ANALYSIS OF HELMUT’S ALGORITHMS

Jonathan Lenchner
lenchner@us.ibm.com

Initial version: February 24, 2005
1st revision: February 27, 2005
2nd revision: March 15, 2005

The Setup: We are given a set of N points in the plane, a horizontal line
L, and are asked to cover the points by squares centered somewhere along
the line such that either (i) the sum of the edge lengths of the covering
squares is minimized or (ii) the sum of the areas of the covering squares is
minimized.

The final evening of the Bellairs workshop Helmut discussed the following
algorithm:

Algorithm (HELMUT1): Consider the points in order of decreasing
distance from the line L. Without loss of generality assume that all points
lie above L (i.e. we may reflect all points below L so they are above L
and we are faced with essentially the same problem). First find the furthest
point p; from L, cover p; with two adjacent squares St and Sg exactly of
the same height as p; but such that Sz has p; at its upper right corner, and
Sk has p; at its upper left corner. There are no points above Sr and Sy, so
we may remove all points covered by Sg, St from consideration and recurse,
finding the next furthest point from L and so forth. In the case where two
points are precisely the same distance from L we break ties arbitrarily.

Helmut argued that since the optimal solution (henceforth referred to
as OPT) must contain a square which includes p;, of the same height as
p1, and similarly for each point p; that we process, HELMUT1 must be a
factor 2 approximation to OPT. He then very cleverly went on to show that
one could extend the factor 2 approximation to the optimal horizontal line
location problem. While the extension of the constant factor approximation
to the line location problem appears to hold, the exact constant factor is
not correct. If one takes the case of two points both of unit height above
L and separated by a distance of 2 4+ ¢, HELMUT1 requires the use of two
boxes of edge length 2 with abutting edges at each point, for a total of four
such boxes, while OPT requires just the use of a single box of edge length
2 + € centered precisely half way between the projection of the two points
on L. Hence we see that HELMUT1 is at best a factor 4 approximation.

The problem in Helmut’s original argument is the following: if we are
considering boxes around a highest remaining point p;, it is true that OPT
must contain p; in a box of height at least that of p; and edge length twice
height(p;), and so include at least half as much area as that used in the two
boxes S1;, Sr; - however - we cannot conclude that this results in a factor 2

approximation since as we work through the points p; we may end up with
1

2

overlapping boxes. It is a simple matter though to conclude that HELMUT1
is in fact a factor 4 approximation - we just observe that HELMUT1 never
results in more than 2 squares overlapping above a given point on the line
L. There are two cases (i) where we consider overlap at the projection on L
of a point p; used in the algorithm, (ii) where we consider overlap at other
points. In case (i) we have the situation in Figure 1.

Py

FIGURE 1. Case where overlap occurs at the projection on
L of a point p; used in the HELMUT1 algorithm.

The question is whether any other box used in HELMUT1 can overlap
at the projection of p; on L. Clearly if such a box were bigger than either
of the two abutting boxes, it would contain p;. Also, the box, since bigger,
would have been placed prior to considering the point p; so we would never
have had the chance to process p; in the first place. On the other hand, if
the box were smaller than either of the abutting boxes, and contained the
projection of p;, then it would be consumed by the two boxes in Figure 1
and hence could not have been placed. It follows in this case that we cannot
have additional overlap.

Case (ii) is depicted in Figure 2.

Py

o

FIGURE 2. More generic overlap case for HELMUT1

Without loss of generality we start with the square, call it S;, corresponding
to point p;, with p; pinned to the top left corner, and consider the possi-
ble overlaps. We assume that S; is as large as, or larger than, the other
initially overlapping square. (A symmetrical argument can be made if S;
is smaller.) Considerations akin to those in case (i) allow us to conclude
that S; cannot be overlapped by a square whose left-most extent extends

3

further to the left than p;. Hence we necessarily have the situation depicted
in the Figure. Now, suppose the overlap area is overlapped by an additional
square, induced by a point pgx. As noted, py cannot lie to the left of S;. It
cannot lie inside S; since then it would have been engulfed by S; and never
processed. Analogously, it cannot lie above .S; since then it would have been
processed before p; and so p; would never have been processed. The same
considerations go when considering whether p; can lie within or above the
box S; corresponding to p;. Finally, py cannot lie to the right of p; for the
same reasons that it could not lie to the left of p;. We thus conclude that
at most two boxes ever overlap when we run HELMUT1. Now consider the
boxes placed running HELMUT1. At most half of the area of any two boxes
placed by HELMUT1 lies outside OPT. If we consider Hy = Y Area(S;)
for all boxes S; placed by HELMUT1 then at most .5H 4 lies outside OPT.
Of the at least .5 H 4 that lies inside OPT there can be at worst a factor 2
overlap. Hence H 4, which is the HELMUT1 approximation for area, is at
worst a factor 4 approximation to OPT. We know the factor 4 is tight by
the example of two points of unit height above L separated by a distance of
2+ €. Precisely the same argument applies if we replace cumulative area by
cumulative edge length.

We have thus proved:

Lemma 1. HELMUTI is a factor 4 approzimation to OPT for square cov-
ering where cost is measured in terms of the sum of the area of the squares,
or sum of the edge lengths of the squares. O

Helmut also mentioned in passing the following algorithm.

Algorithm (HELMUT2): Again consider the points in order of de-
creasing distance from the line L. Without loss of generality assume that
all points lie above L. First find the furthest point p; from L, cover p; with
a square Sp exactly of the same height as p; centered at the projection of
p1 on L. There are no points above 57 so we may remove all points covered
by Sp from consideration and recurse, finding the next furthest point from
L and so forth. As in the prior algorithm, in the case where two points are
precisely the same distance from L we break ties arbitrarily.

One is tempted to argue that HELMUT2 is a factor 2 approximation to
OPT: For any point p; processed using HELMUT2, either the right half of
the box centered at p; or the left half of the box centered at p; must be
entirely contained in OPT - of course the problem again is overlap. If we
consider three points of unit height, separated successively by distances of
1+ ¢, then HELMUT?2 gives a covering by three squares of edge length 2,
while OPT covers all three points with a single box of edge length 2 + 2e.
This example is due to Estie in an email message to me. We thus see that
HELMUT? is at best a factor 3 approximation to OPT. In fact we have the
following:

4

Lemma 2. HELMUT?2 is a factor 3 approzimation to OPT for square cov-
ering where cost is measured in terms of the sum of the area of the squares,
or sum of the edge lengths of the squares.

Proof. One can see that HELMUT2 results in at most a double covering
(overlapping) of points, just like we saw for HELMUT1. Of course this
argument alone leads only to a factor 4 approximation so we must do a
more careful accounting. To this end, consider a square S in OPT. We
consider those squares in HELMUT?2 corresponding to points {p;; : p;; € S}
and argue that these squares cannot contain more than three times the area
of S, and analogously cannot have total edge length which is more than three
times the edge length of S. The same will then follow for all of HELMUT2
and all of OPT.

Arguing as we did regarding overlaps, it is easy to see that at most two
of the boxes §;; associated with the points p;; € S processed by HELMUT?2
actually protrude outside of S, one on the left and one on the right. If
we write F'C for the fraction of the area of the boxes S5;; which is actually
contained in S, OVERLAP for the area that is covered by two boxes from
the {S;, } inside S, NONOV ERLAP for the area covered by precisely one
box from the {S;;} inside S, and LEFTPRO and RIGHTPRO for the
areas associated with boxes protruding from the left and right we have

(1)

FC OVERLAP + NONOVERLAP

~ LEFTPRO + RIGHTPRO + 2 OVERLAP + NONOV ERLAP

The key observation now is that

@) LErTPRO < OVERLAP + NONOVERLAP
< d |
(3) RIGHTPRO < QY ERLAP + NONOVERLAP
< d _
P S
L

FIGURE 3. Analysis of the case where a box protrudes to the
left from a box in OPT in the HELMUT?2 algorithm.

See Figure 3. Since we must have an entire square of edge length 2 height(p;)
inside S, the protrusion of the shaded box in Figure 3 outside S must be
matched by at least twice as much inside S. Equations (2) and (3) follow.
Substituting equations (2) and (3) into (1) gives

) FO > OVERLAP + NONOVERLAP S 1
~ 3OVERLAP+2 NONOVERLAP ~— 3

which is what we sought to prove. Precisely the same argument holds if we
replace cumulative area by cumulative edge length of squares. O

Finally, we observe that it is easy to modify either HELMUT1 or HEL-
MUT?2 to get an algorithm that is a factor 2 approximation in edge length.
For example, when processing the successive points p; encountered in either
HELMUT1 or HELMUT?2, if the associated square S; would result in an
overlap with already existing square S;_j then just grow S;_j enough to
include p;, keeping the vertical edge furthest from p; at the same point on
L. TIf placing S; would overlap two squares, S;_ and S;_j/ say, grow the one
which requires the smallest edge extension. Call the resulting algorithms
HELMUT1a and HELMUT2a respectively. For the sake of simplicity of
some of our later arguments, we only grow the square S;_j to capture the
point p; if the squares S; and S;_; would intersect with non-zero area.

Lemma 3. HELMUT1a and HELMUTZ2a are factor 2 approzimations to
OPT for cumulative edge lengths of squares.

Proof. We give the proof just for HELMUT?2a; the argument for HELMUT1a
is analogous.

As we process points p; using HELMUT2a attribute to each point p; a
line segment s; along L as follows. If processing p; resulted in the placement
of a square S; centered at the projection of p; in L then attribute to p; the
projection on L of a horizontal edge of S; If, on the other hand, processing of
p; resulted in the growing of a prior square S;_; to just capture p;, attribute
to p; the projection on L of the portion of the horizontal edge of the expanded
Si—; needed to capture p;. (This amount is at most the distance of p; to
L since S;_; only grows to capture p; in the event there would otherwise
have been overlap with the square centered at p;.) We must show that the
lengths of the segments is no more than twice the edge lengths of squares in
OPT.

It suffices to show that for any square S in OPT, the segments s; asso-
ciated with points p; € § processed by HELMUT2a cannot have total edge
length which exceeds twice the edge length of S. Equations (1), (2) and (3)
from earlier remain the same, but now there is no OVERLAP, so we have

_ NONOVERLAP
 LEFTPRO + RIGHTPRO + NONOVERLAP
NONOVERLAP

2
NONOVERLAP

2

FC

LEFTPRO <

RIGHTPRO <

S0
FO> NONOVERLAP 1

= 9 NONOVERLAP ~ 2
as needed. Ol

Unfortunately it is equally easy to see that HELMUT1a and HELMUT2a
are not constant factor approximations to OPT for area. For example, if we
are using HELMUT2a, consider n consecutive points at height 1 separated
one from the next by a distance of 1 4+ €. If we process the points left to
right using HELMUT2a we cover all points with one square of edge length
n+ (n — 1)¢, and so area O(n?) , while we can clearly cover all points with
n overlapping squares each of edge length 2, so with total area 4n.

In the case of area, it is possible that OPT contains overlapping squares,
as illustrated in Figure 4.

FIGURE 4. OPT for area may have to contain overlapping squares.

Thus, we could try to modify HELMUT2, say, so that when we process
successive points p;, instead of placing the associated square S; we check
first if we can more cheaply expand a neighboring square S;_ to cover p;,
and if so, expand S;_ and keep processing successive points. However, this
strategy can be counterproductive.

FIGURE 5. Simple greedy absorption of points by area may
be inefficient.

In Figure 5 there is a point at height 1 at the 0 point along L and a large
collection of points all at height 1/n beginning at the point 1 unit along L
which are very close together (i.e. at a distance A < 1/n, one from the
next, out to a distance n along L). If we apply greedy absorption by area,
processing first the points at unit height and then the points at height 1/n
from left to right, we obtain a single square of height n and so area 4n?, while
OPT consists of a square at height 1 with left edge at 0 and (n—2)/2 squares
of edge length 2/n for a total cost of 4 4 (%)2 "T_Q so greedy absorption by
area is not even a constant factor approximation to OPT.

A more clever area absorption policy might be to absorb not just the
point p;, but the hypothetical square .S;, if S;_; can be grown so to cover

7

S; but at lower total cost. However, if we employ this policy, and consider
again the example of three points, each at unit height, but at separations of
1+ ¢, we are not led to do any absorption, and so the algorithm remains a
factor 3 approximation to OPT.

Running Time Analysis and the Line Location Problem

We now consider the running time of HELMUT2 and HELMUT?2a. First
consider HELMUT2. Sort the points by z-coordinate and separately by
distance from the line L in time O(nlogn) and process the points in order
of decreasing distance from L. As the point p; at distance d; from L is
processed, we throw away points which are within horizontal distance d;
from p;. This takes time O(logn + k;) time where k; is the number of points
within d; from p;. Since we do this up to n times with k1 4+ --- 4+ k; = n the
total running time is O(nlogn).

For HELMUT2a we do the same as before, but as we process points, along
with throwing away points within horizontal distance d; of p;, we also keep
a sorted list S of all endpoints e;, , e;,, which are the left and right crossings
of L by the square S; corresponding to the point p;, along with a pairing
so that we know which e;, corresponds to which e;,. To consider whether
to keep a point p; which would introduce new endpoints e;, ,e;, we must
check to see whether there is an earlier point p;_; with ¢;; < €i—j)p < Cig
or e;;, <eg_j, < eip. To do this, we just need to consider the points in §
to the immediate left and right of p;. If, say e;; < e;_j), < €y, then we
do not add p; but instead set e(;_;), = ei,. This additional step just adds
constant time at each step to the time taken for HELMUT2 so we conclude
that HELMUT2a can also be performed in time O(nlogn).

We now consider the line location problem, initially using HELMUT2 in
the case where we are trying to minimize the edge lengths of the covering
squares. We want to claim that we can find a horizontal line and a covering
of points by squares which has total edge length which is at most a factor 3
from the the optimal covering by squares given the optimal horizontal line
location. To this end, consider a horizontal line coming in from +o0o. At
heights sufficiently far above any points, all points will be covered by a single
box just covering the lowest point (or just covering any one of the lowest
points if there are more than one). As we move the line down, the single
box eventually no longer covers one or more points. An example of such a
critical point is illustrated in Figure 6. Let us denote the horizontal distance
between the two points p and ¢ by § and the vertical distance between the
points by A. Then the situation in Figure 6 will occur so long as § > A.

As the line L moves vertically downward, while the point p remains fur-
thest from L, the point ¢ is ultimately no longer captured by the square S,
corresponding to p. The case where ¢ is at the corner of S}, is not essentially
different. As we move the line L downward, with all points still lying below

p

FIGURE 6. A critical point as the line L moves down from
+00, for the case § > .

L it is not hard to see that the critical points as illustrated in Figure 6
are the only points when new squares appear in the running of HELMUT?2.
Once L moves below some points there are additional critical points. The
point ¢, though still on the right edge say, could be on the opposite side of L
from p. Such a situation occurs if %)\ < 6 < A. Finally, in the case § < %)\,
we obtain a critical point when, as illustrated in Figure 7, a point ¢ which
had resided inside the box S, resides on the border of S, at a distance to L
equal to that from p to L. As L continues downward, the box .S), disappears,
being replaced by a box Sy, which then contains p in its interior.

q

p

FIGURE 7. Additional critical points as line L moves through
some points. The case § < %)\.

When the line L is below all points, we return to critical points as depicted
in Figure 6, but with the defining points flipped, and again § > .

In total then, critical points can occur when the horizontal line L is (ver-
tically) equidistant from two points, or when a point is as far from L as it is
horizontally from another point. There are 2(721) = O(n?) such possible line
positions to consider. Between critical line positions, if we have covering
squares S1,...., Sk, with S1,...,S; growing and Sj1,..., S shrinking as we
move L horizontally downward, then between critical line positions y = K

and y = K’ we can write for the corresponding edge lengths e;,

e1. = e+A
. _ *
€] = ej + A
_ %
g1 = e —A
€L = 67; —A

for constants e, ..., e} and A varying from 0 to |[K — K'|. Clearly then,)" e;
being linear in A, is minimized at one of the endpoints, y = K or y = K.

In the case where we are minimizing area, the situation is not much
different. The algorithm behaves the same and so has boxes appearing at
the same critical points. Between critical points, we are interested in the
behavior of the function which is the sum of the edges squared. We are thus
interested in the minimum of the function

(5) P(A)=(ef + AP+ -+ (e +A) +(ef — A+ + (e — A)?

which is just a quadratic polynomial in the single variable A. Therefore,
if we are concerned about minimizing area, for each pair of successive can-
didate line positions considered initially, we must also possibly consider an
additional line position given by differentiating the polynomial P(A) and
setting the resultant equation equal to zero. Since the earlier Lemma 2
holds for arbitrary non-zero powers of edge length the same essential argu-
ment as above gives a variant of HELMUT2 that approximates the total
cost for optimal line location if cost is measured as > e, S ef, or 3 €.
The case Ze? yields up to two additional line locations between original
pairs, > ef yields up to three additional line locations, and) e? yields up
to four additional line locations.

In all cases we have O(n?) line placements to test, and at each candidate
line placement we run the initial HELMUT?2 algorithm, resulting in a total
running time of O(n?logn). If we call the result of running HELMUT?2 for
any particular horizontal line L PSEUDO-OPT, then PSEUDO-OPT is at
most 3 times OPT for L, whether we are considering PSEUDO-OPT and
OPT for edge length, or PSEUDO-OPT and OPT for area. The optimal line
location then finds the minimum of PSEUDO-OPT. If L* is the line which
minimizes OPT, then PSEUDO-OPT over all lines is less than or equal to
PSEUDO-OPT over L*, so PSEUDO-OPT over all line placements is also
a factor 3 approximation to OPT over all line placements.

Finally, we turn our attention to the analysis of the algorithm HELMUT2a
in the context of optimal line location. Recall that HELMUT?2a gives a factor

10

2 approximation to OPT for edge length, but is not a constant approxima-
tion to OPT for area - hence we confine our attention to the edge length
problem. The critical point analysis (perhaps more properly described as
critical line location analysis) is a little bit more involved than it was for
HELMUT2. We still have the critical points as described in HELMUT?2 but
in addition we have critical points like those illustrated in Figure 8§ when
two squares are just about to overlap, and instead HELMUT2a tells us to
choose growth of the larger square.

FIGURE 8. Special critical point when running HELMUT2a
in the case § > A.

As before, denoting the horizontal separation of the points p and ¢ by ¢ and
the vertical separation by A, if in addition we let d denote the distance of
the closer point to L, then as long as § > A such a critical point occurs when

A+2d =4

Solving this equation for d actually yields two candidate line locations, one
when g is the closer point to L (as drawn) and both points lie below L and
one when p is the closer point to L and both points lie above L. If 6 < A
there are no special critical points associated with p and ¢ as a result of
running HELMUT2a (though we still have those from running HELMUT2,
discussed earlier). On the other hand, if 6 = A, we may place L anywhere in
the vertical separation between p and ¢, and find that the squares S, and S,
intersect only at their edges, and so HELMUT2a does not call out special
action beyond that from HELMUT2. Figure 9 illustrates this point. Once
L moves beyond one of the points, the square centered at the other point
captures the other point, so these become the critical points.

Finally, we need to mention what happens once a square has grown to
absorb another point on one of its sides, say to its right. Call the point that
has been thus captured r. The further interaction of the square S which
has just captured r and points further to the right which have not been
processed, is not impacted by anything else but the location of r. In this

11

FIGURE 9. The analysis of HELMUT2a: the special case
where the horizontal separation d between p and ¢ is the same
as the vertical separation A\. L may be placed anywhere in
the vertical separation between p and ¢ and the boxes S, and
Sy intersect just at their edges.

case, a point 7' lying to the right of r and having a horizontal separation ¢
from 7 will give rise to a critical line location when the line is precisely a
distance d from 7’. This situation is illustrated in Figure 10.

FIGURE 10. A critical point after the square on the left has
grown to absorb the point r.

In total, then, we see that the running of HELMUT2a introduces only
at most O(n?) new critical line locations to those already considered in the
running of HELMUT?2. Between critical line locations the pseudo-optimal
solutions given by HELMUT2a clearly change linearly with the edge lengths
of some squares growing linearly and the edge length of others shrinking lin-
early, just as in HELMUT2. Hence the OPT of the PSEUDO-OPTs is found
by running HELMUT2a just at the critical locations, and so HELMUT2a
gives at worst a factor 2 approximation to OPT for edge length, and can be
computed in O(n3logn) time.

12
From Boxes to Discs

So far we have talked just of OPT for squares, while the more realistic
problems have to do with discs. The points along L are thought to be
broadcast locations, and we are trying to reach sensors or receiving stations
in the plane. Broadcasts are assumed to be made radially. Thus, we state
the more realistic variant of what we have studied thus far:

More Realistic Problem: We are given a set of IV points in the plane,
a horizontal line L, and are asked to cover the points by discs centered
somewhere along the line such that either (i) the sum of the radii of the
covering discs is minimized or (ii) the sum of the areas of the covering discs
is minimized.

It is also reasonable to consider cost models that are functions of other
powers of the broadcast radius.

The analysis of the more realistic problem is facilitated by the fact that
squares are “not that far from” circles in a sense in which we now make
precise. First consider the problem of minimizing the sum of the radii
of covering discs. Let OPTprsc denote the optimum such solution, i.e.
OPTprsc = min()_,; ;) where r; are the radii of discs, whose union cov-
ers all points, and the min is taken over all such coverings. Analogously,
let OPTpox denote the optimum such solution for boxes (squares), i.e.
OPTpox = min()_,r;) where r; is half the edge length of squares, whose
union covers all points, and again the min is taken over all coverings. Given
OPTprsc, we can find a covering with squares of the same total “radii”
by simply taking axis aligned squares which circumscribe the circles. Hence
OPTpox < OPTprsc. Additionally, any square covering induces a circle
covering with a factor v/2 greater total radii, where we just replace each
square with its circumscribing circle. Hence

OPTpox < OPTprsc < V2 OPTgox.

Theorem 1. Given a set of N points in the plane, and a horizontal line L,
if we are trying to cover the points by a set of discs centered on L such that
the sum of the radii is minimized, then

(i) Using HELMUT1, PSEUDO-OPT is at worst a factor 4 approzima-
tion to OPTprsc and induces a disc covering that is at worst a factor 42
approxzimation to OPTprsc.

(ii) Using HELMUT2, PSEUDO-OPT is at worst a factor 3 approzimation
to OPTprsc and induces a disc covering that is at worst a factor 3v2 ap-
proximation to OPTprsc.-

(iii) Using HELMUTZ2a, PSEUDO-OPT is at worst a factor 2 approzima-
tion to OPTprsc and induces a disc covering that is at worst a factor 2V/2
approximation to OPTprsc.

13

The same constant factor approrimations hold for the case of the optimal
line location problem.

Proof. Consider the case (iii) of HELMUT?2a, the other cases are analo-
gous. If OPTpox = OPTprsc the result obviously holds, so we need only
concern ourselves with the other extreme, when OPTgox = %OPTD ISC-
PSEUDO-OPT is not an underestimate of OPTpox so can only be as

small as %OPTDISC, and as large as 20PTprsc. In all cases then it

is at worst a factor 2 approximation. The fact that the induced cover-
ing is a factor 2v/2 approximation follows immediately from the fact that
OPTprsc < V2 OPTpox. O

Next consider the problem of minimizing the area of the covering discs.
Again use the notation OPTprsc and OPTpox, but this time to denote
the optimal coverings with respect to area. Circumscribing the discs of
OPTprsc with axis aligned squares shows that OPTpox < %OPTDISC
and then circumscribing the squares of OPTpox with discs gives

%OPTBOX < OPTprsc < gOPTBOX-

Our final result is then:

Theorem 2. Given a set of N points in the plane, and a horizontal line L,
if we are trying to cover the points by a set of discs centered on L such that
the cumulative area of all covering discs is minimized, then

(i) Using HELMUT1, PSEUDO-OPT is at worst a factor % approzima-
tion to OPTprsc and induces a disc covering that is at worst a factor 8
approximation to OPTprsc.
(ii) Using HELMUT2, PSEUDO-OPT is at worst a factor 1772 approxrima-
tion to OPTprsc and induces a disc covering that is at worst a factor 6
approximation to OPTprsc.

The same constant factor approximations hold for the case of the optimal
line location problem.

Proof. HELMUT2a is not a finite approximation to OPT for area, hence we
have just the two cases. Consider just the case (ii) of HELMUT2, since the
other case is analogous. For area, OPTpox < %OPTD 1sc so PSEUDO-
OPT S 3OPTBOX S %OPTDISC- AISO7 PSEUDO-OPT Z OPTBOX Z
%OPTDISC. So in both cases PSEUDO-OPT is a factor 17r—2 approximation.
By virtue of OPTpisc < 5O0PTgox, the induced covering adds another

multiplicative factor of 7 yielding, in total, a factor 6 approximation. u

