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1 Install and setup

MSVMpack can be installed on either Linux, Mac OS X or Windows. Another alternative is to use
MSVMpack through the platform-independent web interface (see section 2.6).

1.1 Linux and Mac OS X

To install MSVMpack, simply follow the instructions below.

1. Download and extract the archive:
unzip MSVMpack1.5.zip

(this should create a directory named MSVMpack1.5)

2. Go to this directory and build the programs:
cd MSVMpack1.5

make

(section 3.1 gives a description of additional options for this step)

3. For a system-wide install of the software type:
make install

(this step requires root privileges)

This should build the MSVMpack library and generate three command-line tools:

• trainmsvm: used to train an M-SVM,

• predmsvm: used to make predictions with a trained M-SVM,

• msvmserver: the web server.

See the README file for a full description of the contents of the MSVMpack1.5 directory.

Note for Mac OS X users. The developer tools with the optional command-line tools must be
installed on the system in order to build MSVMpack. These tools can be found on the installation
disk of Mac OS X or on Apple website.

1.2 Windows

Precompiled executables are provided in the MSVMpack1.5\Windows\bin directory. To use these
and run MSVMpack, follow the instructions below.

1. Download and extract the archive in a directory of your choice, say DIR

2. Open an MS-DOS window: Start → Execute... → cmd

3. Go to the right directory:
cd DIR

4. Run the setup program:
MSVMpack1.5\Windows\setPath.bat

5. For a 32 bits environment, additionnally run :
MSVMpack1.5\Windows\Utils\32bits\setup32bits.bat
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6. Close the MS-DOS window and open a new one for the setup to take effect.

Then, you can use trainmsvm.exe and predmsvm.exe as explained in the following sections.
In order to benefit from special optimization options or include your own custom kernel functions,
you need to recompile MSVMpack. How to build MSVMpack on Windows is detailed in Section 3.2.

2 User’s guide

This section describes the main features of the 3 interfaces provided with the library: the web
interface, the command-line tools and the matlab interface. The complete list of command-line
parameters can be obtained by calling the tools without arguments, e.g., trainmsvm. See section 4
for more information on technical features that may help to deal with large data sets.

2.1 Quick start with the web interface

To start the MSVMpack Server, simply issue the command

msvmserver start

The web interface can now be accessed locally with a browser by entering the following address
(see section 2.5 for other options):

http://127.0.0.1:8080/

At the first connection, you will be asked to setup the server from the admin page to which you can
login with the admin user and default password (admin). You can safely click the “Save settings
and start using MSVMpack server” on this page for now (these settings can be changed later) and
go to the HOME page from where you can train and test the M-SVM models.

In the “Train a model” section, choose a data file from the list, e.g., iris.train (the number of
instances and features should then appear to the right of the list). Choose one of the four M-SVM
algorithms, a kernel function, e.g., the Gaussian RBF, and click the “Start training” button at the
bottom. The complete command line issued to produce the result is printed and you can click on
“WATCH” to see the output of the algorithm.

When training is completed you can see the resulting model, e.g., msvm.model (right-click on
the msvm.model file and save link as. . . to download), and go back to the home page.

To test the new model, scroll down to the “TEST” section of the HOME page and choose a data
file, e.g., iris.test, before clicking the “Test” button. The recognition rate with some additional
statistics will be printed on the next page and you can look at the output of the classifier for each
data point in the “output file”.

2.2 Quick start with the command-line tools

To train an M-SVM with default parameters, simply use the following command1 (assuming doc/

is the current directory in which myTrainingData can be found):

trainmsvm myTrainingData

This command trains an M-SVM2 model as described in [5] (see the next section and Table 1 for
alternative M-SVM models). At the end of training, the resulting M-SVM is stored by default in
the file msvm.model. Note that the program assumes that the labels are given in the last column of
the file myTrainingData and that they take their values in the set J1, QK, where Q is the number
of classes (see Sect. 3.9 for a full description of the file format).

The following example shows how to set the parameters otherwise than to the default values:

trainmsvm myTrainingData myMSVM.model -m WW -c 3.0 -k 2 -p 2.5

When a .model file is specified on the command line, it is used to store the resulting M-SVM
model. In this example, the model of Weston and Watkins (WW) [11] is considered, the soft-
margin parameter2 C is set to 3 and the kernel type is set to 2 (Gaussian RBF) with a kernel

1On some systems, you may be required to specifiy the path with for instance ./trainmsvm .
2Note that MSVMpack implements the original formulation of each M-SVM, in which the complexity of the

machine is tuned through a soft-margin parameter C instead of a regularization constant λ as described in [7].
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parameter value of 2.5 (corresponding here to the standard deviation). Use trainmsvm without
argument to see the full list of parameters and their default values.

Once training is done, you can test the classifier on another data set by using predmsvm as:

predmsvm myTestData myMSVM.model pred.outputs

where myTestData is the file containing the test data and myMSVM.model is the file of the trained
M-SVM (assumed to be msvm.model if omitted). On output, the file pred.outputs will contain,
for each test point, the computed output values for the Q classes and the predicted label. If the
data file myTestData additionnally contains the labels of the test examples in the last column, the
test error and the confusion matrix are automatically computed.
Note: the training and test files must be specified as the first argument to trainmsvm and
predmsvm, respectively.

2.3 trainmsvm usage

The default behavior of trainmsvm is to keep training until a predefined level of accuracy is reached
in terms of the ratio

R =
value of the dual objective function

upper bound on the optimum
, (1)

thus defining the stopping criterion as R > 1 − ε (see [7] for details on the computation of the
upper bound). The value of the accuracy level 1− ε can be set through the option -a, e.g., for an
accuracy level of 95%:

trainmsvm myData myMSVM.model -a 0.95

In practice, the ratio is only computed every 1000 iterations on the basis of the best upper bound,
i.e., the smallest value of the upper bound obtained till that point. Each one of these values
corresponds to the estimate of the primal objective function computed at the current iteration. In
addition to these periodic evaluations, the user has the possibility to force the evaluation on demand
with the key shortcut ctrl-C. This extra evaluation also prints some additional information and
asks the user if he wants to stop training or continue.

The following describes some additional features of the trainmsvm tool.

Infinite training. Setting the accuracy level to zero with -a 0 disables the evaluation of the
model during training and the computation of the ratio (1), which leads to slightly faster training.
However, in this case, training must be explicitly stopped by the user through the key shortcut
ctrl-C.

M-SVM model type. The four M-SVMs found in the literature are implemented in MSVMpack.
The -m flag allows one to choose the type of M-SVM model according to Table 1.

Table 1: Model types of the four M-SVMs.

Option flag M-SVM model type name & reference
-m WW Weston and Watkins [11]
-m CS Crammer and Singer [2]
-m LLW Lee, Lin, and Wahba [8]

-m MSVM2 (default) Guermeur and Monfrini [5]

Kernel function. The -k flag is used to choose the kernel function according to Table 2, while
-p value is used to set the value of the kernel parameter.

In addition to the standard kernel functions, MSVMpack allows one to easily add up to three
custom kernels as detailed in section 3.3. These kernels can be used by invoking trainmsvm with
-k 5 for custom kernel 1, -k 6 for custom kernel 2 or -k 7 for custom kernel 3.
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Table 2: Kernel functions.

Option flag Kernel function Default parameter
-k 1 (default) Linear k(x, z) = 〈x, z〉

-k 2 Gaussian RBF k(x, z) = exp(
−‖x−z‖22

2σ2 ) σ =
√

5× dim(x)
-k 3 Homogeneous polynomial k(x, z) = (〈x, z〉)d d = 2
-k 4 Non-homogeneous polynomial k(x, z) = (1 + 〈x, z〉)d d = 2

-k 5, -k 6, -k 7 Custom kernels 0

Multiple kernel parameters. For kernel functions that take multiple kernel parameters, their
values are set by -P #parameters value1 value2 value3. . . (with a capital P). Alternatively,
-P filename or -P #parameters filename can be used to read the parameter values from the file
filename containing either the number of parameters followed by their values or only the parameter
values, respectively. Note that filename cannot start with a number (i.e., 01mykernel par is
wrong but mykernel par01 or mykernel par.01 are correct). See section 3.9 for examples.

Class-dependent values of C for unbalanced data sets. For unbalanced data sets, using a
different value of the hyperparameter C for each class can be helpful. The default behavior of the
-c option is to assign the same value of C to every class. However, with the option -C (with a
capital C), the user can set the values of Ck, for all k ∈ [[ 1, Q ]], as for instance in

trainmsvm myTrainingData myMSVM.model -C 1 2.2 0.3

where C1 = 1, C2 = 2.2 and C3 = 0.3.

Cross validation. MSVMpack implements k-fold cross validation by first computing a random
permutation of the data instances and then dividing the data set in k subsets of equal size (note
that one of the subsets can be slightly larger in the case where the number of data is not a multiple
of k). This random permutation is made to ease the obtention of subsets that contain examples of
all categories in the typical case where the data set is sorted with respect to the class labels. To
compute the k-fold estimate of the error rate, add the option -cv k to trainmsvm command line,
e.g.,

trainmsvm myTrainingData -m CS -c 7.0 -cv 5

for a 5-fold cross validation, which results in the following output:

================== Cross validation summary =======================

Fold Training error rate Test error rate

1 6.62 % 7.00 %

2 5.88 % 8.50 %

3 6.25 % 3.50 %

4 7.00 % 6.50 %

5 6.12 % 7.50 %

====== 5-fold cross validation error rate estimate = 6.60 % =======

During the procedure the models trained on data subsets and their outputs are stored in the files
cv.fold-XX.model and cv.fold-XX.outputs, where XX stands for the index of the corresponding
data subset.

Optimization method. The optimization method used to train an M-SVM can be chosen with
the -o flag. The default optimization method (-o 0) in MSVMpack is the Frank–Wolfe method
[4]. Rosen’s gradient projection method [10] is also available through -o 1 for the M-SVM2 model
type.
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Data normalization. Data normalization in MSVMpack is embedded in the model, i.e., the data
files need not be changed and the data can retain their original (and usually more meaningful) scale.
To normalize a data set before training, use the -n flag on the command line. Note that, even if
this flag is missing, MSVMpack may recommend normalization in cases where large differences are
detected between the scales of different features. The -u flag can be used to bypass this test and
force MSVMpack to use unnormalized data.

Data format. MSVMpack can handle data in different formats and use a different kernel function
for each format. This may be used for instance to increase the speed of kernel computations on
single precision floats or integers. See section 4.4 for the details.

Automatic testing. Computing the test error of an M-SVM at the end of training can be done
by simply appending a test data file to the command line, i.e.,

trainmsvm myTrainingData myMSVM.model myData.test

In this case, the corresponding filename (here, myData.test) must include the extension .test.
If, in addition, another filename with the .outputs extension is specified, then the outputs of the
M-SVM computed on the test set are stored in this file.

Initialization and saving options. By default, training starts with all αik = 0 (except for
the M-SVM of [2], in which case αiyi = C), but an initialization file (with the .init extension)
conforming to the matrix file format (see Sect. 3.9) for the αik can also be specified on the command
line. In addition, the values of the αik at the end of training can also be extracted from the model
and saved in a dedicated file (in matrix format) by specifying a filename with the .alpha extension
on the command line. In this case, the command line could look like:

trainmsvm myTrainingData myMSVM.model myAlpha.init myAlpha.alpha \

myTestData.test myPrediction.outputs -c 10.0 -k 2

The order in which the optional files are specified is free (but the extensions are not). However,
the training data must always be the first argument.

How .com files can help. Another way to train an M-SVM with full control over the parameters
is to use a command file with a .com extension (this extension is mandatory, but can be further
suffixed as in first.com.example). A command file assumes the following particular format:

3 --> Number of classes Q

2 --> Nature of kernel function

10.0 10.0 10.0 --> Values of C (one for each class)

4 --> Chunk (or working set) size

Data/iris.app --> Training data file

Alpha/iris.init --> File of initial values of alpha

Alpha/iris.alpha --> File for saved alpha

Assuming myComFile.com is such a file, the corresponding M-SVM is trained by running:

trainmsvm myComFile.com myMSVM.model

A few example .com files are provided in the Comfiles/ directory.
Note: all parameter values from a .com file can be overridden by a command-line option, e.g.,

trainmsvm myComFile.com myMSVM.model -c 10.0

will always use C = 10, irrespective of the contents of myComFile.com.
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Retraining. To retrain an existing model, i.e., resume training from where it was stopped, use
the -r option. This can also be used to increase the accuracy level of a model in terms of the ratio
(1). For instance, if myMSVM.model was trained with -a 0.95,

trainmsvm -r -a 0.99 myMSVM.model

further trains the model until it reaches an accuracy level of 99% (no need to respecify the training
data or the parameter values). Note however that the upper bound in (1) is not saved in the
model, so that training is restarted without a good upper bound on the optimum. Thus, lower
values of the ratio R can be observed at the beginning of resumed training without implying a loss
of training time. In such cases, the accuracy level is simply underestimated until a good upper
bound is found.

Model sparse format. To save the model in sparse format (see Sect. 3.9), append the -s option
to the command line. To convert an existing model to the sparse format, use

trainmsvm -S myMSVM.model

Note that sparse models cannot be retrained, since some of the training data are lost.

Log files. Information on the training process is logged to the .log file specified in the com-
mand line (if any). This piece of information can then be plotted through a call to plotlog (or
plotlog msvm2 for an M-SVM2 model), e.g.:

trainmsvm myData -m WW myTraining.log

plotlog myTraining.log myPlot.ps

In this example, optimization information is logged to myTraining.log, while an M-SVM model
of WW type is trained with default parameters on myData. The recorded information (see Sect. 3.9
for details) is then plotted on screen and the plot is saved to myPlot.ps (if the .ps file is omitted,
myTraining.log.ps is used). Note that plotlog requires gnuplot for plotting.

Model saved periodically. In case the program stops unexpectedly (e.g., due to a power failure)
the model is periodically saved in the temporary file msvm.model.tmp (where msvm.model is the
chosen filename for the model). If training stops normally, the trained model is saved in, e.g.,
msvm.model and the temporary file is removed. The period is set to 20 minutes (via the constant
MONITOR PERIOD in libtrainMSVM.h).

2.4 predmsvm usage

The additional features for predmsvm are the following.

• If the optional .outputs file is omitted, the outputs are displayed on screen instead of being
written to a file.

• The -t N option can be used to set the number of processors used by predmsvm to N (the
default behavior is to use all available processors).

• The -i option can be used to read a model file and print some information:

predmsvm -i myMSVM.model

msvm.model : M-SVM^2 (MSVM2)

version : MSVMpack 1.2

training set : myTrainingData

training error : 3.20 %

data format : double precision floating-point (64-bit)

Q : 3

kernel : Gaussian RBF (sigma = 2.500000)
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C_1 : 1.000

C_2 : 2.200

C_3 : 0.300

nSV : 120

2.5 msvmserver usage

The MSVMpack Server can be started with the command line

msvmserver start

optionally followed by a port number (the default port is 8080, since port 80 requires root privi-
leges). The following options are used to control the server launched from the current directory.

• msvmserver stop is used to stop a running server.

• msvmserver restart is used to restart a running server.

• msvmserver status tells if the server is running.

Warning: if started, the MSVMpack Server provides unauthenticated HTTP access to the
computer, including the possibility for users to upload any file in the Data/ subdirectory and to
process this file with MSVMpack, which was not written with security in mind. This means that
running the server on an open network is probably a bad idea.

Note that security issues remain the responsibility of the person running this software.

Setup of the server. Several options can be set via the ADMIN page (while the server is
running) which can be accessed from the HOME page with the admin login (default password is
admin).

The data and model file paths are relative to the MSVMpack1.5/webpages/ directory. Their
defaults place all data files in MSVMpack1.5/webpages/Data/ and all the models trained via the
web interface in MSVMpack1.5/webpages/Models.

You can also set the default amount of memory for kernel cache, the maximal number of
processors (cores) that MSVMpack can use or change the admin password from here.

2.6 Web interface

The web interface offers a more intuitive way to use MSVMpack and set the training parameters
without having to type any command line in a terminal. It is accessible from any platform (in-
cluding Windows) with a classical (javascript capable) browser. The only requirement is to have
a network access to a Linux computer with a running instance of the MSVMpack server (see sec-
tion 2.5 above for server-side instructions). The HOME page is divided in three sections: upload
of data files, training and test.

Data files. In order to train or test an M-SVM model on some data, you must first upload the
corresponding data file to the server. This action can be performed from the HOME page, while
data files can be deleted or downloaded from the ADMIN page.

Training. The HOME page allows one to choose an M-SVM algorithm and set all the parameters
for its training before clicking the “Start training” button.

Model files and test. All models created with the web interface are saved in a dedicated
directory (defined in the ADMIN page). All models found in this directory (and these only) can
be used to make predictions from the web interface. In particular, the bottom of the HOME page
allows one to choose a trained model and a test set to predict labels on this data.
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2.7 Using MSVMpack from Matlab

MSVMpack can be used from Matlab since version 1.3. However, this interface is only imple-
mented as a set of wrapper functions which call the command-line tools trainmsvm and predmsvm.
Therefore, it cannot be used as a platform-independent alternative to MSVMpack.

To start using MSVMpack from Matlab, you must add the matlab subdirectory to Matlab’s
PATH:

addpath(’..path of installation../MSVMpack1.5/matlab/’);

Then, you can try the test program example.m which will run a simple example and show the
basic usage of the commands. The Matlab interface offers the following five commands (for which
we only show the basic usage here, the help function might provide more details).

• trainmsvm: training function returning a trained model via

model = trainmsvm(X, Y, options)

where X is an N × d-matrix of N examples with d features each, Y is a column vector of N
labels and options is a string containing the optional arguments to pass to the trainmsvm

command line (see section 2.3 for details).

• predmsvm: prediction function returning a vector of predicted labels and a matrix of real-
valued outputs via

[labels, outputs] = predmsvm(model, X, Y)

where model is a result of trainmsvm.

• kfold: computes the K-fold cross-validation error estimate via

[cv_error, labels] = kfold(K, X, Y, options)

where X, Y and options are defined as for trainmsvm. On output, labels contains the labels
predicted for the whole training set, i.e., for each data subset without information about this
subset during training. Note that this is a sequential Matlab implementation and that using
trainmsvm with the option ’-cv K’ might be faster.

• loadmsvm: model loading function returning a model from a model name via

model = loadmsvm( ’modelname’ )

where the model name is either given explicitly, deduced from the training set name or set to
the default mymsvm at training time (see help trainmsvm). This function can also be used
to load a model trained by MSVMpack tools outside Matlab.

• loaddata: data loading function returning a data set via

dataset = loaddata( ’datafile’ )

where datafile refers to a file in MSVMpack data format (see section 3.9).

All these functions implicitly work with data and model files created on the spot to interact with
MSVMpack command-line tools. These files are created in the current directory and they also
ensure that no data nor models are lost between Matlab sessions.

Models and data sets are stored as Matlab structures with self-explanatory fields. For instance
a model is represented as:
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model =

name: ’mymsvm’

version: 1.4000

type: ’WW’

longtype: ’Weston and Watkins (WW)’

Q: 3

kernel_type: 1

kernel_longtype: ’Linear’

nb_kernel_par: 0

kernel_par: []

training_set_name: ’mymsvm.train’

training_error: 0.2167

nb_data: 300

dim_input: 2

C: [3x1 double]

normalization: []

b: [3x1 double]

alpha: [300x3 double]

X: [300x2 double]

Y: [300x1 double]

SVindex: [166x1 double]

and the value of αik can be accessed as model.alpha(i,k).

Custom kernels. The Matlab interface does not provide the possibility to add custom kernels
implemented as Matlab code. The kernel must be implemented in C as described in section 3.3
and used by passing the corresponding ’-k’ option to trainmsvm.
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3 Developer’s guide

This section describes some additional options for building MSVMpack and how to call the library
from another C program.

3.1 make rules and options

The following rules and options are defined in the Makefile:

• make : default “build all” rule which uses the best SSE flag available on the computer.

• make SSE=-msse2 : do not use SSE instruction sets above SSE2 (for increased compatibility
across multiple computers).

• make clean : remove all object and executable files.

• make debug : compile with -g -O0 flags for debugging purposes.

• make profile : allow one to analyze performance with gprof.

Note that, on Mac OS X, make must be replaced by make -f Makefile.osx. However, this is not
required for the default rule, i.e., make can be used for a simple installation of the software.

3.2 Building MSVMpack on Windows

To build MSVMpack on Windows, follow the instructions below.

1. Install Mingw64 by using the installer that is available in the MSVMpack1.5\Windows\Utils
directory.
(Please verify that you select 4.8.1 version, x64 architecture, posix threads and seh exception)

2. Add "mingw64\bin" path to the windows environment variable PATH.
For example PATH=...;C:\Program Files\mingw-builds\x64-4.8.1-posix-seh-rev5\mingw64\bin.
How to set the path and environment variables in Windows :

(a) From the Desktop, right-click My Computer and click Properties.

(b) Click Advanced System Settings link in the left column.

(c) In the System Properties window click the Environment Variables button.

3. Open an MS-DOS window : Start → Execute... → cmd

4. Go to the right directory:
cd DIR\Windows (DIR is the directory where the MSVMpack1.5 source files are located)

5. Use makefile64.bat to compile trainmsvm.exe and predmsvm.exe

(use makefile32.bat in a 32 bits Windows environment)

Be careful, the new compiled programs will be placed in the bin folder and the original programs
trainmsvm.exe and predmsvm.exe will be overwritten. To recover the original programs, you can
use setup32bits.bat or setup64bits.bat in the Utils\32bits and Utils\64bits folders. It
copies the original binaries located in bin32 or bin64 in the bin folder.

3.3 Custom kernels

Custom kernels can be easily added to MSVMpack by editing the file
MSVMpack/src/custom kernels.c

Simply follow the instructions in this file to implement your own kernel functions. Then rebuild
by running

make
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to include them in MSVMpack. Note that this modifies your local copy of MSVMpack and that
MSVM models do not include explicit kernel functions. This means that models trained with your
local copy of MSVMpack can only be used by MSVMpack copies that include the same custom
kernel functions.

3.4 Using the library

To use the MSVMpack library, you need to include the three main header files located in MSVMpack/include/

as:

#include "libMSVM.h" // Generic structure and function declarations

#include "libevalMSVM.h" // Evaluation functions (also used during training)

#include "libtrainMSVM.h" // Training functions (not required for predictions only)

and link with the libmsvm.a static library located in MSVMpack/lib/, e.g.,

DIR= path_to_MSVMpack_directory

LIB=-lmsvm -lm -ldl -lpthread

gcc myProgram.c -I$(DIR)/include -I$(DIR)/lp_solve_5.5 -L$(DIR)/lib $(LIB)

3.5 A simple example

The following example code (also available in doc/example.c with the corresponding Makefile)
shows how to train an M-SVM model and use it to classify a test set.

#include "libMSVM.h" // Generic structure and function declarations

#include "libtrainMSVM.h" // Training functions (not required for predictions only)

#include "libevalMSVM.h" // Evaluation functions (also used during training)

int main(void) {

struct Model *model; // declare a model

struct Data *training_set, *test_set; // declare the data sets

long status; // for MSVM_train return code

double accuracy = 0.98; // desired accuracy level of 98%

long chunk_size = 4; // size of the chunk used for training

int cache_memory = 0; // Amount of cache memory (0 = max)

int nprocs = 0; // Number of available CPUs (0 = all)

long *labels;

model = MSVM_make_model(MSVM2); // Create an empty model with default parameters

if(model == NULL) {

printf("Error in model creation\n");

exit(1);

}

// Change some parameters

model->nature_kernel = RBF;

printf("Changed the kernel type in model to Gaussian RBF.\n");

MSVM_model_set_C(1.0, 3, model);

printf("Initialized the hyperparameters C to %1.2lf for all %ld classes.\n",model->C[1],model->Q);

model->C[2] = 2.0;

model->C[3] = 3.0;

printf("Changed hyperparameters C_2 to %1.2lf and C_3 to %1.2lf.\n",model->C[2],model->C[3]);

printf("Loading the data... \n");

// The data format can be either DOUBLE, FLOAT, INT, SHORT, BYTE, or BIT

training_set = MSVM_make_dataset("myTrainingData",DOUBLE); // load the training data

test_set = MSVM_make_dataset("myTestData",DOUBLE); // load the test data
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printf("Calling MSVM_train()...\n");

/* Train the model on the training_set

with default initialization (first NULL)

no periodic saving of alpha (second NULL)

no log file (third NULL)

*/

status = MSVM_train(model, training_set, chunk_size, accuracy,

cache_memory, nprocs, NULL, NULL, NULL);

if(status >= 0) {

printf("Training done without error, will now classify the test set.\n");

/* Allocate the array for predicted labels

(size should be (size of test set + 1) )

*/

labels = (long *)malloc(sizeof(long) * (test_set->nb_data + 1));

/* Classify the test set,

store the predicted labels in ’labels’

and print outputs on screen (because filename=NULL)

*/

MSVM_classify_set(labels, test_set->X, test_set->y, test_set->nb_data,

NULL, model, nprocs);

}

else

printf("Error in training.\n");

// Free the memory

free(labels);

MSVM_delete_model(model);

MSVM_delete_dataset(training_set);

MSVM_delete_dataset(test_set);

return 0;

}

For other example uses of the library, see src/trainMSVM.c.

3.6 Structures

The library provides the following structure (defined in libMSVM.h) to store an M-SVM model
with all its parameters:

struct Model {

float version; // MSVMpack model version

enum MSVM_type {WW=0,CS=1,

LLW=2,MSVM2=3} type; // Type of the M-SVM

enum Algorithm {FrankWolfe=0,

Rosen=1} algorithm; // optimization method

long Q; // number of classes

char *training_set_name; // name of training set

long nb_data; // number of SVs

long dim_input; // dimension of a description x

enum Datatype datatype; // type of data

enum Kernel_type nature_kernel; // type of kernel

double *kernel_par; // kernel function parameters

double *C; // soft-margin parameters

double training_error; // training error rate

double ratio; // optimization accuracy
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long iter; // optimization iterations

int crossvalidation; // #fold in cross validation (0 otherwise)

double **alpha; // (nb_data x Q) matrix of alpha

double *partial_average_alpha;

double sum_all_alpha;

double *b_SVM; // vector b

void **X; // support vectors

long *y; // labels of the SVs

double **normalization; // means and std used to normalize data

double **W; // weights of the linear model

// (for linear kernel only)

// Format-specific data storage

double **X_double;

float **X_float;

int **X_int;

short int **X_short;

unsigned char **X_byte;

// Thread synchronization

pthread_mutex_t mutex;

};

where the Kernel type enumeration is defined in kernel.h as

enum Kernel_type {

// kernel functions for DOUBLE datatype

LINEAR=1, // Linear

RBF=2, // Gaussian RBF

POLY_H=3, // Homogeneous polynomial

POLY=4, // Non-homogeneous polynomial

CUSTOM1=5, // Custom kernels

CUSTOM2=6,

CUSTOM3=7,

// kernels for FLOAT datatype

LINEAR_FLOAT=11,

RBF_FLOAT=12,

POLY_H_FLOAT=13,

POLY_FLOAT=14,

CUSTOM1_FLOAT=15,

CUSTOM2_FLOAT=16,

CUSTOM3_FLOAT=17

// kernels for INT datatype

LINEAR_INT=21,

...

};

Another generic structure is used for data sets:

struct Data {

char *name; // name of the data set

long nb_data; // number of data

long dim; // dimension of the data

void **X; // matrix with the x_i as rows

long *y; // vector of labels y_i

long Q; // number of classes in data set

double **X_double;

float **X_float;
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int **X_int;

short int **X_short;

unsigned char **X_byte;

enum Datatype datatype;

};

where Datatype is defined as enum Datatype {DATATYPE DOUBLE=1, DATATYPE FLOAT=2, DATATYPE INT=3,

DATATYPE SHORT=4, DATATYPE BYTE=5, DATATYPE BIT=6}.

3.7 Function reference

All functions provided by MSVMpack have the prefix MSVM . In particular, the following general
purpose functions are defined in libMSVM.h:

/* Model handling functions */

struct Model *MSVM_make_model(enum MSVM_type type);

Creates an empty model of a given type.

struct Model *MSVM_load_model(char *model_file);

Loads a model from a file.

void MSVM_delete_model(struct Model *model);

Deletes a model and frees the memory except for the data

in model->X and model->y.

void MSVM_delete_model_with_data(struct Model *model);

Deletes a model and frees all the memory including the SVs.

int MSVM_save_model(const struct Model *model, char *model_file);

Saves a model to a .model file.

int MSVM_save_model_sparse(const struct Model *model, char *model_file);

Saves a model to a .model file using the sparse format.

long MSVM_init_model(struct Model *model, char *com_file);

Initializes the parameters of a model from a .com file.

void MSVM_model_set_C(double C, long Q, struct Model *model);

Sets the values of C_k to C for k=1,..., Q.

(this also sets the value of Q in the model)

/* Data set handling functions */

struct Data *MSVM_make_dataset(char *data_file, enum Datatype datatype);

Loads a dataset in datatype format from a file

or creates an empty Data structure if data_file is NULL.

void MSVM_delete_dataset(struct Data *dataset);

Deletes a dataset and frees the memory.

double MSVM_normalize_data(struct Data *dataset, struct Model *model);

Normalizes the columns of X in a dataset and returns the difference

between the largest and smallest std before normalization.

The following training functions are defined in libtrainMSVM.h:

long MSVM_train(struct Model *model, struct Data *training_set,

long chunk_size, const double accuracy, int cache_memory, int nprocs,
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char *alpha0_file, char *model_tmp_file, char *log_file);

Trains an M-SVM model on the training_set with a given chunk_size

by using cache_memory MB of memory and nprocs CPUs

until the desired accuracy is reached.

double **MSVM_train_cv(struct Model *model, struct Data *training_set,

int K, long chunk_size, const double accuracy, int cache_memory,

int nprocs, char *log_file);

Perform K-fold Cross-validation and returns

a 2-by-(K+1) array of error_rates:

error_rates[0] = [Overall training error rate,

training error_rate on fold 1,

...,

training error_rate on fold K]

error_rates[1] = [Cross-validation estimate of the error,

test error_rate on fold 1,

...,

test error_rate on fold K]

So the cv error estimate is in error_rates[1][0].

long MSVM_init_train_comfile(struct Model *model, char *com_file,

char *training_file, char *alpha0_file, char *alpha_file, char *log_file);

Initializes the parameters and filenames used for training an M-SVM

from a .com file.

The source file libtrainMSVM.c also contains the internal code for handling the kernel cache (see
section 4.3).

The following evaluation functions are provided in libevalMSVM.h:

long MSVM_classify(void *x, const struct Model *model, double *real_outputs)

Computes the label of x WITHOUT normalizing the data.

(use MSVM_classify_set() to include normalization)

If real_outputs is not NULL, also provide the Q real-valued outputs

of the model in (real_outputs[1]...real_outputs[Q]).

void MSVM_classify_set(long *labels, void **X, long *y, long m, char *outputs_file,

const struct Model *model, const int nprocs)

Computes the predicted labels of an M-SVM for a set of m data points X

in parallel over nprocs CPUs.

Also computes the test error and some statistics if y is not NULL.

Resulting output is saved into outputs_file or printed on screen

only if outputs_file is NULL.

If labels is NULL, the predicted labels are not stored in memory.

Note: this function takes care of data normalization if needed

(X should not be normalized).

double MSVM_eval(double *best_primal_upper_bound, double **gradient, double **H_alpha,

double **H_tilde_alpha, struct Model *model, const int verbose, FILE *fp)
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Evaluates the ratio between the value of the dual objective function and

the upper bound on the optimum.

These training and evaluation functions are wrappers that are used to call the proper function
depending on the model type (WW, CS, LLW or MSVM2). The training functions for a particular
model type appear in separate files named libtrainMSVM XX.c and libevalMSVM XX.c, where XX

stands for the model type.
The other functions included in the library are for internal use and should be called only by

the functions described above.

3.8 Matrix format

The matrix format conforms to the one of [9]. For a double-precision real matrix X, we have:

• X of type double**: pointer to the matrix X

• X[i] of type double*: pointer to the ith row of the matrix X

• X[i][j] of type double: element (i, j) of the matrix X

This means that notations like X[(i-1)*N+j] cannot be used to access (X)ij .
Note: the ranges for the subscripts i and j are J1,MK and J1, NK, respectively, for a matrix of size
M ×N (do not use i = 0 or j = 0).

3.9 File formats

Here is the list of the different file formats described below and the corresponding naming conven-
tions.

• Data file format: .train or .test (not always mandatory)

• Model file format: .model

• Output file format: .outputs

• Log file format: .log

• Kernel parameter file format: no naming convention, but cannot start with a number

• Matrix file format: used by .init and .alpha files

Data file format. The library can load data sets from data files in the following format:

1200 --> number of data

4 --> dimension of the data

7.400000 2.800000 6.100000 1.900000 3.000000

7.900000 3.800000 6.400000 2.000000 3

...

3.400000 -2.800000 0.5600000 2.200000 2

1.300000 0.800000 5.100000 1.500000 1.000000

|<----- vector x_i ----->| y_i

where the labels yi can be either positive integers (in an integer or floating-point data format)
or omitted (for test data). If the labels are included, the number of classes in a data set is
automatically set to maxi yi when the file is read by MSVM make dataset("data filename").
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Model file format (.model). The M-SVM models are saved in the following format:

1.1 --> MSVMpack model version

3 --> type of the M-SVM

3 --> number of classes Q

2 --> type of kernel

1 2.500000 --> kernel parameters (#par par1 par2...)

myTrainingData --> training set filename

0.032000 --> training error rate

120 --> number of SVs

4 --> dimension of the SVs (= dimension of the data)

10.000000 10.000000 10.000000 --> values of C_k (soft-margin parameters)

2.0000000000 1.2000000000 2.5000000000 0.4600000000 --> std for normalization

4.0000000000 3.2000000000 2.8000000000 1.0120000000 --> means for normalization

1.1635254839 -3.5845297998 2.4210043159 --> bias vector b

0.0000000000 6.1803244144 0.0000000000 --> vector alpha for a SV

5.1000000000 3.5000000000 1.4000000000 0.2000000000 1 --> the corresponding SV

...

13.5696087594 31.9953451299 0.0000000000 --> vector alpha for a SV

6.3000000000 2.8000000000 5.1000000000 1.5000000000 3 --> the corresponding SV

|<----- vector x_i ----->| y_i

When using MSVM save model(), the entire training set is saved as SVs in the model. The function
MSVM save model sparse() should be used to save only the true SVs. Note that the former method
allows the model to be retrained (resume training from where it was stopped), whereas the sparse
format does not allow this feature.

Output file format (.outputs). The files of outputs assume the following format:

1.510324 -1.058388 -0.451936 1

1.511907 -0.600563 -0.911344 1

...

-0.465904 0.924967 -0.459063 2

-0.448488 0.856948 -0.408460 2

| | |

h_1(x_i) ... h_Q(x_i) predicted label for x_i

Log file format (.log). The log file format is used to record information during the training
process. It assumes the following form:

1000 236.011772 234.107674 256.439555 246.631361

2000 240.308282 241.653037 251.815730 244.529922

3000 241.525854 241.474467 247.055776 244.238342

| | | | |

#iter dual U1 U2 U3

where dual is the value of the dual objective function at iteration #iter and the meaning (and
existence) of U1, U2 and U3 depends on the model type. For all the M-SVMs except the M-SVM2,
U1 is the value of the upper bound on the optimum used to check the convergence, whereas U2

and U3 do not exist. On the other hand, for an M-SVM2, U1 is the objective function value of the
unconstrained primal problem directly estimated from the current α (not a valid upper bound), U2
is a cheap upper bound on the optimum obtained by projecting the estimated values of the slack
variables onto the constraints and U3 is the value of the optimized upper bound.

Kernel parameter file format. The parameters of the kernel function can be passed through
a file (which is particularly useful for custom kernels using many parameters). The file can take
two forms depending on the trainmsvm command line. With
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trainmsvm myData.train -k 5 -P myKernel_parameters

the file myKernel parameters must follow the format:

6 1.1052 2.00032 3.015 4.0 0.55 0.6

| |<--- list of parameters --->|

|

number of parameters

If the number of parameters is explicitly given on the command line as in

trainmsvm myData.train -k 5 -P 6 myKernel_parameters

then the file myKernel parameters becomes:

1.1052 2.00032 3.015 4.0 0.55 0.6

|<--- list of parameters --->|

4 Optimization features

This section describes the features that allow MSVMpack to make use of the full resources of the
computer in terms of CPU and memory. The basic idea is to reduce the computational burden of
kernel function evaluations by acting at three different levels:

1. multiple kernel function values are computed in parallel,

2. computed kernel values are cached in memory (as much as possible),

3. kernel functions are optimized (vectorized) for faster evaluations.

Putting these three features together results in a training algorithm which is less limited by the
latency of kernel function evaluations. In practice, each training step (except the first one) starts
with kernel values that either have been already computed in parallel during the previous step
or are stored in cache memory. Thus, the limiting factor becomes the time of the computations
required by the optimization step. The most intensive task in this step is the update of the gradient
vector, which is also parallelized in MSVMpack.

Note that the behavior described above can only be observed when using a computer with
enough memory or CPUs (cores). However, the implemented scheme allows MSVMpack to com-
pensate a lack of memory by using more CPUs or to remain efficient with few CPUs by using extra
memory.

4.1 Parallel implementation

MSVMpack offers a parallel implementation of the training algorithms of the four M-SVMs (WW,
CS, LLW, M-SVM2). This parallelization takes place at the level of a single computer to make use
of multiple CPUs (or cores) and is not designed for cluster computing across multiple computers.

Settings. The main parameter of this implementation is the number of working threads. For
best performance, this number should correspond to the number of available CPUs (or cores). By
default, trainmsvm and predmsvm will automatically detect the number of CPUs at run time, but
a particular number N can be enforced with the -t option, e.g., as in

trainmsvm myTrainingData myMSVM.model -t N

This can be useful on architectures that include hyperthreading, for which the system typically
assumes a number of CPUs that is twice the number of physical CPUs (or cores).
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Design. The implementation follows a simple design with a rather coarse granularity, in which
kernel computations are parallelized. These computations are the most intensive ones compared
to training steps and model updates. In addition, they only depend on the training data, which
is constant throughout training. It is thus possible to compute multiple kernel function values at
the same time or while a model update is performed. In summary, the program creates a number
of working threads which implement the following scheme (in which the steps running in parallel
are shown in italic).

1. Select a random chunk of data.

2. Compute the kernel submatrix corresponding to this data chunk.

3. Wait for the M-SVM model to become available (in case another thread is currently updating
the model).

4. Take a training step and update the model.

5. Release the model (to unblock waiting threads).

6. Loop from step 1 until training is stopped.

Note that, for the CS model type, the data chunk selection is not random and actually makes use
of the model (see section 4.2). In this case, it cannot be easily parallelized and the scheme above
is modified to select the working set for the next training step between steps 4 and 5, while step 6
loops only from step 2.

Assuming a number of threads equal to the number of CPUs, a thread can be blocked waiting in
step 5 for at most (#CPUs−1)×(time required by a training step). In most cases, this quantity is
rather small compared to the time required to compute the kernel submatrix. This results in a high
working/idle time ratio. However, a small additional delay can be observed when MSVM eval() is
called (every 1000 iterations) to evaluate the criterion (1). This is particularly true for the M-
SVM2, for which the computation of the upper bound on the optimum is more involved due to the
form of the primal objective function.

The next most intensive computation is the update of the gradient vector after each training
step. This computation is parallelized by splitting the gradient vector in several parts, each one
of which is updated in a separate thread. For best efficiency, MSVMpack maintains the number of
working threads equal to the number of CPUs. At the beginning of training, all working threads
apply the procedure above to compute kernel function values in parallel and a single thread (the
one that is currently in step 4) is used to compute the gradient updates3. As training goes, kernel
values are cached (see section 4.3 below) and the work load of kernel computations decreases.
Former working threads are thus stopped and more threads are used to update the gradient4. If
the kernel matrix fits in memory, then all CPU resources are eventually assigned to these gradient
updates.

The classification function MSVM classify set() (used by predmsvm) is also parallelized to
increase the speed of predictions on large test sets. The approach is rather straightforward: the
test set is cut into subsets of size SET SIZE (constant defined in libevalMSVM.h) and the model
output is computed on each subset in a separate thread.

The K-fold cross validation procedure (called with -cv K) requires training of K models and can
also be parallelized with two possible scenarios. In case the number of CPUs is larger than the
number of models to be trained, each one of the K models is trained in parallel with #CPUs/K
working threads applying the scheme above to compute the kernel function values and gradient
updates. Otherwise, the first #CPUs models are trained in parallel with a single working thread
and the next one starts training as soon as the first one is done, and so on. When all models
are trained, the K test subsets are classified sequentially, but nonetheless efficiently thanks to the
parallelization of the classification function MSVM classify set() described above.

3A different setting is used for the CS model type as the dedicated working set selection method leads to a better
use of the kernel cache. Thus, much less kernel evaluations are required and more threads can be used for gradient
updates.

4See the function switch thread() in libtrainMSVM.c for the parameters of these thread switches.
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Thread implementation. We used POSIX threads (Pthreads) to implement parallelism on
shared memory multiprocessor architectures. POSIX threads constitute the IEEE/The Open
Group standard for thread implementation available across many platforms. However, this choice
leads to the need for a specific port of the software for Windows platforms. Windows users can
read about the Pthreads-win32 project at http://sourceware.org/pthreads-win32/ for a pos-
sible alternative solution (not tested).

4.2 Working set selection

Most implementations of SVM learning algorithms include a dedicated working set selection proce-
dure that determines the subset of variables that will be optimized in the next training step. Such
procedures are of particular importance in order to reduce the numbers of iterations and of kernel
evaluations required by the algorithm. In addition, these methods typically lead to convergence
without having to optimize over all variables (not even for one training step). In such cases, only
a small subset of the kernel matrix need to be computed, thus limiting the amount of memory
required for kernel cache (see section 4.3).

4.2.1 M-SVM model of Crammer and Singer (CS)

MSVMpack includes the working set selection strategy proposed in [2] in order to choose the
chunk of data considered in the next optimization step. This strategy is based on the Karush-
Kuhn-Tucker (KKT) conditions of optimality applied to the dual problem. The data points with
maximal violation of the KKT conditions are selected. This violation can be measured for each
data point (xi, yi) by5

ψi = max
k∈{j : αij>0}

Gik − min
k∈{1,...,Q}

Gik, (2)

where Gik is the gradient with respect to αik of the dual objective function being minimized.
In practice, the conditions αik > 0 involved in the computation of the maximum in ψi has

to be tested up to a given precision with a threshold. However, note that, contrary to other
implementations that typically use maxi ψi < ε as a stopping criterion, MSVMpack stops the
algorithm on the basis of the ratio (1) and uses ψi only for working set selection. Thus, the
value chosen for the threshold does not influence the quality of the solution obtained at the end of
training (but can however influence the speed of convergence to that solution).

4.2.2 Other M-SVM models

Unfortunately, there is no simple measure of the violation of the KKT conditions for the other
M-SVM models. Thus, for these models, MSVMpack uses a random selection procedure for the
next data points to consider in the chunk.

Note that the implementation of Weston and Watkins model as proposed in [6] for the BSVM
software does include a working set selection strategy. However, this strategy relies on a modifica-
tion of the optimization problem in which the term

∑Q
k=1 b

2
k is also minimized. MSVMpack solves

the original form of the problem as proposed in [11] and thus cannot use a similar strategy.

4.3 Kernel cache

MSVMpack can use extra memory to cache the kernel matrix (or a subset of it). Note that, in
comparison with other SVM implementations, working set selection in MSVMpack is based on
a random selection of a data chunk (except for the CS type, see section 4.2) and no shrinking
is performed (see for instance [1] for a definition of shrinking and more information on other
implementations). As a result, the software may store the entire kernel matrix if it fits in memory,
so that large cache memory sizes will help to deal with large data sets (other implementations with
proper working set selection and/or shrinking typically require much fewer kernel evaluations and
cache memory).

5The change in notation compared to [2] is due to the fact that MSVMpack solves the dual problem with respect
to the variables αik instead of τik = Cδik − αik.
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Settings. By default, training algorithms use the entire physical memory minus 1 GByte for
kernel caching, but this can be changed from the command line with the -x option. For instance:

trainmsvm myDataFile -x 4096

will set the maximal amount of kernel cache memory to 4 GBytes.

Design. The kernel cache maintains a list of the kernel matrix rows that are already cached.
When a worker thread needs a particular row, the following three cases can occur.

1. The row is already cached and available: the worker thread gets a pointer to this row in cache
memory.

2. The row is not available in cache: the worker thread computes the row in cache memory and
then uses a pointer to this row.

3. The row is not available in cache but another thread is currently computing it: the worker
thread waits for the computation of the row to terminate and then gets a pointer to this row
in cache memory.

If the cache memory size is not sufficient to store the entire kernel matrix, rows are dropped from
the cache when new ones need to be computed and stored.

Cross validation. In the parallelized cross validation procedure described in Sect. 4.1, many
kernel computations can be saved as the K models are trained in parallel from overlapping subsets
of the data set. More precisely, MSVMpack implements the following scheme. A master kernel
cache stores complete rows of the global kernel matrix computed from the entire data set. For each
one of the K models, a local kernel cache stores rows of a kernel submatrix computed with respect
the corresponding training subset. When a working thread requests a row that is not currently
in the local kernel cache, the request is forwarded to the master cache which returns the complete
row with respect to the entire data set. Then, the elements of this row are mapped to a row of
the local cache. This mapping discards the columns corresponding to test data for the model and
takes care of the data permutation used to generate the training subsets at the beginning of the
cross validation. In this scheme, every kernel computation performed by a working thread to train
a particular model benefits to other models as well. In the case where the entire kernel matrix fits
in memory, all values are computed only once to train K models.

4.4 Data format-specific and vectorized kernel functions

In many cases, data sets processed by machine learning algorithms contain real numbers with no
more than 7 significant digits (which is often the default when writing real numbers to a text
file) or even integer values. On the other hand, the typical machine learning software loads and
processes these values as double precision floating-point data, which is a waste of both memory
and computing time.

MSVMpack can handle data in different formats and use a different kernel function for each
format. This may be used for instance to increase the speed of kernel computations on single
precision floats or integers. Note that, in a kernel computation v = k(x, z), only the format of x
and z changes and the resulting value v is always in double precision floating-point format. All
other computations in the training algorithms also remain double-precision.

Settings. The data format can be chosen from the command line by using the appropriate option
according to Table 3. E.g., for single precision floating-point data format:

trainmsvm mySinglePrecisionData -m WW -k 2 -f

In this example, the data are loaded in memory as single-precision floats and the kernel function
(the Gaussian RBF in this example) may be computed faster (see below).
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Table 3: Data format options for trainmsvm.

Option flag Data format
none (default) double precision floating-point (64-bit)

-f single precision floating-point (32-bit)
-I 32-bit integer
-i 16-bit short integer
-B byte (8-bit unsigned integer)
-b bit (all non-zero values are considered as 1)

Vectorization. Proper data alignment in memory allows MSVMpack to use vectorized implemen-
tations of kernel functions when compiled on SSE4.2, SSE4.1, SSE3 or SSE2 capable processors.
These implementations make use of the SIMD (Single Instruction Multiple Data) instruction sets
available on such processors to process multiple components of large data vectors simultaneously.
Note that this is mostly effective for small data formats such as single-precision floats or short
integers.

5 Some numerical experiments

An experimental comparison of MSVMpack with other implementations of M-SVMs is provided
here for illustrative purposes. The aim is not to conclude on what type of M-SVM model is
better, but rather to give an idea of the efficiency of the different implementations. The following
implementations are considered:

• J. Weston’s own implementation of his M-SVM model (WW) in Matlab included in the
Spider6,

• the BSVM7 implementation in C++ of a modified version of the same M-SVM model (ob-
tained with the -s 1 option of the BSVM software),

• K. Crammer’s own implementation in C of his M-SVM model (CS) named MCSVM8,

• and Lee’s implementation in R of hers (LLW) named SMSVM9.

Note that both the Spider and SMSVM are mostly based on non-compiled code. In addition, these
two implementations require to store the kernel matrix in memory, which makes them inapplicable
to large data sets. BSVM constitutes an efficient alternative for the WW model type. However,
to the best of our knowledge, SMSVM is the only implementation (beside MSVMpack) of the LLW
M-SVM model described in [8].

The characteristics of the data sets used in the experiments are given in Table 4. The ImageSeg
data set is taken from the UCI repository10. The USPS 500 data set is a subset of the USPS data
provided with the MCSVM software. The Bio data set is provided with MSVMpack. The CB513 01
data set corresponds to the first split of the 5-fold cross validation procedure on the entire CB513
data set [3]. MSVMpack uses the original MNIST data11 with integer values in the range [0, 255],
while other implementations use scaled data downloaded from the LIBSVM homepage12. BSVM
scaling tool is applied to the Letter data set downloaded from the UCI repository13 to obtain a
normalized data set in floating-point data format.

6http://people.kyb.tuebingen.mpg.de/spider/
7http://www.csie.ntu.edu.tw/~cjlin/bsvm/
8http://www.cis.upenn.edu/~crammer/code-index.html
9http://www.stat.osu.edu/~yklee/software.html

10http://archive.ics.uci.edu/ml/datasets/Image+Segmentation
11MNIST data sets are available at http://yann.lecun.com/exdb/mnist/. The data are originally stored as bytes,

but the current implementation of the RBF kernel function in MSVMpack is faster with short integers than with
bytes, so short integers are used in this experiment.

12http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
13http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
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All methods use the same kernel functions and hyperparameters as summarized in Table 4. In
particular, for MCSVM, we used β = 1/C. When unspecified, the kernel hyperparameters are set
to MSVMpack defaults. Also, SMSVM requires λ = log2(1/C) with larger values of C to reach a
similar training error, so C = 100000 is used. Other low level parameters (such as the size of the
working set) are kept to each software defaults. These experiments are performed on a computer
with 2 Xeon processors (with 4 cores each) at 2.53 GHz and 32 GB of memory running Linux
(64-bit).

The results are shown in Tables 5–6. Though no definitive conclusion can be drawn from this
small set of experiments, the following is often observed in practice:

• Test error rates of different implementations of the same M-SVM model are comparable.
However, slight differences can be observed due to different choices for the stopping criterion
or the default tolerance on the accuracy of the optimization.

• Training is slower with MSVMpack than with other implementations for small data sets (with
15000 data or fewer). This can be explained by better working set selection and shrinking
procedures found in other implementations. For small data sets, these techniques allow other
implementations to limit the computational burden related to the kernel matrix. Training
with these implementations often converges with only few kernel function evaluations.

• Training is faster with MSVMpack than with other implementations for large data sets (with
60000 data or more). For large data sets, the true benefits of parallel computing, large kernel
cache and vectorized kernel functions as implemented in MSVMpack become apparent. In
particular, kernel function evaluations are not the limiting factor for MSVMpack in these
experiments with this hardware configuration.

• Embedded cross validation as included since MSVMpack 1.4 is fast. Table 6 shows that a
5-fold cross validation can be very fast with the parallel implementation that saves many
kernel computations by sharing the kernel function values across all folds.

• MSVMpack training is less efficient on data sets with a large number of categories (such as
Q = 26). However, for data sets with up to 10 categories (such as MNIST), MSVMpack
compares favorably with other implementations.

• Predicting the labels of a data set in test is faster with MSVMpack than with other implemen-
tations (always true in these experiments). This is mostly due to the parallel implementation
of the classification function MSVM classify set(), which allows multiple predictions to be
computed simultaneously. For particular data sets, data format-specific and vectorized kernel
functions also speed up the testing phase.

• MSVMpack leads to models with more SVs than other implementations. This might be
explained by the fact that no tolerance on the value of a parameter αik is used to determine
if it is zero or not (and if the corresponding example xi is counted as a support vector).

The ability of MSVMpack to compensate for the lack of cache memory by extra computations
in parallel is illustrated by Table 7 for the WW model type (which uses a random working set
selection and thus typically needs to compute the entire kernel matrix). In particular, for the Bio
data set, changing the size of the cache memory has little influence on the training time. Note that
this is also due to the nature of the data which can be processed very efficiently by the linear kernel
function for bit data format (see the dot bit() function in kernel.c). For the CB513 01 data set,
very large cache sizes allow the training time to be divided by 2 or 3. However, for smaller cache
sizes (below 8 GB) the actual cache size has little influence on the training time.

6 License and how to cite

MSVMpack is released under the GPL, of which a copy can be found in MSVMpack/gpl.txt.
This package includes lp solve14, which is used to solve the linear programming problems, and

14lp solve is freely available under the terms of the GNU lesser general public license at http://lpsolve.

sourceforge.net/.
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Table 4: Characteristics of the data sets.

Data set #classes #training #test data Training parameters
examples examples dim. format

ImageSeg 7 210 2100 19 double C = 10, RBF kernel, σ = 1
data normalized

USPS 500 10 500 500 256 float C = 10, RBF kernel, σ = 1
Bio 4 12471 12471 68 bit C = 0.2, linear kernel
CB513 01 3 65210 18909 260 short C = 0.4, RBF kernel
CB513 3 84119 5-fold CV 260 short C = 0.4, RBF kernel
MNIST 10 60000 10000 784 short C = 1, RBF kernel, σ = 1000

double data normalized, σ = 4.08
Letter 26 16000 4000 16 float C = 1, RBF kernel, σ = 1

data normalized

mongoose15 for the web server.
When referring to the software, please include the following citation:

@article{MSVMpack,

author = {F. Lauer and Y. Guermeur},

title = {{MSVMpack}: a Multi-Class Support Vector Machine Package},

journal = {Journal of Machine Learning Research},

volume = {12},

pages = {2269-2272},

year = {2011},

note = {\url{http://www.loria.fr/~lauer/MSVMpack}}

}

which should look like [7].
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Table 5: Relative performance of different M-SVM implementations.

Data set M-SVM Software #SV Training Test Training Testing
model error (%) error (%) time time

ImageSeg WW Spider 113 5.24 11.05 11s 3.3s
BSVM 98 2.38 9.81 0.1s 0.1s
MSVMpack 192 0 10.33 1.2s 0.1s

CS MCSVM 97 2.86 8.86 0.1s 0.1s
MSVMpack 141 0 9.24 3.3s 0.1s

LLW SMSVM 210 0.48 7.67 15s 0.1s
MSVMpack 182 0 10.57 23s 0.1s

MSVM2 MSVMpack 199 0 10.48 4.5s 0.1s

USPS 500 WW Spider 303 0.40 10.20 4m 19s 0.2s
BSVM 170 0 10.00 0.2s 0.1s
MSVMpack 385 0 10.40 2.5s 0.1s

CS MCSVM 284 0 9.80 0.5s 0.3s
MSVMpack 292 0 9.80 30s 0.1s

LLW SMSVM 500 0 12.00 5m 58s 0.1s
MSVMpack 494 0 11.40 1m 22s 0.1s

MSVM2 MSVMpack 500 0 12.00 22s 0.1s

Bio WW Spider out of memory
BSVM 2200 6.23 6.23 11s 4.6s
MSVMpack 4301 6.23 6.23 4m 00s 0.5s

CS MCSVM 1727 6.23 6.23 9s 4.2s
MSVMpack 3647 6.23 6.23 8s 0.5s

LLW SMSVM out of memory
MSVMpack 12467 6.23 6.23 2m 05s 1.1s

MSVM2 MSVMpack 12471 6.23 6.23 11m 44s 0.9s

CB513 01 WW Spider out of memory
BSVM 39183 19.46 25.70 1h 41m 52s 9m 02s
MSVMpack 42277 16.94 25.55 10m 31s 26s

CS MCSVM 41401 17.07 25.45 4h 12m 35s 27m 11s
MSVMpack 40198 16.93 25.41 4m 04s 32s

LLW SMSVM out of memory
MSVMpack 54313 22.14 27.65 11m 46s 32s

MSVM2 MSVMpack 62027 14.31 25.32 1h 08m 54s 47s

MNIST WW Spider out of memory
BSVM 13572 0.078 1.46 4h 03m 29s 2m 39s
MSVMpack 14771 0.015 1.41 2h 50m 29s 15s

CS MCSVM 13805 0.038 2.76 1h 54m 26s 4m 09s
MSVMpack 14408 0.032 1.44 49m 04s 15s

LLW SMSVM out of memory
MSVMpack 47906 0.282 1.57 4h 36m 45s 45s

MSVM2 MSVMpack 53773 0.027 1.51 10h 55m 10s 55s

Letter WW Spider out of memory
BSVM 7460 4.30 5.85 6m 20s 5s
MSVMpack 7725 3.14 4.75 24m 38s 3s

CS MCSVM 6310 2.03 3.90 2m 38s 4s
MSVMpack 7566 4.72 6.92 6m 54s 3s

LLW SMSVM out of memory
MSVMpack 16000 16.90 18.80 3h 56m 08s 4s

MSVM2 MSVMpack 16000 5.08 7.28 (S) 48h 00m 00s 3s

(S): manually stopped before reaching the default optimization accuracy.
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Table 6: Results of a 5-fold cross validation on the CB513 data set. The given times are sums
over the 5 training and testing steps of the cross validation. MSVMpack 1.4 includes a parallelized
cross validation procedure. The star superscript indicates that the software is run on a computer
with 12 CPUs and 64 GB of memory.

M-SVM Software Cross validation Training Testing Total
model error time time time
WW BSVM 23.96 % 9h 48m 40s 46m 29s 10h 34m 50s

MSVMpack 1.0 23.72 % 1h 05m 11s 1m 51s 1h 07m 02s
MSVMpack 1.4∗ 23.63 % N/A N/A 21m 07s

CS MCSVM 23.55 % 22h 52m 10s 2h 08m 33s 25h 00m 43s
MSVMpack 1.0 23.63 % 1h 00m 36s 2m 06s 1h 02m 42s
MSVMpack 1.4∗ 23.55 % N/A N/A 12m 05s

LLW MSVMpack 1.0 25.65 % 1h 14m 21s 2m 33s 1h 16m 54s
MSVMpack 1.4∗ 25.52 % N/A N/A 30m 29s

MSVM2 MSVMpack 1.0 23.47 % 6h 44m 50s 2m 49s 6h 47m 39s
MSVMpack 1.4∗ 23.36 % N/A N/A 2h 55m 05s

Table 7: Effect of the cache memory size on the training time of MSVMpack for the WW model
type.

Bio
Cache memory size in MB 10 60 120 300 600 1200
and in % of the kernel matrix < 1% 5% 10% 25% 50% 100%
Training time 5m 55s 6m 00s 6m 13s 4m 29s 3m 56s 4m 00s

CB513 01
Cache memory size in MB 1750 3500 8200 16500 24500 30000
and in % of the kernel matrix 5% 10% 25% 50% 75% 92%
Training time 31m 49s 30m 40s 26m 06s 23m 00s 15m 52s 10m 31s
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