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Godel-Dummett logics LCI \

e Most studied intermediate logic IL € LC C CL

e Proof theory, proof-search

— IL (Dyckhoff & Hudelmair, Weich, Larchey & Galmiche)
— Intermediate logics (Avellone et al. and Fiorino)

— LC (Dyckhoft, Avron, Larchey)

e Calculi

— Hyper-sequent calculi (Avron,Baaz, Fermiiller)
— Sequent calculus (Dyckhoff)
— Counter-model search (CADE’02)

— Decision through graph/matrix computation (IJCAR’04) /
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Process calculi, resource consumption'

e Specification logics for resources

— Production/consumption (linear logics, petri nets)
— Distribution/sharing (spatial logics, BI)

— Concurrency/mobility (ambients)
e LC not a general resource specification logic

e Characterization of LC w.r.t. a class of resource properties
— Recursive non-deterministic processes, conditional branching

— Boundability of resource consumption / counter-models in LC
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A simple resource calculus'

e Only one resource denoted e
e Resource is only consumed, not produced

e Processes features

Non determinism [P 4+ Q + R]
(External) conditional branching <f> P
Resource consumption e P

Recursion through equations X =|--- +eX + - -]

e X can consume one e and then becomes X again

~
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Resource consumption Semanticsl \

e Define a relation P —{n}-e Q

— means P can become @) after having consumed n times e

e Resource consumption for equations system &£ and context o

1d]
P A0 P P —nl-e @ X=Pec€ Eq]
SRl tinke @ Pinte@ Ul=1
P InleQ <f>P -n}eQ
[Res]
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Bounding resources consumption'

e Basic idea

— Isnin P {n}e @ bounded for any P,Q 7
— X = e X has unboundable resource use

— X =[] or X = |X] have resource use bounded by 0

e Definition

— Given a fixed process equation system &

— & has resource use boundable by n if

there exists a context o s.t. for any process variables
X,Y of £, X —|k}-e Y holds for no k greater than n
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Normalized processes vs bi-colored graphs (1) I

e Process system is normalized if no nested constructs

e Normalization = add (new) intermediate equations
X =00X split into X =e0Y, Y =0X
e Normalization achieved while preserving resource consumption
e Associated bi-colored conditional graph
— X = |Y1 + Y3|: (unconditional) green arrows X — Y1, X — Y5

— X = <f>Y: conditional green arrow X —;¢Y
— X =eY: red arrow X =Y
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Normalized processes vs bi-colored graphs (2) I

e Normalized process equation system

[K@] Z:[K5] Ko=<b>X Kyg=e2 Klz[K2+K7+Z]

X
Y [Kl] K6:0K3 K3:<a>Y K5:[] K7:<—|a> K4

e Associated conditional bi-colored graph

X +b-Ko+—Ki—Kr-a— Ky

RN

K6:>K3—CL—>Y K5% 7

e Size of graph linear in the size of process system

N /




-

Instance graphs I

e Conditional bi-colored graphs contains
— green arrows: conditional — ¢, unconditional —

— red arrows: =

e Conditions can be instanciated with a context o
— keep unconditional arrows (— or =)

— keep arrows — for which [f], =1

e From a graph G, we obtain a family of instance graphs G,

N
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Alternating chains and resource use bounding'

e A n-alternating chain

— of the form (—*=-)", exactly n red arrows =

e Resource use for a system & with associated graph ¢

& has resource use boundable by n if and only if G has

an instance G, containing no (n + 1)-alternating chain

X «b-Kos—Ki— Kr-a—> Ky 0 X Ko+—Ki—K;—— Ky
a =

| e A M 1>~

KGﬁKg—a—) Y K5<— YA b=0 KG:Kg Y K5(— 7

e Graphs and process equations are equivalent representations

N
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/ Godel-Dummett logic LCI \

e Intermediate logic: |[ILCLCC---CLC, C---CLC =CL

e Syntactic characterization: LC=IL+ (X DY)V (Y D X)

e Semantic models:

— Linear Kripke trees or the lattice N = N U {oo}

— For finitary LC,, [0,n) = [0,...,n|U{cc}

— Lattice structure: min, max, ...

e Complexity:
— LC (and CL) are NP-complete

K — IL 1s PSPACE-complete /
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/ Instance graphs and implicational sequents' \

e Implicational sequent associated to a bi-colored (instance) graph
— for an arrow X — Y: add X DY on the left of F

— for an arrow X = Y: add Y D X (reverse) on the right of +
B—C
T/T A>B,BS5C,D>CFCHA
A D

e A counter-model in LC,, iff no (n + 1)-alternating chain in graph

e If no (n + 1)-alternating chain, draw graph with (n + 1) levels :
— Red arrows = go up (strictly)

— Green arrows — never go down

\o Counter model given by the level | (A= D =0and B=C = 1)/
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Conditional bi-colored graphs to LCI

e Build a sequent I' - A from a graph G
—v—winG: add X, DY, to I’
— v —w: add (—f) D (Xy D Xu) to T
— v=w: add X, DO X, to A.

e Counter-model of built sequent I' - A 7

I' - A has a counter-model in LC,, if and only if G has

an instance G, containing no (n + 1)-alternating chain

e Size of '+ A linear in size of G

N /
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Resource bounding with the LC logic'

e Resource bounding problem for process equations

e Linear transformation from process equations to a graph
e Linear transformation from graph to formula (or sequent) of LC

e Resource bounding problem linearly transformed into

a decision (counter-model) problem for LC,
e Is there a reverse transformation ?

e Yes, by our previous results (IJCAR’04)
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/ From LC to graphs: indexing and polarizing' \

e Build a graph based on sub-formulae tree

e LHach occurrence of a sub-formulae has an index and a polarity

e Example: (ADB)V(BDA)

o e

\o Add one further node for each variable V /

e Add one node
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/ From LC,, to graphs: building arrows'

D — &

AT VT D fzT— <
A A X )
/aj N /\ ,\ x\ //aC
A~ B~ A~ B~ At <z=pB~
- v ot
vt V- /
1%

AT

\/\/ \ \
x x
)2 R

z,
AT Bt AT Bt A~ -z BT

e Given D~ , compute its graph G with boolean selectors

e ( has size linear in the size of the formula D

D has counter-model in LC,, iff there exists an

instance graph G, with no (n + 1)-alternating chain

N

~
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/ Example: Peirce’s formula (1)' \

((Af o3 By ) of Af) oo Ay

e Build the bi-colored graph

e break cycles containing =

0= —0 x

0= —>3—4—>A—>2—0 z4+y+T
2=><—>3—4— A—2 zT+z+ vy
2=1—-4—> A—2 T+ Y

e Constraint for no =-cycle:

z.(z+y+2)(T+2+y).(T+7)

e Solution: z=2=1andy=0 /
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Example: instance graph (2)'

e Intanciate withz=2=1,y=0

e Of course, there is no =-cycle!

e Redraw the graph by levels:

AV

5 A—2)
B—6—3) g

e Counter-model: [A] =1, [B] =0
e In LC and LC, but not in CL = LCy

/
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From LC, to resource bounding'

e Linear transformation of a formula of LC into conditional graph

e Linear transformation of graph into a process system

e Decision problem for LC,, transformed into resource bounding

problem (of linear size)
e Deciding LC,, characterized by resource bounding

e How to decide LC,, in practice ?
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/ =-cycle detection and matrix computation (1) I\

e Bi-colored graph = sparse matrices of boolean functions

01 23456 AB<Y
1

01 23456 AB<Y

Y
T T

<

ST oo W o
— =
ST e o oke w o~ o

e Shared ROBDDs, and matrix operations:
—+=V,x=A, M*=T+M>+M3+--

— (M) =2, Mz, ) (M) =), Mzy
\_ /
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/ =-cycle detection and matrix computation (2) I\

e Result: provable in LC iff | tr((— + =)*=) =1

e If the trace not a tautology:
— HExtract an instance with no =-cycle
— Draw the instance by levels

— Counter-model given by level

e Result: invalid in LC, iff | 3 (—*=)""" < 1

e Compute this sequence:
— n bounded by number of D741
— Search the first non-tautology

\ — Obtain the minimal counter-model /
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Conclusion and perspectives'

e A process calculus with resource consumption

e Decision problem in LC, = resource consumption bounding

e Solved through matrix computation with BDDs

http://www.loria.fr/“larchey/LC

e Use this process calculus is an abstraction calculus to effectively

bound resource use in more complex systems

N /
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