

Introduction

- New approach for visibility computation in image synthesis
- Analytic Visibility
- Handling general scenes
- robust methods

Previous Work

- The Visibility Complex (2D) : Pocchiola and Vegter [PV96]
- 3D Visibility Complex : Durand and Drettakis and Puech [DDP96]
- The Visibility Skeleton : Durand and Drettakis and Puech [DDP97]

Analytic Visibility

- Study the lines of the scene
- Set of critical lines known as visibility events

Analytic Visibility

- Study the lines of the scene

Analytic Visibility

from Frédo Durand's PhD thesis

Motivation

- The Skeleton by Durand et al.
- catalog approach
- generic scenes, known connectivity
- New method
- generalized approach
- all kind of scenes

New approach

- Limits of the previous model:
- bound to the catalog
- connectivity needed
- Proposed solutions:
- general approach
- scenes of any type (typical CG models)
- degeneracies handled

Visibility Skeleton [DDP97]

- Node :
- Extremal stabbing line defined by elements of the scene
- catalog of nodes
- examples: VV, VEE
- Arc :
- Critical line-set
- node connection
- Given by adjacencies of the catalog

Illustration of a degenerate node

New approach

- Generalized approach :
- Generator
- Element of the scene which can restrict line-space
- Example : tangency to an edge, vertex contact
- Node
- Set of Generators which define an extremal stabbing line
- Arc
- Connected critical line-set of dimension 1 (swaths)

Construction - Nodes

- Enumeration of Nodes
enumerate the critical zero-dimensional set of lines in line-space
- Validation of a Node check if the line is a maximal free segment
- ε-interactions

Interactions are computed for data considered as approximations

Construction - Arcs

- Geometric computations in 3D

1D critical line-sets - swaths

- Validation
interaction with the set of potential interactors

Implemented Techniques

- Computation of line through four edges (from Teller [Tel92b])
- Progressive validation process
- On the fly computations for intersections in the mesh
- ε-interactions
- Test Blocker / Generator

Modelisation

- Vertex is a cube of size ε
- Edge is a shaft linking two vertices
- Faces are considered "as is"

Edges through four lines

- Technique from Teller [Tel92b]
- Gauss Reduction
- Computation of two vectors of the kernel
- Second degree equation on a parameter

Intersections

- Treatment of intersecting polygons
- No geometric construction (tests only)
- Combinatorial approach to the intersection

Progressive validation process

- Fat ray casting through the scene
- interaction with elements of the scene (stored in a grid) along the line
- test blocker / generator on the elements encountered

Test blocker / generator

- Edge

Connection by arcs

- For two given nodes
- they must share a sufficient number of generators
- dimension of the associated algebraic variety for criterion
- List of touched faces (for validation)
- interaction of these faces with the midline (as for nodes)

Application

Computation of the shadows cast

 by a directional source- Input:
- polygonal scene
- directional source
- Output :
- classified polygonal scene: lit polygons and polygons in shadow

Pseudo-code of the method

- Node enumeration/validation
- enumeration of SV
-enumeration of SEE
- Arcs enumeration/validation
- enumeration of SE
- Projection of the arcs onto faces
- Constrained triangulation

Enumeration

- Nodes
- intrinsic vertices
- apparent vertices EE
- computation of apparent intersections of two edges
- Arcs
- edges
- sorting nodes along the edge

Multiface

- Multiple interactions between the line and the face
- face and line in the same plane
- small face with respect to ε
- Group of connected faces
- connectivity is needed for the Multiface
- the group is considered as a whole
- Towards hierarchical visibility
- the multiface is a representant for a set of elements while increasing the value of ε

Conclusion

- Robust visibility for simple problems
- Towards hierarchical visibility
- Work in progress : discontinuity meshing (robust)

Lost connectivity - Blocker Fan

Blocker Fan

- A stack of thick slices
- Connectivity is not always available
- Blocking predicates are no longer consistent
- Contacts
- Contacts are treated on the fly, the input geometry is not modified
- Each element «touched» by a line generates a thick slice
- each thick slice is pushed onto the stack of the blocker fan
- we look for zones one the line in which the set of slices form a complete disk

Blocker Fan

- Merging thick slices

