
'

&

$

%

Resources, process calculi
and G�odel-Dummett logics

Dominique Larchey

LORIA { CNRS

Nancy, France

1

'

&

$

%

Gödel-Dummett logics LC

� Most studied intermediate logic IL ⊂ LC ⊂ CL

� Proof theory, proof-search

– IL (Dyckho� & Hudelmair, Weich, Larchey & Galmiche)

– Intermediate logics (Avellone et al. and Fiorino)

– LC (Dyckho�, Avron, Larchey)

� Calculi

– Hyper-sequent calculi (Avron,Baaz, Ferm�uller)

– Sequent calculus (Dyckho�)

– Counter-model search (CADE'02)

– Decision through graph/matrix computation (IJCAR'04)

2

'

&

$

%

Process calculi, resource consumption

� Speci�cation logics for resources

– Production/consumption (linear logics, petri nets)

– Distribution/sharing (spatial logics, BI)

– Concurrency/mobility (ambients)

� LC not a general resource speci�cation logic

� Characterization of LC w.r.t. a class of resource properties

– Recursive non-deterministic processes, conditional branching

– Boundability of resource consumption / counter-models in LC

3

'

&

$

%

A simple resource calculus

� Only one resource denoted •

� Resource is only consumed, not produced

� Processes features

– Non determinism [P +Q+R]

– (External) conditional branching <f>P

– Resource consumption •P

– Recursion through equations X = [· · ·+ •X + · · ·]

� X can consume one • and then becomes X again

4

'

&

$

%

Resource consumption semantics

� De�ne a relation P −[n]−• Q
– means P can become Q after having consumed n times •

� Resource consumption for equations system E and context �

P −[0]−• P
[Id]

Pi −[n]−• Q
[· · ·+ Pi + · · ·] −[n]−• Q

[Sum]

P −[n]−• Q
•P −[n+ 1]−• Q

[Res]

P −[n]−• Q X = P ∈ E
X −[n]−• Q

[Eq]

P −[n]−• Q [[f]]� = 1

<f>P −[n]−• Q
[Con]

5

'

&

$

%

Bounding resources consumption

� Basic idea

– Is n in P −[n]−• Q bounded for any P;Q ?

– X = •X has unboundable resource use

– X = [] or X = [X] have resource use bounded by 0

� De�nition

– Given a �xed process equation system E

– E has resource use boundable by n if

there exists a context � s.t. for any process variables

X;Y of E , X −[k]−• Y holds for no k greater than n

6

'

&

$

%

Normalized processes vs bi-colored graphs (1)

� Process system is normalized if no nested constructs

� Normalization = add (new) intermediate equations

X = • •X split into X = •Y; Y = •X

� Normalization achieved while preserving resource consumption

� Associated bi-colored conditional graph

– X = [Y1 + Y2]: (unconditional) green arrows X → Y1, X → Y2

– X = <f>Y : conditional green arrow X →f Y

– X = •Y : red arrow X ⇒ Y

7

'

&

$

%

Normalized processes vs bi-colored graphs (2)

� Normalized process equation system

X = [K6] Z = [K5] K2=X K4= •Z K1= [K2 +K7 + Z]

Y = [K1] K6= •K3 K3=<a>Y K5= [] K7=<¬a>K4

� Associated conditional bi-colored graph

X K2 K1 K7 K4

K6 K3 Y K5 Z

b

a

a

� Size of graph linear in the size of process system

8

'

&

$

%

Instance graphs

� Conditional bi-colored graphs contains

– green arrows: conditional →f , unconditional →

– red arrows: ⇒

� Conditions can be instanciated with a context �

– keep unconditional arrows (→ or ⇒)

– keep arrows →f for which [[f]]� = 1

� From a graph G, we obtain a family of instance graphs G�

9

'

&

$

%

Alternating chains and resource use bounding

� A n-alternating chain

– of the form (→?⇒)n, exactly n red arrows ⇒

� Resource use for a system E with associated graph G

E has resource use boundable by n if and only if G has

an instance G� containing no (n+ 1)-alternating chain

X K2 K1 K7 K4

K6 K3 Y K5 Z

b

a

a

−

[
a = 0

b = 0

]
→

X K2 K1 K7 K4

K6 K3 Y K5 Z

� Graphs and process equations are equivalent representations

10

'

&

$

%

Gödel-Dummett logic LC

� Intermediate logic: IL ⊂ LC ⊂ · · · ⊂ LCn ⊂ · · · ⊂ LC1 = CL

� Syntactic characterization: LC = IL + (X ⊃ Y) ∨ (Y ⊃X)

� Semantic models:

– Linear Kripke trees or the lattice N = N ∪ {∞}

– For �nitary LCn, [0; n) = [0; : : : ; n[∪{∞}

– Lattice structure: min, max, . . .

� Complexity:

– LC (and CL) are NP-complete

– IL is PSPACE-complete

11

'

&

$

%

Instance graphs and implicational sequents

� Implicational sequent associated to a bi-colored (instance) graph

– for an arrow X → Y : add X ⊃ Y on the left of `
– for an arrow X ⇒ Y : add Y ⊃X (reverse) on the right of `

A

B

D

C

A⊃B;B ⊃ C;D ⊃ C ` C ⊃ A

� A counter-model in LCn i� no (n+ 1)-alternating chain in graph

� If no (n+ 1)-alternating chain, draw graph with (n+ 1) levels :

– Red arrows ⇒ go up (strictly)

– Green arrows → never go down

� Counter model given by the level (A = D = 0 and B = C = 1)

12

'

&

$

%

Conditional bi-colored graphs to LC

� Build a sequent � `� from a graph G

– v→ w in G: add Xv ⊃ Yw to �;

– v→f w: add (¬¬f)⊃ (Xv ⊃Xw) to �;

– v⇒ w: add Xw ⊃Xv to �.

� Counter-model of built sequent � `� ?

� ` � has a counter-model in LCn if and only if G has

an instance G� containing no (n+ 1)-alternating chain

� Size of � `� linear in size of G

13

'

&

$

%

Resource bounding with the LC logic

� Resource bounding problem for process equations

� Linear transformation from process equations to a graph

� Linear transformation from graph to formula (or sequent) of LC

� Resource bounding problem linearly transformed into

a decision (counter-model) problem for LCn

� Is there a reverse transformation ?

� Yes, by our previous results (IJCAR'04)

14

'

&

$

%

From LC to graphs: indexing and polarizing

� Build a graph based on sub-formulae tree

� Each occurrence of a sub-formulae has an index and a polarity

� Example: (A⊃B) ∨ (B ⊃ A)

∨−1
⊃−2 ⊃−3

A+
4 B−5 B+

6 A−7

♦

A B

� Add one node ♦

� Add one further node for each variable V

15

'

&

$

%

From LCn to graphs: building arrows

D− ♦

V + V −

V

x x

∧−

A− B−

∨−

A− B− x

x x

x⊃−

A+ B−

♦

∧+

A+ B+

x x

∨+

A+ B+

x

x

⊃+

A− B+

� Given D−, compute its graph G with boolean selectors

� G has size linear in the size of the formula D

D has counter-model in LCn i� there exists an

instance graph G� with no (n+ 1)-alternating chain

16

'

&

$

%

Example: Peirce’s formula (1)

⊃−0

⊃+
1 A−2

⊃−3 A+
4

A+
5 B−6

AB

♦

x

x
x

x

y

y

z

z

z

z

(
(A+

5 ⊃
−
3 B−6)⊃

+
1 A

+
4

)
⊃−0 A−2

� Build the bi-colored graph

� break cycles containing ⇒
0⇒♦→ 0 x

0⇒♦→ 3→ 4→ A→ 2→ 0 z + y + x

2⇒♦→ 3→ 4→ A→ 2 x + z + y

2⇒ 1→ 4→ A→ 2 x + y

� Constraint for no ⇒-cycle:

x:(z + y + x):(x+ z + y):(x+ y)

� Solution: x = z = 1 and y = 0

17

'

&

$

%

Example: instance graph (2)

⊃−0

⊃+
1 A−2

⊃−3 A+
4

A+
5 B−6

AB

♦
� Intanciate with x = z = 1, y = 0

� Of course, there is no ⇒-cycle!

� Redraw the graph by levels:

B 6 3 4

5 A 2 0

♦ 1

� Counter-model: [[A]] = 1, [[B]] = 0

� In LC and LC2 but not in CL = LC1

18

'

&

$

%

From LCn to resource bounding

� Linear transformation of a formula of LC into conditional graph

� Linear transformation of graph into a process system

� Decision problem for LCn transformed into resource bounding

problem (of linear size)

� Deciding LCn characterized by resource bounding

� How to decide LCn in practice ?

19

'

&

$

%

⇒-cycle detection and matrix computation (1)

� Bi-colored graph = sparse matrices of boolean functions

y

x

y

1
1

z

1
1

x z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦→

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦⇒

� Shared ROBDDs, and matrix operations:

– + = ∨, × = ∧, M? = I +M2 +M3 + · · ·

– tr(M) =
∑

xMx;x,
∑
(M) =

∑
x;yMx;y

20

'

&

$

%

⇒-cycle detection and matrix computation (2)

� Result: provable in LC i� tr
(
(→+⇒)?⇒

)
= 1

� If the trace not a tautology:

– Extract an instance with no ⇒-cycle

– Draw the instance by levels

– Counter-model given by level

� Result: invalid in LCn i�
∑
(→?⇒

)n+1
< 1

� Compute this sequence:

– n bounded by number of ⊃−+1
– Search the �rst non-tautology

– Obtain the minimal counter-model

21

'

&

$

%

Conclusion and perspectives

� A process calculus with resource consumption

� Decision problem in LCn = resource consumption bounding

� Solved through matrix computation with BDDs

http://www.loria.fr/~larchey/LC

� Use this process calculus is an abstraction calculus to e�ectively

bound resource use in more complex systems

22

