounds on the inputs.

Notations : x is a real variable, x its value computed with doubles, e, and by
are doubles such that :
{ ex > |r — x|

by > |x]

Initially, we can get a rounded value to the nearest (if the values are not
representable by a double) :

by = |x|
e, = %ulp(x)

Sylvain Pion 26

Addition and subtraction |

Error propagation over an addition z = x + y is the following :

b, = by + b,
e, = ex + ey + sulp(z)
Indeed :
z—z[= [-(@+y)+({(@+y) —(x+y)+((x+y) -z
=0 <extey <%ulp(z)
. _1
< eyt e+ iulp(z)

Sylvain Pion

27

Multiplication |

Error propagation for a multiplication z = x X y is the following :

b, = by X by
e, = exXey + e;X|x| + exX|y| + sulp(z)

Indeed :
z—z| = |z-(xy)+ (zxy -—(xxy) +{(xxy)-2)
=0 =(x—z)(y—y)—(x—z) Xy—(y—y) Xx S%ulp(z)
. |
< exXey + exXy + eyxXx + aulp(z)

Sylvain Pion 28

Application : orientation predicate |

Approximate FP code :

int orientation(double px, double py,
double gx, double qy,
double rx, double ry)

double pgx = gx - pxX, PpPqy = Qy - PY;
double prx = rx - px, pry = ry - py;

double det = pgx * pry - pqy * prx;
if (det > 0) return 1;

if (det < 0) return -1;
return O;

Sylvain Pion

Application : orientation predicate |

Code with static filters (for inputs bounded by 1) :

int filtered_orientation(double px, double py,
double qgx, double qy,
double rx, double ry)

double pgx = gx - pX, P9y = qy - PY;
double prx rx — pX, Pry ry — PYy;

double det = pgx * pry - pqy * prx;
const double E = 1.33292e-15;

if (det > E) return 1;
if (det < -E) return -1;

... // can’t decide => call the exact version

+

Sylvain Pion

Variants : Ex : computing the bound at run time

int filtered_orientation(double px, double py,
double gx, double qy,
double rx, double ry)

double b = max_abs(px, py, 9xX, 9y, rX, ry);

double pgx = gx - pX, P9y = qy - PYV;
double prx rx — pX, Pry = ry - py;

double det = pgx * pry - pqy * prx;
const double E = 1.33292e-15;

if (det > Exbx*b) return 1;
if (det < -Exbx*b) return -1;

... // can’t decide => call the exact version

+

Sylvain Pion

31

Filter failure rates probabilities

Theoretical study : [Devillers-Preparata-99]
Inputs uniformly distributed in a unit square/cube :

orientation 2D 10~ 1°
orientation 3D 5.107 1
in_circle 2D 10—t
in_sphere 3D 7.10710

... for data homogeneously distributed.

Sylvain Pion

32

On more degenerate cases |

Dynamic | Semi-static
Random 0 370
g =27 0 1942
=271 0 662
=271 0 8833
e=2"74Y 0 132153
g=2" 10 192011
g =29 19536 308522
Grid 49756 299505

Number of failures of dynamic and static filters during the computation of
Delaunay (10° points). Inputs on a integer grid of 30 bits, with relative
perturbation.

Sylvain Pion 33

Comparison : dynamic vs static filters |

Can fail more often that interval arithmetic (less precise), but faster.

Static filters harder to write : needs analysis of each predicate.

Fastest scheme : cascade several methods.

Sylvain Pion

34

Filters : remarks I

Fragile : try to avoid bad cases in algorithms !
- Avoid cascaded computations (use original inputs)
- Avoid testing degenerate cases if you know them (created by the algorithm).

- Avoid constructions, because faster solutions are available for predicates.

Sylvain Pion 35

Current work I

e Automatic code generation, from a generic version, for the best methods.
e Filtering of geometric constructions.

e Rounding of constructions.

36

Implementation in CGAL

Algorithms and traits classes |

Algorithms are parameterized (templates) by geometric traits classes,
which provide :

e types of the objects manipulated by the algorithm : Point_2, Tetrahedron_3...

e predicates that the algorithm applies to the objects : Orientation_2,
Side_of_oriented_sphere_3...

e constructions : Mid_point_2, Construct_circumcenter_3, Compute_squared_length_2...

The last 2 are provided as function objects.

Needs of algorithms are described towards its trais parameter as a concept.

Sylvain Pion 38

Kernels I

The kernel gathers many objects types, predicates and constructions, and can be
used as parameter for the traits classes directly to many algorithms.

Classical kernels, parameterized by number types :
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >
Cartesian<double> is a model for the concept TriangulationTraits_3.

The kernel functionality is also available via global functions
CGAL: :orientation(p, q, r)..

Sylvain Pion 39

Number types |

Valid parameters for the kernels Cartesian...

FP :
double, float

Multi-precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...

Number types including some filtering :
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>

Sylvain Pion

40

Internal tools |

Interval arithmetic : CGAL::Interval_nt, boost::interval

Generator

of filtered predicates (dynamic)

CGAL::Filtered_predicate<>

Sylvain Pion

using CH++

exceptions

41

Filtered kernels I

CGAL::Filtered_kernel< K > provides some predicates with static filters, and all
others with dynamic filters.

Recommended kernels :
CGAL::Exact_predicates_exact_constructions_kernel
CGAL::Exact_predicates_inexact_constructions_kernel

Sylvain Pion 42

Example |

template < typename K >
struct My _orientation_2

{

typedef typename K::RT RT;
typedef typename K:: Point_.2 Point_2;

CGAL:: Orientation
operator()(const Point 2 &p, const Point 2 &q,
const Point 2 &r) const

{
RT prx = p.x() — r.x(); RT pry =p.y() — r.y();
RT qrx = q.x() — r.x(); RT qry = q.y() — r.y();
return static cast<CGAL:: Orientation > (
CGAL::sign (prxxqry — qrx*pqy));
h

Sylvain Pion

43

Example |

// Using it
typedef CGAL:: Cartesian<double> Kernel;

Kernel :: Point .2 p(1, 2), q(2, 3), r(4, 5);
My _orientation_2 <Kernel > orientation;

CGAL:: Orientation ori =

Sylvain Pion

= orientation(p, q, r);

44

typedef
typedef
typedef
typedef
typedef

typedef

CGAL ::
CGAL ::
CGAL ::
CGAL ::
CGAL ::

CGAL ::

Using Filtered_predicate |

Simple_cartesian<double > K;
Simple_cartesian<CGAL:: Interval_nt_advanced > FK;
Simple cartesian <CGAL:: MP _Float > EK;

Cartesian _converter <K, EK> C2E;
Cartesian_converter <K, FK> C2F;

Filtered_predicate <My _orientation_2 <EK>,
My _orientation_2 <FK>,
C2E, C2F> Orientation_2:

K::Point 2 p(1,2), q(2,3), r(3,4);
Orientation_2 orientation:
orientation(p, q, r);

return O;

Sylvain Pion

45

