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Abstract
We show that the Delaunay triangulation of a set of points
distributed nearly uniformly on a polyhedron (not neces-
sarily convex) of dimension p in d-dimensional space is
O(n(d−1)/p). For all 2 ≤ p ≤ d − 1, this improves on the
well-known worst-case bound of O(ndd/2e).

1 Introduction
The Delaunay triangulation of a set of points is a data struc-
ture, which in low dimensions has applications in mesh gen-
eration, surface reconstruction, molecular modeling, geo-
graphic information systems, and many other areas of sci-
ence and engineering. Like many spatial partitioning tech-
niques, however, it suffers from the “curse of dimension-
ality”: in higher dimensions, the complexity of the De-
launay triangulation increases exponentially. Its worst-case
complexity is bounded precisely by the following theorem,
known as the Upper Bound Theorem.

Theorem 1 (McMullen [13]) The number of simplices in
the Delaunay triangulation of n points in dimension d is at
most

(

n − bd+1
2 c

n − d

)

+

(

n − bd+2
2 c

n − d

)

= O(nd d
2
e)

This bound is achieved exactly by the vertices of a cyclic
polytope, which all lie on a one-dimensional curve known as
the moment curve. Indeed all of the examples that we have of
point sets which have Delaunay triangulations of complexity
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O(ndd/2e) are distributed on one-dimensional curves. At the
opposite extreme, points distributed uniformly at random in-
side the sphere have Delaunay triangulations of complexity
O(n) in any fixed dimension, with a constant factor which is
exponential in the dimension [9]. Our goal in this paper is to
begin to fill in the picture for distributions between the two
extremes, in which the points lie on manifolds of dimension
2 ≤ p ≤ d − 1.

As an easy first case, we consider a fixed polyhedral set
(not necessarily convex) P of dimension p in d > p dimen-
sional space. Our point set S is a sparse ε-sample from
P. Sparse ε-sampling is a model, sometimes used in com-
putational geometry, in which the sampling can be neither
too dense nor too sparse; we define it precisely below. Let
n = |S|. We consider how the complexity of the Delau-
nay triangulation of S grows, as n → ∞, with P remaining
fixed. Our main result is that the number of full-dimensional
simplices in the Delaunay triangulation is O(n(d−1)/p); this
implies that the total number of faces of all dimensions sat-
isfies the same bound. The hidden constant factor depends,
among other things, on the geometry of P, which is constant
since P is fixed.

While our result is purely combinatorial, it has both poten-
tial and immediate algorithmic implications. The Delaunay
triangulation can be computed in optimal worst-case time in
dimension d ≥ 3 by the standard randomized incremental
algorithm [8, 16], or deterministically [7]. While our re-
sult does not immediately improve these running times for
the special case of points distributed on lower-dimensional
manifolds [3], it is of course a necessary step towards such
an improvement. Our result shows that Seidel’s giftwrap-
ping algorithm [15] runs in time O(n2 + n(d−1)/p lg n) in
our special cases, which can be somewhat improved using
more sophisticated data structures [4].

1.1 Prior work

The complexity of the Delaunay triangulation of a set of
points on a two-manifold in R

3 has received considerable
recent attention, since such point sets arise in practice, and



their Delaunay triangulations are found nearly always to
have linear size. Golin and Na [12] proved that the Delau-
nay triangulation of a large enough set of points distributed
uniformly at random on the surface of a fixed convex poly-
tope in R

3 has O(n) size. They later [11] gave an O(n lg4 n)
upper bound for the case in which the points are distributed
uniformly at random on the surface of a non-convex polyhe-
dron.

Attali and Boissonnat considered the problem using a
sparse ε-sampling model similar to the one we use here,
rather than a random distribution. For such a set of points
distributed on a polygonal surface P, they showed that the
size of the Delaunay triangulation is O(n) [1]. Our proof
gives the same bound, and is perhaps a little simpler; but,
as we shall describe in a moment, our definition of sparse ε-
sampling for polyhedra is a little more restrictive. In a subse-
quent paper with Lieutier [2] they considered “generic” sur-
faces, and got an upper bound of O(n lg n). Specifically, a
“generic” surface is one for which each medial ball touches
the surface in at most a constant number of points.

The genericity assumption is important. Erickson consid-
ered more general point distributions, which he character-
ized by the spread: the ratio of the largest inter-point dis-
tance to the smallest. The spread of a sparse ε-sample of n
points from a two-dimensional manifold is O(

√
n). Erick-

son proved that the Delaunay triangulation of a set of points
in R

3 with spread ∆ is O(∆3). Perhaps even more interest-
ingly, he showed that this bound is tight for ∆ =

√
n, by giv-

ing an example of a sparse ε-sample of points from a cylinder
that has a Delaunay triangulation of size Ω(n3/2) [10]. Note
that this surface is not generic and has a degenerate medial
axis.

To the best of our knowledge, there are no prior results for
d > 3.

1.2 Overview of the proof

Our proof uses two samples, the original sparse ε-sample
S from the polyhedron P, and a sparse ε-sample M of a
bounded subset M∗ of the medial axis of P. We prove that
any Delaunay ball circumscribing points of S is contained in
an enlarged medial ball centered at a point z of M∗, and we
assign each z to a medial sample point in M . We then prove
that each sample in M is assigned at most a constant number
of Delaunay balls.

Since M is a sparse ε-sample from a fixed (d − 1)-
dimensional set of constant volume, its cardinality is m =
O(εd−1). Similarly, S is a sparse ε-sample of P and we get
n = Ω(ε−p). Eliminating ε gives m = O(n(d−1)/p), and
since each sample of M is charged for a constant number
of Delaunay balls, this bound applies to the size of the De-
launay triangulation as well. This is the key insight: as a
function of ε, the number of Delaunay balls depends only on
the dimension of the medial axis, which is always d−1. The
number of samples, n, depends on the dimension p of P. As

p increases, n increases, but the complexity of the Delaunay
triangulation stays about the same. If written as a function of
n, the complexity of the Delaunay triangulation goes down.

2 Statement of Theorem

In this section, we introduce the setting for our result. We
first define simplicial complexes, Delaunay triangulations,
polyhedra and medial axes.

2.1 Simplicial complexes

We refer to [14] for more details on simplicial complexes.
A geometric simplex, σ, is the convex hull of a collection of
affinely independent points in R

d. If there are k + 1 points
in the collection, we call σ a k-simplex and k its dimension.
Any simplex spanned by a subset of the k+1 points is called
a face of σ. A geometric simplicial complex is a finite collec-
tion of simplices, K, satisfying the two following properties:
(1) every face of a simplex in K is in K; (2) the intersec-
tion of any two simplices of K is either empty or a face of
each of them. Its underyling space, |K|, is the subset of R

d,
covered by the simplices with the subspace topology inher-
ited from R

d. We will also need abstract versions of those
geometric notions. An abstract simplicial complex, K, is a
collection of finite nonempty sets, such that if σ ∈ K, so is
every nonempty subset of σ. The element σ of K is called
an abstract simplex, its dimension is one less than its cardi-
nality. A face of σ is any nonempty subset of σ. The vertex
set of σ is the collection one-point element of σ, which we
denote as Vert σ. The dimension of a simplicial complex K,
geometric or abstract, is the largest dimension of any simplex
in K.

2.2 Delaunay triangulations

Let S ⊆ R
d be a finite set of points. The Voronoi re-

gion V (s), of s ∈ S is the set of points x ∈ R
d with

‖x− s‖ ≤ ‖x− t‖ for all t ∈ S. The Delaunay triangulation
Del(S) of S is the nerve of the Voronoi regions. Specifically,
an abstract simplex σ = {s0, . . . , sk} ⊆ S belongs to the
Delaunay triangulation iff the Voronoi regions of its vertices
have a nonempty common intersection,

⋂

0≤i≤k V (si) 6= ∅.
Equivalently, a simplex σ is in the Delaunay triangulation
iff there exists of a (d − 1)-sphere, called Delaunay sphere,
that passes through s0, . . . , sk and encloses no point of S.
Afterwards, any d-ball bounded by a Delaunay sphere is re-
ferred to as a Delaunay ball. The Delaunay triangulation is
an abstract simplicial complex. Notice that using this defi-
nition, on degenerate inputs in which k + 1 > d + 2 points
are co-spherical, every d + 1 subset of these points defines
a Delaunay simplex. In this paper, we don’t assume general
position for points in S. The complexity (or size) of the De-
launay triangulation is the total number of its simplices of all
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dimensions. We express it as a function of n, the number of
points in S.

2.3 Polyhedron

A polyhedron is the underlying space of a geometric simpli-
cial complex. If the dimension of the simplicial complex K
is p, we say that P = |K| is a p-polyhedron. The collection
of simplices σ ∈ K, whose dimension is i or less is called
the i-skeleton of K and denoted K(i). Given a point x ∈ P,
we let i be the largest dimension for which a small open d-
ball centered at x intersects |K(i)| in an open i-ball N(x) of
|Ki| (see Figure 1). The tangent flat to P at x, denoted by
TPx, is the i-flat spanned by the open i-ball N(x). A facet F
of P is a maximal collection of points with identical tangent
flat. If the dimension of the tangent flat is i, F is an i-facet.
The 0-facets are called vertices. Afterwards, f designates
the number of facets of P.

TPx

x

P

Figure 1: The tangent flat to P at x is a line. Note that a poly-
hedron may have smaller-dimensional parts. Points that sample
lower-dimensional parts can have a high-complexity Delaunay tri-
angulation but still not damage the overall complexity, because they
form a small subset of the set of sample points.

2.4 Medial axis

The medial axis is instrumental in expressing the constant in
our main result and crucial for proving it. The medial axis,
M = M(P), is the set of points that have at least two closest
points in P. Formally, writing Π(z) for the set of points in P

with minimum distance to z ∈ R
d, we have

M = {z ∈ R
d | cardΠ(z) ≥ 2}.

A point z on the medial axis is said to be medial. The small-
est d-ball centered at z and containing Π(z) is called a medial
ball. The medial axis of a polyhedron P admits a stratifica-
tion. In other words, it can be decomposed into a finite num-
ber of strata, each a connected i-manifold with boundary, for
i < d. Furthermore, any point x ∈ M belongs to the closure

of at least one stratum of dimension d−1. Roughly speaking,
the medial axis of a polyhedron is a (d−1)-dimensional sur-
face that has a positive (d−1)-dimensional volume, possibly
infinite.

We introduce a bounded subset of the medial axis, M∗ =
M∗(P), called the essential medial axis and defined as fol-
lows. For z ∈ M, we let c(z) be the center of the smallest
d-ball enclosing Π(z). A point z for which z = c(z) is called
a critical point of the distance-to-polyhedron function [6, 5].
One can prove that z = c(z) iff z lies in the convex hull of
Π(z). It follows that if z lies outside the convex hull, then
z 6= c(z) and the line passing through c(z) and z is well de-
fined. We denote it by L(z). We are now ready to define
what it means for a point z to be essential. We consider two
cases: if z belongs to the convex hull of P, then z is essential;
otherwise, z is essential iff it is the center of the smallest me-
dial ball enclosing Π(z) and centered on L(z) (see Figure 2).
An essential medial ball is a d-ball whose center is essential.
The essential medial axis is defined as the set of essential
medial points and, by construction, is bounded. Unlike the
medial axis, it has a finite (d−1)-dimensional volume, which
vanishes iff the polyhedron lies on an hyperplane of R

d.

L(z)c(z) z

Figure 2: The essential medial axis is solid and includes the black
dots. The non-essential part is dotted. The point z is essential.
Observe that the circle around z is tangent to one edge incident to a
white point.

2.5 Sampling condition

We write B(x, r) for the closed d-ball with center x and ra-
dius r. Given a polyhedron P ⊆ R

d, we say that a set of
points S ⊆ P is a λ-sparse ε-sample of P iff it satisfies the
following two conditions:

Density: for every point x ∈ P, B(x, ε) ∩ TPx contains
at least one point of S;

Sparsity: for every point y ∈ R
d, B(y, dε) contains at

most λ points of S.
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The number of samples on each i-facet is Θ(ε−i). Writing p
for the dimension of P, the number of points in the sample is
n = Θ(ε−p).

To state our main result, we let vi be the i-dimensional
volume of a unit i-ball. The i-dimensional volume of a i-ball
of radius r is vir

i. Furthermore, writing voli(X) for the i-
dimensional volume of X ⊆ R

d, we assume that there exist
two positive constants wP > 0 and r0 > 0 such that for every
0 < r ≤ r0, for every point x ∈ M∗

wP ≤ vold−1(B(x, r) ∩M)

rd−1
. (1)

To provide an intuition for the constant wP, suppose x is a
point on a smooth hypersurface M embedded in R

d. In first
approximation, the intersection of a d-ball B(x, r) and the
hypersurface has the volume of a (d − 1)-ball with radius r,
showing that the ratio on the right side of Inequality (1) tends
to vd−1 as r tends to 0. To take into account the fact that the
closure of the medial axis is not necessarily an hypersurface,
we assume that for r small enough, every point of the essen-
tial medial axis satisfies Inequality (1). Finally, we introduce
the constant

C(P) = 22d−1 vold−1(M∗(P))

volp(P)
d−1

p

× (2vp)
d−1

p

wP

.

Theorem 2 (Main theorem) Let P be a p-polyhedron in R
d

composed of f facets not all contained in an hyperplane. Let
S be a set of n points that forms a λ-sparse ε-sample of P.

The Delaunay triangulation of S has complexity O(n
d−1

p ).
More precisely, for n large enough, the number of Delaunay
k-simplices is bounded from above by

C(P)

(

λf

k + 1

)

n
d−1

p +

(

f

k + 1

)

n.

Our proof assumes that neither the p-dimensional volume
of the polyhedron nor the (d − 1)-dimensional volume of
the essential medial axis vanishes, which ensures that 0 <
C(P) < ∞.

3 Contact of Delaunay balls
In this section, we establish preliminary results that bound
the intersection of a Delaunay ball and the polyhedron. For
this, we use a shape obtained by enlarging either a medial
ball or a point on the polyhedron. Those results will be used
in Section 4 to prove our bound on the complexity of Delau-
nay triangulations.

3.1 Almost tangent balls

We first give a crucial property of Delaunay balls induced by
our sampling condition. For this, we need notations and def-
initions. Recall that B(z, r) is the closed d-ball with center z

and radius r. We define the penetration h(b) of b = B(z, r)
as the difference of square radii between b and the largest
d-ball centered at z and whose interior does not intersect P

h(b) = r2 − d(z, P)2.

Note that b intersects the polyhedron iff h(b) ≥ 0. A ball b
for which h(b) = 0 is said to be tangent to the polyhedron.
Calling a ball b for which 0 ≤ h(b) ≤ ε2 an ε-almost tangent
ball, we have the fundamental property:

FUNDAMENTAL PROPERTY. Delaunay balls are ε-almost
tangent.

PROOF. Any Delaunay ball b intersects the polyhedron in at
least one sample point s ∈ S, showing that h(b) ≥ 0. Let
x be a point in P with minimum distance to the center of b
and t be a sample point on TPx with minimum distance to
x. Because of our sampling condition, ‖x− t‖ ≤ ε. Because
b contains no sample point in its interior, b intersects TPx in
a (d − 1)-ball of radius

√

h(b) ≤ ‖x − t‖. It follows that
h(b) ≤ ε2.

3.2 Contact

We now introduce the notion of ε-contact of a ball ν and use
it to cover the intersection of ε-almost tangent balls with the
polyhedron. Given a d-ball ν with center z and radius r, we
let ν⊕a = B(z,

√
r2 + a2) be the d-ball with center z and

radius
√

r2 + a2. Recalling that Π(z) is the set of points in
P with minimum distance to z, we define the ε-contact of ν
as

Contact(ν, ε) =
(

ν⊕ε ∩ P
)

∪
⋃

x∈Π(z)

B(x, ε).

Suppose b is an ε-almost tangent ball. We show in the next
lemma that there exists a ball ν tangent to the polyhedron
whose ε-contact contains b∩ P. In addition, this tangent ball
is either medial or a point of P. To distinguish between the
two cases, we need definitions. If a ball b is not medial, its
center y has a unique closest point x ∈ P. The half-line L
begining at x and passing through the center y of b either
intersects the medial axis in a point z, or extends to infinity
(for instance, when x is on the boundary of the convex hull
of P, in the interior of a p-facet). In the first case we say
that b is ordinary, and in the second we say that b is trivial.
A medial ball is said to be ordinary. Notice that when b is
ordinary, y lies in the interior of segment xz (since x is the
closest point on P to y).

Lemma 3 Suppose b is an ε-almost tangent ball to P.

(i) If b is trivial, then there exists a point x ∈ P such that
b ∩ P ⊆ B(x, ε).

(ii) If b is ordinary, then there exists a medial ball ν such
that b ∩ P ⊆ Contact(ν, ε).
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PROOF. If b is medial or if its center lies on P, the result
follows immediately by setting ν = b. Assume b is not me-
dial and its center y has a unique closest point x 6= y on P

(see Figure 3). Consider the half-line, L, with origin x and

r

H x

y

z

P

bx

ν

bz

L

b = by

τ

Figure 3: Notations for the proof of Lemma 3. Dotted spheres are
tangent to P. Solid spheres penetrate P from r and belong to the
same pencil of spheres passing through the boundary of τ .

passing through y. The half-line L intersects the medial axis
(possibly at infinity) and we let z ∈ M be the point on L
closest to y. Because b is ε-almost tangent, the hyperplane
H that passes through x and is orthogonal to the straight-
line xy intersects b in a (d − 1)-ball τ with center x and
radius 0 ≤ r ≤ ε. Consider the pencil of (d − 1)-spheres
that pass through the boundary of τ and let bu be the d-ball
bounded by a sphere in this pencil with center u ∈ L. Be-
cause the interval defined by x and z contains y, we have
b = by ⊆ bx ∪ bz. First, assume that z is at infinity (i.e. b
is trivial). The ball bz is the one half-space that H bounds
and which contains y. Its interior does not intersect P and it
follows that

b ∩ P ⊆ bx = B(x, r) ⊆ B(x, ε).

Second, assume that z belongs to the medial axis (i.e. b is
ordinary) and let ν be the medial ball centered at z. This
medial ball passes through x, and therefore bz = ν⊕r ⊆
ν⊕ε. Observing that x ∈ Π(z), it follows that

b ∩ P ⊆
[

ν⊕ε ∪ B(x, ε)
]

∩ P

⊆ Contact(ν, ε).

We strenghten the second part of Lemma 3 by showing
that the medial ball ν whose ε-contact contains b ∩ P can be
chosen essential.

Lemma 4 For every non-essential medial ball µ, there exists
an essential medial ball ν such that

Contact(µ, ε) ⊆ Contact(ν, ε)

PROOF. See Figure 4; let y be the center of µ. Let c =
c(y) be the center of the smallest ball enclosing Π(y), the
set of points in P with minimum distance to y. Because y
is not essential, it does not lie in the convex hull of P and
y 6= c. Consider H , the hyperplane passing through c and
orthogonal to the vector c−y. P and y lie on opposite sides of
the hyperplane H . Let ω and ω′ be the two closed half-spaces
that H bounds and assume that y ∈ w and P ∈ w′. The (d−
1)-spheres bounding µ and w generate a pencil of spheres,
whose centers lie on the straight-line passing through c and
y. They intersect the hyperplane H in a common (d − 1)-
ball τ , whose boundary contains Π(y). Consider the smallest
medial sphere in the pencil and let ν be the ball that this
sphere bounds. The center z of ν lies on the segment cy.
Note that Π(y) ⊆ Π(z) and points in Π(z) − Π(y) lie in
the smallest ball centered at c and passing through Π(y). It
follows that the smallest ball enclosing Π(z) is also centered
at c = c(z). Therefore, ν is an essential medial ball. Now,
observe that ν⊕ε belongs to the pencil of spheres generated
by µ⊕ε and w. Since the center z of the former lie on the

ν

µ

τH

w′

wc

z

y

P

Figure 4: Notations for the proof of Lemma 4. The point z is essen-
tial and the point y is not. Inner spheres of gray annuli are medial.
Outer spheres penetrate P from ε.

half-line defined by the centers of the latters, we have µ⊕ε ⊆
ν⊕ε ∪ ω. It follows that

µ⊕ε ∩ P ⊆ ν⊕ε ∩ P,

and because Π(y) ⊆ Π(z), the ε-contacts of µ and ν are
nested as claimed.

3.3 Extended contact

It will be convenient to bound the intersection of Delaunay
balls and the polyhedron, using a slightly different notion of
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ε-contact. For x ∈ P, we let πx(z) be the point of TPx

closest to z. Given z ∈ R
d, we set χ(z) = {πx(z) | x ∈ P}

and define the extended ε-contact of the d-ball ν with center
z as

ExtendedContact(ν, ε) =
⋃

x∈χ(z)

B(x, ε).

The extended contact of ν is formed of f balls, centered
at the orthogonal projections of its center z on the tangent
planes of P. For any two medial balls whose centers are less
than ε apart, we show that the ε-contact of one is contained in
the extended dε-contact of the other. This result will be used
in the next section to reduce the amount of essential medial
balls necessary to cover intersections of Delaunay balls and
the polyhedron.

Lemma 5 For any two medial balls d-balls µ and ν whose
centers y and z satisfy ‖y − z‖ ≤ ε,

Contact(µ, ε) ⊆ ExtendedContact(ν, dε).

PROOF. Let x ∈ Contact(µ, ε). First, suppose that x ∈
B(q, ε) for some q ∈ Π(y). Applying the triangle inequality
and using πq(y) = q, we get

‖x − πq(z)‖ ≤ ‖x − q‖ + ‖πq(y) − πq(z)‖
≤ ε + ‖y − z‖
≤ 2ε,

and x ∈ ExtendedContact(ν, 2ε). Suppose now that x ∈
µ⊕ε and consider the annulus α = µ⊕ε − µ. We distinguish
two cases:

1. if πx(y) ∈ α, then ‖x−πx(y)‖ ≤ ε and we apply again
triangular inequality. We get

‖x − πx(z)‖ ≤ ‖x − πx(y)‖ + ‖πx(y) − πx(z)‖
≤ ε + ‖y − z‖
≤ 2ε.

2. if πx(y) 6∈ α, we consider the point q ∈ P on the
segment xπx(y), which is closest to x and does not
have the same tangent flat as x. The dimension of
TPx is strictly greater than the dimension of TPq and
‖x − q‖ ≤ ε, since the segment xq is contained in α.
We now iterate using q instead of x.

After a finite number of steps, we find a point q ∈ P such
that πq(y) ∈ α. If q is a vertex of the polyhedron, q =
πq(y) and at most d − 1 steps were necessary, showing that
‖x−q‖ ≤ (d−1)ε. If q is not a vertex, ‖q−πq(y)‖ ≤ ε and
at most d − 2 steps were necessary, showing that ‖x − q‖ ≤
(d − 2)ε. We apply again triangular inequality and get

‖x − πq(z)‖ ≤ ‖x − q‖ + ‖q − πq(y)‖ + ‖πq(y) − πq(z)‖
≤ (d − 1)ε + ‖y − z‖
≤ d ε,

4 Bounding the number of simplices
In this section, we bound the number of Delaunay k-
simplices induced by λ-sparse ε-samples S of the polyhe-
dron P. A key step in our proof is to introduce a sample of the

essential medial axis M ⊆ M∗ consisting of m = O(n
d−1

p )
points.

4.1 Sampling the medial axis

An ε-sample of the essential medial axis is a subset M ⊆
M∗ such that every point x ∈ M∗ has a point z ∈ M at
distance no more than ε, ‖x − z‖ ≤ ε. We construct such
a sample by considering a maximal collection of m non-
overlapping d-balls bi = B(zi,

ε
2 ) whose centers zi lie on

the essential medial axis M∗. Because the collection is max-
imal, no ball with center z ∈ M∗ and radius ε

2 can be added
to the collection without overlapping

⋃

bi. This implies that
the set of centers zi is an ε-sample of the essential medial
axis, which we denote by M . On the other hand, the patches
γi = B(zi,

ε
2 ) ∩ M pack the enlarged essential medial axis

M∗
ε/2 = {x ∈ M | d(x,M∗) ≤ ε/2} and

m min
i

vold−1(γi) ≤ vold−1(M∗
ε/2).

As ε tends to 0, the ratio between the two (d−1)-dimensional
volume of M∗ and M∗

ε/2 tends to 1 and for ε small enough,
vold−1(M∗

ε/2) ≤ 2 vold−1(M∗). Applying Inequality (1)
yields to an upper bound on the number of points m in M :

m ≤ 2d vold−1(M∗)

wP

ε−(d−1)

In short, m = O(ε−(d−1)). We now establish that size of S
is at least some constant times the p-th power of one over ε,
n = Ω(ε−p).

Lemma 6 Let S be a λ-sparse ε-sample of a p-polyhedron
P. For ε small enough, the number of points n in S satisfies

2−(p+1) volp(P)

vp
ε−p ≤ n

PROOF. Let F be a facet of P that spans a k-flat H . Let δ be
the unit k-ball centered at the origin of R

d and parallel to H .
Consider a maximal collection of l non-overlapping k-balls
δi = B(xi, ε) ∩ H contained in F . Each ball δi contains at
least a sample point of S. Thus, l ≤ cardS ∩ F . On the
other hand, the k-balls B(xi, 2ε) ∩ H cover

F − εδ = {x ∈ F | B(x, ε) ∩ H ⊆ F}.

Translating this in terms of k-dimensional volume, we get
volk(F − εδ) ≤ l vk(2ε)k. Eliminating l and summing over
all facets F of P, we get

∑

F

volk(F − εδ)

vk2k
ε−k ≤ n.
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The claim follows for ε small enough.

We combine our upper bound on the number of points m
in M and our lower bound on the number of sample points
n and get the following lemma:

Lemma 7 For ε small enough, there exists an ε-sample of

the essential medial axis with no more than C(P) n
d−1

p

points.

4.2 Proof of the Main Theorem

We now give the proof of our main theorem. For this, we
map each Delaunay k-simplex σ to a point z ∈ S ∪ M and
use z to locate the vertices of σ. To explain this, let b be
one of the Delaunay ball that circumscribes σ. The vertices
of σ are located on the boundary of b. By the fundamental
property of Delaunay balls, b has the property to be ε-almost
tangent. We apply Lemma 3:

1. If b is trivial, by (i) of Lemma 3, there exists a point
x ∈ P such that b ∩ P ⊆ B(x, ε). Because S is an ε-
sample of P, there exists a point z ∈ S with ‖x−z‖ ≤ ε
and

Vert σ ⊆ B(z, 2ε).

2. If b is ordinary, we apply (ii) of Lemma 3, combined
with Lemma 4 and Lemma 5 to find that there exists
a point z ∈ M such that its associated medial ball ν
satisfies

Vert σ ⊆ ExtendedContact(ν, dε).

To summarize, any simplex in the Delaunay triangulation has
its vertices contained either in a ball B(z, 2ε) with z ∈ S or
in the extended (dε)-contact of a medial ball whose center
belongs to M . Because S is λ-sparse, B(z, 2ε) contains at
most λ sample points. The number of k-simplices σ that we
can form by picking k + 1 vertices among those λ points is
(

λ
k+1

)

. The extended (dε)-contact is the union of f balls of
radius (dε) and therefore contains at most λf points. The
number of k-simplices σ that we can form by picking k +
1 vertices among those fλ points is

(

fλ
k+1

)

. Therefore, the
number of Delaunay k-simplices is therefore bounded by

(

λ

k + 1

)

n +

(

fλ

k + 1

)

m,

which concludes the proof of our main theorem.

5 Conclusion
In this paper, we prove that the Delaunay triangulation of a
sparse ε-sample of a fixed p-dimensional polyhedron in R

d

has size O(n(d−1)/p) as the number n of points in the sample
goes to infinity (ε goes to zero). This gives a linear bound in

the important case of a full dimensional polyhedron in R
d.

This result is, to our knowledge, the first result of this kind
for dimension greater than three. We see several directions
in which this result could be improved.

The sparse ε-sample definition we use here is more re-
strictive than the definition in previous papers for the three
dimensional case, in that we require the sampling hypothesis
to be satisfied by all the faces of all dimensions, rather than
only for the full-dimensional polyhedron itself. If we sample
only the polyhedron, a first observation is that a Delaunay
sphere is no longer ε-almost tangent but only

√
ε-almost tan-

gent, which yields easily to a O(n2(d−1)/p) bound on the
number of Delaunay spheres. We conjecture, however, that
the O(n(d−1)/p) bound is still achievable in this setting.

Similar results in the random sampling model should be
attainable, or when noise is added to the sample points.

Another question of interest would be to bound the size
of the Delaunay triangulation of sets of points sampled on or
near smooth manifolds of dimension 2 ≤ p ≤ d − 1. Our
results, and the prior work in dimension three, suggest that it
may be possible to improve on the worst case bounds.
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