
Separation Logic with One Quantified Variable‹

S. Demri1 and D. Galmiche2 and D. Larchey-Wendling2 and D. Mery2

1New York University & CNRS 2LORIA – CNRS – University of Lorraine
Abstract. We investigate first-order separation logic with one record field
restricted to a unique quantified variable (1SL1). Undecidability is known
when the number of quantified variables is unbounded and the satisfiabil-
ity problem is PSPACE-complete for the propositional fragment. We show
that the satisfiability problem for 1SL1 is PSPACE-complete and we charac-
terize its expressive power by showing that every formula is equivalent to
a Boolean combination of atomic properties. This contributes to our un-
derstanding of fragments of first-order separation logic that can specify
properties about the memory heap of programs with singly-linked lists.
When the number of program variables is fixed, the complexity drops to
polynomial time. All the fragments we consider contain the magic wand
operator and first-order quantification over a single variable.

1 Introduction

Separation Logic for Verifying Programs with Pointers. Separation logic [20] is a
well-known logic for analysing programs with pointers stemming from BI logic
[14]. Such programs have specific errors to be detected and separation logic is
used as an assertion language for Hoare-like proof systems [20] that are dedi-
cated to verify programs manipulating heaps. Any procedure mechanizing the
proof search requires subroutines that check the satisfiability or the validity
of formulæ from the assertion language. That is why, characterizing the com-
putational complexity of separation logic and its fragments and designing op-
timal decision procedures remain essential tasks. Separation logic contains a
structural separating connective and its adjoint (the separating implication, also
known as the magic wand). The main concern of the paper is to study a non-
trivial fragment of first-order separation logic with one record field as far as ex-
pressive power, decidability and complexity are concerned. Herein, the models
of separation logic are pairs made of a variable valuation (store) and a partial
function with finite domain (heap), also known as memory states.
Decidability and Complexity. The complexity of satisfiability and model-checking
problems for separation logic fragments have been quite studied [6, 20, 7] (see
also new decidability results in [13] or undecidability results in [5, 16] in an
alternative setting). Separation logic is equivalent to a Boolean propositional
logic [17, 18] if first-order quantifiers are disabled. Separation logic without
first-order quantifiers is decidable, but it becomes undecidable with first-order
quantifiers [6]. For instance, model-checking and satisfiability for propositional
‹ Work partially supported by the ANR grant DynRes (project no. ANR-11-BS02-011)

and by the EU Seventh Framework Programme under grant agreement No. PIOF-
GA-2011-301166 (DATAVERIF).

separation logic are PSPACE-complete problems [6]. Decidable fragments with
first-order quantifiers can be found in [11, 4]. However, these known results
crucially rely on the memory model addressing cells with two record fields (un-
decidability of 2SL in [6] is by reduction to the first-order theory of a finite bi-
nary relation). In order to study decidability or complexity issues for separation
logic, two tracks have been observed in the literature. There is the verification
approach with decision procedures for fragments of practical use, see e.g. [2, 7,
12]. Alternatively, fragments, extensions or variants of separation logic are con-
sidered from a logical viewpoint, see e.g. [6, 5, 16].
Our Contributions. In this paper, we study first-order separation logic with one
quantified variable, with an unbounded number of program variables and with
one record field (herein called 1SL1). We introduce test formulæ that state simple
properties about the memory states and we show that every formula in 1SL1 is
equivalent to a Boolean combination of test formulæ, extending what was done
in [18, 3] for the propositional case. For instance, separating connectives can be
eliminated in a controlled way as well as first-order quantification over the sin-
gle variable. In that way, we show a quantifier elimination property similar to
the one for Presburger arithmetic. This result extends previous ones on propo-
sitional separation logic [17, 18, 3] and this is the first time that this approach is
extended to a first-order version of separation logic with the magic wand op-
erator. However, it is the best we can hope for since 1SL with two quantified
variables and no program variables (1SL2) has been recently shown undecid-
able in [9]. Of course, other extensions of 1SL1 could be considered, for instance
to add a bit of arithmetical constraints, but herein we focus on 1SL1 that is the-
oretically nicely designed, even though it is still unclear how much 1SL1 is use-
ful for formal verification. We also establish that the satisfiability problem for
Boolean combinations of test formulæ is NP-complete thanks to a saturation al-
gorithm for the theory of memory states with test formulæ, paving the way to
use SMT solvers to decide 1SL1 (see e.g. the use of such solvers in [19]).
Even though Boolean combinations of test formulæ and 1SL1 have identical ex-
pressive power, we obtain PSPACE-completeness for model-checking and satis-
fiability in 1SL1. The conciseness of 1SL1 explains the difference between these
two complexities. PSPACE-completeness is still a relatively low complexity but
this result can be extended with more than one record field (but still with one
quantified variable). This is the best we can hope for with one quantified vari-
able and with the magic wand, that is notoriously known to easily increase
complexity. We also show that 1SL1 with a bounded number of program vari-
ables has a satisfiability problem that can be solved in polynomial time.
Omitted proofs can be found in the technical report [10].

2 Preliminaries

2.1 First-order separation logic with one selector 1SL

Let PVAR “ tx1, x2, . . .u be a countably infinite set of program variables and
FVAR “ tu1, u2, . . .u be a countably infinite set of quantified variables. A mem-

2

ory state (also called a model) is a pair ps, hq such that s is a variable valuation
of the form s : PVAR Ñ N (the store) and h is a partial function h : N ã N
with finite domain (the heap) and we write domphq to denote its domain and
ranphq to denote its range. Two heaps h1 and h2 are said to be disjoint, noted
h1Kh2, if their domains are disjoint; when this holds, we write h1] h2 to de-
note the heap corresponding to the disjoint union of the graphs of h1 and h2,
hence domph1] h2q “ domph1q Z domph2q. When the domains of h1 and h2 are
not disjoint, the composition h1] h2 is not defined even if h1 and h2 have the
same values on domph1q X domph2q.

Formulæ of 1SL are built from expressions of the form e ::“ x | u where
x P PVAR and u P FVAR, and atomic formulæ of the form π ::“ e “ e1 | e ãÑ e1 | emp.
Formulæ are defined by the grammar A ::“ K | π | A ^ B | A | A ˚ B |

A ´̊ B | D u A, where u P FVAR. The connective ˚ is separating conjunction and
´̊ is separating implication, usually called the magic wand. The size of a formula
A, written |A|, is defined as the number of symbols required to write it. An
assignment is a map f : FVAR Ñ N. The satisfaction relation (is parameterized
by assignments (clauses for Boolean connectives are omitted):

– ps, hq (f emp iff domphq “ H.
– ps, hq (f e “ e1 iff res “ re1s, with rxs def

“ spxq and rus def
“ fpuq.

– ps, hq (f e ãÑ e1 iff res P domphq and hpresq “ re1s.
– ps, hq (f A1 ˚A2 iff h “ h1]h2, ps, h1q (f A1, ps, h2q (f A2 for some h1, h2.
– ps, hq (f A1´̊A2 iff for all h1, if h K h1 & ps, h1q (f A1 then ps, h] h1q (f A2.
– ps, hq (f D u A iff there is l P N such that ps, hq (fruÞÑls A where fru ÞÑ ls is

the assignment equal to f except that u takes the value l.

Whereas ‘D’ is clearly a first-order quantifier, the connectives ˚ and ´̊ are
known to be second-order quantifiers. In the paper, we show how to eliminate
the three connectives when only one quantified variable is used.

We write 1SL0 to denote the propositional fragment of 1SL, i.e. without any
occurrence of a variable from FVAR. Similarly, we write 1SL1 to denote the frag-
ment of 1SL restricted to a single quantified variable, say u. In that case, the
satisfaction relation can be denoted by (l where l is understood as the value
for the variable under the assignment.

Given q ě 1 and A in 1SL built over x1,. . . , xq , we define its memory threshold
thpq,Aq: thpq,Aq def

“ 1 for atomic formula A; thpq,A1 ^A2q
def
“ maxpthpq,A1q,

thpq,A2qq; thpq, A1q
def
“ thpq,A1q; thpq, D u A1q

def
“ thpq,A1q; thpq,A1 ˚A2q

def
“

thpq,A1q ` thpq,A2q; thpq,A1´̊A2q
def
“ q ` maxpthpq,A1q, thpq,A2qq.

Lemma 1. Given q ě 1 and a formula A in 1SL, we have 1 ď thpq,Aq ď q ˆ |A|.

Let L be a logic among 1SL, 1SL1 and 1SL0. As usual, the satisfiability problem for
L takes as input a formula A from L and asks whether there is a memory state
ps, hq and an assignment f such that ps, hq (f A. The model-checking problem for
L takes as input a formula A from L, a memory state ps, hq and an assignment
f for free variables from A and asks whether ps, hq (f A. When checking the
satisfiability status of a formula A in 1SL1, we assume that its program variables

3

are contained in tx1, . . . , xqu for some q ě 1 and the quantified variable is u. So,
PVAR is unbounded but as usual, when dealing with a specific formula, the set
of program variables is finite.

Theorem 2. [6, 4, 9] Satisfiability and model-checking problems for 1SL0 are PSPACE-
complete, satisfiability problem for 1SL is undecidable, even restricted to two variables.

2.2 A bunch of properties stated in 1SL1

The logic 1SL1 allows to express different types of properties on memory states.
The examples below indeed illustrate the expressivity of 1SL1, and in the paper
we characterize precisely what can be expressed in 1SL1.

– The domain of the heap has at least k elements: emp ˚ ¨ ¨ ¨ ˚ emp (k times).
– The variable xi is allocated in the heap: allocpxiq

def
“ pxi ãÑ xiq ´̊ K.

– The variable xi points to a location that is a loop: tolooppxiq
def
“ D u pxi ãÑu^

u ãÑ uq; the variable xi points to a location that is allocated: toallocpxiq
def
“

D u pxi ãÑ u^ allocpuqq.
– Variables xi and xj point to a shared location: convpxi, xjq

def
“ D u pxi ãÑ u ^

xj ãÑ uq; there is a location between xi and xj : inbetweenpxi, xjq
def
“ Du pxi ãÑ

u^ u ãÑ xjq.
– Location interpreted by xi has exactly one predecessor can be expressed in

1SL1: pD u u ãÑ xiq ^ pD u u ãÑ xi ˚ D u u ãÑ xiq.
– Heap has at least 3 self-loops: pD u u ãÑ uq ˚ pD u u ãÑ uq ˚ pD u u ãÑ uq.

2.3 At the heart of domain partitions

Given ps, hq and a finite set V “ tx1, . . . , xqu Ď PVAR, we introduce two par-
titions of domphq depending on V : one partition takes care of self-loops and
predecessors of interpretations of program variables, the other one takes care
of locations closely related to interpretations of program variables (to be de-
fined below). This allows us to decompose the domain of heaps in such a way
that we can easily identify the properties that can be indeed expressed in 1SL1
restricted to the variables in V . We introduce a first partition of the domain of h
by distinguishing the self-loops and the predecessors of variable interpretations
on the one hand, and the remaining locations in the domain on the other hand:
predps, hq

def
“

Ť

i predps, h, iq with predps, h, iq
def
“ tl1 : hpl1q “ spxiqu for every

i P r1, qs; loopps, hq def
“ tl P domphq : hplq “ lu; remps, hq def

“ domphqzppredps, hq Y
loopps, hqq. So, obviously domphq “ remps, hq Z ppredps, hq Y loopps, hqq. The
sets predps, hq and loopps, hq are not necessarily disjoint. As a consequence of
h being a partial function, the sets predps, h, iq and predps, h, jq intersect only if
spxiq “ spxjq, in which case predps, h, iq “ predps, h, jq.

We introduce a second partition of domphq by distinguishing the locations
related to a cell involving a program variable interpretation on the one hand,
and the remaining locations in the domain on the other hand. So, the sets below

4

are also implicitly parameterized by V : refps, hq def
“ domphq X spVq, accps, hq def

“

domphq X hpspVqq, ♥ps, hq def
“ refps, hq Y accps, hq, ♥ps, hq def

“ domphqz♥ps, hq. The
core of the memory state, written ♥ps, hq, contains the locations l in domphq such
that either l is the interpretation of a program variable or it is an image by h of
a program variable (that is also in the domain). In the sequel, we need to con-
sider locations that belong to the intersection of sets from different partitions.

r r

♥ p ♥

ö ♥

ö ♥

x1

x2x3

x4
Here are their formal definitions:

– pred♥ps, hq
def
“ predps, hqz♥ps, hq,

pred♥ps, h, iq
def
“ predps, h, iqz♥ps, hq,

– loop♥ps, hq
def
“ loopps, hqz♥ps, hq,

rem♥ps, hq
def
“ remps, hqz♥ps, hq.

For instance, pred♥ps, hq contains the set of loca-
tions l from domphq, that are predecessors of a
variable interpretation but no program variable
x in tx1, . . . , xqu satisfies spxq “ l or hpspxqq “ l
(which means l R ♥ps, hq).

The above figure presents a memory state ps, hq with the variables x1, . . . ,x4.
Nodes labelled by ’♥’ [resp. ’ö’, ’p’, ’r’] belong to ♥ps, hq [resp. loop♥ps, hq,
pred♥ps, hq, rem♥ps, hq]. The introduction of the above sets provides a canoni-
cal way to decompose the heap domain, which will be helpful in the sequel.

Lemma 3 (Canonical decomposition). For all stores s and heaps h, the following
identity holds: domphq “ ♥ps, hq Z pred♥ps, hq Z loop♥ps, hq Z rem♥ps, hq.

The proof is by easy verification since predps, hq X loopps, hq Ď ♥ps, hq.

Proposition 4.

pred♥ps, h, iq | i P r1, qs
(

is a partition of pred♥ps, hq.

Remark that both pred♥ps, h, iq “ H or pred♥ps, h, iq “ pred♥ps, h, jq are possi-
ble. Below, we present properties about the canonical decomposition.

Proposition 5. Let s, h, h1, h2 be such that h “ h1]h2. Then, ♥ps, hqXdomph1q “

♥ps, h1qZ∆ps, h1, h2q with ∆ps, h1, h2q
def
“ domph1qXh2pspVqqX spVqXh1pspVqq

(where X def
“ NzX).

The set ∆ps, h1, h2q contains the locations belonging to the core of h and to
the domain of h1, without being in the core of h1. Its expression in Proposition 5
uses only basic set-theoretical operations. From Proposition 5, we conclude that
♥ps, h1] h2q can be different from ♥ps, h1q Z♥ps, h2q.

2.4 How to count in 1SL1

Let us define a formula that states that loop♥ps, hq has size at least k. First,
we consider the following set of formulæ: Tq “ tallocpx1q, . . . , allocpxqqu Y
ttoallocpx1q, . . . , toallocpxqqu. For any map f : Tq Ñ t0, 1u, we associate a

5

formula Af defined by Af
def
“

Ź

tB | B P Tq and fpBq “ 1u ^
Ź

t B | B P

Tq and fpBq “ 0u. Formula Af is a conjunction made of literals from Tq such that
a positive literal B occurs exactly when fpBq “ 1 and a negative literal B occurs
exactly when fpBq “ 0. We write Apos

f to denote
Ź

tB | B P Tq and fpBq “ 1u.
Let us define the formula # loop ě k by pDu u ãÑ uq ˚ ¨ ¨ ¨ ˚ pDu u ãÑ uq (re-

peated k times). We can express that loop♥ps, hq has size at least k (where k ě 1)

with # loop♥ ě k
def
“
Ž

f Af ^

´

Apos
f ˚

`

loop ě k
˘

¯

, where f spans over the fi-
nite set of maps Tq Ñ t0, 1u. So, the idea behind the construction of the formula
is to divide the heap into two parts: one subheap contains the full core. Then,
any loop in the other subheap is out of the core because of the separation.

Lemma 6. (I) For any k ě 1, there is a formula # loop♥ ě k s.t. for any ps, hq,
we have ps, hq (# loop♥ ě k iff cardploop♥ps, hqq ě k. (II) For any k ě 1 and
any i P r1, qs, there is a formula # predi♥ ě k s.t. for any ps, hq, we have ps, hq (
predi♥ ě k iff cardppred♥ps, h, iqq ě k. (III) For any k ě 1, there is a # rem♥ ě k

s.t. for any ps, hq, we have ps, hq (# rem♥ ě k iff cardprem♥ps, hqq ě k.

All formulae from the above lemma have threshold polynomial in q ` α.

3 Expressive Completeness

3.1 On comparing cardinalities: equipotence

We introduce the notion of equipotence and state a few properties about it. This
will be useful in the forthcoming developments. Let α P N. We say that two
finite sets X and Y are α-equipotent and we write X „α Y if, either cardpXq “
cardpY q or both cardpXq and cardpY q are greater that α. The equipotence rela-
tion is also decreasing, i.e.„α2

Ď „α1
holds for all α1 ď α2. We state below two

lemmas that will be helpful in the sequel.

Lemma 7. Let α P N andX,X 1, Y, Y 1 be finite sets such thatXXX 1 “ H, Y XY 1 “
H, X „α Y and cardpX 1q “ cardpY 1q hold. Then X ZX 1 „α Y Z Y 1 holds.

Lemma 8. Let α1, α2 P N and X,X 1, Y0 be finite sets s.t. X ZX 1 „α1`α2 Y0 holds.
Then there are two finite sets Y, Y 1 s.t. Y0 “ Y Z Y 1, X „α1 Y and X 1 „α2 Y

1 hold.

3.2 All we need is test formulæ

Test formulæ express simple properties about the memory states; this includes
properties about program variables but also global properties about numbers
of predecessors or loops, following the decomposition in Section 2.3. These test
formulæ allow us to characterize the expressive power of 1SL1, similarly to
what has been done in [17, 18, 3] for 1SL0. Since every formula in 1SL1 is shown
equivalent to a Boolean combination of test formulæ (forthcoming Theorem 19),
this process can be viewed as a means to eliminate separating connectives in

6

a controlled way; elimination is not total since the test formulæ require such
separating connectives. However, this is analogous to quantifier elimination in
Presburger arithmetic for which simple modulo constraints need to be intro-
duced in order to eliminate the quantifiers (of course, modulo constraints are
defined with quantifiers but in a controlled way too).

Let us introduce the test formulæ. We distinguish two types, leading to dis-
tinct sets. There are test formulæ that state properties about the direct neigh-
bourhood of program variables whereas others state global properties about
the memory states. The test formulæ of the form # predi♥ ě k are of these two
types but they will be included in Sizeα since these are cardinality constraints.

Definition 9 (Test formulæ). Given q, α ě 1 , we define sets of test formulæ:

Equality
def
“ txi “ xj | i, j P r1, qsu

Pattern
def
“ txi ãÑ xj , convpxi, xjq, inbetweenpxi, xjq | i, j P r1, qsu
Y ttoallocpxiq, tolooppxiq, allocpxiq | i P r1, qsu

Extrau
def
“ tu ãÑ u, allocpuqu Y txi “ u, xi ãÑ u, u ãÑ xi | i P r1, qsu

Sizeα
def
“ t# predi♥ ě k | i P r1, qs, k P r1, αsu

Y t# loop♥ ě k,# rem♥ ě k | k P r1, αsu

Basic
def
“ Equality Y Pattern Testα

def
“ BasicY Sizeα Y tKu

Basicu
def
“ BasicY Extrau Testuα

def
“ Testα Y Extrau

Test formulæ express simple properties about the memory states, even thou-
gh quite large formulæ in 1SL1 may be needed to express them, while being of
memory threshold polynomial in q`α. An atom is a conjunction of test formulæ
or their negation (literal) such that each formula from Testuα occurs once (satu-
rated conjunction of literals). Any memory state satisfying an atom containing
 allocpx1q ^ # pred1♥ ě 1 ^ # loop♥ ě 1 ^ # rem♥ ě 1 (with q “ 1)
has an empty heap.

Lemma 10. Satisfiability of conjunctions of test formulæ or their negation can be
checked in polynomial time (q and α are not fixed and the bounds k in test formulæ
from Sizeα are encoded in binary).

The tedious proof of Lemma 10 is based on a saturation algorithm. The size of
a Boolean combination of test formulæ is the number of symbols to write it,
when integers are encoded in binary (those from Sizeα). Lemma 10 entails the
following complexity characterization, which indeed makes a contrast with the
complexity of the satisfiability problem for 1SL1 (see Theorem 28).

Theorem 11. Satisfiability problem for Boolean combinations of test formulæ in set
Ť

αě1 Test
u
α (q and α are not fixed, and bounds k are encoded in binary) is NP-complete.

Checking the satisfiability status of a Boolean combination of test formulæ
is typically the kind of tasks that could be performed by an SMT solver, see
e.g. [8, 1]. This is particularly true since no quantification is involved and test
formulæ are indeed atomic formulæ about the theory of memory states.

7

Below, we introduce equivalence relations depending on whether memory
states are indistinguishable w.r.t. some set of test formulæ.

Definition 12. We say that ps, h, lq and ps1, h1, l1q are basically equivalent [resp. extra
equivalent, resp. α-equivalent] and we denote ps, h, lq »b ps1, h1, l1q [resp. ps, h, lq »u

ps1, h1, l1q, resp. ps, h, lq »α ps1, h1, l1q] when the condition ps, hq (l B iff ps1, h1q (l1
B is fulfilled for any B P Basicu [resp. B P Extrau, resp. B P Testuα].

Hence ps, h, lq and ps1, h1, l1q are basically equivalent [resp. extra equivalent,
resp. α-equivalent] if and only if they cannot be distinguished by the formulæ
of Basicu [resp. Extrau, resp. Testuα]. Since Extrau Ď Basicu Ď Testuα, it is obvious
that the inclusions »α Ď »b Ď »u hold.

Proposition 13. ps, h, lq »α ps1, h1, l1q is equivalent to (1) ps, h, lq »b ps1, h1, l1q and
(2) pred♥ps, h, iq „α pred♥ps

1, h1, iq for any i P r1, qs, and (3) loop♥ps, hq „α
loop♥ps

1, h1q and (4) rem♥ps, hq „α rem♥ps
1, h1q.

The proof is based on the identity Basicu Y Sizeα “ Testuα. The pseudo-core of
ps, hq, written p♥ps, hq, is defined as p♥ps, hq “ spVq Y hpspVqq and ♥ps, hq is
equal to p♥ps, hq X domphq.

Lemma 14 (Bijection between pseudo-cores). Let l0, l1 P N and ps, hq and ps1, h1q
be two memory states s.t. ps, h, l0q »b ps1, h1, l1q. Let R be the binary relation on N
defined by: l R l1 iff (a) [l “ l0 and l1 “ l1] or (b) there is i P r1, qs s.t. [l “ spxiq
and l1 “ s1pxiq] or [l “ hpspxiqq and l1 “ h1ps1pxiqq]. Then R is a bijective relation
between p♥ps, hq Y tl0u and p♥ps1, h1q Y tl1u. Its restriction to ♥ps, hq is in bijection
with ♥ps1, h1q too if case (a) is dropped out from definition of R.

3.3 Expressive completeness of 1SL1 with respect to test formulæ

Lemmas 15, 16 and 17 below roughly state that the relation »α behaves prop-
erly. Each lemma corresponds to a given quantifier, respectively separating con-
junction, magic wand and first-order quantifier. Lemma 15 below states how
two equivalent memory states can be split, while loosing a bit of precision.

Lemma 15 (Distributivity). Let us consider s, h, h1, h2, s1, h1 and α, α1, α2 ě 1
such that h “ h1] h2 and α “ α1 ` α2 and ps, h, lq »α ps1, h1, l1q. Then there exists
h11 and h12 s.t. h1 “ h11]h

1
2 and ps, h1, lq »α1

ps1, h11, l
1q and ps, h2, lq »α2

ps1, h12, l
1q.

Given ps, hq, we write maxvalps, hq to denote maxpspVq Y domphq Y ranphqq.
Lemma 16 below states how it is possible to add subheaps while partly pre-
serving precision.

Lemma 16. Let α, q ě 1 and l0, l10 P N. Assume that ps, h, l0q »q`α ps1, h1, l10q and
h0Kh. Then there is h10Kh1 such that (1) ps, h0, l0q »α ps1, h10, l10q (2) ps, h]h0, l0q »α
ps1, h1] h10, l

1
0q; (3) maxvalps1, h10q ď maxvalps1, h1q ` l10 ` 3pq ` 1qα` 1.

Note the precision lost from ps, h, l0q »q`α ps
1, h1, l10q to ps, h0, l0q »α ps1, h10, l10q.

8

Lemma 17 (Existence). Let α ě 1 and let us assume ps, h, l0q »α ps1, h1, l1q. We
have: (1) for every l P N, there is l1 P N such that ps, h, lq »u ps

1, h1, l1q; (2) for all l, l1,
ps, h, lq »u ps

1, h1, l1q iff ps, h, lq »α ps1, h1, l1q.

Now, we state the main property in the section, namely test formulæ pro-
vide the proper abstraction.

Lemma 18 (Correctness). For any A in 1SL1 with at most q ě 1 program variables,
if ps, h, lq »α ps1, h1, l1q and thpq,Aq ď α then ps, hq (l A iff ps1, h1q (l1 A.

The proof is by structural induction on A using Lemma 15, 16 and 17. Here
is one of our main results characterizing the expressive power of 1SL1.

Theorem 19 (Quantifier Admissibility). Every formula A in 1SL1 with q program
variables is logically equivalent to a Boolean combination of test formulæ in Testuthpq,Aq.

The proof of Theorem 19 does not provide a constructive way to eliminate
quantifiers, which will be done in Section 4 (see Corollary 30).

Proof. Let α “ thpq,Aq and consider the set of literals Sαps, h, lq
def
“ tB | B P

Testuα and ps, hq (l Bu Y t B | B P Testuα and ps, hq *l Bu. As Testuα is finite, the
set Sαps, h, lq is finite and let us consider the well-defined atom

Ź

Sαps, h, lq.
We have ps1, h1q (l1

Ź

Sαps, h, lq iff ps, h, lq »α ps1, h1, l1q. The disjunction TA
def
“

Ž

t
Ź

Sαps, h, lq | ps, hq (l Au is a (finite) Boolean combination of test formulæ
in Testuα because

Ź

Sαps, h, lq ranges over the finite set of atoms built from
Testuα. By Lemma 18, we get that A is logically equivalent to TA. [\

When A in 1SL1 has no free occurrence of u, one can show that A is equiv-
alent to a Boolean combination of formulæ in Testthpq,Aq. Similarly, when A in
1SL1 has no occurrence of u at all, A is equivalent to a Boolean combination
of formulæ of the form xi “ xj , xi ãÑ xj , allocpxiq and # rem♥ ě k with the
alternative definition ♥ps, hq “ tspxiq : spxiq P domphq, i P r1, qsu (see also [17,
18, 3]). Theorem 19 witnesses that the test formulæ we introduced properly ab-
stract memory states when 1SL1 formulæ are involved. Test formulæ from Def-
inition 9 were not given to us and we had to design such formulæ to conclude
Theorem 19. Let us see what the test formulæ satisfy. Above all, all the test for-
mulæ can be expressed in 1SL1, see developments in Section 2.2 and Lemma 6.
Then, we aim at avoiding redundancy among the test formulæ. Indeed, for any
kind of test formulæ from Testuα leading to the subset X Ď Testuα (for instance
X “ t# loop♥ ě k | k ď αu), there are ps, hq, ps1, h1q and l, l1 P N such that (1)
for every B P TestuαzX , we have ps, hq (l B iff ps1, h1q (l1 B but (2) there is B P X
such that not (ps, hq (l B iff ps1, h1q (l1 B). When X “ t# loop♥ ě k | k ď αu,
clearly, the other test formulæ cannot systematically enforce constraints on the
cardinality of the set of loops outside of the core. Last but not least, we need to
prove that the set of test formulæ is expressively complete to get Theorem 19.
Lemmas 15, 16 and 17 are helpful to obtain Lemma 18 taking care of the dif-
ferent quantifiers. It is in their proofs that the completeness of the set Testuα is

9

best illustrated. Nevertheless, to apply these lemmas in the proof of Lemma 18,
we designed the adequate definition for the function thp¨, ¨q and we arranged
different thresholds in their statements. So, there is a real interplay between the
definition of thp¨, ¨q and the lemmas used in the proof of Lemma 18.

A small model property can be also proved as a consequence of Theorem 19
and the proof of Lemma 10, for instance.

Corollary 20 (Small Model Property). Let A be a formula in 1SL1 with q program
variables. Then, if A is satisfiable, then there is a memory state ps, hq and l P N such
that ps, hq (l A and maxpmaxvalps, hq, lq ď 3pq ` 1q ` pq ` 3qthpq,Aq.

There is no need to count over thpq,Aq (e.g., for the loops outside the core) and
the core uses at most 3q locations. Theorem 19 provides a characterization of
the expressive power of 1SL1, which is now easy to differenciate from 1SL2.

Corollary 21. 1SL2 is strictly more expressive than 1SL1.

4 Deciding 1SL1 Satisfiability and Model-Checking Problems

4.1 Abstracting further memory states

Satisfaction of A depends only on the satisfaction of formulæ from Testuthpq,Aq.
So, to check satisfiability of A, there is no need to build memory states but
rather only abstractions in which only the truth value of test formulæ matters.
In this section we introduce abstract memory states and we show how it matches
indistinguihability with respect to test formulae in Testuα (Lemma 24). Then, we
use these abstract structures to design a model-checking decision procedure
that runs in nondeterministic polynomial space.

Definition 22. Let q, α ě 1. An abstract memory state a over pq, αq is a structure
ppV,Eq, l, r, p1, . . . , pqq such that:

1. There is a partition P of tx1, . . . , xqu such that P Ď V . This encodes the store.
2. pV,Eq is a functional directed graph and a node v in pV,Eq is at distance at most

two of some set of variables X in P . This allows to encode only the pseudo-core of
memory states and nothing else.

3. l, p1, . . . , pq, r P r0, αs and this corresponds to the number of self-loops [resp. num-
bers of predecessors, number of remaining allocated locations] out of the core, pos-
sibly truncated over α. We require that if xi and xj belong to the same set in the
partition P , then pi “ pj .

Given q, α ě 1, the number of abstract memory states over pq, αq is not only
finite but reasonably bounded. Given ps, hq, we define its abstraction absps, hq
over pq, αq as the abstract memory state ppV,Eq, l, r, p1, . . . , pqq such that

– l “ minploop♥ps, hq, αq, r “ minprem♥ps, hq, αq, pi “ minppred♥ps, h, iq, αq
for every i P r1, qs.

– P is a partition of tx1, . . . , xqu so that for all x, x1, spxq “ spx1q iff x and x1

belong to the same set in P .

10

– V is made of elements from P as well as of locations from the set below:
`

thpspxiqq : spxiq P domphq, i P r1, qsuY

thphpspxiqqq : hpspxiqq P domphq, i P r1, qsu
˘

ztspxiq : i P r1, qsu

– The graph pV,Eq is defined as follows:
1. pX,X 1q P E if X,X 1 P P and hpspxqq “ spx1q for some x P X , x1 P X 1.
2. pX, lq P E if X P P and hpspxqq “ l for some variable x in X and
l R tspxiq : i P r1, qsu.

3. pl, l1q P E if there is a set X P P such that pX, lq P E and hplq “ l1 and
l1 R tspxiq : i P r1, qsu.

4. pl,Xq P E if there is X 1 P P such that pX 1, lq P E and hplq “ spxq for
some x P X and l R tspxiq : i P r1, qsu.

We define abstract memory states to be isomorphic if (1) the partition P is
identical, (2) the finite digraphs satisfy the same formulæ from Basic when the
digraphs are understood as heap graphs restricted to locations at distance at
most two from program variables, and (3) all the numerical values are identical.
A pointed abstract memory state is a pair pa, uq such that a “ ppV,Eq, l, r, p1, . . . , pqq
is an abstract memory state and u takes one of the following values: u P V and
u is at distance at most one from some X P P , or u “ L but l ą 0 is required,
or u “ R but r ą 0 is required, or u “ P piq for some i P r1, qs but pi ą 0
is required, or u “ D. Given a memory state ps, hq and l P N, we define its
abstraction absps, h, lqwith respect to pq, αq as the pointed abstract memory state
pa, uq such that a “ absps, hq and

– u P V if either l P V and distance is at most one from some X P P , or u “ X
and there is x P X P P such that spxq “ l,

– or u def
“ L if l P loop♥ps, hq, or u def

“ R if l P rem♥ps, hq,
– or u def

“ P piq if l P pred♥ps, h, iq for some i P r1, qs,
– or u def

“ D if none of the above conditions applies (so l R domphq).

Pointed abstract memory states pa, uq and pa1, u1q are isomorphic
def
ô a and a1

are isomorphic and, u “ u1 or u and u1 are related by the isomorphism.

Lemma 23. Given a pointed abstract memory state pa, uq over pq, αq, there exist a
memory state ps, hq and l P N such that absps, h, lq and pa, uq are isomorphic

Abstract memory states is the right way to abstract memory states when the
language 1SL1 is involved, which can be formally stated as follows.

Lemma 24. Let ps, hq, ps1, h1q be memory states and l, l1 P N. The next three propo-
sitions are equivalent: (1) ps, h, lq »α ps1, h1, l1q; (2) absps, h, lq and absps1, h1, l1q are
isomorphic; (3) there is a unique atom B from Testuα s.t. ps, hq (l B and ps1, h1q (l1 B.

Equivalence between (1) and (3) is a consequence of the definition of the re-
lation »α. Hence, a pointed abstract memory state represents an atom of Testuα,
except that it is a bit more concise (only space in Opq ` logpαqq is required
whereas an atom requires polynomial space in q ` α).

11

1: if B is atomic then return AMCppa, uq,Bq;
2: if B “ B1 then return not MC(pa, uq,B1);
3: if B “ B1 ^ B2 then return (MC(pa, uq,B1) and MC(pa, uq,B2));
4: if B “ D u B1 then return J iff there is u1 such that MC(pa, u1q,B1) = J;
5: if B “ B1 ˚ B2 then return J iff there are pa1, u1q and pa2, u2q such that
˚appa, uq, pa1, u1q, pa2, u2qq and MC(pa1, u1q,B1) = MC(pa2, u2q,B2) = J;

6: if B “ B1´̊B2 then return K iff for some pa1, u1q and pa2, u2q such that
˚appa

2, u2q, pa1, u1q, pa, uqq, MC(pa1, u1q,B1) = J and MC(pa2, u2q,B2) = K;

Fig. 1. Function MCppa, uq,Bq

1: if B is emp then return J iff E “ H and all numerical values are zero;
2: if B is xi “ xj then return J iff xi, xj P X , for some X P P ;
3: if B is xi “ u then return J iff u “ X for some X P P such that xi P X ;
4: if B is u “ u then return J;
5: if B is xi ãÑ xj then return J iff pX,X 1

q P E where xi P X P P and xj P X P P ;
6: if B is xi ãÑ u then return J iff pX, uq P E for some X P P such that xi P X ;
7: if B is u ãÑ xi then return J iff either u “ P piq or (u P V and there is some X P P

such that xi P X and pu, Xq P E);
8: if B is u ãÑ u then return J iff either u “ L or pu, uq P E;

Fig. 2. Function AMCppa, uq,Bq

Definition 25. Given pointed abstract memory states pa, uq, pa1, u1q and pa2, u2q, we
write ˚appa, uq, pa1, u1q, pa2, u2qq if there exist l P N, a store s and disjoint heaps h1 and
h2 such that absps, h1] h2, lq “ pa, uq, absps, h1, lq “ pa1, u1q and absps, h2, lq “
pa2, u2q.

Ternary relation ˚a is not difficult to check even though it is necessary to
verify that the abstract disjoint union is properly done.

Lemma 26. Given q, α ě 1, the ternary relation ˚a can be decided in polynomial time
in q ` logpαq for all the pointed abstract memory states built over pq, αq.

4.2 A polynomial-space decision procedure

Figure 1 presents a procedure MC(pa, uq,B) returning a Boolean and tak-
ing as arguments, a pointed abstract memory state over pq, αq and a formula B
with thpq,Bq ď α. All the quantifications over pointed abstract memory states
are done over pq, αq. A case analysis is provided depending on the outermost
connective. Its structure is standard and mimicks the semantics for 1SL1 except
that we deal with abstract memory states. The auxiliary function AMC(pa, uq,B)
makes no recursive calls and is dedicated to atomic formulæ (see Figure 2). The
design of MC is similar to nondeterministic polynomial space procedures, see
e.g. [15, 6] and it returns either K or J.

12

Lemma 27. Let q, α ě 1, pa, uq be a pointed abstract memory state over pq, αq and
A be in 1SL1 built over x1, . . . , xq s.t. thpq,Aq ď α. The propositions below are
equivalent: (I) MCppa, uq,Aq returns J; (II) There exist ps, hq and l P N such that
absps, h, lq “ pa, uq and ps, hq (l A; (III) For all ps, hq and l P N s.t. absps, h, lq “
pa, uq, we have ps, hq (l A.
Consequently, we get the following complexity characterization.

Theorem 28. Model-checking and satisfiability pbs. for 1SL1 are PSPACE-complete.
Below, we state two nice by-products of our proof technique.

Corollary 29. Let q ě 1. The satisfiability problem for 1SL1 restricted to formulæ
with at most q program variables can be solved in polynomial time.

Corollary 30. Given a formula A in 1SL1, computing a Boolean combination of test
formulæ in Testuthpq,Aq logically equivalent to A can be done in polynomial space (even
though the outcome formula can be of exponential size).

Here is another by-product of our proof technique. The PSPACE bound is pre-
served when formulæ are encoded as DAGs instead of trees. The size of a for-
mula is then simply its number of subformulæ. This is similar to machine en-
coding, provides a better conciseness and complexity upper bounds are more
difficult to obtain. With this alternative notion of length, thpq,Aq is only boun-
ded by qˆ2|A| (compare with Lemma 1). Nevertheless, this is fine to get PSPACE
upper bound with this encoding since the algorithm to solve the satisfiability
problem runs in logarithmic space in α, as we have shown previously.

5 Conclusion

In [4], the undecidability of 1SL with a unique record field is shown. 1SL0 is also
known to be PSPACE-complete [6]. In this paper, we provided an extension with
a unique quantified variable and we show that the satisfiability problem for
1SL1 is PSPACE-complete by presenting an original and fine-tuned abstraction
of memory states. We proved that in 1SL1 separating connectives can be elim-
inated in a controlled way as well as first-order quantification over the single
variable. In that way, we show a quantifier elimination property. Apart from the
complexity results and the new abstraction for memory states, we also show a
quite surprising result: when the number of program variables is bounded, the
satisfiability problem can be solved in polynomial time. Last but not least, we
have established that satisfiability problem for Boolean combinations of test for-
mulæ is NP-complete. This is reminiscent of decision procedures used in SMT
solvers and it is a challenging question to take advantage of these features to
decide 1SL1 with an SMT solver. Finally, the design of fragments between 1SL1
and undecidable 1SL2 that can be decided with an adaptation of our method is
worth being further investigated.
Acknowledgments: We warmly thank the anonymous referees for their numer-
ous and helpful suggestions, improving significantly the quality of the paper
and its extended version [10]. Great thanks also to Morgan Deters (New York
University) for feedback and discussions about this work.

13

References

1. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,
and C. Tinelli. CVC4. In CAV’11, LNCS, pages 171–177. Springer, 2011.

2. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO’05, LNCS, pages 115–137. Springer, 2005.

3. R. Brochenin, S. Demri, and E. Lozes. Reasoning about sequences of memory states.
APAL, 161(3):305–323, 2009.

4. R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. IC, 211:106–137, 2012.
5. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic

and its neighbours. In LICS’10, pages 130–139. IEEE, 2010.
6. C. Calcagno, P. O’Hearn, and H. Yang. Computability and complexity results for a

spatial assertion language for data structures. In FSTTCS’01, volume 2245 of LNCS,
pages 108–119. Springer, 2001.

7. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning
in a fragment of separation logic. In CONCUR’11, number 6901 in LNCS, pages
235–249. Springer, 2011.

8. L. de Moura and N. Björner. Z3: An Efficient SMT Solver. In TACAS’08, volume 4963
of LNCS, pages 337–340. Springer, 2008.

9. S. Demri and M. Deters. Two-variable separation logic and its inner circle, Septem-
ber 2013. Submitted.

10. S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Mery. Separation logic with
one quantified variable. arXiv, 2014.

11. D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic. JLC,
20(1):189–231, 2010.

12. C. Haase, S. Ishtiaq, J. Ouaknine, and M. Parkinson. SeLoger: A Tool for Graph-
Based Reasoning in Separation Logic. In CAV’13, volume 8044 of LNCS, pages 790–
795. Springer, 2013.

13. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with
recursive definitions. In CADE’13, LNCS, pages 21–38. Springer, 2013.

14. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
In POPL’01, pages 14–26, 2001.

15. R. Ladner. The computational complexity of provability in systems of modal propo-
sitional logic. SIAM Journal of Computing, 6(3):467–480, 1977.

16. D. Larchey-Wendling and D. Galmiche. The undecidability of boolean BI through
phase semantics. In LICS’10, pages 140–149. IEEE, 2010.

17. E. Lozes. Expressivité des logiques spatiales. PhD thesis, LIP, ENS Lyon, France, 2004.
18. E. Lozes. Separation logic preserves the expressive power of classical logic. In Work-

shop SPACE’04, 2004.
19. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using SMT. In

CAV’13, volume 2013 of LNCS, pages 773–789. Springer, 2013.
20. J. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS’02,

pages 55–74. IEEE, 2002.

14

