
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Separation Logic with One Quantified Variable

Stéphane Demri ¨ Didier Galmiche ¨

Dominique Larchey-Wendling ¨ Daniel
Méry

Received: date / Accepted: date

Abstract We investigate first-order separation logic with one record field re-
stricted to a unique quantified variable (1SL1). Undecidability is known when
the number of quantified variables is unbounded and the satisfiability problem
is pspace-complete for the propositional fragment. We show that the satisfia-
bility problem for 1SL1 is pspace-complete and we characterize its expressive
power by showing that every formula is equivalent to a Boolean combination
of atomic properties. This contributes to our understanding of fragments of
first-order separation logic that can specify properties about the memory heap

Work partially supported by the ANR grant DynRes (project No. ANR-11-BS02-011) and by
the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166
(DATAVERIF). Revised and complete version of (Demri et al 2014).

S. Demri
LSV, CNRS & ENS de Cachan, 61, avenue du Président Wilson, 94235 Cachan, France
Tel.: +33 (0) 1 47 40 75 46
Fax.: +33 (0) 1 47 40 75 21
E-mail: demri@lsv.ens-cachan.fr

D. Galmiche
LORIA & Université de Lorraine, BP 239, 54506 Vandœuvre-lès-Nancy, France
Tel.: +33 (0) 3 83 59 20 15
Fax.: +33 (0) 3 83 41 30 79
E-mail: didier.galmiche@loria.fr

D. Larchey-Wendling
LORIA & CNRS, BP 239, 54506 Vandœuvre-lès-Nancy, France
Tel.: +33 (0) 3 54 95 85 14
Fax.: +33 (0) 3 83 41 30 79
E-mail: dominique.larchey-wendling@loria.fr

D. Méry
LORIA & Université de Lorraine, BP 239, 54506 Vandœuvre-lès-Nancy, France
Tel.: +33 (0) 3 54 95 85 14
Fax.: +33 (0) 3 83 41 30 79
E-mail: daniel.mery@loria.fr

2 Stéphane Demri et al.

of programs with singly-linked lists. All the fragments we consider contain the
magic wand operator and first-order quantification over a single variable.

Keywords Separation logic ¨ Quantifier elimination ¨ Model Checking ¨
Satisfiability ¨ Computational Complexity

1 Introduction

1.1 Separation Logic for Verifying Programs with Pointers

Separation logic (Reynolds 2002) is a well-known logic for analysing programs
with pointers stemming from BI logic (Ishtiaq and O’Hearn 2001). Such pro-
grams have specific errors to be detected and separation logic is used as an
assertion language for Hoare-like proof systems (Reynolds 2002) that are dedi-
cated to verify programs manipulating heaps. Any procedure mechanizing the
proof search requires subroutines that check the satisfiability or the validity
of formulæ (more precisely entailment) from the assertion language. That is
why, characterizing the computational complexity of separation logic and its
fragments and designing optimal decision procedures remain essential tasks.
Separation logic contains a structural separating connective and its adjoint
(the separating implication, also known as the magic wand).

Concise and modular proofs can be derived using these connectives, since
they can express properties such as non-aliasing (Reynolds 2002).

The main concern of the paper is to study a non-trivial fragment of first-
order separation logic with one record field as far as expressive power, decid-
ability and complexity are concerned. Herein, the models of separation logic
are pairs made of a variable valuation (store) and a partial function with finite
domain (heap), also known as memory states.

1.2 Decidability and Complexity Results for Separation Logic

The complexity of satisfiability and model-checking problems for separation
logic fragments have been quite studied (Calcagno et al 2001; Reynolds 2002;
Cook et al 2011) (see also new decidability results in (Iosif et al 2013) or
undecidability results in (Brotherston and Kanovich 2010; Larchey-Wendling
and Galmiche 2010) in an alternative setting). Separation logic is equivalent
to a Boolean propositional logic (Lozes 2004a,b) if first-order quantifiers are
disabled. Separation logic without first-order quantifiers is decidable, but it
becomes undecidable with first-order quantifiers (Calcagno et al 2001). For in-
stance, model-checking and satisfiability for propositional separation logic are
pspace-complete problems (Calcagno et al 2001). Decidable fragments with
first-order quantifiers can be found in (Galmiche and Méry 2010; Brochenin
et al 2012).

In order to study decidability or complexity issues for separation logic, two
tracks have been observed in the literature. There is the verification approach

Separation Logic with One Quantified Variable 3

with decision procedures for fragments of practical use, see e.g. (Berdine et al
2005; Cook et al 2011; Haase et al 2013). Alternatively, fragments, extensions
or variants of separation logic are considered from a logical viewpoint, see
e.g. (Calcagno et al 2001; Brotherston and Kanovich 2010; Larchey-Wendling
and Galmiche 2010).

1.3 Our Contributions

In this paper, we study first-order separation logic with one quantified variable,
with an unbounded number of program variables and with one record field
(herein called 1SL1).

1. We introduce test formulæ that state simple properties about the memory
states and we show that every formula in 1SL1 is equivalent to a Boolean
combination of test formulæ, extending what was done in (Lozes 2004b;
Brochenin et al 2009) for the propositional case. For instance, separating
connectives can be eliminated in a controlled way as well as first-order
quantification over the single variable. In that way, we show a quantifier
elimination property similar to the one for Presburger arithmetic (in that
case, the test formulæ are linear and periodicity constraints). This result
extends previous ones on propositional separation logic (Lozes 2004a,b;
Brochenin et al 2009) and as far as we know, this is the first time that
this approach is extended to a first-order version of separation logic with
the magic wand operator. However, it is the best we can hope for since
1SL with two quantified variables and no program variables (1SL2) has
been recently shown undecidable in (Demri and Deters 2014). Of course,
other extensions of 1SL1 could be considered, for instance to add a bit of
arithmetical constraints, but herein we focus on 1SL1 that is theoretically
nicely designed, even though it is still unclear how much 1SL1 is useful
for formal verification. We also establish that the satisfiability problem for
Boolean combinations of test formulæ is np-complete thanks to a satura-
tion algorithm for the theory of memory states with test formulæ, paving
the way to use SMT solvers to decide 1SL1; see e.g. the use of such solvers
in (Piskac et al 2013).
By way of comparison with first-order predicate logic, propositional calcu-
lus is np-complete and FO1 (first-order logic with one variable) is np-
complete too. We knew that propositional separation logic is pspace-
complete and herein we also establish that 1SL1 satisfiability has the same
worst-case complexity.

2. Even though Boolean combinations of test formulæ and 1SL1 have iden-
tical expressive power, we obtain pspace-completeness for model-checking
and satisfiability in 1SL1. The conciseness of 1SL1 explains the difference
between these two complexities.
We show that the satisfiability problem for Boolean combinations of test
formulæ is np-complete whereas we establish that model-checking and sat-
isfiability problems for 1SL1 are pspace-complete. The difference between

4 Stéphane Demri et al.

these two complexities here is due to the conciseness of 1SL1. pspace-
completeness is still a relatively low complexity but this result can be
extended with more than one record field (but still with one quantified
variable). This is the best we can hope for with one quantified variable
and with the magic wand, that is notoriously known to easily increase
computational complexity.

3. Moreover, we provide a simple algorithm to compute from a formula in
1SL1, an equivalent Boolean combination of test formulæ.

Structure of the paper. Section 2 is mainly dedicated to preliminary definitions
about separation logic, basic properties that can be expressed in 1SL1 and
several preliminary definitions and results about partitions on memory states.
In Section 3, test formulæ are introduced as well as several relations between
locations based on such test formulae. The second part of this section contains
a series of technical lemmas that are useful to establish the correctness of the
abstraction based on test formulæ, which is shown in Section 4. Decidability of
1SL1 satisfiability problem as well as admissibility of quantifiers are established
in Section 4 too. Section 4 concludes by showing that the satisfiability and
model-checking problems can be solved in polynomial space. In Section 5, we
prove a result stated earlier in the paper, namely the satisfiability status of
conjunctions of literals made of test formulae can be decided in polynomial
time. Strictly speaking, this result is not used to establish complexity results
about 1SL1 (and that is why, its proof has been postponed a bit) but it paves
the way to decide 1SL1 with SMT solvers, this is at least our hope. Whereas
Section 6 contains concluding remarks, a technical appendix concludes the
paper and it contains the proofs that are not present in the main body of the
paper.

2 Separation Logic 1SL and its Heap Memory Model

2.1 First-Order Separation Logic with One Selector 1SL

Let PVAR be a countably infinite set of program variables and FVAR be a count-
ably infinite set of quantified variables. We write x, y, . . . , x1, x2, . . . to denote
program variables and u, u1, u2, . . . to denote quantified variables. A memory
state (also called a model) is a pair ps, hq such that

– s is a variable valuation of the form s : PVARÑ N (the store),
– h is a partial function h : N ã N with finite domain (the heap) and we

write domphq to denote its domain and ranphq to denote its range.

Two heaps h1 and h2 are said to be disjoint, noted h1 K h2, if their domains are
disjoint; when this holds, we write h1]h2 to denote the heap corresponding to
the disjoint union of the graphs of h1 and h2, hence domph1]h2q “ domph1qZ
domph2q. When the domains of h1 and h2 are not disjoint, the composition
h1] h2 is not defined even if h1 and h2 have the same values on domph1q X
domph2q.

Separation Logic with One Quantified Variable 5

The empty heap, denoted �, is the only heap with an empty domain. It is
a neutral element for]: we have h]� “ �]h “ h for any heap h. The heap
h1 is a subheap of h2, noted h1 Ď h2, if domph1q Ď domph2q and h1plq “ h2plq
for any l P domph1q. Alternatively, we say that the heap h2 is an extension
of the heap h1. Obviously, h1 Ď h1] h2 whenever the composition is defined.
Moreover, any extension of the heap h1 has the form h1] h2 for some heap
h2. A heap is atomic if its domain is a singleton set. We write rl1 ÞÑ l2s for the
unique atomic heap h such that domphq “ tl1u and hpl1q “ l2.

Formulæ in 1SL are built from expressions (composed of either program or
quantified variables) and atomic formulæ (either equality tests or points-to).
Formulæ in 1SL are closed under Boolean connectives, first-order quantifica-
tion (as in first-order classical logic) but also under separating conjunction ˚,
its unit emp, and the separating implication ´̊ usually called the magic wand.

Definition 2.1 The 1SL formulæ are defined by the following grammar:

e ::“ x | u where x P PVAR, u P FVAR
π ::“ e“ e1 | e ãÑ e1

A ::“ π | K | emp | A^ B | A | A ˚ B | A ´̊ B | DuA where u P FVAR

We make use of standard notations for the derived connectives of classical
logic. The size of a formula A, written |A|, is defined as the number of symbols
required to write it. An assignment is a map f : FVAR Ñ N. The satisfaction
relation (is parameterized by assignments (clauses for Boolean connectives
are omitted):

– ps, hq (f e“ e1 iff JeK “ Je1K where JxK def
“ spxq and JuK def

“ fpuq.
– ps, hq (f e ãÑ e1 iff JeK P domphq and hpJeKq “ Je1K.
– ps, hq (f emp iff h “ �.
– ps, hq (f A1 ˚ A2 iff h “ h1] h2, ps, h1q (f A1, ps, h2q (f A2 for some
h1, h2.

– ps, hq (f A1 ´̊ A2 iff for all h1, if h K h1 and ps, h1q (f A1 then ps, h]h1q (f

A2.
– ps, hq (f DuA iff there is l P N such that ps, hq (fruÞÑls A where fru ÞÑ ls is

the assignment equal to f except that u takes the value l.

Whereas ‘Du’ is clearly a first-order quantifier, the connectives ˚ and ´̊ are
known to be second-order quantifiers. In the paper, we show how to eliminate
these three connectives when only one quantified variable is used. The logic
1SL is not minimal for its expressive power; e.g. emp is logically equivalent to
@u ppu ãÑ uq´̊ Kq.

Proposition 2.2 Let s, s1 : PVAR Ñ N be two stores, h : N ã N be a heap,
f, f1 : FVAR Ñ N be two assignments and let A be an 1SL formula. If spxq “
s1pxq holds for every program variable x that occurs in A and fpuq “ f1puq
holds for any quantified variable u that occurs freely in A then the equivalence
ps, hq (f A iff ps1, hq (f1 A holds.

6 Stéphane Demri et al.

The proof is by an easy verification and it is left to the reader.

As a consequence of Proposition 2.2, we might abusively use the notation
ps, hq (f A when the “store” s : tx1, . . . , xqu Ñ N is only defined on a super-
set of the program variables that occur in A, because the interpretation of the
program variables that do not occur in A does not matter.

Proposition 2.3 Let ϕ : N Ñ N be permutation on locations, i.e. a one-to-
one map. For any 1SL formula A, any memory state ps, hq and any assign-
ment f : FVARÑ N, we have ps, hq (f A iff pϕ ˝ s, ϕ ˝ h ˝ ϕ´1q (ϕ˝f A.

In the above statement, it is worth noting that the domain of ϕ ˝ h ˝ ϕ´1

is ϕpdomphqq. The proof of Proposition 2.3 is left to the reader.

Since models for a formula A are closed under permutations on locations,
without any loss of generality, we can assume that for every variable x in
A being either a program variable or a freely occuring quantified variable
spxq ď m where A contains at most m program or free variables.

Corollary 2.4 Let A be an 1SL formula, V Ď PVAR and F Ď FVAR be finite
subsets such that V contains the program variables that occur in A and F
contains the quantified variables that occur freely in A. If there exist a memory
state ps, hq and an assignment f : FVAR Ñ N such that ps, hq (f A, then
there exist a memory state ps1, h1q and an assignment f1 : FVARÑ N such that
ps1, h1q (f1 A and s1pVqYf1pFq Ď t0, 1, . . . ,m´1u with m “ cardpVq`cardpFq.

Proof The set spVq Y fpFq is a finite subset of N. Its cardinal is less than m “

cardpVq ` cardpFq. Hence, there exists a permutation on locations ϕ : NÑ N
such that ϕpspVq Y fpFqq Ď t0, 1, . . . ,m ´ 1u. We apply Proposition 2.3 and
get s1 “ ϕ ˝ s, h1 “ ϕ ˝ h ˝ ϕ´1 and f1 “ ϕ ˝ f. [\

We write 1SL0 to denote the propositional fragment of 1SL where no vari-
able from FVAR occurs. Similarly, we write 1SL1 to denote the fragment of 1SL
restricted to a single quantified variable, say u. In that case, the satisfaction
relation can be denoted by (l where l is understood as the value l “ fpuq of
the quantified variable u under the assignment f.

Let L be a logic among 1SL, 1SL1 and 1SL0. As usual, the satisfiability
problem for L takes as input a formula A in L and asks whether there is a
memory state ps, hq and an assignment f such that ps, hq (f A. The model-
checking problem for L takes as input a formula A in L, a memory state ps, hq
and an assignment f for free variables from A and asks whether ps, hq (f A.

When checking the satisfiability status of a formula A in 1SL1, we assume
that its program variables are contained in tx1, . . . , xqu for some q ě 1 and
the quantified variable is u. So, PVAR is unbounded but as usual, when dealing
with a specific formula, the set of program variables is finite.

Theorem 2.5 (Calcagno et al 2001; Brochenin et al 2012; Demri and Deters
2014) The satisfiability and model-checking problems for 1SL0 are pspace-
complete. The satisfiability problem for 1SL is undecidable, even when re-
stricted to two quantified variables.

Separation Logic with One Quantified Variable 7

2.2 A First Glimpse of Properties that can be Stated in 1SL1

The logic 1SL1 allows to express different types of properties on memory states.
The examples below indeed illustrate the expressivity of 1SL1 and in the paper
we characterize precisely what can be expressed in 1SL1:

– the variable e is allocated in the heap:

allocpeq
def
“ pe ãÑ eq ´̊ K e

where e is either xi or u. Intuitively: it is not possible to add a loop at e;

– the program variables xi and xj have the same value (without explicit
equality predicate and with only one quantified variable):

@ u pu ãÑ xiq ´̊ pu ãÑ xjq

– the variable xi points to a location that is a loop:

tolooppxiq
def
“ Du pxi ãÑ u^ u ãÑ uq xi

– the variable xi points to a location that is allocated:

toallocpxiq
def
“ Du

`

xi ãÑ u^ allocpuq
˘

xi

– the variables xi and xj point to a shared location:

convpxi, xjq
def
“ Du pxi ãÑ u^ xj ãÑ uq xi xj

– there is a location between xi and xj :

btwnpxi, xjq
def
“ Du pxi ãÑ u^ u ãÑ xjq xi xj

– the domain of the heap has at least k elements:

domě k
def
“ emp ˚ ¨ ¨ ¨ ˚ emp

where emp occurs k times (in the example, k “ 3 on the right-hand side
of the equality symbol);

– the memory heap has exactly one memory cell at address xi (expressed in
1SL0):

atomicpxiq
def
“ allocpxiq ^ p# domě 2q

– the location interpreted by xi has no predecessor:

predpxiq “ 0
def
“ pDu u ãÑ xiq

– the location interpreted by xi has exactly one predecessor:

predpxjq “ 1
def
“ pDu u ãÑ xiq ^ pDu u ãÑ xi ˚ Du u ãÑ xiq

8 Stéphane Demri et al.

– the location interpreted by xi has exactly k ą 0 predecessors:

predpxjq “ k
def
“ p# predpxjq “ 1q ˚ ¨ ¨ ¨ ˚ p# predpxjq “ 1q

where # predpxjq “ 1 occurs k times;

– the heap contains at least three self-loops:

loopě 3
def
“ pDu u ãÑ uq ˚ pDu u ãÑ uq ˚ pDu u ãÑ uq

We also illustrate briefly the expressive power of 1SL2, i.e. with two quan-
tified variables. But be aware that 1SL2 is strictly more expressive than 1SL1;
see for instance Corollary 4.12. Moreover, 1SL2 is proved non recursively enu-
merable in (Demri and Deters 2014) whereas in this paper we show that 1SL1 is
pspace-complete. In 1SL2, it is possible to express the existence of paths/lists
within memory states:

– the heap is composed of exactly a path of strictly positive length from xi
to xj together with an arbitrary number of cycles, written ls1pxi, xjq:

predpxiq “ 0^ allocpxiq

^ # predpxjq “ 1^ allocpxjq
^ @u1 p# predpu1q “ 0^ allocpu1qq ñ u1 “ xi
^ @u1 p# predpu1q ‰ 0^ u1 ‰ xjq ñ p# predpu1q “ 1^ allocpu1qq

– there is a path from xi to xj can be expressed by

lspxi, xjq
def
“ pxi “ xjq _

`

ls1pxi, xjq ˚ Jq

to be found originally in (Brochenin et al 2012, Lemma 2.4); a similar
property was established for graph logics in (Dawar et al 2007).

2.3 Decomposition and Graphical Representation

We fix a finite set of q distinct program variables V “ tx1, . . . , xqu Ď PVAR;
to each memory state ps, hq, we associate several subsets of locations that
together define two partitions of domphq. Beware that these subsets and parti-
tions depend on the choice of q and V:

– one partition takes care of self-loops and predecessors of interpretations of
program variables;

– the other one takes care of locations which are “close” to the interpretations
of program variables; see below.

This allows us to decompose the heap domains in such a way that we can
easily identify the properties that can be indeed expressed by the formulæ of
1SL1 that contain only the program variables of V.

Separation Logic with One Quantified Variable 9

We introduce a first partition of the heap domain by distinguishing the
selfloops and the predecessors of variable interpretations on the one hand, and
the remaining locations in the domain on the other hand:

predps, h, iq
def
“

l | hplq “ spxiq
(

predps, hq
def
“ predps, h, 1q Y ¨ ¨ ¨ Y predps, h, qq

loopps, hq
def
“

l | hplq “ l
(

remps, hq
def
“ domphqz

`

predps, hq Y loopps, hq
˘

where predps, h, iq is defined for any i P r1, qs. From the definition of remps, hq,
we derive the obvious identity domphq “ remps, hq Z

`

predps, hq Y loopps, hq
˘

.
However, the sets predps, hq and loopps, hq are not necessarily disjoint. As a
consequence of h being a partial function, the sets predps, h, iq and predps, h, jq
intersect only if spxiq “ spxjq, in which case the identity predps, h, iq “
predps, h, jq holds.

We introduce a second partition of domphq by distinguishing the locations
related to a memory cell involving a program variable interpretation on the
one hand, and the remaining locations in the domain on the other hand. So,
the sets below depend also implicitly on V:

refps, hq
def
“ domphq X spVq ♥ps, hq def

“ refps, hq Y accps, hq

accps, hq
def
“ domphq X h

`

spVq
˘

♥ps, hq def
“ domphqz♥ps, hq

The core of the memory state ps, hq, written ♥ps, hq, contains the locations l
in domphq such that either l is the interpretation of a program variable or it
is an image by h of a program variable (that is also in the domain). We have
refps, hq Ď spVq, whence cardprefps, hqq ď q. Since h is a partial function, from
accps, hq Ď hpspVqq we deduce cardpaccps, hqq ď q. As a consequence, we have
cardp♥ps, hqq ď 2q. Hence, the core of a memory heap is always a “small part”
of the domain, small meaning of bounded size when q is fixed.

In the sequel, we need to consider locations that belong to the intersection
of those sets from different partitions. Here are their formal definitions:

pred♥ps, h, iq
def
“ predps, h, iqz♥ps, hq pred♥ps, h, iq

def
“ predps, h, iq X♥ps, hq

pred♥ps, hq
def
“ predps, hqz♥ps, hq pred♥ps, hq

def
“ predps, hq X♥ps, hq

loop♥ps, hq
def
“ loopps, hqz♥ps, hq loop♥ps, hq

def
“ loopps, hq X♥ps, hq

rem♥ps, hq
def
“ remps, hqz♥ps, hq rem♥ps, hq

def
“ remps, hq X♥ps, hq

For instance, pred♥ps, hq contains the set of locations l in domphq that are pre-
decessors of a variable interpretation but no program variable xi in tx1, . . . , xqu
satisfies spxiq “ l or hpspxiqq “ l (which means l R ♥ps, hq).

We insist on the fact that the definitions of subsets like refps, hq, accps, hq
and ♥ps, hq and hence pred♥ps, h, iq, pred♥ps, h, iq, loop♥ps, hq, ... depend on
a particular choice of q and V “ tx1, . . . , xqu even though our notation does
not reflect that dependency. We made this choice for the sake of readability.
However, in most of developments of this paper, and unless stated otherwise,
we assume a fixed choice for q and V.

10 Stéphane Demri et al.

r

r

♥

p

♥

ö

♥

ö

♥
x1

x2

x3 x4
This graph represents an example of memory
state ps, hq with the variables x1, . . . , x4. Nodes
labelled by ‘♥’ belong to ♥ps, hq; those labelled
by ‘ö’ belong to loop♥ps, hq; those labelled by

‘p’ belong to pred♥ps, hq and those labelled by

‘r’ belong to rem♥ps, hq.

Fig. 2.1 The decomposition of a memory state

A memory state ps, hq restricted to the finite set of program variables
x1, . . . , xq can be represented by a finite graph encoding the (graph) repre-
sentation of the heap h. Moreover, each variable xi labels the location spxiq,
which may add a few more nodes in the case spxiq does not belong to the
domain and codomain of h. The graph of Figure 2.1 illustrates the previous
definitions of subsets on a simple memory state.

The introduction of the above sets provides a canonical way to decompose
the heap domains, which will be helpful in the sequel.

Lemma 2.6 (Canonical decomposition) For all stores s and all heaps h,
the following identity holds:

domphq “ ♥ps, hq Z pred♥ps, hq Z loop♥ps, hq Z rem♥ps, hq

The proof is by straightforward verification using the fact that predps, hq X
loopps, hq Ď ♥ps, hq.

Proposition 2.7

pred♥ps, h, iq
ˇ

ˇ i P r1, qs
(

is a partition of pred♥ps, hq.

The (easy) proof is left to the reader.

Remember that both pred♥ps, h, iq “ pred♥ps, h, jq and pred♥ps, h, iq “ H
are possible. Below, we present properties about the canonical decomposition.

Proposition 2.8 (Canonical decomposition and splitting) Let us as-
sume s, h, h1, h2 such that h “ h1] h2. With the notation X for NzX, the
identities

♥ps, hq X domph1q“♥ps, h1q Z∆ps, h1, h2q
♥ps, hq X domph2q“♥ps, h2q Z∆ps, h2, h1q

hold with ∆ps, h1, h2q
def
“ domph1q X h2pspVqq X spVq X h1pspVqq.

The proof is by Boolean computations.

The set ∆ps, h1, h2q contains the locations belonging to the core of h and
to the domain of h1, without being in the core of h1. Its expression in Propo-
sition 2.8 uses only basic set-theoretical operations. From Proposition 2.8, we
conclude that ♥ps, h1] h2q can be different from ♥ps, h1q Z♥ps, h2q.

Separation Logic with One Quantified Variable 11

Proposition 2.9 Let s, h, h1, h2 be such that h “ h1] h2 and let i P r1, qs.
The following identities hold:

1. pred♥ps, h1, iq “ ppred♥ps, h, iq X domph1qq Z ppredps, h, iq X∆ps, h1, h2qq;
2. loop♥ps, h1q “ ploop♥ps, hq X domph1qq Z ploopps, hq X∆ps, h1, h2qq;
3. rem♥ps, h1q “ prem♥ps, hq X domph1qq Z premps, hq X∆ps, h1, h2qq.

The proof can be found in Appendix A starting at page 50.

Remark that] is commutative, hence symmetric identities hold for the
subsets pred♥ps, h2, iq, loop♥ps, h2q and rem♥ps, h2q. The following proposi-
tions describe the changes that occur in the canonical decomposition of a
memory state when exactly one memory cell is added to the heap. Recall that
we write rl1 ÞÑ l2s for the unique atomic heap h such that domphq “ tl1u and
hpl1q “ l2. We write p♥ps, hq to denote the set spVq Y hpspVqq.

Proposition 2.10 Let ps, hq be a memory state, l1 P Nzdomphq and l2 P N.
Let us write h1Ñ2 for h]rl1 ÞÑ l2s and let i be in r1, qs. The following identities
hold:

domph1Ñ2q “ domphq Z tl1u

predps, h1Ñ2, iq “ predps, h, iq Z

"

tl1u if l2 “ spxiq
H if l2 ‰ spxiq

loopps, h1Ñ2q “ loopps, hq Z

"

tl1u if l1 “ l2
H if l1 ‰ l2

remps, h1Ñ2q “ remps, hq Z

"

tl1u if l2 R spVq Y tl1u
H if l2 P spVq Y tl1u

♥ps, h1Ñ2q “ ♥ps, hqZ

$

’

’

&

’

’

%

tl1, l2u if l1 P spVq, l2 P domphq and l2 R ♥ps, hq
tl1u if l1 P spVq and pl2 R domphq or l2 P ♥ps, hqq
tl1u if l1 R spVq and l1 P hpspVqq
H if l1 R p♥ps, hq

The proof can be found in Appendix A starting at page 50.

Proposition 2.11 Let ps, hq be a memory state, l1 P Nzdomphq and l2 P N.
Let us write h1Ñ2 for h]rl1 ÞÑ l2s and let i be in r1, qs. The following identities
hold:

pred♥ps, h1Ñ2, iq “

$

&

%

pred♥ps, h, iq Z tl1u if l1 R p♥ps, hq and l2 “ spxiq
pred♥ps, h, iq ´ tl2u if l1 P spVq and l2 P pred♥ps, h, iq
pred♥ps, h, iq otherwise

loop♥ps, h1Ñ2q “

$

&

%

loop♥ps, hq Z tl1u if l1 R p♥ps, hq and l1 “ l2
loop♥ps, hq ´ tl2u if l1 P spVq and l2 P loop♥ps, hq
loop♥ps, hq otherwise

rem♥ps, h1Ñ2q “

$

&

%

rem♥ps, hq Z tl1u if l1 R p♥ps, hq and l2 R spVq Y tl1u
rem♥ps, hq ´ tl2u if l1 P spVq and l2 P rem♥ps, hq
rem♥ps, hq otherwise

where X ´ tl2u means that the location l2 already belongs to the set X and is
(strictly) removed from it.

12 Stéphane Demri et al.

The proof can be found in Appendix A starting at page 51.

2.4 How to Count in 1SL1

In this section, let us consider a fixed memory state ps, hq and a fixed location
l. We explain how to measure the cardinal of some finite sets of locations using
1SL1 formulæ, in particular those of the form Xz♥ps, hq where X is one of
the sets among predps, h, jq, loopps, hq and remps, hq. The ground idea is the
following: using the identity

X “
`

X X♥ps, hq
˘

Z
`

Xz♥ps, hq
˘

the cardinal of Xz♥ps, hq can be obtained from the cardinal of X and the
cardinal of X X♥ps, hq (by expressing their difference in 1SL1).

In 1SL1, it is easy to detect if there is one element in either predps, h, jq or
loopps, hq using the formulæ

predpxjq ě 1
def
“ Du u ãÑ xj and # loopě 1

def
“ Du u ãÑ u

Hence, using the separating conjunction ˚, we can measure the cardinal of
predps, h, jq or loopps, hq with

predpxjq ě k
def
“ # predpxjq ě 1 ˚ ¨ ¨ ¨ ˚# predpxjq ě 1 repeated k times

loopě k
def
“ # loopě 1 ˚ ¨ ¨ ¨ ˚# loopě 1 repeated k times

This encoding works smoothly thanks to the identities predps, h1] h2, jq “
predps, h1, jq Z predps, h2, jq, loopps, h1] h2q “ loopps, h1q Z loopps, h2q.

Let us explain how to evaluate the cardinal of remps, hq. To do so, we define
the following 1SL1 formulæ for every e P tx1, . . . , xqu Y tuu:

inrempeq
def
“ allocpeq ^ e ãÑ e^

Ź

jPr1,qs e ãÑ xj

torempxiq
def
“ toallocpxiq ^ tolooppxiq ^

Ź

jPr1,qs btwnpxi, xjq

Proposition 2.12 With JuK “ l and JxiK “ spxiq, we have:

ps, hq (l inrempeq iff JeK P remps, hq
ps, hq (l torempxiq iff hpspxiqq P remps, hq

The proof is left to the reader.

Hence, the formula # remě 1
def
“ Du inrempuq detects if remps, hq is non-

empty. Using the separating conjunction ˚, we can measure the cardinal of
remps, hq in 1SL1 by

remě k
def
“ # remě 1 ˚ ¨ ¨ ¨ ˚# remě 1 repeated k times

because the identity remps, h1] h2q “ remps, h1q Z remps, h2q holds too.

Separation Logic with One Quantified Variable 13

To count the number of elements in e.g. pred♥ps, h, jq, it is thus sufficient
to count the number of elements in pred♥ps, h, jq and then use the identity

predps, h, jq “ pred♥ps, h, jq Z pred♥ps, h, jq

However, splitting pred♥ps, h, jq into k parts using the separating conjunction
like we did for predps, h, jq will not work because ♥ps, h1]h2q is not necessarily
equal to ♥ps, h1q Z♥ps, h2q; see Proposition 2.8 for instance.

By contrast, one possible trick consists in directly enumerating the elements
in predps, h, jq X refps, hq and in predps, h, jq X

`

accps, hqzrefps, hq
˘

and then
to use the identity

pred♥ps, h, jq “
`

predps, h, jqXrefps, hq
˘

Z
`

predps, h, jqXpaccps, hqzrefps, hqq
˘

For any subset I Ď r1, qs, let us define the 1SL1 formulæ below

refI
def
“

ľ

i‰jPI

 pxi “ xjq ^
ľ

iPI

allocpxiq

accI
def
“

ľ

i‰jPI

 convpxi, xjq ^
ľ

iPI

toallocpxiq ^
ľ

iPI,jPr1,qs

 pxi ãÑ xjq

Proposition 2.13 For I Ď r1, qs with sI
def
“ tspxiq | i P Iu, we have

ps, hq (l refI iff sI Ď refps, hq and cardpsIq “ cardpIq
ps, hq (l accI iff hpsIq Ď accps, hqzrefps, hq and cardphpsIqq “ cardpIq

The proof is left to the reader.

Hence, refI holds iff sI is a subset of refps, hq of size cardpIq and thus
cardpIq gives a lower bound for the cardinal of refps, hq. Moreover, accI pro-
vides us a way to give a lower bound for the cardinal of accps, hqzrefps, hq.

To illustrate the usefulness of refI and accI , we show how to measure the
cardinal of the core. Using the identity ♥ps, hq “ refps, hqZ

`

accps, hqzrefps, hq
˘

we can express the fact that ♥ps, hq has cardinal at least k by

coreě k
def
“

Ž

refR ^ accA
ˇ

ˇ RYA Ď r1, qs and cardpRq ` cardpAq ě k
(

But we can easily measure the cardinal of subsets of the core such as e.g.
pred♥ps, h, jq. Its cardinal is at least k iff the following formula is satisfied

pred♥pxjq ě k
def
“

ł

"

refR ^
Ź

rPR xr ãÑ xj ^ RYA Ď r1, qs and
accA^

Ź

aPA btwnpxa, xjq cardpRq ` cardpAq ě k

*

and, using predps, h, jq “ pred♥ps, h, jq Z pred♥ps, h, jq we conclude that the
cardinal of pred♥ps, h, jq is at least k iff the following formula is satisfied

pred♥pxjq ě k
def
“

ł

pď2q

predpxjq ě k ` p^ # pred♥pxjq ě p` 1

Notice that we can stop at 2q because of the inclusion pred♥ps, h, jq Ď ♥ps, hq
and the upper bound cardp♥ps, h, jqq ď 2q.

14 Stéphane Demri et al.

Similarly, measuring the sizes of loop♥ps, hq and rem♥ps, hq is done with

loop♥ ě k
def
“

ł

"

refR ^
Ź

rPR xr ãÑ xr ^ RYA Ď r1, qs and
accA ^

Ź

aPA tolooppxaq cardpRq ` cardpAq ě k

*

rem♥ ě k
def
“

ł

"

refR ^
Ź

rPR inrempxrq ^ RYA Ď r1, qs and
accA ^

Ź

aPA torempxaq cardpRq ` cardpAq ě k

*

and using the partitions loopps, hq “ loop♥ps, hqZ loop♥ps, hq and remps, hq “
rem♥ps, hqZrem♥ps, hq, we can measure the sizes of loop♥ps, hq and rem♥ps, hq
with

loop♥ ě k
def
“

ł

pď2q

loopě k ` p^ # loop♥ ě p` 1

rem♥ ě k
def
“

ł

pď2q

remě k ` p^ # rem♥ ě p` 1

Lemma 2.14 For any k ě 1 and for any i P r1, qs, there exist 1SL1 formulæ
denoted # pred♥pxiq ě k, # loop♥ ě k and # rem♥ ě k respectively such that,
for any memory state ps, hq and for any location l P N the following equiva-
lences hold:

1. ps, hq (l # pred♥pxiq ě k iff cardppred♥ps, h, iqq ě k;
2. ps, hq (l # loop♥ ě k iff cardploop♥ps, hqq ě k;
3. ps, hq (l # rem♥ ě k iff cardprem♥ps, hqq ě k.

The proof can be found in Appendix A starting at page 53.

2.5 Equipotence for Comparing Cardinalities

We introduce the notion of equipotence and we state several properties about
it. This will be useful in the forthcoming developments.

Definition 2.15 We say that x{y respect X{Y if (x P X iff y P Y) holds.

Proposition 2.16 Let us consider four sets X Ď X 1 and Y Ď Y 1. Let R Ď
X 1ˆY 1 be a bijective relation between X 1 and Y 1. Let us assume that for any
x, y, if x R y then x{y respects X{Y . Then RXX ˆ Y is a bijective relation
between X and Y .

The proof is left to the reader.

Definition 2.17 (α-equipotence) Let α P N. We say that two finite sets
X and Y are α-equipotent and we write X „α Y if, either cardpXq “ cardpY q
or both cardpXq and cardpY q are greater that α. We say that two finite sets
X and Y are equipotent and we write X „8 Y when cardpXq “ cardpY q.

Proposition 2.18 For any α P N and any finite sets X and Y , the following
conditions are equivalent:

Separation Logic with One Quantified Variable 15

1. X „α Y ;
2. pcardpXq ě k iff cardpY q ě kq for any k ď α;
3. pcardpXq “ cardpY q ă αq or pcardpXq ě α and cardpY q ě α);
4. minpcardpXq, αq “ minpcardpY q, αq.

The proof is left to the reader.

It is thus obvious that X „α Y holds whenever cardpXq “ cardpY q, i.e.
„8 Ď „α. The equipotence relation is also decreasing, i.e. „α2 Ď „α1 holds
for all α1 ď α2. It is easy to verify „8 “

Ş

α„α. Hence the notation „8 is
consistent with the intuitive idea of a downward limit. We state below two
lemmas that will be helpful in the sequel.

Lemma 2.19 Let α P N and X,X 1, Y, Y 1 be finite sets such that XXX 1 “ H,
Y X Y 1 “ H, X „α Y and X 1 „8 Y 1 hold. Then X ZX 1 „α`n Y Z Y

1 holds
where n “ cardpX 1q.

The proof is left to the reader.

Proposition 2.20 Let X and Y be two finite sets and let x R X and y R Y .
If the equipotence X Z txu „α`1 Y Z tyu holds then X „α Y holds.

The proof is left to the reader.

Lemma 2.21 Let α1, α2 P N and X,X 1, Y0 be finite sets such that X Z

X 1 „α1`α2 Y0 holds. Then there are two finite sets Y, Y 1 such that Y0 “ Y ZY 1,
X „α1

Y and X 1 „α2
Y 1 hold.

The proof can be found in Appendix A starting at page 53.

Lemma 2.22 Let α1, α2 ě 1 and X,X 1, Y0 be finite sets and x, y be elements
such that X Z X 1 „α1`α2 Y0 holds and x{y respect X Z X 1{Y0. Then there
are two finite sets Y and Y 1 such that Y0 “ Y ZY 1, X „α1

Y and X 1 „α2
Y 1

hold, and x{y respect both X{Y and Y {Y 1.

Proof There are three cases:

– if x P X then we have x P X Z X 1 and as a consequence y P Y0. Let us
define X2 “ Xztxu and Y 10 “ Y0ztyu. As α1 ě 1, by Proposition 2.20
we deduce X2 Z X 1 „pα1´1q`α2

Y 10 . By Lemma 2.21, we obtain Y 2 and
Y 1 such that Y 10 “ Y 2 Z Y 1, X2 „α1´1 Y

2 and X 1 „α2 Y
1. Observe that

y R Y 2 and y R Y 1 because Y 2ZY 1 Ď Y0ztyu. We define Y “ Y 2Ztyu. By
Lemma 2.19, we have X “ X2 Z txu „α1

Y 2 Z tyu “ Y . Since x P X and
y P Y , x{y respects X{Y ; and since x R X 1 (because X X X 1 “ H) and
y R Y 1, x{y respects X 1{Y 1;

– the case x P X 1 is the symmetric case;
– if x R XZX 1 then y R Y0. Using Proposition 2.21 we choose Y, Y 1 such that
Y0 “ Y Z Y 1, X „α1

Y and X 1 „α2
Y 1. From x R X ZX 1 and y R Y Z Y 1,

we deduce x R X, x R X 1, y R Y and y R Y 1 hence x{y respect both X{Y
and Y {Y 1. [\

16 Stéphane Demri et al.

Proposition 2.23 Let X and Y be two 2-equipotent finite sets, i.e. X „2 Y .
Let x and y be such that x{y respect X{Y . For any u P Xztxu there exists
v P Y ztyu.

Proof Let u P Xztxu. We have two cases: either x P X and then we have
u ‰ x P X thus cardpXq ě 2. Using X „2 Y we deduce cardpY q ě 2 and thus
cardpY ztyuq ě 1; or x R X and then we have y R Y and thus Xztxu “ X „2

Y “ Y ztyu. Hence if Xztxu is non-empty then so is Y ztyu. [\

Proposition 2.24 For any α ě 0 and any finite set X, there exists a parti-
tion X “ X1 ZX2 of X such that X1 „α X1 ZX2 and cardpX1q ď α.

Proof If cardpXq ď α then, we define X1 “ X and X2 “ H. If cardpXq ą α
then choose X1 Ď X such that cardpX1q “ α (e.g. X1 is composed of the least
α elements of X) and X2 “ XzX1. [\

3 Test formulæ and Pointed Memory States

In this section, we consider a fixed set V “ tx1, . . . , xqu of q ě 1 distinct
program variables. The value q can always be chosen large enough to accom-
modate a formula that contains many program variables. Below, we introduce
test formulæ stating simple properties and we show that every formula in 1SL1
is equivalent to a Boolean combination of test formulæ.

3.1 Test Formulæ for 1SL1

Test formulæ express simple properties about the memory states; this includes
properties about program variables but also global properties about numbers
of predecessors or loops, following the decomposition in Section 2.3. These
test formulæ allow us to characterize the expressive power of 1SL1, similarly
to what has been done in (Lozes 2004a,b; Brochenin et al 2009) for 1SL0.
Moreover, we aim at defining the class of test formulæ as small as possible in
order to nail down the very expressive power of 1SL1.

Since every formula in 1SL1 is shown equivalent to a Boolean combination
of test formulæ (forthcoming Theorem 4.11), this process can be viewed as a
means to eliminate separating connectives in a controlled way; elimination is
not total since the test formulæ require such separating connectives. However,
this is analogous to quantifier elimination in Presburger arithmetic (Presburger
1929) for which simple modulo constraints need to be introduced in order
to eliminate the quantifiers (of course, modulo constraints are defined with
quantifiers but in a controlled way too).

In Sections 2.2 and 2.4, we explained how to express the following test
formulæ in 1SL1. In particular in Lemma 2.14, we show how to define the
formulæ # loop♥ ě k [resp. # rem♥ ě k and # pred♥pxiq ě k] in 1SL1. Notice
however that the precise way they are actually defined in 1SL1 does not impact
our developments.

Separation Logic with One Quantified Variable 17

Definition 3.1 (Test formulæ) Given α ě 0, we define sets of test formulæ:

Equality
def
“

xi “ xj
ˇ

ˇ i, j P r1, qs
(

Pattern
def
“

xi ãÑ xj , convpxi, xjq, btwnpxi, xjq
ˇ

ˇ i, j P r1, qs
(

Y

toallocpxiq, tolooppxiq
ˇ

ˇ i P r1, qs
(

Extrau
def
“

u“ u, u ãÑ u, allocpuq
(

Y

xi “ u, u“ xi, xi ãÑ u, u ãÑ xi
ˇ

ˇ i P r1, qs
(

Sizeα
def
“

pred♥pxiq ě k
ˇ

ˇ i P r1, qs, k P r1, αs
(

Y

loop♥ ě k,# rem♥ ě k
ˇ

ˇ k P r1, αs
(

Basic
def
“ Equality Y Pattern Testα

def
“ BasicY Sizeα Y tKu

Basicu
def
“ BasicY Extrau Testuα

def
“ Testα Y Extrau

We observe that Size0 is an empty set of formulæ. The formula allocpxiq

is not included because we use the logically equivalent convpxi, xiq. Notice
however that allocpuq (defined by pu ãÑ uq ´̊ K) cannot be replaced because
convpxi, xjq needs the quantifier Du to be defined in 1SL1. Unlike allocpxiq,
the test formula allocpuq cannot be defined from conv.

It is important to note that the sets Basicu, Sizeα and Testuα depend on a
particular choice of q and V; and again our notation does not reflect that de-
pendency. By way of example, the definition of # loop♥ ě k and its semantics
inherently depend on q (and on V “ tx1, . . . , xqu); see Proposition 2.14. As an
illustration, the conjunction of test formulæ

x1 ãÑ x2 ^ x2 ãÑ x1 ^ px1 “ x2q ^ u ãÑ u^ # loop♥ ě 1

is satisfiable if q ě 3 and unsatisfiable if q “ 2 because in any model, the
interpretation of u (a self-loop) must belong the interpretation of programs
variables V “ tx1, . . . , xqu. But u cannot be interpreted by either x1 or x2
unless x1 “ x2 is satisfied as well.

Proposition 3.2 (Monotonicity of Basicu) Let s, h1, h2 and l P N be such
that h1 Ď h2. For any formula B P Basicu, if ps, h1q (l B then ps, h2q (l B.

The proof is left to the reader.

3.2 Satisfiability of Boolean Combinations of Test Formulæ

Definition 3.3 (Literals and atoms) A literal is a test formula in Testuα or
the negation of a test formula in Testuα. An atom is a saturated conjunction of
literals from Testuα, i.e. each formula from Testuα occurs exactly once, possibly
negated.

Hence atoms are either inconsistent (and equivalent to K) or minimal el-
ements in the Boolean algebra generated by Testuα; any Boolean combination
of formulæ of Testuα is equivalent to a disjunction of atoms.

18 Stéphane Demri et al.

Definition 3.4 The satisfiability problem for Boolean combinations of test
formulæ is defined by:

Input: a set of program variables V “ tx1, . . . , xqu; a Boolean combination A
of formulæ from

Ť

αě1 Test
u
α built on V (the bounds k in the Sizeα formulæ

are encoded in binary).
Question: is A satisfiable with test formulæ understood using the set V?

Indeed, we need to specify the set tx1, . . . , xqu as an input because the
meaning of test formulæ like # loop♥ ě 1 depends on tx1, . . . , xqu; see the
previous section.

Theorem 3.5 The satisfiability problem for Boolean combinations of test for-
mulæ is np-complete.

Proof np-hardness follows from a reduction from SAT, assuming that the num-
ber of program variables is unbounded. Indeed, each propositional variable pi
can be encoded by the equality x2i “ x2i`1 where the program variables x2i
and x2i`1 are dedicated to pi only. The proof of the np upper bound is given
in Section 5. [\

Checking the satisfiability status of a Boolean combination of test formulæ
is typically the kind of tasks that could be performed by an SMT solver, see
e.g. (de Moura and Björner 2008; Barrett et al 2011).

3.3 Observing Pointed Memory States with Test Formulæ

We introduce the notion of pointed memory state and three kinds of equiva-
lence relations between pointed memory states: α-equivalence denoted »α and
basic equivalence denoted »b.

Definition 3.6 (Pointed memory state, maxval) The triple m “ ps, h, lq
is a pointed memory state if ps, hq is a memory state and l P N is a location.
We define

maxvalphq
def
“ max

`

domphq Y ranphq
˘

maxvalps, hq
def
“ max

`

spVq Y domphq Y ranphq
˘

maxvalpmq
def
“ max

`

spVq Y domphq Y ranphq Y tlu
˘

Definition 3.7 (Pseudo-core) The pseudo-core of a memory state ps, hq,

written p♥ps, hq, is defined as p♥ps, hq def
“ spVqYhpspVqq. The pseudo-core of a

pointed memory state m “ ps, h, lq is defined by p♥pmq def
“ spVqYhpspVqqYtlu.

We observe that for any u ą maxvalps, hq, we have u R domphq Y p♥ps, hq
and if u ą maxvalps, h, lq then u R domphq Y p♥ps, h, lq. Note also that the
identity ♥ps, hq “ p♥ps, hq X domphq holds. Moreover, ♥ps, hq Ď p♥ps, hq and
p♥ps, hq may contain locations that are not in domphq, unlike the core ♥ps, hq.

Below, we introduce equivalence relations depending on whether memory
states are indistinguishable with respect to some sets of test formulæ.

Separation Logic with One Quantified Variable 19

Definition 3.8 (Equivalences) Given pointed memory states m “ ps, h, lq
and m1 “ ps1, h1, l1q, we say that m and m1 are α-equivalent and we write
m »α m1 when the equivalence

ps, hq (l B iff ps1, h1q (l1 B holds for any B P Testuα

We also define the basic equivalence, written »b, by using Basicu instead of
Testuα.

It is obvious that »α and »b are indeed equivalence relations between
pointed memory states. The pointed memory states m and m1 are basically
equivalent (resp. α-equivalent) if and only if they cannot be distinguished by
the formulæ of Basicu (resp. Testuα). Since the inclusion Basicu Ď Testuα holds,
it is obvious that the inclusion »α Ď »b holds. Also observe that the identity
»b “ »0 holds because the set of formulæ Testu0 is identical to Basicu Y tKu.
Nevertheless, we think it is clearer to keep a separate notation for »b.

Proposition 3.9 Let ps, h, lq and ps1, h1, l1q be two pointed memory states
such that ps, h, lq »b ps

1, h1, l1q. Then ps,�, lq »b ps1,�, l1q holds.

The proof is left to the reader; remember that � denotes the empty heap.
Proposition 3.10 below states that α-equivalence corresponds to basic equiv-
alence together with α-equipotence of the sets pred♥p¨, ¨, iq, loop♥p¨, ¨q and
rem♥p¨, ¨q.

Proposition 3.10 For any α ě 0, the relation ps, h, lq »α ps
1, h1, l1q holds if

and only if the four following conditions hold:

1. ps, h, lq »b ps
1, h1, l1q;

2. pred♥ps, h, iq „α pred♥ps
1, h1, iq for any i P r1, qs;

3. loop♥ps, hq „α loop♥ps
1, h1q;

4. rem♥ps, hq „α rem♥ps
1, h1q.

The proof follows from Testuα “ tKu Y Basicu Y Sizeα and Lemma 2.14.

Proposition 3.11 Let m “ ps, h, lq and m1 “ ps1, h1, l1q be two pointed mem-
ory states such that domphq Ď ♥ps, hq and domph1q Ď ♥ps1, h1q. For any
α ě 0, m »α m1 iff m »b m

1.

This is a direct consequence of Proposition 3.10.

3.4 A Relational View of Basic Equivalence

In this section, we assume two pointed memory states m “ ps, h, lq and
m1 “ ps1, h1, l1q. We name some properties which will be used to define bi-
nary relations between locations.

Definition 3.12 For u, v P N, we define the following properties:

20 Stéphane Demri et al.

pR1q u “ l and v “ l1;
pR2q u “ spxiq and v “ s1pxiq for some i P r1, qs;
pR3q u “ hpspxiqq and v “ h1ps1pxiqq for some i P r1, qs;

pT1q u “ l iff v “ l1;
pT2q u “ spxiq iff v “ s1pxiq for any i P r1, qs;
pT3q u “ hpspxiqq iff v “ h1ps1pxiqq for any i P r1, qs;
pT4q u P domphq iff v P domph1q;
pT5q hpuq “ spxiq iff h1pvq “ s1pxiq for any i P r1, qs;
pT6q hpuq “ u iff h1pvq “ v.

We say that e.g. u{v verify pT2q if this property holds.

We emphasize the fact that Properties pR1-3q and pT1-6q depend on m{m1.
More precisely, pR1q and pT1q depend on l{l1, pR2q and pT2q depend on
s{s1, pT4,6q depend on h{h1, and the remaining pR3q and pT3,5q depend on
ps, hq{ps1, h1q. When the context does not single out a unique choice for m{m1,
we will explicitly say that e.g. u{v verify pT3q with respect to m{m1.

The Properties pT2–6q characterize precisely the positions of u (resp. v) in
the canonical decomposition of m (resp. m1). The Property pT1q characterizes
the positions of u{v with respect to l{l1. As witnessed in upcoming Lemma 3.25
and Propositions 3.29 and 3.31, we do not need all this precision to establish
that basic or α-equivalence is preserved by atomic extensions.

Proposition 3.13 Let u, v P N. For pT10q–pT20q defined as

pT10q u P spVq iff v P s1pVq;
pT11q u P hpspVqq iff v P h1ps1pVqq;
pT12q u P p♥ps, hq iff v P p♥ps1, h1q;
pT13q u P ♥ps, hq iff v P ♥ps1, h1q;
pT14q u P predps, h, iq iff v P predps1, h1, iq for any i P r1, qs;
pT15q u P predps, hq iff v P predps1, h1q;
pT16q u P loopps, hq iff v P loopps1, h1q;
pT17q u P remps, hq iff v P remps1, h1q;
pT18q u P pred♥ps, h, iq iff v P pred♥ps

1, h1, iq for any i P r1, qs;
pT19q u P loop♥ps, hq iff v P loop♥ps

1, h1q;
pT20q u P rem♥ps, hq iff v P rem♥ps

1, h1q;
pT21q u P p♥pmq iff v P p♥pm1q.

the following propositions hold:

1. pT2q implies pT10q; 4. pT2–4q imply pT13q;
2. pT3q implies pT11q; 5. pT2–6q imply pT10–20q;
3. pT2–3q imply pT12q; 6. pT1–3q imply pT21q.

The proof can be found in Appendix B starting at page 54.

Separation Logic with One Quantified Variable 21

Definition 3.14 (Binary relations between locations) We define binary
relations between locations denoted Rm,m1 , Rl

m,m1 , Dm,m1 , Tm,m1 and Tl
m,m1 by

u Rm,m1 v iff pR2q or pR3q
u Rl

m,m1 v iff pR1q or pR2q or pR3q

u Dm,m1 v iff pT4q
u Tm,m1 v iff pT2q and . . . and pT6q
u Tl

m,m1 v iff pT1q and . . . and pT6q

In the rest of this section, we simply denote R, Rl,... instead of Rm,m1 ,
Rl

m,m1 ,... Obviously the inclusions R Ď Rl and Tl Ď T Ď D hold.

Proposition 3.15 The following inclusions hold:

1. R Ď p♥ps, hq ˆ p♥ps1, h1q 4. Rl Ď p♥pmq ˆ p♥pm1q
2. TX p♥ps, hq ˆ N Ď R 5. Tl X p♥pmq ˆ N Ď Rl

3. TX Nˆ p♥ps1, hq Ď R 6. Tl X Nˆ p♥pm1q Ď Rl

The proof can be found in Appendix B starting at page 55.

Proposition 3.16 The following properties hold:

1. The relation T restricted to p♥ps, hqˆp♥ps1, h1q is functional and injective;
2. The relation Tl restricted to p♥pmq ˆ p♥pm1q is functional and injective;
3. For any u R domphq Y p♥ps, hq, v R domph1q Y p♥ps1, h1q, we have u T v;
4. For any u R domphq Y p♥pmq, v R domph1q Y p♥pm1q, we have u Tl v.

The proof can be found in Appendix B starting at page 55.

We get a characterization of the basic equivalence of m and m1 in terms of
the inclusion of the relation Rl into Tl.

Theorem 3.17 m »b m
1 if and only if Rl Ď Tl.

The proof can be found in Appendix B starting at page 55.

Proposition 3.18 If m »b m
1 then the following properties hold:

1. The relation R is total and surjective between p♥ps, hq and p♥ps1, h1q;
2. The relation R1 is total and surjective between p♥pmq and p♥pm1q.

The proof can be found in Appendix B starting at page 56.

Lemma 3.19 (Bijections between pseudo-cores) When m and m1 are
basically equivalent, i.e. m »b m

1, the following properties hold:

1. the inclusions R Ď T and Rl Ď Tl hold;
2. both R “ TX p♥ps, hq ˆ p♥ps1, h1q and Rl “ Tl X p♥pmq ˆ p♥pm1q hold;
3. the relation R is bijective between p♥ps, hq and p♥ps1, h1q;
4. the relation Rl is bijective between p♥pmq and p♥pm1q;
5. the relation RlX♥ps, hqˆ♥ps1, h1q is bijective between ♥ps, hq and ♥ps1, h1q.

22 Stéphane Demri et al.

Proof We have proved Rl Ď Tl in Theorem 3.17. Hence we deduce R Ď Rl Ď

Tl Ď T. Hence Property 1 holds.
By Proposition 3.15 item 5, we derive TlXp♥pmqˆp♥pm1q Ď TlXp♥pmqˆ

N Ď Rl. By Proposition 3.15 item 4 and Rl Ď Tl, we derive Rl Ď TlXp♥pmqˆ
p♥pm1q. Hence we obtain the identity Rl “ TlX p♥pmqˆ p♥pm1q. The identity
R “ TX p♥ps, hqˆ p♥ps1, h1q can then be established with similar arguments,
i.e. Proposition 3.15 items 1 and 2. Hence Property 2 holds.

By Proposition 3.18 item 2, Rl is total and surjective. By Proposition 3.16
item 2, Tl X p♥pmq ˆ p♥pm1q is functional and injective. From the identity
Rl “ Tl X p♥pmq ˆ p♥pm1q we deduce that Rl is a bijective relation between
p♥pmq and p♥pm1q. The same reasoning applies to R. Properties 3 and 4 hold.

We have ♥ps, hq Ď p♥ps, h, lq and ♥ps1, h1q Ď p♥ps1, h1, l1q. Moreover if u
and v are such that u Rl v then u{v respect ♥ps, hq{♥ps1, h1q using u Tl v
with pT13q. Hence by Proposition 2.16, Rl X ♥ps, hq ˆ ♥ps1, h1q is a bijection
between ♥ps, hq and ♥ps1, h1q. [\

When we atomically extend a heap (see forthcoming Propositions 3.29
and 3.31), we use the totality of the relations Tl (and T). To get these results,
we need slightly stronger assumptions. With »2 instead of »b, the relation Tl

is total from N to r0,m` 1s with m “ maxvalpm1q.

Proposition 3.20 If m and m1 are 2-equivalent (i.e. m »2 m1), then Tl is a
total relation on N: for any u P N, there exists v ď maxvalpm1q ` 1 such that
u Tl v.

Proof Since »2 Ď »b we have Rl Ď Tl by Theorem 3.17. Let us consider u P N.
We have to show that there exists v P N such that u Tl v holds. We determine
the value of v according to the first condition satisfied in the list below.

– If u P p♥pmq then we define v as the unique location in p♥pm1q such
that u Rl v, see Lemma 3.19 item 4. We derive u Tl v. The relation
v ď maxvalpm1q ` 1 holds because v P p♥pm1q;

– If u P pred♥ps, h, jq for some j P r1, qs then we know that u ‰ l because
the case u “ l P p♥pmq occurs earlier in the list.
Hence we have u P pred♥ps, h, jqztlu. From l Rl l1 we deduce l Tl l1. Hence
by Proposition 3.13 pT18q, l{l1 respect pred♥ps, h, jq{pred♥ps

1, h1, jq. We
also have pred♥ps, h, jq „2 pred♥ps

1, h1, jq by Proposition 3.10. Hence by
Proposition 2.23, we can choose a location v P pred♥ps

1, h1, jqztl1u.
The relation v ď maxvalpm1q ` 1 holds because v P domph1q. Let us es-
tablish u Tl v. We have u P pred♥ps, h, jqztlu and v P pred♥ps

1, h1, jqztl1u.
As a consequence, we deduce u R p♥pmq and v R p♥pm1q. Hence, Prop-
erties pT1–3q hold. We also have u P domphq and v P domph1q, whence
Property pT4q holds. We have hpuq “ spxjq and h1pvq “ s1pxjq. We de-
duce hpuq Rl h1pvq and thus hpuq Tl h1pvq. Let us prove Property pT5q for
u{v: we use pT2q for hpuq{h1pvq and get hpuq “ spxiq iff h1pvq “ s1pxiq for
any i P r1, qs. Let us prove Property pT6q: the identity u “ hpuq implies
u “ spxjq which contradicts u R p♥pmq. Hence u ‰ hpuq and for similar
reasons, v ‰ h1pvq;

Separation Logic with One Quantified Variable 23

– If u P loop♥ps, hq then we know that u ‰ l because the case u “ l P p♥pmq
occurs earlier in the list. Hence we have u P loop♥ps, hqztlu. Since l Tl l1, by
Proposition 3.13 pT19q we deduce that l{l1 respect loop♥ps, hq{loop♥ps

1, h1q.
We also have loop♥ps, hq „2 loop♥ps

1, h1q by Proposition 3.10. Hence by
Proposition 2.23, we can choose a location v P loop♥ps

1, h1qztl1u.
The relation v ď maxvalpm1q ` 1 holds because v P domph1q. Let us check
that u Tl v holds. We have u P loop♥ps, hqztlu and v P loop♥ps

1, h1qztl1u.
As a consequence, we deduce u R p♥pmq and v R p♥pm1q. Hence Prop-
erties pT1–3q hold. We also have u P domphq and v P domph1q; hence
Property pT4q holds. We have hpuq “ u and h1pvq “ v, whence Prop-
erty pT6q holds. We have already proved that Property pT2q holds for
u{v. As hpuq “ u and h1pvq “ v we deduce that Property pT2q holds for
hpuq{h1pvq. Hence Property pT5q holds for u{v;

– If u P rem♥ps, hq then u P rem♥ps, hqztlu. By Proposition 3.13 pT20q,
l{l1 respect rem♥ps, hq{rem♥ps

1, h1q. We have rem♥ps, hq „2 rem♥ps
1, h1q

by Proposition 3.10. Hence by Proposition 2.23, we can choose a location
v P rem♥ps

1, h1qztl1u.
The relation v ď maxvalpm1q ` 1 holds because v P domph1q. Let us check
that u Tl v holds. We have u P rem♥ps, hqztlu and v P rem♥ps

1, h1qztl1u.
So, we deduce u R p♥pmq and v R p♥pm1q. Hence Properties pT1–3q hold.
We also have u P domphq and v P domph1q hence Property pT4q holds. We
have hpuq R spVq Y tuu and h1pvq R s1pVq Y tvu hence Properties pT5–6q
hold;

– In the remaining cases we have u R domphqYp♥pmq. Let v “ maxvalpm1q`1.
Then we have v R domph1q Y p♥pm1q and by Proposition 3.16 item 4, we
conclude u Tl v. [\

If we do not require Property pT1q, i.e. we work with T instead of Tl,
then only »1 is needed to establish that T is total from N to r0,m` 1s with
m “ maxvalps1, h1q.

Proposition 3.21 If m and m1 satisfy m »1 m1, then T is a total relation
on N: for any u P N, there exists v ď maxvalps1, h1q ` 1 such that u T v.

The proof can be found in Appendix B starting at page 56.

3.5 Basic Equivalence and Heap Splitting

In this section, we consider two stores s and s1, two locations l and l1, and
two heaps h “ h1] h2 and h1 “ h11] h12 that are divided into two disjoint
subheaps. Let us denote

m“ps, h, lq m1“ps1, h1, l1q Rl“Rl
m,m1 Tl“Tl

m,m1

m1“ps, h1, lq m11“ps
1, h11, l

1q Rl
1“Rl

m1,m1
1

Tl
1“Tl

m1,m1
1

D1“Dm1,m1
1

m2“ps, h2, lq m12“ps
1, h12, l

1q Rl
2“Rl

m2,m1
2

Tl
2“Tl

m2,m1
2

D2“Dm2,m1
2

24 Stéphane Demri et al.

It is trivial to check the inclusion Rl
1 Ď Rl because h1 Ď h and h11 Ď h1. The

inclusion Rl
2 Ď Rl holds by symmetry.

Let us study under which conditions the splits h “ h1]h2 and h1 “ h11]h
1
2

preserve basic equivalence, i.e. when do m1 »b m
1
1 and m2 »b m

1
2 hold, provided

that m »b m
1 already holds.

Proposition 3.22 Let us assume Rl Ď Tl (or equivalently m »b m1). Then
the following statements are equivalent:

1. Rl Ď D1 XD2; 3. Rl
1 Ď Tl

1 and Rl
2 Ď Tl

2;
2. Rl Ď Tl

1 X Tl
2; 4. m1 »b m

1
1 and m2 »b m

1
2.

The proof can be found in Appendix B starting at page 57.

If the splits h “ h1] h2 and h1 “ h11] h
1
2 preserve basic equivalence, then

some subsets of the core are equipotent.

Proposition 3.23 Let us assume m »b m
1, m1 »b m

1
1 and m2 »b m

1
2. With

the notation X for NzX, the following properties hold:

1. predps, h, iq X∆c „8 predps1, h1, iq X∆1c for any i P r1, qs
2. loopps, hq X∆c „8 loopps1, h1q X∆1c
3. remps, hq X∆c „8 remps1, h1q X∆1c

where c P t1, 2u and

"

∆c “ domphcq X h3´cpspVqq X spVq X hcpspVqq
∆1c “ domph1cq X h

1
3´cps

1pVqq X s1pVq X h1cps1pVqq
Proof The definition of ∆ps, h1, h2q corresponds to that of Propositions 2.8
and 2.9. We have ∆1 “ ∆ps, h1, h2q, ∆2 “ ∆ps, h2, h1q, ∆

1
1 “ ∆ps1, h11, h

1
2q

and ∆12 “ ∆ps1, h12, h
1
1q. We easily verify that the inclusions ∆1Y∆2 Ď ♥ps, hq

and ∆11 Y ∆12 Ď ♥ps1, h1q hold. We invite the reader to check the following
equivalences:

u P predps, h, jq X∆1 iff h1puq “ spxjq and
u P h2pspVqq and u R spVq and u R h1pspVqq

u P loopps, hq X∆1 iff h1puq “ u and
u P h2pspVqq and u R spVq and u R h1pspVqq

u P remps, hq X∆1 iff u P domph1q and h1puq R spVq and hpuq ‰ u and
u P h2pspVqq and u R spVq and u R h1pspVqq

From Proposition 3.22 and Theorem 3.19 we deduce Rl Ď TlXTl
1XTl

2. More-
over by Lemma 3.19, the relation RlX♥ps, hqˆ♥ps1, h1q is a bijection between
♥ps, hq and ♥ps1, h1q.

Let us prove Property 1 with c “ 1 for instance. We use Proposition 2.16:
we have predps, h, iqX∆1 Ď ♥ps, hq and predps1, h1, iqX∆11 Ď ♥ps1, h1q. Hence
let us show that if u P ♥ps, hq and v P ♥ps1, h1q verify u Rl v then u{v
respect predps, h, iq X ∆1{predps1, h1, iq X ∆11: we use the first of the three
above equivalences and u Tl

1 v with pT5q, u Tl
2 v with pT11q, u Tl v with

pT10q, and u Tl
1 v with pT11q.

Hence by Proposition 2.16, there is a bijection between predps, h, iq X∆1

and predps1, h1, iqX∆11 and thus predps, h, iqX∆1 „8 predps1, h1, iqX∆11 holds.
We use similar arguments for Property 1 (c “ 2) and Properties 2–3. [\

Separation Logic with One Quantified Variable 25

3.6 Basic Equivalence and Location Update

In this section, we study under which conditions an update of the location l
in the pointed memory state ps, h, lq preserves basic equivalence.

Proposition 3.24 Let ps, h, lq and ps1, h1, l1q be basically equivalent pointed
memory states, i.e. ps, h, lq »b ps

1, h1, l1q. For any l0, l
1
0 P N, if l0{l

1
0 verify

pT2–6q then ps, h, l0q »b ps
1, h1, l10q holds.

Proof Since any formula B P Basic contains no free occurence of u, by Propo-
sition 2.2 we have ps, hq (l0 B iff ps, hq (l B iff ps1, h1q (l1 B iff ps1, h1q (l10 B.
As the identity Basicu “ Basic Y Extrau holds, to get ps, h, l0q »b ps

1, h1, l10q it
is sufficient to prove the property ps, hq (l0 B iff ps1, h1q (l10 B for any formula
B P Extrau. We proceed by a case analysis on B; we display the only if case,
the if case being proved in a symmetric way:

– B is u ãÑ u: from ps, hq (l0 u ãÑ u we get hpl0q “ l0. Since l0{l
1
0 verify pT6q,

we deduce h1pl10q “ l10 and thus ps1, h1q (l10 u ãÑ u;
– B is allocpuq: from ps, hq (l0 allocpuq we get l0 P domphq. Since l0{l

1
0 verify

pT4q, we deduce l10 P domph1q and thus ps1, h1q (l10 allocpuq;
– B is xi “ u: from ps, hq (l0 xi “ u we get spxiq “ l0. Since l0{l

1
0 verify pT2q,

we deduce s1pxiq “ l10 and thus ps1, h1q (l10 xi “ u;
– B is xi ãÑ u: from ps, hq (l0 xi ãÑ u we get hpspxiqq “ l0. Since l0{l

1
0 verify

pT3q, we deduce h1ps1pxiqq “ l10 and thus ps1, h1q (l10 xi ãÑ u;
– B is u ãÑ xj : from ps, hq (l0 u ãÑ xj we get hpl0q “ spxiq. Since l0{l

1
0 verify

pT5q, we deduce h1pl10q “ s1pxiq and thus ps1, h1q (l10 u ãÑ xj . [\

3.7 Atomic Extensions and α-Equivalence

Recall that we write rl1 ÞÑ l2s to denote the (atomic) heap h such that
domphq “ tl1u, hpl1q “ l2 and ranphq “ tl2u. We study under which con-
ditions atomic extensions preserve α-equivalence.

Lemma 3.25 Let α ě 1 and let ps, h, lq and ps1, h1, l1q be two pointed memory
states. Let l1, l2, l

1
1, l
1
2 P N be such that l1 R domphq and l11 R domph1q. We

assume that one of the conditions below holds:

(C1) l1{l
1
1 verify pT1–3q, l2{l

1
2 verify pT1–6q, and l2 “ l1 iff l12 “ l11;

(C2) l1 R spVq, l1{l11 verify pT1–3q, l2{l
1
2 verify pT2q, and l2 “ l1 iff l12 “ l11.

If ps, h, lq »α ps
1, h1, l1q then ps, h]rl1 ÞÑ l2s, lq »β ps

1, h1]rl11 ÞÑ l12s, l
1q where

β “ α´ 1 if l1 P spVq, and β “ α otherwise.

The proof can be found in Appendix B starting at page 58.

Now let us present sufficient conditions under which an atomic extension
does not change a pointed memory state up to α-equivalence.

26 Stéphane Demri et al.

Proposition 3.26 Let m “ ps, h, lq be a pointed memory state and l1, l2 P N
be such that l1 R domphq Y p♥pmq. We have ps, h] rl1 ÞÑ l2s, lq »b ps, h, lq.
Moreover, given α ě 0, if we assume that one of the following conditions hold

(C1) l2 “ spxiq and cardppred♥ps, h, iqq ě α for some i P r1, qs;
(C2) l2 “ l1 and cardploop♥ps, hqq ě α;
(C3) l2 R spVq Y tl1u and cardprem♥ps, hqq ě α.

then we have ps, h] rl1 ÞÑ l2s, lq »α ps, h, lq.

The proof can be found in Appendix B starting at page 61.

We extend the previous result to more general extensions that avoid adding
locations in the pseudo-core.

Corollary 3.27 Let α ě 0. Let m “ ps, h, lq be a pointed memory state and h1

be a heap such that domph1qX pdomphqY p♥pmqq “ H. If for any u P domph1q
one of the following conditions holds

(C1) h1puq “ spxiq and cardppred♥ps, h, iqq ě α for some i P r1, qs;
(C2) h1puq “ u and cardploop♥ps, hqq ě α;
(C3) h1puq R spVq Y tuu and cardprem♥ps, hqq ě α.

then we have ps, h] h1, lq »α ps, h, lq.

The proof can be found in Appendix B starting at page 62.

3.8 Transposing Heap Extensions through α-Equivalence

In this section, we assume s, s1, h0, h10, h, h1, l and l1 such that h0 K h and
h10 K h1. We denote

m “ ps, h, lq m0 “ ps, h0] h, lq Rl “ Rl
m,m1 Tl “ Tl

m,m1

m1 “ ps1, h1, l1q m10 “ ps
1, h10] h

1, l1q Rl
0 “ Rl

m0,m1
0

Tl
0 “ Tl

m0,m1
0

We insist that the heap of m0 is h0] h, not h0: the short notation might be a
bit confusing here. Because h Ď h0] h and h1 Ď h10] h

1, it is trivial to check
that the inclusion Rl Ď Rl

0 holds.

Proposition 3.28 We assume m »b m1, m0 »b m10 and u, v P N such that
u Tl

0 v. If either u P p♥pmq or v P p♥pm1q then u Rl v.

Proof We assume u P p♥pmq and we show u Rl v. From p♥pmq Ď p♥pm0q,
we deduce u P p♥pm0q. By Proposition 3.15 item 5, from u Tl

0 v we deduce
u Rl

0 v and thus v P p♥pm10q by Proposition 3.15 item 4. Since u P p♥pmq, by
Lemma 3.19 there exists a unique location w P p♥pm1q such that u Rl w. From
Rl Ď Rl

0 we deduce u Rl
0 w. Hence, we have (u Rl

0 v and u Rl
0 w) and by

Proposition 3.15 item 4 and Lemma 3.19, Rl
0 is a bijection. We deduce v “ w,

and then u Rl v. [\

Separation Logic with One Quantified Variable 27

Proposition 3.29 Let α ě 1. We assume that the following conditions hold:

(a) m »α`1 m1;
(b) m0 »α`1 m10;
(c) domphq Ď p♥pmq;
(d) domph1q Ď p♥pm1q.

Let l1 P spVqzdomph0] hq and l2 P N. There exist l11, l
1
2 P N such that

1. l11 P s
1pVqzdomph10] h

1q;
2. l11, l

1
2 ď maxvalpm10q ` 1;

3. ps, h] rl1 ÞÑ l2s, lq »α ps
1, h1] rl11 ÞÑ l12s, l

1q;
4. ps, h0] h] rl1 ÞÑ l2s, lq »α ps

1, h10] h
1] rl11 ÞÑ l12s, l

1q.

The proof can be found in Appendix B starting at page 63.

Corollary 3.30 Let α ě 1. Let h0 K h1, domph1q Ď spVq and ps, h0, lq »p`α
ps1, h10, l

1q with p “ cardpdomph1qq. Then there exists a heap h11 such that h10 K
h11, domph11q Ď s1pVq, ps, h1, lq »α ps1, h11, l1q, ps, h0] h1, lq »α ps

1, h10] h11, l
1q

and maxvalps1, h11q ď maxvalps1, h10, l
1q ` p.

The proof is by induction on the cardinality of domph1q using Proposi-
tion 3.29. Proposition 3.31 below is a slight variant of Proposition 3.29.

Proposition 3.31 Let α ě 1. We assume that the following conditions hold:

(a) m »α m1;
(b) m0 »α m10;

Let l1 R domph0] hq Y spVq and l2 P N. There exist l11, l
1
2 P N such that

1. l11 R domph10] h
1q Y s1pVq

2. l11, l
1
2 ď maxvalpm10q ` 2;

3. ps, h] rl1 ÞÑ l2s, lq »α ps
1, h1] rl11 ÞÑ l12s, l

1q;
4. ps, h0] h] rl1 ÞÑ l2s, lq »α ps

1, h10] h
1] rl11 ÞÑ l12s, l

1q.

The proof can be found in Appendix B starting at page 64.

Corollary 3.32 Let α ě 1. Let domph1q X pdomph0] hq Y spVqq “ H,
ps, h, lq »α ps

1, h1, l1q and ps, h0] h, lq »α ps
1, h10] h1, l1q. Then there exists

a heap h11 such that domph11q X pdomph10] h
1q Y s1pVqq “ H, ps, h] h1, lq »α

ps1, h1] h11, l
1q, ps, h0] h] h1, lq »α ps

1, h10] h
1] h11, l

1q and maxvalps1, h11q ď
maxvalps1, h10] h, l

1q ` 2. cardpdomph1qq.

The proof is by induction on the cardinality of domph1q using Proposition 3.31.

28 Stéphane Demri et al.

3.9 Correctness of the Abstraction

Lemmas 3.33, 3.34 and 3.35 below roughly state that the relation »α (and
therefore the set of test formulæ we have introduced) behaves properly. Each
lemma corresponds to a given quantifier, respectively separating conjunction
˚, separating implication ´̊ and first-order quantifier Du. We combine these
three lemmas in the proof of Correctness Theorem 4.3.

Lemma 3.33 below states how two equivalent memory states can be split.
The precision is split accordingly.

Lemma 3.33 (Distributivity) Let α, α1, α2 ě 1 such that α “ α1`α2. Let
us consider two α-equivalent pointed memory states ps, h, lq and ps1, h1, l1q, i.e.
ps, h, lq »α ps

1, h1, l1q. For every split h “ h1]h2 of h, there exists a split h1 “
h11] h

1
2 of h1 such that ps, h1, lq »α1

ps1, h11, l
1q and ps, h2, lq »α2

ps1, h12, l
1q.

Proof Let m “ ps, h, lq and m1 “ ps1, h1, l1q be such that ps, h, lq »α ps
1, h1, l1q.

Let us denote by Rl (resp. Tl) the relation Rl
m,m1 (resp. Tl

m,m1) from Defini-
tion 3.14. From m »α m1 we deduce m »b m1 and then by Theorem 3.17,
we have the inclusion Rl Ď Tl. Moreover by Lemma 3.19, we know that
Rl

♥
def
“ Rl X ♥ps, hq ˆ ♥ps1, h1q is a bijective relation between ♥ps, hq and

♥ps1, h1q.
Let us define J “ tj P r1, qs | for all k P r1, qs, spxjq “ spxkq implies j ď ku.

Since spxiq Rl s1pxiq and Rl Ď Tl, using pT2q we deduce spxiq “ spxjq iff
s1pxiq “ s1pxjq for all i, j P r1, qs. Hence J is a subset of r1, qs that verifies

(J1) for any i P r1, qs, there exists j P J such that spxiq “ spxjq and s1pxiq “
s1pxjq;

(J2) for all i, j P J , spxiq “ spxjq or s1pxiq “ s1pxjq implies i “ j.

For every c P t1, 2u and for every j P J , let us consider the following notations:

D “ domphq Dc “ domphcq D1 “ domph1q
C “ ♥ps, hq Cc “ C XDc C 1 “ ♥ps1, h1q

P pjq “ pred♥ps, h, jq Pcpjq “ P pjq XDc P 1pjq “ pred♥ps
1, h1, jq

L “ loop♥ps, hq Lc “ LXDc L1 “ loop♥ps
1, h1q

R “ rem♥ps, hq Rc “ RXDc R1 “ rem♥ps
1, h1q

According to Lemma 2.6 and Properties (J1) and (J2), we have the following
canonical decompositions:

D “ C Z
Ţ

jPJ P pjq Z LZR D1 “ C 1 Z
Ţ

jPJ P
1pjq Z L1 ZR1

We know that Rl
♥ is a one-to-one relation between C and C 1, and from Propo-

sition 3.10, we have P pjq „α P
1pjq, L „α L

1 and R „α R
1.

Using the bijection Rl
♥, for c “ 1 or 2, let us define C 1c “ Rl

♥pCcq. Then,
we have C “ C1 Z C2 and C 1 “ C 11 Z C 12. Let us show that l{l1 respect both
C1{C

1
1 and C2{C

1
2. We have l Rl l1 by definition and hence l Tl l1. By pT13q,

we deduce that l{l1 respect C{C 1. Hence if l P C1 then l P C and thus l1 P C 1.

Separation Logic with One Quantified Variable 29

As a consequence, l Rl
♥ l1 and thus as C 11 “ Rl

♥pC1q, we deduce l1 P C 11. For
similar reasons, if l P C2 then l1 P C 12. Now, if l1 P C 11 then l1 P C 1 hence
l P C “ C1 Z C2. The case l P C2 would lead to l1 P C 12 hence l1 P C 11 X C 12
which is impossible. Hence we have l P C1. For similar reasons, if l1 P C 12 then
l P C2. We conclude that l{l1 respect both C1{C

1
1 and C2{C

1
2.

Let us verify that l{l1 respect both P pjq{P 1pjq: l P P pjq iff hplq “ spxjq and
l R ♥ps, hq iff h1pl1q “ s1pxjq and l1 R ♥ps1, h1q iff l1 P P 1pjq using l Tl l1 with
pT5q and pT13q. By Lemma 2.22, from P pjq „α1`α2

P 1pjq and α1, α2 ě 1, we
compute P 1cpjq such that P 1pjq “ P 11pjq Z P 12pjq, P1pjq „α1

P 11pjq, P2pjq „α2

P 12pjq and l{l1 respect both P1pjq{P
1
1pjq and P2pjq{P

1
2pjq.

By a similar argument, we get L11 and L12 (resp. R11 and R12) such that
L1 “ L11 Z L12, L1 „α1 L11, L2 „α2 L12 (resp. R1 “ R11 Z R12, R1 „α1 R11,
R2 „α2 R

1
2) and l{l1 respect both L1{L

1
1 and L2{L

1
2 (resp. R1{R

1
1 and R2{R

1
2).

Now let us define a partition D1 “ D11 ZD
1
2 by

D11 “ C 11 Z
Ţ

jPJ P
1
1pjq Z L

1
1 ZR

1
1 D12 “ C 12 Z

Ţ

jPJ P
1
2pjq Z L

1
2 ZR

1
2

and h11, h12 such that h1 “ h11] h12, domph11q “ D11 and domph12q “ D12.We
point out that the defining equation of D1c is not necessarily the canonical
decomposition of D1c “ domph1cq according to ps1, h1cq. Since the identities

D1 “ C1 Z
Ţ

jPJ P1pjq Z L1 ZR1 D2 “ C2 Z
Ţ

jPJ P2pjq Z Lc ZR2

hold, we observe that l{l1 respect both D1{D
1
1 and D2{D

1
2.

Using Proposition 3.22, we check that the basic equivalences ps, h1, lq »b
ps1, h11, l

1q and ps, h2, lq »b ps
1, h12, l

1q hold. For c “ 1 or c “ 2, let us prove
Rl Ď Dc:

– we already proved that l{l1 respect domphcq{domph1cq;
– if spxiq P domphcq “ Dc then spxiq P domphq and thus spxiq P C. We derive
spxiq P Cc “ CXDc. Since spxiq P ♥ps, hq we derive s1pxiq P ♥ps1, h1q using
spxiq T

l s1pxiq and pT13q. Thus spxiq R
l
♥ s1pxiq holds and we deduce s1pxiq P

C 1c hence s1pxiq P D
1
c “ domph1cq. The reverse implication “s1pxiq P domph1cq

implies spxiq P domphcq” is proved by symmetric arguments;
– if hpspxiqq P domphcq “ Dc then hpspxiqq P domphq and thus hpspxiqq P C.

We derive hpspxiqq P Cc “ CXDc. From hpspxiqq R
l
♥ h1ps1pxiqq, we deduce

h1ps1pxiqq P C
1
c hence h1ps1pxiqq P D

1
c “ domph1cq. The reverse implication

“h1ps1pxiqq P domph1cq implies hpspxiqq P domphcq” is proved by symmetric
arguments.

Hence we have ps, h, lq »b ps
1, h1, l1q, ps, h1, lq »b ps

1, h11, l
1q and ps, h2, lq »b

ps1, h12, l
1q. According to the above definitions and Proposition 2.9, we get the

following identities:

pred♥ps, hc, jq “ Pcpjq Z
`

predps, h, jq X∆ps, hc, h3´cq
˘

pred♥ps
1, h1c, jq “ P 1cpjq Z

`

predps1, h1, jq X∆ps1, h1c, h
1
3´cq

˘

According to Proposition 3.23 item 1 we have

predps, h, jq X∆ps, hc, h3´cq „8 predps1, h1, jq X∆ps
1, h1c, h

1
3´cq

30 Stéphane Demri et al.

For any j P J , from Pcpjq „αc P
1
cpjq we get pred♥ps, hc, jq „αc pred♥ps

1, h1c, jq
by Lemma 2.19. In fact we get more precision but we do not need it here.

By similar arguments using Proposition 3.23 items 2 and 3, we establish
loop♥ps, hcq „αc loop♥ps

1, h1cq and rem♥ps, hcq „αc rem♥ps
1, h1cq.

Using Properties (J1), we have pred♥ps, hc, iq „αc
pred♥ps

1, h1c, iq for any
i P r1, qs. Hence, by Proposition 3.10, we deduce ps, h1, lq »α1

ps1, h11, l
1q and

ps, h2, lq »α2 ps
1, h12, l

1q. [\

Lemma 3.34 below states how to extend a memory state with a heap while
preserving equivalence. Some precision (not exceeding q) is lost in the process.

Lemma 3.34 (Compositionality) Let us consider α ě 1, two pointed mem-
ory states ps, h0, lq and ps1, h10, l

1q such that ps, h0, lq »q`α ps
1, h10, l

1q. For any
h such that h K h0 there exists h1 such that h1 K h10 and

1. ps, h, lq »α ps
1, h1, l1q;

2. ps, h0] h, lq »α ps
1, h10] h

1, l1q;
3. maxvalps1, h1q ď maxvalps1, h10, l

1q ` p2α` 3qpq ` 2q ´ 4.

Proof Let J
def
“ tj P r1, qs | for all k P r1, qs, spxjq “ spxkq implies j ď ku. So

J is a subset of r1, qs that verifies:

(J1) for any i P r1, qs, there exists j P J such that spxiq “ spxjq;
(J2) for all i, j P J , spxiq “ spxjq implies i “ j.

We define set following subsets of domphq:

– S “ domphq X spVq;
– H “

`

domphq X p♥ps, h0] h, lq
˘

zspVq;
– PjZP

1
j “ predps, h, jqzp♥ps, h0]h, lq and Pj „α PjZP

1
j and cardpPjq ď α

for any j P J ;
– LZ L1 “ loopps, hqzp♥ps, h0] h, lq and L „α LZ L

1 and cardpLq ď α;
– RZR1 “ remps, hqzp♥ps, h0] h, lq and R „α RZR

1 and cardpRq ď α.

where pPj{P
1
jqjPJ , L{L1 and R{R1 are obtained using Proposition 2.24.and

from e.g. L „α L Z L1 and cardpLq ď α we deduce either cardpLq “ α or
L1 “ H. Let us check that

domphq “ S ZH Z
ě

jPJ

`

Pj Z P
1
jq Z pLZ L

1q Z pRZR1q (3.1)

is indeed a partition of the domain of h. Obviously SZH “ domphqXp♥ps, h0]
h, lq. Then predps, hq “

Ţ

jPJ predps, h, jq because of Properties (J1) and (J2).
From domphq “ ppredps, hq Y loopps, hqq Z remps, hq, we deduce

domphqzp♥ps, h0] h, lq “ p
ě

jPJ

`

Pj Z P
1
jq Y pLZ L

1qq Z pRZR1q

Then the only remaining point is to show that pPj Z P 1jq X pL Z L1q “ H. If
u P pPj Z P 1jq X pL Z L1q then we have u P predps, h, jq and u P loopps, hq.

Separation Logic with One Quantified Variable 31

Hence hpuq “ spxjq and hpuq “ u. We deduce u “ spxjq P p♥ps, h0] h, lq
which contradicts u P LZ L1.

We observe that cardpSq ď q because S Ď spVq and that cardpHq ď q ` 1
because H Ď ph0] hqpspVqq Y tlu. Let us define

– h1 as the restriction of h to S, i.e. h1 Ď h and domph1q “ S;
– h2 as the restriction of h to H Y

Ť

j Pj Y LYR;
– h3 as the restriction of

Ť

j P
1
j Y L

1 YR1.

Then we have h “ h1] h2] h3, cardpdomph1qq ď q, and cardpdomph2qq ď
cardpHq `

ř

jPJ cardpPjq ` cardpLq ` cardpRq ď pq ` 1q ` q.α ` α ` α “

pα` 1qpq ` 2q ´ 1.

Let us write p “ cardpSq “ cardpdomph1qq ď q and m “ maxvalps1, h10, l
1q.

We deduce ps, h0, lq »p`α ps
1, h10, l

1q. By Corollary 3.30, we get h11 such that:

– domph11q Ď s1pVq;
– maxvalps1, h11q ď maxvalps1, h10, l

1q ` p;
– ps, h1, lq »α ps

1, h11, l
1q;

– ps, h0] h1, lq »α ps
1, h10] h

1
1, l
1q.

We deduce maxvalps1, h11q ď m` q and thus also maxvalps1, h10] h
1
1q ď m` q.

Then we use Corollary 3.32 for h2. We have indeed domph2q X pdomph0]
h1qYspVqq Ď domph2qXpdomph0qYspVqq Ď pdomph2qXdomph0qqYpdomph2qX
spVqq Ď H Y H Ď H, ps, h1, lq »α ps

1, h11, l
1q and ps, h0] h1, lq »α ps

1, h10]
h11, l

1q. We obtain a heap h12 such that:

– domph11q X pdomph10] h
1
1q Y s

1pVqq “ H;
– maxvalps1, h12q ď maxvalps1, h10] h

1
1, l
1q ` 2. cardpdomph2qq;

– ps, h1] h2, lq »α ps
1, h11] h

1
2, l
1q;

– ps, h0] h1] h2, lq »α ps
1, h10] h

1
1] h

1
2, l
1q.

We deduce maxvalps1, h12q ď pm`qq`2ppα`1qpq`2q´1q “ m`p2α`3qpq`2q´4
and thus also maxvalps1, h11] h

1
2q ď m` p2α` 3qpq ` 2q ´ 4.

Then, we use Corollary 3.27 to show that ps, h1]h2]h3, lq »α ps, h1]h2, lq
holds. By construction of h3, it is clear that domph3q X pdomph1] h2q Y
p♥ps, h1] h2, lqq “ H because p♥ps, h1] h2, lq Ď p♥ps, h0] h, lq. It is thus
sufficient to verify either (C1) or (C2) or (C3) for any l1 P domph3q “

Ť

j P
1
j Y

L1 YR1. We have three cases for l1 P domph3q:

– if l1 P P
1
j for some j P J . Then hpl1q “ spxjq and thus h3pl1q “ spxjq.

Moreover P 1j ‰ H and thus we must have cardpPjq “ α (because Pj „α
Pj Z P

1
j and cardpPjq ď α). Let us prove Pj Ď pred♥ps, h1] h2, jq.

We have Pj Ď ppredps, h, jqzp♥ps, h0] h, lqq X domph2q hence we de-
duce Pj Ď ppredps, h, jq X domph2qqzp♥ps, h0] h, lq. But predps, h, jq X
domph2q Ď predps, h1]h2, jq because h2 Ď h1]h2 Ď h; and ♥ps, h1]h2q Ď
p♥ps, h0] h, lq because h1] h2 Ď h0] h. We deduce Pj Ď predps, h1]
h2, jqz♥ps, h1] h2q “ pred♥ps, h1] h2, jq.
We deduce cardppred♥ps, h1] h2, jqq ě α. Condition (C1) holds for l1;

32 Stéphane Demri et al.

– if l1 P L
1 then hpl1q “ l1 hence h3pl1q “ l1. Since L1 is not empty, we have

cardpLq “ α and we show that L Ď loop♥ps, h1] h2q.
We have L Ď ploopps, hqzp♥ps, h0]h, lqqXdomph2q hence L Ď ploopps, hqX
domph2qqzp♥ps, h0]h, lq. But loopps, hqXdomph2q Ď loopps, h1]h2q and
♥ps, h1]h2q Ď p♥ps, h0]h, lq. We get L Ď loopps, h1]h2qz♥ps, h1]h2q.
We deduce cardploop♥ps, h1] h2qq ě α. Condition (C2) holds for l1;

– if l1 P R
1 then hpl1q R spVq Y tl1u hence h3pl1q R spVq Y tl1u. Since R1 is

not empty, we have cardpRq “ α and we show that R Ď rem♥ps, h1] h2q.
We have R Ď premps, hqzp♥ps, h0]h, lqqXdomph2q hence R Ď premps, hqX
domph2qqzp♥ps, h0] h, lq. But remps, hq X domph2q Ď remps, h1] h2q and
♥ps, h1]h2q Ď p♥ps, h0]h, lq. We get R Ď remps, h1]h2qz♥ps, h1]h2q.
We deduce cardprem♥ps, h1] h2qq ě α. Condition (C3) holds for l1.

Hence, by Corollary 3.27, we deduce that ps, h1] h2] h3, lq »α ps, h1] h2, lq
holds. By similar arguments, we show that ps, h0]h1]h2]h3, lq »α ps, h0]
h1] h2, lq holds as well.

Let us finally show that h1 “ h11] h
1
2 satisfies the required conditions. We

have already proved maxvalps1, h1q ď maxvalps1, h10, l
1q ` p2α ` 3qpq ` 2q ´ 4.

Then we have ps, h, lq “ ps, h1]h2]h3, lq »α ps, h1]h2, lq »α ps
1, h11]h

1
2, l
1q “

ps1, h1, l1q and ps, h0]h, lq “ ps, h0]h1]h2]h3, lq »α ps, h0]h1]h2, lq »α
ps1, h10] h

1
1] h

1
2, l
1q “ ps1, h10] h

1, l1q. [\

Lemma 3.35 below states how to update the location of the quantified
variable while preserving equivalence. No precision is lost here.

Lemma 3.35 (Existence) Let α ě 1 and ps, h, lq and ps1, h1, l1q be two α-
equivalent pointed memory states, i.e. ps, h, lq »α ps

1, h1, l1q. For every l0 P N,
there exists l10 ď maxvalps1, h1q ` 1 such that ps, h, l0q »α ps

1, h1, l10q.

Proof By Proposition 3.10, we have ps, h, lq »b ps
1, h1, l1q together with three

α-equipotence constraints: pred♥ps, h, iq „α pred♥ps
1, h1, iq for any i P r1, qs,

loop♥ps, hq „α loop♥ps
1, h1q, and rem♥ps, hq „α rem♥ps

1, h1q.
Let l0 P N. Let us consider the relation Tm,m1 of Definition 3.14 where

m “ ps, h, lq and m1 “ ps1, h1, l1q. By Proposition 3.21, there exists l10 P N such
that l10 ď maxvalps1, h1q ` 1 and l0 Tm,m1 l10 holds. By definition of Tm,m1 , this
means that l0{l

1
0 verify pT2–6q. Hence by Proposition 3.24, we get ps, h, l0q »b

ps1, h1, l10q, and by Proposition 3.10, we conclude ps, h, l0q »α ps
1, h1, l10q. [\

4 Decidability, Expressiveness and Complexity

In this section, we show that two α-equivalent pointed memory states can-
not be distinguished by 1SL1 formulæ of memory threshold less than α. We
introduce model compression results and deduce that the unbounded quan-
tifications used in the definitions of ps, hq (l DuA and ps, hq (l A ´̊ B can
be replaced by bounded quantifications. We then derive decidability results
for the model-checking and satisfiability problems in 1SL1 and a quantifier

Separation Logic with One Quantified Variable 33

elimination result for 1SL1: any formula of 1SL1 is equivalent to a Boolean
combination of test formulæ in Testuα for some threshold α ě 1. Then we
provide a pspace complexity characterization for both model-checking and
satisfiability in 1SL1 using a bounded model-checking algorithm.

4.1 Correctness of the Abstraction

Given the three previous results, Lemma 3.33 for distributivity, Lemma 3.34
for compositionality and Lemma 3.35 for existence, we design a notion of
memory threshold that matches the loss of precision induced by the separating
conjunction, the separating implication and the first-order quantification.

Definition 4.1 (Memory Threshold) Given q ě 1 and an 1SL1 formula
A built over the program variables x1, . . . , xq, we define its memory threshold
thpq,Aq inductively as follows:

thpq, A1q
def
“ thpq,A1q

thpq, DuA1q
def
“ thpq,A1q

thpq,A1 ^A2q
def
“ max

`

thpq,A1q, thpq,A2q
˘

thpq,A1 ˚A2q
def
“ thpq,A1q ` thpq,A2q

thpq,A1 ´̊ A2q
def
“ q `max

`

thpq,A1q, thpq,A2q
˘

thpq,A1q
def
“ 1 for every atomic formula A1 in π Y tK, empu

For instance thp3, px1 ãÑ x1q´̊ Kq “ 3 ` maxp1, 1q “ 4. The rationale for
these inductive definitions comes from the proof of the upcoming correctness
result and how Lemmas 3.33, 3.34 and 3.35 are used there. In the case of
A1˚A2, the use of the Distributivity Lemma 3.33 implies that precision is split
in half. In the case of A1 ´̊ A2, the use of the Compositionality Lemma 3.34
implies a loss of precision bounded by q.

Proposition 4.2 Given q ě 1 and a formula A in 1SL1 with program vari-
ables in x1, . . . , xq, we have 1 ď thpq,Aq ď q.|A|.

The proof is left to the reader.

Now we state the correctness result which means that test formulæ in
Testuα provide the proper abstraction for the formulæ of 1SL1 with a memory
threshold bounded by α.

Theorem 4.3 (Abstraction Correctness) Let q ě 1. For any 1SL1 for-
mula A with program variables in x1, . . . , xq, for any α ě 1, if thpq,Aq ď α
and ps, h, lq »α ps

1, h1, l1q hold then ps, hq (l A iff ps1, h1q (l1 A.

Proof The proof is by induction on the structure of A. Suppose that ps, h, lq »α
ps1, h1, l1q and A be a formula with thpq,Aq ď α. By structural induction, we
show that ps, hq (l A if and only if ps1, h1q (l1 A: but we only display the proof
of the only if implication, the converse implication is obtained by symmetry.

– A is e ãÑ e1 which is covered by one of the following cases: xi ãÑ xj , xi ãÑ u,
u ãÑ xi and u ãÑ u. All of these formulæ belong to Basicu Ď Testuα;

34 Stéphane Demri et al.

– A is e “ e1 which is covered by one of the following cases: xi “ xj , xi “ u,
u“ xi and u“ u. The two first belong to Basicu Ď Testuα, u“ xi is logically
equivalent to xi “ u and u“ u is a tautology;

– A is emp which is logically equivalent to

`
Ž

i convpxi, xiq_
Ž

i toallocpxiq_
Ž

i # pred♥pxiq ě 1_# loop♥ ě 1_# rem♥ ě 1
˘

by the canonical decomposition of Lemma 2.6. This formula is a Boolean
combination of formulæ of Testu1 Ď Testuα. Remember that convpxi, xiq is
use in place of allocpxiq;

– A is DuA1 with ps, hq (l DuA1 and ps, h, lq »α ps
1, h1, l1q and thpq, DuA1q ď

α. There exists l0 such that ps, hq (l0 A1. By Lemma 3.35, there is l1
such that ps, h, l0q »α ps

1, h1, l1q. Since we have ps, hq (l0 A1, by induction
hypothesis we get ps1, h1q (l1 A1 (note that thpq,A1q “ thpq, DuA1q ď α).
Thus we conclude ps1, h1q (l1 DuA1;

– A is A1˚A2 with ps, hq (l A1˚A2, ps, h, lq »α ps
1, h1, l1q, thpq,A1 ˚A2q ď α.

There are heaps h1 and h2 such that h “ h1] h2 and ps, h1q (l A1 and
ps, h2q (l A2. As α ě thpq,Aq “ thpq,A1q ` thpq,A2q, there exist α1

and α2 such that α “ α1 ` α2 and α1 ě thpq,A1q and α2 ě thpq,A2q.
By Lemma 3.33, there exist heaps h11 and h12 such that h1 “ h11] h12
and ps, h1, lq »α1 ps

1, h11, l
1q and ps, h2, lq »α2 ps

1, h12, l
1q. By the induction

hypothesis, we get ps1, h11q (l1 A1 and ps1, h12q (l1 A2 (since thpq,A1q ď α1

and thpq,A2q ď α2). Consequently we obtain ps1, h1q (l1 A1 ˚A2;

– A is A1 ´̊ A2 with ps, hq (l A1 ´̊ A2 and ps, h, lq »α ps
1, h1, l1q and

q ` β “ thpq,A1 ´̊ A2q ď α with β “ maxpthpq,A1q, thpq,A2qq

We deduce ps, h, lq »q`β ps
1, h1, l1q. Let us prove ps1, h1q (l1 A1 ´̊ A2. We

pick h11 such that h11 K h1 and ps1, h11q (l1 A1 and show that ps1, h1]
h11q (l1 A2. By Lemma 3.34, there is a heap h1 such that h1 K h and
ps, h1, lq »β ps

1, h11, l
1q and ps, h] h1, lq »β ps

1, h1] h11, l
1q. We deduce that

ps, h1q (l A1 holds by the induction hypothesis (since thpq,A1q ď β). As
h1 K h and ps, hq (l A1 ´̊ A2 hold, we deduce ps, h] h1q (l A2. By
induction hypothesis, we deduce ps1, h1] h11q (l1 A2 (since thpq,A2q ď β).
Hence we have ps1, h1q (l1 A1 ´̊ A2.

The induction step for a Boolean outermost connective is straightforward and
therefore this concludes the proof. [\

4.2 Model Checking, Satisfiability and Expressive Completeness

Lemma 3.34 and the proof of Lemma 3.35 suggest a “compressor” lemma that
can operate at any precision and compress either the location or the heap of
a pointed memory state.

Lemma 4.4 (Compressor) Let q ě 1 and let ps, h, lq be a pointed memory
state. The two following statements hold:

Separation Logic with One Quantified Variable 35

1. there exists l1 ď maxvalps, hq ` 1 s.t. ps, h, lq »α ps, h, l
1q holds for any α;

2. for any α ě 1, any h1 K h, there exists h11 K h s.t. ps, h1, lq »α ps, h
1
1, lq

and ps, h]h1, lq »α ps, h]h
1
1, lq and maxvalph11q ď maxvalps, h, lq`15qα.

Proof Let m “ ps, h, lq be a pointed memory state.
Let us start with Statement 1. Let us define l1 the following way: if l P

domphqYp♥ps, hq then l1 “ l; and l1 “ maxvalps, hq`1 if l R domphqYp♥ps, hq.
In the former case, we obviously have l Tm,m l1 because Tm,m is reflexive. In
the later case, we get l Tm,m l1 by Proposition 3.16 item 3. Hence l{l1 verify
pT2–6q with respect to m{m. In both cases, the relation l1 ď maxvalps, hq ` 1
is obvious. Since ps, h, lq »b ps, h, lq holds by reflexivity and l{l1 verify pT2–6q
then by Proposition 3.24, we get ps, h, lq »b ps, h, l

1q. Let α ě 0. By Proposi-
tion 3.10, only the α-equipotence constraints pred♥ps, h, iq „α pred♥ps, h, iq,
loop♥ps, hq „α loop♥ps, hq and rem♥ps, hq „α rem♥ps, hq remain. By reflexiv-
ity, they hold trivially.

Now let us prove Statement 2. Let α ě 1 and h1 K h. By reflexivity we
have ps, h, lq »q`α ps, h, lq. Hence by Lemma 3.34, there exists a heap h11 such
that ps, h1, lq »α ps, h

1
1, lq, ps, h] h1, lq »α ps, h] h11, lq and maxvalps, h11q ď

maxvalps, h, lq ` p2α` 3qpq ` 2q ´ 4. As α ě 1 and q ě 1, we get the relation
p2α`3qpq`2q´4 ď 15qα. We deduce maxvalph11q ď maxvalps, h, lq`15qα. [\

We derive two corollaries that aim at replacing unbounded/infinite quan-
tification with bounded/finite quantification in the respective definitions of
ps, hq (l DuA and ps, hq (l A ´̊ B.

Corollary 4.5 Let q ě 1. For any pointed memory state ps, h, lq and for any
1SL1 formula A with program variables in x1, . . . , xq, we have:

ps, hq (l DuA iff there is l1 ď maxvalps, hq ` 1 such that ps, hq (l1 A

Proof The if case is trivial. For the only if case, let us assume ps, hq (l DuA.
Then there exists l0 P N such that ps, hq (l0 A. By Lemma 4.4, there exists
l1 ď maxvalps, hq` 1 such that ps, h, l0q »α ps, h, l

1q holds for any α. Choosing
e.g. α “ thpq,Aq, we deduce ps, hq (l1 A by Theorem 4.3. [\

Corollary 4.6 Let q ě 1. Let ps, h, lq be pointed memory state and A,B be
two 1SL1 formulæ with program variables in x1, . . . , xq. Let us define m “

maxvalps, h, lq ` 15|A ´̊ B|q2. Then ps, hq (l A ´̊ B if and only if

for any h1 K h with maxvalph1q ď m, ps, h1q (l A implies ps, h] h1q (l B

Proof The only if case is trivial. For the if case, let us assume that ps, h1q (l A
implies ps, h]h1q (l B for any h1 K h such that maxvalph1q ď m and show that
ps, hq (l A´̊ B holds. Let us consider a heap h1 such that h1 K h and ps, h1q (l
A and prove ps, h] h1q (l B. By Lemma 4.4, for α “ q|A ´̊ B| there exists a
heap h2 such that h2 K h, ps, h1, lq »α ps, h

2, lq, ps, h] h1, lq »α ps, h] h2, lq
and maxvalph2q ď maxvalps, h, lq ` 15qα. We deduce maxvalph2q ď m.

But we have thpq,Aq ď q|A| ď α. Hence by Theorem 4.3, from ps, h1q (l A
and ps, h1, lq »α ps, h

2, lq we deduce ps, h2q (l A. Then by hypothesis with h1

36 Stéphane Demri et al.

as h2, we deduce ps, h] h2q (l B. By Theorem 4.3, from thpq,Bq ď q|B| ď α
and ps, h] h1, lq »α ps, h] h

2, lq we conclude ps, h] h1q (l B. [\

We also deduce a model compression result under α-equivalence and then
we derive a small model property as a consequence of Theorem 4.3.

Corollary 4.7 Let q, α ě 1. Every pointed memory state is α-equivalent to a
pointed memory state ps, h, lq such that maxvalps, h, lq ď 16qα.

Proof Let ps0, h0, l0q be a pointed memory state. The set s0pVqYtl0u is a subset
of N of cardinal less than q` 1. Hence there exists a bijection ϕ : NÑ N such
that ϕps0pVq Y tl0uq Ď r0, qs. We define s “ ϕ ˝ s0, h1 “ ϕ ˝ h0 ˝ ϕ

´1 and l “
ϕpl0q. By Proposition 2.3, the pointed memory states ps0, h0, l0q and ps, h1, lq
do not distinguish any formula of 1SL1, hence we have ps0, h0, l0q »α ps, h1, lq.

Now we consider the pointed memory state ps,�, lq. As ϕps0pVq Y tl0uq Ď
r0, qs we deduce spVqYtlu Ď r0, qs hence maxvalps,�, lq ď q. We use Lemma 4.4
item 2 with α ě 1 and h1 K �, hence there exists h such that ps, h1, lq »α
ps, h, lq (and ps,�] h1, lq »α ps,�] h, lq) and maxvalphq ď maxvalps,�, lq `
15qα. We deduce that ps0, h0, l0q and ps, h, lq are α-equivalent. Moreover,
maxvalps, h, lq ď maxpq, q ` 15qαq ď 16qα. [\

Corollary 4.8 (Small Model Property) Let A be an 1SL1 formula with
program variables in x1, . . . , xq. If A is satisfiable then there exists a pointed
memory state ps, h, lq such that ps, hq (l A and maxvalps, h, lq ď 16q.thpq,Aq.

Proof Let α “ thpq,Aq. Let ps1, h1, l1q be a pointed memory state that satisfies
A, i.e. ps1, h1q (l1 A. By Corollary 4.7, there exists a pointed memory state
such that ps1, h1, l1q »α ps, h, lq and maxvalps, h, lq ď 16qα “ 16q.thpq,Aq. By
Theorem 4.3, from α ď thpq,Aq we deduce ps, hq (l A. [\

Now we can give proofs of high-level decidability results as easy conse-
quences of the previous Compressor Lemma 4.4 and its corollaries.

Theorem 4.9 (Decidability of Model-Checking) The problem of check-
ing whether an 1SL1 formula A and a pointed memory state ps, h, lq verify
ps, hq (l A, is decidable.

Proof For q ě 1, V “ tx1, . . . , xqu, a formula A with program variables in V
and a pointed memory state ps, h, lq, we define a function mc

`

q,V,A, ps, h, lq
˘

which returns a value in tff, ttu by structural induction on the formula A:

if A is either e“ e1 or e ãÑ e1 or emp, then we define mc
`

q,V,A, ps, h, lq
˘

such

that mc
`

q,V,A, ps, h, lq
˘

“ tt iff ps, hq (l A (the details are left to the
reader, same as upcoming function amc in Figure 4.1 page 40);

if the principal connective of A is Boolean, for instance if A “ A1 ^A2 then
mc
`

q,V,A, ps, h, lq
˘

“ tt if both

mc
`

q,V,A1, ps, h, lq
˘

“ tt and mc
`

q,V,A2, ps, h, lq
˘

“ tt

hold; otherwise mc
`

q,V,A, ps, h, lq
˘

“ ff;

Separation Logic with One Quantified Variable 37

if A is DuA1 then mc
`

q,V,A, ps, h, lq
˘

“ tt if mc
`

q,V,A1, ps, h, l
1q
˘

“ tt holds

for some l1 ď maxvalps, hq ` 1; otherwise mc
`

q,V,A, ps, h, lq
˘

“ ff;

if A is A1 ˚A2 then mc
`

q,V,A, ps, h, lq
˘

“ tt if both

mc
`

q,V,A1, ps, h1, lq
˘

“ tt and mc
`

q,V,A2, ps, h2, lq
˘

“ tt

hold for some heaps h1 and h2 such that h “ h1]h2 (there are only finitely
many such splits); otherwise mc

`

q,V,A, ps, h, lq
˘

“ ff;

if A is A1 ´̊ A2 then mc
`

q,V,A, ps, h, lq
˘

“ ff if both

mc
`

q,V,A1, ps, h1, lq
˘

“ tt and mc
`

q,V,A2, ps, h] h1, lq
˘

“ ff

hold for some heap h1 such that h1 K h and

maxvalph1q ď maxvalps, h, lq ` 2|A1 ´̊ A2|q
2

(there are only finitely many such h1); otherwise mc
`

q,V,A, ps, h, lq
˘

“ tt.

The termination of mc is by induction on A: any call to mc
`

q,V,A, ps, h, lq
˘

only generates finitely many recursive sub-calls on the (strict) subformulæ of
A. Let us prove the correcteness of the mc function. Let us fix q and V. We
show by induction on A that if A has its program variables in V then for any
pointed memory state ps, h, lq, the equivalence

ps, hq (l A if and only mc
`

q,V,A, ps, h, lq
˘

“ tt

holds. The proof uses Corollaries 4.5 and 4.6 in an obvious way. For instance,
let us consider the case where A “ A1 ´̊ A2:

– let us assume ps, hq (l A and let us show mc
`

q,V,A, ps, h, lq
˘

“ tt. We

show that mc
`

q,V,A, ps, h, lq
˘

“ ff leads to a contradiction. Indeed, in that

case, there exists a heap h1 such that h1 K h and mc
`

q,V,A1, ps, h1, lq
˘

“

tt and mc
`

q,V,A2, ps, h] h1, lq
˘

“ ff. By the induction hypothesis, we de-
duce ps, h1q (l A1 and ps, h]h1q *l A2. As a consequence we get ps, hq *l
A1 ´̊ A2 which contradicts the hypothesis. Hence mc

`

q,V,A, ps, h, lq
˘

“ ff

is impossible so we must have mc
`

q,V,A, ps, h, lq
˘

“ tt;

– let us assume mc
`

q,V,A, ps, h, lq
˘

“ tt and let us show ps, hq (l A1 ´̊

A2. We use Corollary 4.6. Let us consider a heap h1 such that h1 K h,
maxvalph1q ď maxvalps, h, lq`2|A1 ´̊ A2|q

2 and ps, h1q (l A1. Let us show
ps, h] h1q (l A2. By contradiction, if ps, h] h1q *l A2 then by induction,
we have mc

`

q,V,A1, ps, h1, lq
˘

“ tt and mc
`

q,V,A2, ps, h] h1, lq
˘

“ ff.

From the definition of mc, we derive mc
`

q,V,A, ps, h, lq
˘

“ ff which leads
to a contradiction. Hence we must have ps, h] h1q (l A2.

To finish, deciding the model checking problem pA, ps, h, lqq can be done
this way: compute the program variables of A in V “ tx1, . . . , xqu and call
mc
`

q,V,A, ps, h, lq
˘

(remark that if A contains no program variable, we can
harmlessly add an arbitrary one to V). [\

38 Stéphane Demri et al.

Later we show how to transform the decidability proof into a bounded
model checking algorithm that runs in pspace.

Theorem 4.10 (Decidability of Satisfiability) The problem of checking
whether an 1SL1 formula A admits a pointed memory state ps, h, lq such that
ps, hq (l A, is decidable.

This is a direct consequence of Corollary 4.8 and Theorem 4.9. Here is our
main result characterizing the expressive power of 1SL1 in terms of Boolean
combination of test formulæ.

Theorem 4.11 (Quantifier Admissibility) Let q ě 1. Every formula A in
1SL1 with program variables in x1, . . . , xq is logically equivalent to a Boolean
combination of test formulæ in Testuα with α “ thpq,Aq.

Proof Let α “ thpq,Aq and consider the (saturated) set of literals

Sαps, h, lq
def
“

„

tB | B P Testuα and ps, hq (l Bu
Y t B | B P Testuα and ps, hq *l Bu



As Testuα is finite, the set Sαps, h, lq is finite and let us consider the well-defined
atom

Ź

Sαps, h, lq. It is obvious to check the equivalence

ps1, h1q (l1
ľ

Sαps, h, lq iff ps, h, lq »α ps
1, h1, l1q

The disjunction

TA
def
“

ł

Ź

Sαps, h, lq | ps, hq (l A
(

is a Boolean combination (with, as is usual, the empty disjunction understood
as K) of test formulæ in Testuα because

Ź

Sαps, h, lq ranges over the finite set
of atoms built from Testuα. By Theorem 4.3, we deduce that A is logically
equivalent to TA which finishes the proof. [\

We note that the proof of Theorem 4.11 can lead to an algorithmic way
to eliminate quantifiers thanks to the decidability of model-checking (Theo-
rem 4.9). Indeed, by Corollary 4.7, for every pointed memory state ps, h, lq,
there is a pointed memory state ps1, h1, l1q such that ps, h, lq and ps1, h1, l1q are α-
equivalent and maxvalps1, h1, l1q ď 16qα. So, in the construction of TA, we can
restrict ourselves to pointed memory states whose maximal value is bounded
by 16qα. However, the procedure described in the proof is not really suited for
an effective elimination of quantifiers. Theorem 4.11 provides a characteriza-
tion of the expressive power of 1SL1, which is now easy to differenciate from
1SL2. No big deal here since undecidability of 1SL2 is established in (Demri
and Deters 2014) (but strictly speaking, this does not entail that 1SL2 is
strictly more expressive than 1SL1 in case there would be a non-computable
translation from 1SL2 into 1SL1).

Corollary 4.12 1SL2 is strictly more expressive than 1SL1.

The proof can be found in Appendix C starting at page 65.

Separation Logic with One Quantified Variable 39

4.3 Discussion

The Boolean combination equivalent to any formula in 1SL1 is made of test
formulæ that depend on the memory threshold of the formula and on the set
of program variables occurring in it, which seems fair enough.

When A in 1SL1 has no free occurrence of u, one can show that A is equiv-
alent to a Boolean combination of formulæ in Testthpq,Aq. Similarly, when A
in 1SL1 has no occurrence of u at all, A is equivalent to a Boolean combina-
tion of formulæ of the form xi “ xj , xi ãÑ xj , allocpxiq and # rem♥ ě k with
the alternative definition ♥ps, hq “ spVq X domphq; see also (Lozes 2004a,b;
Brochenin et al 2009).

Theorem 4.11 witnesses that the test formulæ we introduced properly ab-
stract memory states when 1SL1 formulæ are involved. Test formulæ from
Definition 3.1 were not given to us and we had to design such formulæ to
conclude Theorem 4.11. All the test formulæ can be expressed in 1SL1, see
developments in Section 2.4 and Lemma 2.14.

Last but not least, we need to prove that the set of test formulæ is expres-
sively complete to get Theorem 4.11. Lemmas 3.33, 3.34 and 3.35 are helpful
to obtain the Correctness Theorem 4.3, taking care of the different first- or
second-order quantifiers. It is in their proofs that the completeness of the set
Testuα is best illustrated. Nevertheless, to apply these lemmas in the proof of
Theorem 4.3, we designed the adequate definition for the function thp¨, ¨q and
we arranged different thresholds in their statements. Then, there is a real in-
terplay between the definition of thp¨, ¨q and how Lemmas 3.33, 3.34 and 3.35
are used in the proof of Theorem 4.3.

4.4 A pspace Upper Bound for Model Checking and Satisfiability

In this section, we consider 1SL1 formulæ with program variables in x1, . . . , xq.
But q ě 1 remains a parameter that is instantiated in our proof of the pspace
bound for satisfiability (resp. model checking) in 1SL1; see Theorems 4.17
and 4.18.

Proposition 4.13 We consider the function ϕ that maps formulæ of 1SL1
defined by ϕpAq def

“ 15q2|A|2. Then the following relations hold for any A,B:

1. ϕp Aq ě ϕpAq;
2. ϕpDuAq ě 1` ϕpAq;
3. ϕpA^ Bq ě maxpϕpAq, ϕpBqq;
4. ϕpA ˚ Bq ě maxpϕpAq, ϕpBqq;
5. ϕpA ´̊ Bq ě 15|A ´̊ B|q2 `maxpϕpAq, ϕpBqq.

The proof is left to the reader. Remark that the actual value of ϕpAq “
15q2|A|2 does not matter much; other choices could be made. It is only essential
that ϕ verifies the relations 1–5 of Proposition 4.13 because they are essential
in the proof of correctness of the algorithm bmc that follows. Notice however

40 Stéphane Demri et al.

1: if B is emp then return tt iff domphq is empty;
2: if B is xi “ xj then return tt iff spxiq and spxjq are equal;
3: if B is xi “ u or u“ xi then return tt iff spxiq and l are equal;
4: if B is u“ u then return tt;
5: if B is xi ãÑ xj then return tt iff spxiq P domphq, and hpspxiqq and spxjq are equal;
6: if B is xi ãÑ u then return tt iff spxiq P domphq, and hpspxiqq and l are equal;
7: if B is u ãÑ xj then return tt iff l P domphq, and hplq and spxjq are equal;
8: if B is u ãÑ u then return tt iff l P domphq, and hplq and l are equal.

Fig. 4.1 Function amc
`

q,V,B, ps, h, lq
˘

P tff, ttu for any atomic formula B of 1SL1.

1: if A is atomic then return amc
`

q,V,A, ps, h, lq
˘

;

2: if A is A1 then return not bmc
`

q,m,V,A1, ps, h, lq
˘

;

3: if A is A1 ^A2 then return bmc
`

q,m,V,A1, ps, h, lq
˘

and bmc
`

q,m,V,A2, ps, h, lq
˘

;
4: if A is DuA1 then return

fin exst

l0 P r0,ms l0 ` ϕpA1q ď m and bmc
`

q,m,V,A1, ps, h, l0q
˘ (

5: if A is A1 ˚A2 then return

fin exst

$

’

’

&

’

’

%

h1 : r0,ms ã r0,ms

maxvalph1q ` maxpϕpA1q, ϕpA2qq ď m
and subheapph1, hq
and bmc

`

q,m,V,A1, ps, h1, lq
˘

and bmc
`

q,m,V,A2, ps, h´ h1, lq
˘

,

/

/

.

/

/

-

6: if A is A1 ´̊ A2 then return

fin fall

$

’

’

&

’

’

%

h1 : r0,ms ã r0,ms

not pmaxvalph1q ` maxpϕpA1q, ϕpA2qq ď mq
or not orthoph1, hq
or not bmc

`

q,m,V,A1, ps, h1, lq
˘

or bmc
`

q,m,V,A2, ps, h] h1, lq
˘

,

/

/

.

/

/

-

where not, or, and are Boolean operators; fin exst, fin fall are finite quantification oper-
ators; subheap, ortho,] and ´ are heap related functions; maxval, max, ` and ď are natural
number related functions; and ϕ is implemented as defined in Proposition 4.13

Fig. 4.2 Function bmc
`

q,m,V,A, ps, h, lq
˘

P tff, ttu for any formula A of 1SL1.

that ϕ should also be chosen to be smoothly computable, i.e. in our case, with
a low space complexity bound like Oplog q ` log |A|q.

In Figure 4.2, we describe the recursive function bmc
`

q,m,V,A, ps, h, lq
˘

with the following inputs:

– q ě 1 and m P N are two natural numbers;
– V “ tx1, . . . , xqu is a set of q program variables;
– A is an 1SL1 formula with program variables in x1, . . . , xq;
– ps, h, lq is a pointed memory state where s : tx1, . . . , xqu Ñ N.

Such an input is called legitimate for bmc. The function bmc is defined by
structural induction on the formula A and (eventually) returns a Boolean
value in tff, ttu. There is a special treatment for atomic formulæ B of 1SL1
described by the (non-recursive) function amc

`

q,V,B, ps, h, lq
˘

P tff, ttu; see
Figure 4.1.

Separation Logic with One Quantified Variable 41

Proposition 4.14 On a legitimate input, bmc
`

q,m,V,A, ps, h, lq
˘

always ter-
minates and returns either ff or tt. If pq,m,Vq can be stored in memory
space Opqm logmq and the relation maxvalps, h, lq ď m holds then the call
bmc

`

q,m,V,A, ps, h, lq
˘

runs in space O
`

pq ` |A|qm logm
˘

.

Proof bmc
`

q,m,V,A, ps, h, lq
˘

terminates because it is defined by structural
induction on A. The depth of recursion is thus bounded by the depth of A,
which is itself bounded by |A|. The parameters q, m, V, and s remain un-
changed during a run of bmc and can be stored in space Opqm logmq. Each
recursive call involves storing new data in the stack:

– when bmc
`

q,m,V, DuA, ps, h, lq
˘

makes the recursive call, the new data is
l0 (size bounded by logm);

– when bmc
`

q,m,V,A ˚ B, ps, h, lq
˘

makes recursive calls, the new data is
either h1 or h2 “ h´ h1 (both of size bounded by m logm);

– when bmc
`

q,m,V,A ´̊ B, ps, h, lq
˘

makes recursive sub-calls, the new data
is either h1 or h] h1 (both of size bounded by m logm). [\

We now prove following correctness lemma for bmc
`

q,m,V,A, ps, h, lq
˘

: on
a legitimate input, it returns the correct value of the predicate ps, hq (l A
provided m is chosen large enough.

Lemma 4.15 Let q ě 1 and m P N. Let A be an 1SL1 formula with program
variables in V “ tx1, . . . , xqu and ps, h, lq be a pointed memory state. If we
assume maxvalps, h, lq ` ϕpAq ď m then

bmc
`

q,m,V,A, ps, h, lq
˘

“ tt iff ps, hq (l A

The proof can be found in Appendix C starting at page 65.

Theorem 4.16 Let q ě 1. Given a 1SL1 formula A with program vari-
ables in x1, . . . , xq, a pointed memory state ps, h, lq and m P N such that
maxpq,maxvalps, h, lq, |A|q ď m, it is possible to check the predicate ps, hq (l A
in space Opm5 logmq.

Proof Let V “ tx1, . . . , xqu and m1 “ 16m4. We have maxvalps, h, lq ď m ď m1

and

maxvalps, h, lq ` ϕpAq “ maxvalps, h, lq ` 15q2|A|2 ď m` 15m4 ď m1

Up to compression of the names x1, . . . , xq, we can store the data pq, 16m4,Vq
in space Opqm1 logm1q. Hence bmc

`

q,m1,V,A, ps, h, lq
˘

terminates after a run
in space Oppq ` |A|qm1 logm1q (see Proposition 4.14) and returns the correct
value of the predicate ps, hq (l A (see Lemma 4.15). From q ď m and |A| ď m,
we deduce the Opm5 logmq space upper bound. [\

Theorem 4.17 The satisfiability of an 1SL1 formula A can be solved in space
Op|A|15 log |A|q.

42 Stéphane Demri et al.

Proof The first step is to collect the program variables of A. Since each atomic
formula contains at most two different program variables, A contains at most
|A|`1 different program variables. Let q “ |A|`1. Hence there exists a set V “
tx1, . . . , xqu such that A has programs variables in x1, . . . , xq. Computing q and
V can be done in deterministic time Op|A| log |A|q with a sorting algorithm.
Hence it can also be done in space Op|A| log |A|q.

We now use the particular values q and V obtained from A. Corollary 4.8
states that if A is satisfiable, then there is a pointed memory state ps, h, lq
such that ps, hq (l A and maxvalps, h, lq ď m with m “ 16q.thpq,Aq. From
q “ |A| ` 1 and thpq,Aq ď q|A|, we deduce m ď 16p|A| ` 1q3.

To check for the satisfiability of A, it is thus sufficient to test the predicate
ps, hq (l A for all pointed memory states ps, h, lq such that maxvalps, h, lq ď
m. For such a pointed memory state we have maxpq,maxvalps, h, lq, |A|q ď
maxpq,m, |A|q ď 16p|A| ` 1q3. Hence by Theorem 4.16, checking for satisfia-

bility of A can be done in space Op|A|15 log |A|q. [\

Before we prove the pspace upper bound for the model-checking problem,
we have to describe the composition of the input of this problem (and how its
size is measured) because it does not only contain a formula but also a model.
Hence the input of the model-checking problem is of the form pps, h, lq,Aq.
where ps, h, lq is a pointed memory state and A is an 1SL1 formula; and the
problem is to determine whether ps, hq (l A holds. Let V “ tx1, . . . , xqu be
the q different program variables that occur in A. The store s must be defined
on at least those q program variables that occur in A. Let n be the cardinality
of domphq. The heap h which is defined on exactly n locations. Let m be the
maximal value of the numerical inputs, i.e. spVqYdomphqYranphqYtlu. Hence
the value pq ` n` 1q logm` |A| measures the size of the input of the model-
checking problem. We rather choose the lower bound k “ q ` n` 1` |A|, i.e.
we assume that each numerical input is as least one bit long.

Theorem 4.18 Model-checking for 1SL1 can be solved in polynomial space.

Proof From the input pps, h, lq,Aq, we first compute a pointed memory state
ps1, h1, l1q of small size which is equivalent to ps, h, lq in polynomial space:
we construct ps1, h1, l1q such that maxvalps1, h1, l1q ď 2k and (ps, hq (l A iff
ps1, h1q (l1 A). Let us define the set D “ spVqYdomphqYranphqYtlu. We know
that d “ cardpDq ď q`2n`1 ď 2k. In deterministic polynomial-time (and thus
also polynomial space), we compute a bijection ϕ : D Ñ r0, d´ 1s, for instance
using a sorting algorithm. Then we compute s1 “ ϕ ˝ s, h1 “ ϕ ˝ h ˝ ϕ´1 and
l1 “ ϕplq in polynomial time. We obviously have maxvalps1, h1, l1q ď d´1 ď 2k
and by Proposition 2.3, we have the equivalence ps, hq (l A iff ps1, h1q (l1 A.

We have maxpq,maxvalps1, h1, l1q, |A|q ď 2k, hence by Theorem 4.16, we can
check the predicate ps1, h1q (l1 A in space Opk5 log kq which is thus polynomial
in the size of the input. [\

Theorem 4.19 The model-checking and satisfiability problems for 1SL1 are
pspace-complete.

Separation Logic with One Quantified Variable 43

Proof pspace-hardness for both problems is a consequence of (Calcagno et al
2001) since the problems for propositional separation logic SL0 are already
pspace-hard. Note that the pspace-hardness proof can be adapted with a
single record field and that nil can be simulated by a dedicated program vari-
able, see (Calcagno et al 2001). The pspace upper bound for model-checking
(resp. satisfiability) is stated in Theorem 4.18 (resp. Theorem 4.17). [\

Corollary 4.20 Let q ě 1. Let A be an 1SL1 formula with program variables
in x1, . . . , xq and let α “ thpq,Aq. Computing a Boolean combination of test
formulæ in Testuα logically equivalent to A can be done in polynomial space
(even though the outcome formula can be of exponential size).

Proof We analyze the proof of Theorem 4.11. Let A be an 1SL1 formula with
α “ thpq,Aq. By the proof of Theorem 4.11 and Corollary 4.7, A is logically
equivalent to the formula below

ł

Ź

Sαps, h, lq
ˇ

ˇ ps, hq (l A and maxvalps, h, lq ď 16qα
(

The non-isomorphic copies of pointed memory states ps, h, lq such that

maxvalps, h, lq ď 16qα

can be enumerated in polynomial space. Moreover, the model-checking prob-
lem for 1SL1 can be solved in polynomial space, whence the above formula
can be built in polynomial space (even though its size may be exponential in
the size of A). Note also that Sαps, h, lq can be computed in polynomial space
too. [\

5 Complexity of Satisfiability of Test Formulæ

The goal of this section is to complete the proof of Theorem 3.5. We decide
the conjunctions of literals in deterministic polynomial-time using a saturation
algorithm based in a set of deduction rules for basic test formulæ. We then
describe the np procedure for Boolean combinations of test formulæ.

Remember that Basicu (resp. Testuα) denotes the set of basic formulæ (resp.
test formulæ) built from the program variables x1, . . . , xq.

Proposition 5.1 (Soundness of the saturation rules) Let P be a subset
of Basicu and let ps, h, lq be a pointed memory state such that ps, hq (l B holds
for any B P P. If C P Basicu is derivable from the formulæ of P using the rules
of Figure 5.1 then ps, hq (l C holds.

The proof is by induction on the derivation height and it is left to the reader.

If a set of basic formulæ is satisfied in a model, then all the basic logical
consequences of those formulæ are also satisfied in that model. Hence, in gen-
eral it is not possible to satisfy exactly a given set of basic formulæ. But if a
set P of basic formuæ is closed under the rules of Figure 5.1, then it is possible
to satisfy exactly the formulæ of P in the canonical pre-model defined below.

44 Stéphane Demri et al.

x“ x

x“ y

y“ x

x“ y y“ z

x“ z

convpxi, xjq

convpxj , xiq

convpxi, xjq convpxj , xkq

convpxi, xkq

x“ y x ãÑ z

y ãÑ z

x“ y z ãÑ x

z ãÑ y

xi “ xj convpxi, xkq

convpxj , xkq

xi “ xj btwnpxi, xkq

btwnpxj , xkq

xi “ xj btwnpxk, xiq

btwnpxk, xjq

u“ xi allocpuq

convpxi, xiq

xi ãÑ z xj ãÑ z

convpxi, xjq

x ãÑ y x ãÑ z

y“ z

xi ãÑ y y ãÑ xj

btwnpxi, xjq

xi ãÑ y btwnpxi, xjq

y ãÑ xj

xi ãÑ xj convpxj , xjq

toallocpxiq

xi ãÑ u allocpuq

toallocpxiq

xi ãÑ xj toallocpxiq

convpxj , xjq

xi ãÑ y y ãÑ y

tolooppxiq

xi ãÑ y tolooppxiq

y ãÑ y

u ãÑ x

allocpuq

convpxi, xjq xi ãÑ z

xj ãÑ z

convpxi, xjq btwnpxi, xkq

btwnpxj , xkq

convpxi, xjq tolooppxiq

tolooppxjq

convpxi, xjq toallocpxiq

toallocpxjq

xi “ u convpxi, xiq

allocpuq

btwnpxi, xjq btwnpxi, xkq

xj “ xk

btwnpxi, xjq

convpxi, xiq

btwnpxi, xjq

toallocpxiq

tolooppxiq btwnpxi, xjq

xi ãÑ xj

tolooppxiq

toallocpxiq

toallocpxiq

convpxi, xiq

toallocpxiq xi ãÑ u

allocpuq

Fig. 5.1 Saturation rules for basic formulæ with x, y, z P PVARY tuu and xi, xj , xk P PVAR.

Definition 5.2 (Canonical pre-model) Let q ě 1. The canonical pre-model
of a finite set P of formulæ of Basicu is built the following way: we define two
partial functions s : V ã r1, qs and h : r1, qs ã rq ` 1, 2qs, a finite graph
H Ď r0, 2qs ˆ r0, 2q ` 1s and a finite subset L Ď r0, 2qs by:

– spxiq
def
“ mintj | xi “ xj P Pu and hi

def
“ mintq ` j | convpxi, xjq P Pu;

– Fmi
def
“ txi ãÑ x1, . . . , xi ãÑ xqu and Bwi

def
“ tbtwnpxi, x1q, . . . , btwnpxi, xqqu;

– Fmu
def
“ tu ãÑ x1, . . . , u ãÑ xqu and Tou

def
“ tx1 ãÑ u, . . . , xq ãÑ uu;

– Equ
def
“ tx1 “ u, . . . , xq “ uu;

– for B Ď Basicu the notation B K P is a shortcut for BX P “ H;

– H is defined to be the least set such that:
H1. pspxiq, spxjqq P H if xi ãÑ xj P P;
H2. pspxiq, hjq P H if convpxi, xjq P P and Fmi K P;
H3. phi, spxjqq P H if btwnpxi, xjq P P and Fmi K P;
H4. phi, hjq P H if tconvpxi, xjq, tolooppxiqu Ď P and Fmi K P;
H5. phi, 0q P H if toallocpxiq P P and pFmi Y Bwi Y ttolooppxiquq K P;
H6. p0, spxiqq P H if u ãÑ xi P P and pEqu Y Touq K P;
H7. p0, 0q P H if u ãÑ u P P and pEqu Y Tou Y Fmuq K P;
H8. p0, 2q ` 1q P H if pEqu Y Tou Y Fmu Y tu ãÑ uuq K P and

allocpuq P P;

– L is defined to be the least set such that:
L1. spxiq P L if xi “ u P P;

Separation Logic with One Quantified Variable 45

L2. hi P L if xi ãÑ u P P and Equ K P;
L3. 0 P L if pEqu Y Touq K P.

Remark that when we write e.g. pspxiq, hjq P H, we assume that spxiq and hj
are both defined otherwise the pair is not added to H. The same remark holds
for the definition of L.

Remark that Fm abbreviates “from,” Bw abbreviates “between,” To ab-
breviates “to” and Eq abbreviates “equal.” We prove that the canonical pre-
model, which might not even be a memory state in general, becomes a model
of exactly those formulæ of P when P is saturated under logical consequence.

Proposition 5.3 (Completeness of the saturation rules) If the (finite)
subset P Ď Basicu is closed under the rules of Figure 5.1 and ps,H,Lq is the
canonical pre-model of P then:

– s is a total function s : V Ñ r1, qs, hence s is a store;
– H is a finite and functional graph, hence H is the graph of some heap h;
– L is a singleton subset of N, i.e. L “ tlu for a location l;
– the inclusion domphq Ď ♥ps, hq Y tlu holds;
– for any formula B P Basicu we have ps, hq (l B iff B P P.

The proof can be found in Appendix D starting at page 66.

Hence if P is closed under the rules of Figure 5.1 then the canonical pre-
model of P is a model of exactly those formulæ in P. As a consequence,
any conjunction of basic test formulæ is satisfiable. Let us see what happens
when we add negations of basic test formulæ and cardinality constraints like
pred♥pxiq ě k or # loop♥ ě k

1 ...

Let us write clpPq to denote the closure of a (finite) set P of basic formulæ
of Basicu under the rules of Figure 5.1, i.e. all the formulæ that can be deduced
from those of P. We can compute clpPq by an obvious saturation algorithm.
Since Basicu is closed under the rules of Figure 5.1, the cardinal of clpPq is at
most the cardinal of Basicu, i.e. 4q2 ` 6q ` 3. Hence, the saturation algorithm
runs in polynomial time in q.

The expression B´ is defined as usual by B´
def
“ t B | B P B´u.

Given B`,B´ Ď Basicu, checking for the satisfiability of the conjunction of the
formulæ of B` Y B´ is easy. It is sufficient to compute the closure clpB`q:

– if B´ X clpB`q “ H then the conjunction of B` Y B´ is satisfied in the
canonical model of clpB`q by Proposition 5.3;

– if otherwise B´ X clpB`q ‰ H then B` Y B´ is unsatisfiable. Indeed, let
B P B´X clpB`q. Then B should be both satisfied (by Proposition 5.1) and
unsatisfied in any model of B` Y B´ which leads to a contradiction.

For the general problem of the satisfiability of conjunctions of literals in
BasicuYSizeα, there is a subtlety related to the interpretation of the quantified
variable u. Indeed, using only literals from Basicu it is possible to require that
the interpretation of u belongs to domphqz♥ps, hq. Indeed, any model of

BY

 px1 “ uq, . . . , pxq “ uq, px1 ãÑ uq, . . . , pxq ãÑ uq, allocpuq
(

46 Stéphane Demri et al.

would meet such a requirement. Hence, one of the test formulæ

pred♥px1q ě 1, . . . ,# pred♥pxqq ě 1,# loop♥ ě 1,# rem♥ ě 1

has to be satisfied in such a model. That is why we develop a more involved
argument to check the satisfiability of conjunctions of literals in Testuα in poly-
nomial time.

Definition 5.4 A cardinality assignment is a tuple pp1, . . . , pq, l, rq of q ` 2
elements of N.

Proposition 5.5 Let q ě 1. Let s : V Ñ N be a store, h : N ã N be a heap
and l P N be a location. Let pp1, . . . , pq, l, rq be a cardinality assignment such
that:

1. spxiq “ spxjq implies pi “ pj for all i, j P r1, qs;
2. cardppred♥ps, h, iqq ď pi for any i P r1, qs;
3. cardploop♥ps, hqq ď l;
4. cardprem♥ps, hqq ď r.

There exists a heap h1 such that:

– ps, h, lq »b ps, h
1, lq;

– cardppred♥ps, h
1, iqq “ pi for any i P r1, qs;

– cardploop♥ps, h
1qq “ l;

– cardprem♥ps, h
1qq “ r.

The proof can be found in Appendix D starting at page 76.

It is always possible to add elements outside the core of a heap as much as
we wish while preserving basic equivalence.

Definition 5.6 (1-, 2- and 3-consistency) Let q, α ě 1. Let B`,B´ be two
(finite) sets of formulæ of Basicu and S be a (finite) set of literals from Sizeα.
We say that the triple pB`,B´,Sq is 1-consistent when for all i, j P r1, qs and
for all a, b P N the following conditions hold:

C1.1 B´ X clpB`q “ H;
C1.2 if xi “ xj P clpB`q and t# pred♥pxiq ě a, # pred♥pxjq ě bu Ď S

then a ă b;
C1.3 if t# loop♥ ě a, # loop♥ ě bu Ď S then a ă b;
C1.4 if t# rem♥ ě a, # rem♥ ě bu Ď S then a ă b.

We say that the triple pB`,B´,Sq is 2-consistent when it is 1-consistent and
for all i, j P r1, qs the following conditions hold:

C2.1 if txi “ xj , u ãÑ xiu Ď clpB`q and # pred♥pxjq ě 1 P S
then pB` Y tBu,B´,Sq is 1-consistent for some B P Equ Y Tou;

C2.2 if u ãÑ u P clpB`q and # loop♥ ě 1 P S
then pB` Y tBu,B´,Sq is 1-consistent for some B P Equ Y Tou;

Separation Logic with One Quantified Variable 47

We say that the triple pB`,B´,Sq is 3-consistent when it is 2-consistent and
the following conditions hold:

C3.1 if allocpuq P clpB`q and # rem♥ ě 1 P S then pB` Y tBu,B´,Sq is
2-consistent for some B P Equ Y Tou Y Fmu Y tu ãÑ uu.

where Equ, Tou and Fmu are from Definition 5.2.

Proposition 5.7 If the conjunction of the formulæ in B` Y B´ Y S is sat-
isfiable then the triple pB`,B´,Sq is n-consistent for any n P t1, 2, 3u.

The proof can be found in Appendix D starting at page 77.

Proposition 5.8 If the triple pB`,B´,Sq is 3-consistent then the conjunction
of the formulæ in B` Y B´ Y S is satisfiable.

The proof can be found in Appendix D starting at page 78.

Proposition 5.9 For any n P t1, 2, 3u, the n-consistency of pB`,B´,Sq can
be checked in polynomial time in the size of pB`,B´,Sq.

The proof is left to the reader.

Let us conclude this section by explaining why the satisfiability problem
for Boolean combinations of test formulæ (see Definition 3.4) can be solved
in np, establishing the upper bound that was postponed from the proof of
Theorem 3.5. Let A be a Boolean combination of test formulæ over x1, . . . , xq.
An np procedure for checking the satisfiability of A goes as follows:

1. non-deterministically guess a conjunction of literals contained in A that
makes true A propositionnally, say A1 ^ ¨ ¨ ¨ ^ An. Then check for the
satisfiability of A1 ^ ¨ ¨ ¨ ^ An starting at step 2. If it is satisfiable return
“yes.” If no such conjunction is satisfiable return “false”;

2. none of the Ai can be K; if Ai is K then remove it; hence all the Ai are
literals from Basicu Y Sizeα;

3. sort A1, . . . ,An and find pB`,B´,Sq so that tA1, . . . ,Anu “ B`Y B´YS;
4. Return the 3-consistency of pB`,B´,Sq.

From Propositions 5.7 and 5.8, the 3-consistency of pB`,B´,Sq is equivalent
to satisfiability of the conjunction of B`Y B´YS, hence this is equivalent to
the satisfiability of A1 ^ ¨ ¨ ¨ ^An. Step 1 is the nondeterministic polynomial-
time step, all the other steps can be performed in deterministic polynomial
time; use Proposition 5.9 for step 4.

6 Conclusion

In (Brochenin et al 2012), the undecidability of first-order separation logic
1SL with a unique record field is shown. Propositional separation logic 1SL0
is also known to be pspace-complete (Calcagno et al 2001). In this paper,

48 Stéphane Demri et al.

we provided an extension with a unique quantified variable (and with both
separating connectives) and we show that the satisfiability problem for 1SL1
is pspace-complete by presenting an original and fine-tuned abstraction of
memory states. We proved that in 1SL1 separating connectives can be elimi-
nated in a controlled way as well as first-order quantification over the single
variable. In that way, we show a quantifier elimination property similar to
what is known with Presburger arithmetic. Last but not least, we have estab-
lished that satisfiability problem for Boolean combinations of test formulæ is
np-complete thanks to a saturation algorithm to deal with conjunctions. This
is reminiscent of decision procedures used in SMT solvers and it is a chal-
lenging question to take advantage of these features to decide 1SL1 with an
SMT solver. Finally, the design of decidable fragments between 1SL1 and un-
decidable 1SL2 that admit decision procedures by adapting our method would
be worth being further investigated. Indeed, even though the extension with
strictly more than one record field might preserve decidability (which remains
to be formally proved), it is open whether the addition of the reachability
predicate remains decidable.

References

Barrett C, Conway C, Deters M, Hadarean L, Jovanovic D, King T, Reynolds A, Tinelli C
(2011) CVC4. In: CAV’11, Springer, Lecture Notes in Computer Science, vol 8606, pp
171–177

Berdine J, Calcagno C, O’Hearn P (2005) Smallfoot: Modular Automatic Assertion Checking
with Separation Logic. In: FMCO’05, Springer, Lecture Notes in Computer Science, vol
4111, pp 115–137

Brochenin R, Demri S, Lozes E (2009) Reasoning about sequences of memory states. Annals
of Pure and Applied Logic 161(3):305–323

Brochenin R, Demri S, Lozes E (2012) On the almighty wand. Information and Computation
211:106–137

Brotherston J, Kanovich M (2010) Undecidability of Propositional Separation Logic and Its
Neighbours. In: LICS’10, IEEE, pp 130–139

Calcagno C, O’Hearn P, Yang H (2001) Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In: FSTTCS’01, Springer, Lecture Notes in
Computer Science, vol 2245, pp 108–119

Cook B, Haase C, Ouaknine J, Parkinson M, Worrell J (2011) Tractable Reasoning in a
Fragment of Separation Logic. In: CONCUR’11, Springer, Lecture Notes in Computer
Science, vol 6901, pp 235–249

Dawar A, Gardner P, Ghelli G (2007) Expressiveness and complexity of graph logic. Infor-
mation and Computation 205(3):263–310

Demri S, Deters M (2014) Expressive Completeness of Separation Logic with Two Variables
and No Separating Conjunction. In: CSL-LICS’14, ACM Press

Demri S, Galmiche D, Larchey-Wendling D, Méry D (2014) Separation Logic with One
Quantified Variable. In: CSR’14, Springer, Lecture Notes in Computer Science, vol 8476,
pp 125–138

Galmiche D, Méry D (2010) Tableaux and Resource Graphs for Separation Logic. Journal
of Logic and Computation 20(1):189–231

Haase C, Ishtiaq S, Ouaknine J, Parkinson M (2013) SeLoger: A Tool for Graph-Based Rea-
soning in Separation Logic. In: CAV’13, Springer, Lecture Notes in Computer Science,
vol 8044, pp 790–795

Separation Logic with One Quantified Variable 49

Iosif R, Rogalewicz A, Simacek J (2013) The Tree Width of Separation Logic with Recursive
Definitions. In: CADE’13, Springer, Lecture Notes in Computer Science, vol 7898, pp
21–38

Ishtiaq S, O’Hearn P (2001) BI as an Assertion Language for Mutable Data Structures. In:
Hankin C, Schmidt D (eds) POPL’01, ACM, pp 14–26

Larchey-Wendling D, Galmiche D (2010) The Undecidability of Boolean BI through Phase
Semantics. In: LICS’10, IEEE, pp 140–149

Lozes E (2004a) Expressivité des logiques spatiales. PhD thesis, LIP, ENS Lyon, France
Lozes E (2004b) Separation Logic preserves the expressive power of classical logic. In: 2nd

Workshop on Semantics, Program Analysis, and Computing Environments for Memory
Management (SPACE’04)

de Moura L, Björner N (2008) Z3: An Efficient SMT Solver. In: TACAS’08, Springer, Lecture
Notes in Computer Science, vol 4963, pp 337–340

Piskac R, Wies T, Zufferey D (2013) Automating Separation Logic using SMT. In: CAV’13,
Springer, Lecture Notes in Computer Science, vol 2013, pp 773–789

Presburger M (1929) Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus
du premier congrès de mathématiciens des Pays Slaves, Warszawa, pp 92–101

Reynolds J (2002) Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS’02, IEEE, pp 55–74

50 Stéphane Demri et al.

A Proofs of Section 2

Proposition 2.9 Let s, h, h1, h2 be such that h “ h1] h2 and let i P r1, qs. The following
identities hold:

1. pred♥ps, h1, iq “ ppred♥ps, h, iq X domph1qq Z ppredps, h, iq X∆ps, h1, h2qq;

2. loop♥ps, h1q “ ploop♥ps, hq X domph1qq Z ploopps, hq X∆ps, h1, h2qq;

3. rem♥ps, h1q “ prem♥ps, hq X domph1qq Z premps, hq X∆ps, h1, h2qq.

Proof First, observe that we have the following identities:

predps, h1, iq “ predps, h, iq X domph1q
loopps, h1q “ loopps, hq X domph1q
remps, h1q “ remps, hq X domph1q

♥ps, h1q “ ♥ps, hq Y domph1q Y∆ps, h1, h2q

By definition, we have

pred♥ps, h1, iq “ predps, h1, iqz♥ps, h1q “ predps, h1, iq X♥ps, h1q

Hence,
pred♥ps, h1, iq “ ppredps, h, iq X domph1q X♥ps, hqqY

ppredps, h, iq X domph1q X domph1qq Y ppredps, h, iq X domph1q X∆ps, h1, h2qq

Consequently,

pred♥ps, h1, iq “ ppred♥ps, h, iq X domph1qq Y ppredps, h, iq X∆ps, h1, h2qq

since ∆ps, h1, h2q Ď domph1q. The other identities are established in a similar fashion. [\

Proposition 2.10 Let ps, hq be a memory state, l1 P Nzdomphq and l2 P N. Let us write
h1Ñ2 for h] rl1 ÞÑ l2s and let i be in r1, qs. The following identities hold:

domph1Ñ2q “ domphq Z tl1u

predps, h1Ñ2, iq “ predps, h, iq Z

"

tl1u if l2 “ spxiq
H if l2 ‰ spxiq

loopps, h1Ñ2q “ loopps, hq Z

"

tl1u if l1 “ l2
H if l1 ‰ l2

remps, h1Ñ2q “ remps, hq Z

"

tl1u if l2 R spVq Y tl1u
H if l2 P spVq Y tl1u

♥ps, h1Ñ2q “ ♥ps, hq Z

$

’

’

&

’

’

%

tl1, l2u if l1 P spVq, l2 P domphq and l2 R ♥ps, hq
tl1u if l1 P spVq and pl2 R domphq or l2 P ♥ps, hqq
tl1u if l1 R spVq and l1 P hpspVqq
H if l1 R p♥ps, hq

Proof The proof of the first four identities is left to the reader. For the identity that describes
♥ps, h1Ñ2q, we notice that

refps, h1Ñ2q “ refps, hq Y ptl1u X spVqq

holds. For accps, h1Ñ2q, it is a bit more complicated. We have

accps, h1Ñ2q “

ˆ

hpspVqq Y
"

tl2u if l1 P spVq
H if l1 R spVq

˙

X
`

domphq Y tl1u
˘

Hence we deduce the properties:

(P1) accps, hq Ď accps, h1Ñ2q Ď accps, hq Y tl1, l2u;
(P2) l1 P accps, h1Ñ2qzaccps, hq iff l1 P hpspVqq or l1 “ l2 P spVq;

Separation Logic with One Quantified Variable 51

(P3) l2 P accps, h1Ñ2qzaccps, hq iff l1 “ l2 P hpspVqq or l1 P spVq and l2 P domphq Y tl1u

From ♥ps, h1Ñ2q “ refps, h1Ñ2q Y accps, h1Ñ2q, it is then easy to deduce the inclusions

♥ps, hq Ď ♥ps, h1Ñ2q Ď ♥ps, hq Y tl1, l2u

Then we study the statements l1 P ♥ps, h1Ñ2q and l2 P ♥ps, h1Ñ2q according to the four
supplementary conditions on the right-hand side of the fifth identity:

– if l1 P spVq, l2 P domphq and l2 R ♥ps, hq then l1 ‰ l2 (because l1 R domphq). Then
l1, l2 R ♥ps, hq. Hence the union ♥ps, hq Z tl1, l2u is indeed disjoint. From l1 P spVq we
deduce l1 P refps, h1Ñ2q. From l1 P spVq and l2 P domphq we deduce l2 P accps, h1Ñ2q.
We obtain ♥ps, h1Ñ2q “ ♥ps, hq Z tl1, l2u;

– if l1 P spVq and (l2 R domphq or l2 P ♥ps, hq) then we already have l1 P refps, h1Ñ2q and
l1 R ♥ps, hq. Hence l1 P ♥ps, h1Ñ2qz♥ps, hq.
Let us show that if l1 ‰ l2 and l2 P ♥ps, h1Ñ2q then l2 P ♥ps, hq. By contradiction,
let us assume l1 ‰ l2 and l2 P ♥ps, h1Ñ2qz♥ps, hq. Then we have l2 P refps, h1Ñ2q Y

accps, h1Ñ2q. Then either l2 P refps, h1Ñ2q or l2 P accps, h1Ñ2q. In the former case,
from l1 ‰ l2 we deduce l2 P refps, hq Ď ♥ps, hq, a contradiction. In the later case, we
deduce l2 P accps, h1Ñ2qz♥ps, hq Ď accps, h1Ñ2qzaccps, hq hence, by (P3) either l1 “
l2 P hpspVqq (a contradiction) or l2 P domphq Y tl1u. From l1 ‰ l2, we get l2 P domphq.
Since we also have l2 R ♥ps, hq, we get a contradiction with l2 R domphq or l2 P ♥ps, hq.
We deduce ♥ps, h1Ñ2q “ ♥ps, hq Z tl1u;

– if l1 R spVq and l1 P hpspVqq then we have l1 P accps, h1Ñ2q and l1 R ♥ps, hq. Hence
l1 P ♥ps, h1Ñ2qz♥ps, hq.
Let us show that if l1 ‰ l2 and l2 P ♥ps, h1Ñ2q then l2 P ♥ps, hq. By contradiction,
let us assume l1 ‰ l2 and l2 P ♥ps, h1Ñ2qz♥ps, hq. Then we have l2 P refps, h1Ñ2q Y

accps, h1Ñ2q. Then either l2 P refps, h1Ñ2q or l2 P accps, h1Ñ2q. But l2 P accps, h1Ñ2q

implies l2 P accps, h1Ñ2qz♥ps, hq Ď accps, h1Ñ2qzaccps, hq and thus, by (P3) we get
either l1 “ l2 (a contradiction) or l1 R spVq (a contradiction). From l2 P refps, h1Ñ2q

and l1 ‰ l2 we deduce l2 P refps, hq Ď ♥ps, hq (a contradiction).
We obtain ♥ps, h1Ñ2q “ ♥ps, hq Z tl1u;

– if l1 R p♥ps, hq then neither l1 nor l2 belong to accps, h1Ñ2qzaccps, hq. Then l1 P

refps, h1Ñ2q implies l1 P spVq which contradicts l1 R p♥ps, hq. Hence we get l1 R

♥ps, h1Ñ2q. Finally, l2 P refps, h1Ñ2q implies either l2 P refps, hq or l1 “ l2. In the former
case, we get l2 P ♥ps, hq. In the later case, we have already proved l2 “ l1 R ♥ps, h1Ñ2q.
Hence in any case, (l1 R ♥ps, h1Ñ2q and l2 P ♥ps, h1Ñ2q) imply l2 P ♥ps, hq.
We obtain ♥ps, h1Ñ2q “ ♥ps, hq. [\

Proposition 2.11 Let ps, hq be a memory state, l1 P Nzdomphq and l2 P N. Let us write
h1Ñ2 for h] rl1 ÞÑ l2s and let i be in r1, qs. The following identities hold:

pred♥ps, h1Ñ2, iq “

$

&

%

pred♥ps, h, iq Z tl1u if l1 R p♥ps, hq and l2 “ spxiq

pred♥ps, h, iq ´ tl2u if l1 P spVq and l2 P pred♥ps, h, iq

pred♥ps, h, iq otherwise

loop♥ps, h1Ñ2q “

$

&

%

loop♥ps, hq Z tl1u if l1 R p♥ps, hq and l1 “ l2
loop♥ps, hq ´ tl2u if l1 P spVq and l2 P loop♥ps, hq

loop♥ps, hq otherwise

rem♥ps, h1Ñ2q “

$

&

%

rem♥ps, hq Z tl1u if l1 R p♥ps, hq and l2 R spVq Y tl1u
rem♥ps, hq ´ tl2u if l1 P spVq and l2 P rem♥ps, hq

rem♥ps, hq otherwise

where X ´ tl2u means that the location l2 already belongs to the set X and is (strictly)
removed from it.

Proof Let us first establish the two following properties:

52 Stéphane Demri et al.

(P1) l1 P ♥ps, h1Ñ2q iff l1 P p♥ps, hq;
(P2) if l2 P domphqz♥ps, hq then (l2 P ♥ps, h1Ñ2q iff l1 P spVq).
Property (P1) is a direct consequence the last equation of Proposition 2.10 and the fact that
l1 R ♥ps, hq (remember l1 R domphq). Let us prove Property (P2):

– for the only if part, we assume l2 P ♥ps, h1Ñ2q and prove l1 P spVq by contradiction.
Indeed, if l1 R spVq, then we have the inclusion l2 P ♥ps, h1Ñ2q Ď ♥ps, hqYtl1u according
to Proposition 2.10. Hence either l2 P ♥ps, hq which contradicts l2 P domphqz♥ps, hq or
l2 “ l1 which implies l2 R domphq and contradicts l2 P domphqz♥ps, hq;

– for the if part, if l1 P spVq then l2 “ h1Ñ2pl1q P h1Ñ2pspVqq. Since l2 P domphq Ď
domph1Ñ2q we deduce l2 P ♥ps, h1Ñ2q.

By Proposition 2.10, there are only three possible values for ♥ps, h1Ñ2q:

♥ps, h1Ñ2q P

♥ps, hq,♥ps, hq Z tl1u,♥ps, hq Z tl1, l2u
(

(A.1)

Let us now consider the case of pred♥ps, h1Ñ2, iq. According to Proposition 2.10 and l1 R

domphq, we know that

predps, h1Ñ2, iq P

predps, h, iq, predps, h, iq Z tl1u
(

Hence there are only three possible values for pred♥ps, h1Ñ2, iq which are pred♥ps, h, iq Z

tl1u, pred♥ps, h, iq ´ tl2u and pred♥ps, h, iq and we study those three cases:

– l1 P pred♥ps, h1Ñ2, iqzpred♥ps, h, iq iff l1 P pred♥ps, h1Ñ2, iq iff l1 P predps, h1Ñ2, iq

and l1 R ♥ps, h1Ñ2q iff l2 “ spxiq and l1 R p♥ps, hq;
– if l2 P pred♥ps, h, iqzpred♥ps, h1Ñ2, iq then l2 P pred♥ps, h, iq and (l2 R predps, h1Ñ2, iq

or l2 P ♥ps, h1Ñ2q). But pred♥ps, h, iq Ď predps, h, iq Ď predps, h1Ñ2, iq. Hence we

know that l2 P predps, h1Ñ2, iq and thus we must have l2 P ♥ps, h1Ñ2q. Since l2 P
pred♥ps, h, iq Ď domphqz♥ps, hq we deduce l1 P spVq by Property (P2);

– if l1 P spVq and l2 P pred♥ps, h, iq then l2 P h1Ñ2pspVqq X domphq Ď ♥ps, h1Ñ2q. Hence

l2 R pred♥ps, h1Ñ2, iq.

Let us now consider the case of loop♥ps, h1Ñ2q. According to Proposition 2.10, we know
that

loopps, h1Ñ2q P

loopps, hq, loopps, hq Z tl1u
(

and by inclusion (A.1), we deduce that there are only three possible values for loop♥ps, h1Ñ2q

which are loop♥ps, hq Z tl1u, loop♥ps, hq ´ tl2u and loop♥ps, hq.

– l1 P loop♥ps, h1Ñ2qzloop♥ps, hq iff l1 P loop♥ps, h1Ñ2q iff l1 P loopps, h1Ñ2q and l1 R

♥ps, h1Ñ2q iff l1 “ l2 and l1 R p♥ps, hq;
– if l2 P loop♥ps, hqzloop♥ps, h1Ñ2q then l2 P loop♥ps, hq and either l2 R loopps, h1Ñ2q or

l2 P ♥ps, h1Ñ2q. But loop♥ps, hq Ď loopps, h1Ñ2q. Hence we get l2 P loopps, h1Ñ2q and

thus we must have l2 P ♥ps, h1Ñ2q. Since l2 P loop♥ps, hq Ď domphqz♥ps, hq we deduce

l1 P spVq by Property (P2);
– if l1 P spVq and l2 P loop♥ps, hq then l2 P h1Ñ2pspVqq X domphq Ď ♥ps, h1Ñ2q. Hence

l2 R loop♥ps, h1Ñ2q.

Let us now consider the case of rem♥ps, h1Ñ2, iq. According to Proposition 2.10, we
know that

remps, h1Ñ2q P

remps, hq, remps, hq Z tl1u
(

and by inclusion (A.1), we deduce that there are only three possible values for rem♥ps, h1Ñ2q

which are rem♥ps, hq Z tl1u, rem♥ps, hq ´ tl2u and rem♥ps, hq.

– l1 P rem♥ps, h1Ñ2qzrem♥ps, hq iff l1 P rem♥ps, h1Ñ2q iff l1 P remps, h1Ñ2q and l1 R

♥ps, h1Ñ2q iff l2 R spVq Y tl1u and l1 R p♥ps, hq;
– if l2 P rem♥ps, hqzrem♥ps, h1Ñ2q then l2 P rem♥ps, hq and either l2 R remps, h1Ñ2q or

l2 P ♥ps, h1Ñ2q. Because of the inclusions rem♥ps, hq Ď remps, hq Ď remps, h1Ñ2q, we

have l2 P remps, h1Ñ2q and thus we deduce l2 P ♥ps, h1Ñ2q. Since l2 P rem♥ps, hq Ď

domphqz♥ps, hq we deduce l1 P spVq by Property (P2);

Separation Logic with One Quantified Variable 53

– if l1 P spVq and l2 P rem♥ps, hq then l2 P h1Ñ2pspVqq X domphq Ď ♥ps, h1Ñ2q. Hence

l2 R rem♥ps, h1Ñ2q. [\

Lemma 2.14 For any k ě 1 and for any i P r1, qs, there exist 1SL1 formulæ denoted
pred♥pxiq ě k, # loop♥ ě k and # rem♥ ě k respectively such that, for any memory state

ps, hq and for any location l P N the following equivalences hold:

1. ps, hq (l # pred♥pxiq ě k iff cardppred♥ps, h, iqq ě k;

2. ps, hq (l # loop♥ ě k iff cardploop♥ps, hqq ě k;

3. ps, hq (l # rem♥ ě k iff cardprem♥ps, hqq ě k.

Proof Let us first establish the equivalence

ps, hq (l # pred♥pxjq ě k iff cardppred♥ps, h, jqq ě k

For the if part, let us assume cardppred♥ps, h, jqq ě k. Then, then let us define

R “

i P r1, qs
ˇ

ˇ hpspxiqq “ spxjq and @r P r1, qs, spxrq “ spxiq ñ i ď r
(

A “

"

i P r1, qs
hpspxiqq R spVq and h2pspxiqq “ spxjq

and @r P r1, qs, hpspxrqq “ hpspxiqq ñ i ď r

*

We also recall the notations sR “ tspxiq | i P Ru and sA “ tspxiq | i P Au from Propo-
sition 2.13. We check the identities pred♥ps, h, jq “ sR Z hpsAq, cardpsRq “ cardpRq and
cardphpsAqq “ cardpAq hold. We deduce cardpRq`cardpAq ě k. By Proposition 2.13, we have
ps, hq (l refR and ps, hq (l accA. For any r P R we have hpspxrqq “ spxjq hence ps, hq (l
Ź

rPR xr ãÑ xj . For any a P A we have h2pspxaqq “ spxjq hence ps, hq (l
Ź

aPA btwnpxa, xjq.

For the only if part, let us assume ps, hq (l # pred♥pxjq ě k. By definition, there exists
R,A Ď r1, qs such that cardpRq ` cardpAq ě k, ps, hq (l refR, ps, hq (l accA, @r P
R, hpspxrqq “ spxjq and @a P A, h2pspxaqq “ spxjq. We deduce sR Ď predps, h, jqX refps, hq
and hpsAq Ď predps, h, jq X paccps, hqzrefps, hqq and cardpsRq “ cardpRq and cardphpsAqq “
cardpAq. Hence sRZhpsAq Ď pred♥ps, h, jq and cardpsRZhpsAqq “ cardpRq`cardpAq ě k.
As a consequence, cardppred♥ps, h, jqq ě k holds.

Let us now establish the equivalence

ps, hq (l # pred♥pxjq ě k iff cardppred♥ps, h, jqq ě k

For the if part, let us assume cardppred♥ps, h, jqq ě k. Let us define p “ cardppred♥ps, h, jqq.

From pred♥ps, h, jq Ď ♥ps, hq we deduce p ď 2q. We have cardppred♥ps, h, jqq “ p ă
p` 1 and as a consequence, we deduce ps, hq *l # pred♥pxjq ě p` 1. From predps, h, jq “
pred♥ps, h, jq Z pred♥ps, h, jq we get predps, h, jq ě k ` p and thus the relation ps, hq (l
predpxjq ě k ` p holds. We deduce ps, hq (l # pred♥pxjq ě k.

For the only if part, let us assume ps, hq (l # pred♥pxjq ě k. There exists p ď 2q

such that ps, hq (l # predpxjq ě k ` p and ps, hq *l # pred♥pxjq ě p` 1. We deduce the
upper bound cardppred♥ps, h, jqq ď p and the lower bound cardppredps, h, jqq ě k ` p.
Using the partition predps, h, jq “ pred♥ps, h, jqZpred♥ps, h, jq, we derive the lower bound

cardppred♥ps, h, jqq ě k.

The cases of the test formulæ # loop♥ ě k and # rem♥ ě k can be treated in a similar
way after slight modifications in the definitions of R and A. [\

Lemma 2.21 Let α1, α2 P N and X,X 1, Y0 be finite sets such that X Z X 1 „α1`α2 Y0
holds. Then there are two finite sets Y, Y 1 such that Y0 “ Y ZY 1, X „α1 Y and X 1 „α2 Y

1

hold.

54 Stéphane Demri et al.

Proof By Proposition 2.18 item 3, we have two cases: either cardpX Z X 1q “ cardpY0q ă
α1 ` α2 or cardpX ZX 1q ě α1 ` α2 and cardpY0q ě α1 ` α2.

The case cardpX Z X 1q “ cardpY0q ă α1 ` α2 is easy: we have cardpXq ď cardpXq `
cardpX 1q “ cardpY0q; then for Y , we choose any subset of Y0 such that cardpY q “ cardpXq.
Then we define Y 1 “ Y0zY and we get cardpY 1q “ cardpY0q ´ cardpY q “ cardpX Z X 1q ´
cardpXq “ cardpX 1q. Then we have both X „α1 Y and X 1 „α2 Y

1.
Let us consider the case cardpXZX 1q ě α1`α2 and cardpY0q ě α1`α2. We have four

sub-cases:

– the case cardpXq ă α1 and cardpX 1q ă α2 is impossible because it contradicts cardpXZ
X 1q ě α1 ` α2;

– in the case cardpXq ě α1 and cardpX 1q ă α2, let Y 1 be any subset of Y0 such that
cardpY 1q “ cardpX 1q and Y “ Y0zY 1. We have cardpX 1q “ cardpY 1q hence X 1 „α2 Y

1.
We have cardpXq ě α1 and cardpY q “ cardpY0q ´ cardpY 1q ě pα1 ` α2q ´ α2 “ α1

hence X „α1 Y ;
– the case cardpXq ă α1 and cardpX 1q ě α2 is obtained by symmetry from the previous

case;
– in the case cardpXq ě α1 and cardpX 1q ě α2, let Y be any subset of Y0 s.t. cardpY q “ α1

and Y 1 “ Y0zY . We have cardpXq ě α1 and cardpY q “ α1 hence X „α1 Y . We have
cardpX 1q ě α2 and cardpY 1q “ cardpY0q ´ cardpY q ě pα1 ` α2q ´ α1 “ α2 hence
X 1 „α2 Y

1. [\

B Proofs of Section 3

Proposition 3.13 Let u, v P N. For pT10q–pT20q defined as

pT10q u P spVq iff v P s1pVq;
pT11q u P hpspVqq iff v P h1ps1pVqq;
pT12q u P p♥ps, hq iff v P p♥ps1, h1q;
pT13q u P ♥ps, hq iff v P ♥ps1, h1q;
pT14q u P predps, h, iq iff v P predps1, h1, iq for any i P r1, qs;
pT15q u P predps, hq iff v P predps1, h1q;
pT16q u P loopps, hq iff v P loopps1, h1q;
pT17q u P remps, hq iff v P remps1, h1q;
pT18q u P pred♥ps, h, iq iff v P pred♥ps

1, h1, iq for any i P r1, qs;

pT19q u P loop♥ps, hq iff v P loop♥ps
1, h1q;

pT20q u P rem♥ps, hq iff v P rem♥ps
1, h1q;

pT21q u P p♥pmq iff v P p♥pm1q.
the following propositions hold:

1. pT2q implies pT10q; 4. pT2–4q imply pT13q;
2. pT3q implies pT11q; 5. pT2–6q imply pT10–20q;
3. pT2–3q imply pT12q; 6. pT1–3q imply pT21q.

Proof The proofs are easy. Here is a summary of the arguments:

pT10q is a direct consequence of pT2q;
pT11q is a direct consequence of pT3q;
pT12q we use the identity p♥ps, hq “ spVq Y hpspVqq, pT10q and pT11q;
pT13q we use the identity ♥ps, hq “ p♥ps, hq X domphq, pT12q and pT4q;
pT14q just another way to write pT5q;
pT15q we use the identity predps, hq “

Ť

i predps, h, iq and pT14q;
pT16q just another way to write pT6q;
pT17q with remps, hq “ domphqzppredps, hq Y loopps, hqq, pT4q, pT15q, pT16q;
pT18q we use pred♥ps, h, iq “ predps, h, iqzp♥ps, hq and pT14q, pT12q;

pT19q we use loop♥ps, hq “ loopps, hqzp♥ps, hq and pT16q, pT12q;

pT20q we use rem♥ps, hq “ remps, hqzp♥ps, hq and pT17q, pT12q;

pT21q we use the identity p♥pmq “ p♥ps, hq Y tlu, pT12q and pT1q. [\

Separation Logic with One Quantified Variable 55

Proposition 3.15 The following inclusions hold:

1. R Ď p♥ps, hq ˆ p♥ps1, h1q 4. Rl Ď p♥pmq ˆ p♥pm1q
2. TX p♥ps, hq ˆ N Ď R 5. Tl X p♥pmq ˆ N Ď Rl

3. TX Nˆ p♥ps1, hq Ď R 6. Tl X Nˆ p♥pm1q Ď Rl

Proof Inclusions 1 and 4 are trivial. Let us consider Inclusion 2, hence let u and v be such
that u T v and u P p♥ps, hq. Since p♥ps, hq “ spVq Y hpspVqq we have two cases:

– either u “ spxiq for some i P r1, qs and then v “ s1pxiq by pT2q. Hence u and v satisfy
pR2q and thus we deduce u R v;

– or u “ hpspxiqq for some i P r1, qs and then v “ h1ps1pxiqq by pT3q. Hence u and v satisfy
pR3q and thus we deduce u R v.

Inclusions 3, 5 and 6 are proved in a similar way. [\

Proposition 3.16 The following properties hold:

1. The relation T restricted to p♥ps, hq ˆ p♥ps1, h1q is functional and injective;
2. The relation Tl restricted to p♥pmq ˆ p♥pm1q is functional and injective;
3. For any u R domphq Y p♥ps, hq, v R domph1q Y p♥ps1, h1q, we have u T v;
4. For any u R domphq Y p♥pmq, v R domph1q Y p♥pm1q, we have u Tl v.

Proof To show that T is functional, we prove that for all u P p♥ps, hq, for all v, w P p♥ps1, h1q,
u T v and u T w imply v “ w. If u “ spxiq then we must have v “ s1pxiq “ w; and if
u “ hpspxiqq then we must have v “ h1ps1pxiqq “ w. By symmetric arguments, T is injective.
The proof that Tl restricted p♥pmq ˆ p♥pm1q is functional and injective (Property 2) is
similar.

Let us now establish Property 3. We consider u, v P N such that u R domphq Y p♥ps, hq
and v R domph1q Y p♥ps1, h1q. Conditions pT2q–pT3q hold because u R spVq Y hpspVqq and
v R s1pVq Y h1ps1pVqq. Conditions pT4q–pT6q hold because u R domphq and v R domph1q. The
proof of Property 4 follows a similar pattern. [\

Theorem 3.17 m »b m
1 if and only if Rl Ď Tl.

Proof Let us show the only if part first. We assume m »b m
1 and we prove Rl Ď Tl by case

analysis on u Rl v:

pR1q let us check l Tl l1: Condition pT1q is trivial; for Condition pT2q, l “ spxjq iff ps, hq (l
xj “ u iff ps1, h1q (l1 xj “ u iff l1 “ s1pxjq; for Condition pT3q, l “ hpspxjqq iff ps, hq (l
xj ãÑ u iff ps1, h1q (l1 xj ãÑ u iff l1 “ h1ps1pxjqq; for Condition pT4q, l P domphq iff
ps, hq (l allocpuq iff ps1, h1q (l1 allocpuq iff l1 P domph1q; for Condition pT5q, hplq “
spxjq iff ps, hq (l u ãÑ xj iff ps1, h1q (l1 u ãÑ xj iff h1pl1q “ s1pxjq; for Condition pT6q,
hplq “ l iff ps, hq (l u ãÑ u iff ps1, h1q (l1 u ãÑ u iff h1pl1q “ l1;

pR2q let us check spxiq T
l s1pxiq: for Condition pT1q, spxiq “ l iff s1pxiq “ l1 (as previously);

for Condition pT2q, spxiq “ spxjq iff ps, hq (l xi “ xj iff ps1, h1q (l1 xi “ xj iff s1pxiq “
s1pxjq; for Condition pT3q, spxiq “ hpspxjqq iff ps, hq (l xj ãÑ xi iff ps1, h1q (l1 xj ãÑ xi
iff s1pxiq “ h1ps1pxjqq; for Condition pT4q, spxiq P domphq iff ps, hq (l convpxi, xiq iff
ps1, h1q (l1 convpxi, xiq iff s1pxiq P domph1q; for Condition pT5q, hpspxiqq “ spxjq iff
ps, hq (l xi ãÑ xj iff ps1, h1q (l1 xi ãÑ xj iff h1ps1pxiqq “ s1pxjq; for Condition pT6q,
hpspxiqq “ spxiq iff ps, hq (l xi ãÑ xi iff ps1, h1q (l1 xi ãÑ xi iff h1ps1pxiqq “ s1pxiq;

pR3q let us check hpspxiqq T
l h1ps1pxiqq: for Condition pT1q, hpspxiqq “ l iff h1ps1pxiqq “ l1 (as

previously); for Condition pT2q, hpspxiqq “ spxjq iff ps, hq (l xiãÑxj iff ps1, h1q (l1 xiãÑxj
iff h1ps1pxiqq “ s1pxjq; for Condition pT3q, hpspxiqq “ hpspxjqq iff ps, hq (l convpxi, xjq
iff ps1, h1q (l1 convpxi, xjq iff h1ps1pxiqq “ h1ps1pxjqq; for Condition pT4q, hpspxiqq P
domphq iff ps, hq (l toallocpxiq iff ps1, h1q (l1 toallocpxiq iff h1ps1pxiqq P domph1q; for
Condition pT5q, hphpspxiqqq “ spxjq iff ps, hq (l btwnpxi, xjq iff ps1, h1q (l1 btwnpxi, xjq iff
h1ph1ps1pxiqqq “ s1pxjq; for Condition pT6q, hphpspxiqqq “ hpspxiqq iff ps, hq (l tolooppxiq
iff ps1, h1q (l1 tolooppxiq iff h1ph1ps1pxiqqq “ h1ps1pxiqq.

56 Stéphane Demri et al.

Let us now tackle the if part. We assume Rl Ď Tl. Hence we have l Tl l1, spxiq T
l s1pxiq

for any i P r1, qs, and hpspxiqq T
l h1ps1pxiqq for any i P r1, qs such that spxiq P domphq (and

s1pxiq P domph1q). To establish m »b m1, we consider a formula B P Basicu and we show
that ps, hq (l B implies ps1, h1q (l1 B. The reverse implication can be proved by symmetric
arguments. We proceed by a case analysis on B:

B is xi “ xj : if ps, hq (l xi “ xj then spxiq “ spxjq. Using the instance of pT2q for spxiq T
l

s1pxiq with parameter j, we get s1pxiq “ s1pxjq. We deduce ps1, h1q (l1 xi “ xj ;

B is xi ãÑ xj : if ps, hq (l xi ãÑ xj then hpspxiqq “ spxjq. Using the instance of pT2q for
hpspxiqq T

l h1ps1pxiqq with parameter j, we get h1ps1pxiqq “ s1pxjq. We deduce ps1, h1q (l1
xi ãÑ xj ;

B is convpxi, xjq: if ps, hq (l convpxi, xjq then hpspxiqq “ hpspxjqq. Using the instance of
pT3q for hpspxiqq Tl h1ps1pxiqq with parameter j, we get h1ps1pxiqq “ h1ps1pxjqq. We
deduce ps1, h1q (l1 convpxi, xjq;

B is btwnpxi, xjq: if ps, hq (l btwnpxi, xjq then hphpspxiqqq “ spxjq. Using the instance of
pT5q for hpspxiqq Tl h1ps1pxiqq with parameter j, we get h1ph1ps1pxiqqq “ s1pxjq. We
deduce ps1, h1q (l1 btwnpxi, xjq;

B is toallocpxiq: if ps, hq (l toallocpxiq then hpspxiqq P domphq. Using pT4q for hpspxiqq T
l

h1ps1pxiqq, we get h1ps1pxiqq P domph1q. We deduce ps1, h1q (l1 toallocpxiq;

B is tolooppxiq: if ps, hq (l tolooppxiq then hphpspxiqqq “ hpspxiqq. By pT6q for hpspxiqq T
l

h1ps1pxiqq, we get h1ph1ps1pxiqqq “ h1ps1pxiqq. We deduce ps1, h1q (l1 tolooppxiq;

B is u ãÑ u: if ps, hq (l u ãÑ u then hplq “ l. Using pT6q for l Tl l1, we get h1pl1q “ l1. We
deduce ps1, h1q (l1 u ãÑ u;

B is allocpuq: if ps, hq (l allocpuq then l P domphq. Using pT4q for l Tl l1, we get l1 P
domph1q. We deduce ps1, h1q (l1 allocpuq;

B is xi “ u: if ps, hq (l xi“u then spxiq “ l. Using pT1q for spxiq T
l s1pxiq, we get s1pxiq “ l1.

We deduce ps1, h1q (l1 xi “ u;

B is xi ãÑ u: if ps, hq (l xi ãÑ u then hpspxiqq “ l. Using pT1q for hpspxiqq T
l h1ps1pxiqq, we

get h1ps1pxiqq “ l1. We deduce ps1, h1q (l1 xi ãÑ u;

B is u ãÑ xi: if ps, hq (l u ãÑ xi then hplq “ spxiq. Using pT5q for l Tl l1 with parameter i,
we get h1pl1q “ s1pxiq. We deduce ps1, h1q (l1 u ãÑ xi. [\

Proposition 3.18 If m »b m
1 then the following properties hold:

1. The relation R is total and surjective between p♥ps, hq and p♥ps1, h1q;
2. The relation R1 is total and surjective between p♥pmq and p♥pm1q.

Proof Let us consider Property 1. To show that R is total, we prove that for all u P p♥ps, hq,
there is v P p♥ps1, h1q such that u R v. If u “ spxiq then choose v “ s1pxiq; and if u “
hpspxiqq then spxiq P domphq. But we have spxiq Rl s1pxiq by definition of Rl, hence by
Theorem 3.17 we deduce spxiq T

l s1pxiq. As a consequence spxiq{s
1pxiq verify pT4q and thus

s1pxiq P domph1q. We choose v “ h1ps1pxiqq and we get u Rl v and v P p♥ps1, h1q.
By symmetric arguments, R is surjective. The proof that Rl is total and surjective

(Property 2) is similar.

Proposition 3.21 If m and m1 satisfy m »1 m1, then T is a total relation on N: for any
u P N, there exists v ď maxvalps1, h1q ` 1 such that u T v.

Proof Since »1 Ď »b we have R Ď T by Lemma 3.19. Let us consider u P N. We have to
show that there exists v P N such that u T v holds. We determine the value of v according
to the first condition that holds in the following list:

if u P p♥ps, hq then let us define v to be the unique location in p♥ps1, h1q such that u R v,
see Lemma 3.19. We deduce u T v. The relation v ď maxvalps1, h1q ` 1 holds because
v P p♥ps1, h1q;

Separation Logic with One Quantified Variable 57

if u P pred♥ps, h, jq for some j P r1, qs then we know that pred♥ps, h, jq is not empty. We

have pred♥ps, h, jq „1 pred♥ps
1, h1, jq by Proposition 3.10 hence pred♥ps

1, h1, jq is not

empty either. We choose any v P pred♥ps
1, h1, jq.

The relation v ď maxvalps1, h1q ` 1 holds because v P domph1q. Let us check that
u T v holds by establishing Properties pT2–6q for u{v. We have u P pred♥ps, h, jq and

v P pred♥ps
1, h1, jq. As a consequence we deduce u R p♥ps, hq and v R p♥ps1, h1q. Hence

Properties pT2–3q hold. We also have u P domphq and v P domph1q hence Property pT4q
holds. We have hpuq “ spxjq and h1pvq “ s1pxjq. We deduce hpuq R h1pvq and thus
hpuq T h1pvq. Since pT2q holds for hpuq{h1pvq, we deduce that Property pT5q holds for
u{v. Let us prove Property pT6q for u{v: the identity u “ hpuq implies u “ spxjq which
contradicts u R p♥pmq. Hence u ‰ hpuq and for the similar reasons, v ‰ h1pvq;

if u P loop♥ps, hq then we proceed in a way similar to the previous case;

if u P rem♥ps, hq then we proceed in a way similar to the previous case;

in the remaining cases we have u R pdomphqYp♥ps, hqq. Let us define v “ maxvalps1, h1q`1.
We have v R pdomph1qYp♥ps1, h1qq and by Proposition 3.16 item 3, we deduce u T v. [\

Proposition 3.22 Let us assume Rl Ď Tl (or equivalently m »b m1). Then the following
statements are equivalent:

1. Rl Ď D1 XD2; 3. Rl
1 Ď Tl

1 and Rl
2 Ď Tl

2;
2. Rl Ď Tl

1 X Tl
2; 4. m1 »b m

1
1 and m2 »b m

1
2.

Proof Let us review the easy implications first. Obviously, statement 3 and 4 are equivalent
by Theorem 3.17. Then statement 2 implies statement 3 by the two following deductions:
Rl

1 Ď Rl Ď Tl
1 X Tl

2 Ď Tl
1 and Rl

2 Ď Rl Ď Tl
1 X Tl

2 Ď Tl
2.

Let us now show that statement 1 implies statement 2. So we assume Rl Ď D1 X D2.
We show that Rl Ď Tl

1, the case Rl Ď Tl
2 being treated in a similar way. So let us assume

u, v such that u Rl v and let us show that u Tl
1 v. Because Rl Ď Tl we have u Tl v. Because

Rl Ď D1 XD2 we have Rl Ď D1. Let us show that u{v verify pT1–6q with respect to m1{m11:

Properties pT1,2q hold because u Tl v;
Property pT3q: u “ h1pspxiqq iff (spxiq P domph1q and u “ hpspxiqq) iff (s1pxiq P domph11q

and v “ h1ps1pxiqq) iff v “ h11ps
1pxiqq because spxiq D1 s1pxiq (which comes from spxiq R

l

s1pxiq) and u Tl v;
Property pT4q: u P domph1q iff v P domph11q because u D1 v;
Property pT5q: h1puq “ spxiq iff (u P domph1q and hpuq “ spxiq) iff (v P domph11q and

h1pvq “ s1pxiq) iff h11pvq “ s1pxiq because u D1 v and u Tl v;
Property pT6q: h1puq “ u iff (u P domph1q and hpuq “ u) iff (v P domph11q and h1pvq “ v)

iff h11pvq “ v because u D1 v and u Tl v.

Let us finish by showing that statement 3 implies statement 1. So we assume Rl
1 Ď Tl

1
and Rl

2 Ď Tl
2. Let us show the inclusion Rl Ď D1XD2. We assume u, v such that u Rl v. Let

us show that u D1 v, the case of u D2 v being treated in a similar way. Notice the inclusion
Tl
1 Ď D1 that always holds by Definition 3.14. For u Rl v there are three cases:

– either u “ l and v “ l1. We have l Rl
1 l
1, Rl

1 Ď Tl
1 and Tl

1 Ď D1, thus we get l D1 l1

hence u D1 v;
– or u “ spxiq and v “ s1pxiq for some i P r1, qs. We have spxiq R

l
1 s
1pxiq, R

l
1 Ď Tl

1 Ď D1,
thus we get u D1 v;

– or u “ hpspxiqq and v “ h1ps1pxiqq for some i P r1, qs. Let us assume u P domph1q
and let us prove v P domph11q. From hpspxiqq P domph1q deduce spxiq P domphq “
domph1q Z domph2q. Hence we have two cases:
– either spxiq P domph1q. In this case we have h1pspxiqq “ hpspxiqq “ u P domph1q

and spxiq P domph1q. From Rl
1 Ď Tl

1 we deduce spxiq Tl
1 s

1pxiq and h1pspxiqq Tl
1

h11ps
1pxiqq. By pT4q (twice) we get h11ps

1pxiqq P domph11q and s1pxiq P domph11q. We
deduce v “ h1ps1pxiqq “ h11ps

1pxiqq P domph11q;

58 Stéphane Demri et al.

– or spxiq P domph2q. In this case we have h2pspxiqq “ hpspxiqq “ u P domph1q and
spxiq P domph2q. Since domphq “ domph1q Z domph2q we deduce hpspxiqq P domphq
and h2pspxiqq R domph2q. Because Rl

2 Ď Tl
2 and Rl Ď Tl we have spxiq T

l
2 s

1pxiq,
hpspxiqq T

l h1ps1pxiqq and h2pspxiqq T
l
2 h

1
2ps

1pxiqq. Hence by pT4q (three times) we
deduce s1pxiq P domph12q, h

1ps1pxiqq P domph1q and h12ps
1pxiqq R domph12q. As a

consequence v “ h1ps1pxiqq “ h12ps
1pxiqq R domph12q and v “ h1ps1pxiqq P domph1q.

We conclude v P domph11q. [\

Lemma 3.25 Let α ě 1 and let ps, h, lq and ps1, h1, l1q be two pointed memory states. Let
l1, l2, l11, l

1
2 P N be such that l1 R domphq and l11 R domph1q. We assume that one of the

conditions below holds:

(C1) l1{l11 verify pT1–3q, l2{l12 verify pT1–6q, and l2 “ l1 iff l12 “ l11;
(C2) l1 R spVq, l1{l11 verify pT1–3q, l2{l12 verify pT2q, and l2 “ l1 iff l12 “ l11.

If ps, h, lq »α ps1, h1, l1q then ps, h] rl1 ÞÑ l2s, lq »β ps
1, h1] rl11 ÞÑ l12s, l

1q where β “ α´ 1
if l1 P spVq, and β “ α otherwise.

Proof We denote h] rl1 ÞÑ l2s by h1Ñ2 and h1] rl11 ÞÑ l12s by h11Ñ2. According to Proposi-
tion 3.10, we have to establish

ps, h1Ñ2, lq »b ps
1, h11Ñ2, l

1q (B.1)

together with β-equipotence constraints:

pred♥ps, h1Ñ2, iq „β pred♥ps
1, h11Ñ2, iq (B.2)

loop♥ps, h1Ñ2q „β loop♥ps
1, h11Ñ2q (B.3)

rem♥ps, h1Ñ2q „β rem♥ps
1, h11Ñ2q (B.4)

We start with basic Equivalence (B.1). We have to show that for any B P Basicu,
ps, h1Ñ2q (l B iff ps1, h11Ñ2q (l1 B. We prove that ps, h1Ñ2q (l B implies ps1, h11Ñ2q (l1 B.
The reverse implication can be established in a symmetric way. Note that all hypotheses are
symmetric: when l1{l11 verify pT2q, we have l1 R spVq iff l11 R s

1pVq. We proceed by a case
analysis on B:

B is xi “ xj : using ps, h, lq »b ps
1, h1, l1q, we derive ps, h1Ñ2q (l xi “ xj iff ps, hq (l xi “ xj

iff ps1, h1q (l1 xi “ xj iff ps1, h11Ñ2q (l1 xi “ xj ;

B is xi ãÑ xj : let us suppose ps, h1Ñ2q (l xi ãÑ xj and let us show ps1, h11Ñ2q (l1 xi ãÑ xj .
For ps, h1Ñ2q (l xi ãÑ xj we have two cases:
– hpspxiqq “ spxjq. We derive h1ps1pxiqq “ s1pxjq (because ps, h, lq »b ps

1, h1, l1q) and
thus we also have h11Ñ2ps

1pxiqq “ s1pxjq hence ps1, h11Ñ2q (l1 xi ãÑ xj ;
– l1 “ spxiq and l2 “ spxjq. Since l1{l11 and l1{l11 verify pT2q in both (C1) and (C2),

we get l11 “ s1pxiq and l12 “ s1pxjq and thus h11Ñ2ps
1pxiqq “ s1pxjq and finally

ps1, h11Ñ2q (l1 xi ãÑ xj .
In both cases we obtain ps1, h11Ñ2q (l1 xi ãÑ xj ;

B is convpxi, xjq: let us suppose ps, h1Ñ2q (l convpxi, xjq and prove that ps1, h11Ñ2q (l1

convpxi, xjq. From h1Ñ2 “ h] rl1 ÞÑ l2s and ps, h1Ñ2q (l convpxi, xjq, we get four
cases:
– spxiq, spxjq P domphq and hpspxiqq “ hpspxjqq. Then ps, hq (l convpxi, xjq from

which we get ps1, h1q (l1 convpxi, xjq and thus also ps1, h11Ñ2q (l1 convpxi, xjq;
– hpspxiqq “ l2 and spxjq “ l1. If (C1) holds then l2{l12 verify pT3q and l1{l11 verify
pT2q and we get h1ps1pxiqq “ l12 and s1pxjq “ l11. Hence ps1, h11Ñ2q (l1 convpxi, xjq.
If (C2) holds then spxjq “ l1 contradicts l1 R spVq;

– the case spxiq “ l1 and hpspxjqq “ l2 is symmetric to the previous one;
– spxiq “ spxjq “ l1. In case of (C1), l1{l11 verify pT2q and thus we get s1pxiq “
s1pxjq “ l11 and then ps1, h11Ñ2q (l1 convpxi, xjq. (C2) implies l1 R spVq which
contradicts spxiq “ l1.

In all four cases we have ps1, h11Ñ2q (l1 convpxi, xjq;

Separation Logic with One Quantified Variable 59

B is btwnpxi, xjq: let us assume ps, h1Ñ2q (l btwnpxi, xjq and let us prove that ps1, h11Ñ2q (l1

btwnpxi, xjq. We have four cases:

– hphpspxiqqq “ spxjq. Then ps, hq (l btwnpxi, xjq from which we get ps1, h1q (l1
btwnpxi, xjq then ps1, h11Ñ2q (l1 btwnpxi, xjq;

– hpspxiqq “ l1 and l2 “ spxjq. In both (C1) and (C2), l1{l11 verify pT3q and l2{l12 verify
pT2q. Hence we get h1ps1pxiqq “ l11 and l12 “ s1pxjq. Thus ps1, h11Ñ2q (l1 btwnpxi, xjq;

– l1 “ spxiq and hpl2q “ spxjq. In (C1), l1{l11 verify pT2q and l2{l12 verify pT5q, hence
we get l11 “ s1pxiq and h1pl12q “ s1pxjq, Thus ps1, h11Ñ2q (l1 btwnpxi, xjq. In case (C2),
l1 “ spxiq contradicts l1 R spVq;

– l1 “ l2 “ spxiq “ spxjq. l1{l
1
1 and l2{l12 verify pT2q in both (C1) and (C2), hence we

get l11 “ l12 “ s1pxiq “ s1pxjq. We deduce ps1, h11Ñ2q (l1 btwnpxi, xjq.

In all four cases we have ps1, h11Ñ2q (l1 btwnpxi, xjq;

B is toallocpxiq: let us assume ps, h1Ñ2q (l toallocpxiq and let us prove ps1, h11Ñ2q (l1

toallocpxiq. We get four cases:

– hpspxiqq P domphq. Then ps, hq (l toallocpxiq from which we get ps1, h1q (l1
toallocpxiq then ps1, h11Ñ2q (l1 toallocpxiq;

– hpspxiqq “ l1. l1{l11 verify pT3q in both (C1) and (C2), thus we get h1ps1pxiqq “ l11
and thus ps1, h11Ñ2q (l1 toallocpxiq;

– l1 “ spxiq and l2 P domphq. In case (C1), l1{l11 verify pT2q and l2{l12 verify pT4q.
Then we get l11 “ s1pxiq and l12 P domph1q and we deduce ps1, h11Ñ2q (l1 toallocpxiq.
(C2) implies l1 R spVq which contradicts spxiq “ l1;

– l1 “ l2 “ spxiq. l1{l
1
1 and l2{l12 verify pT2q in both (C1) and (C2), hence l11 “ l12 “

s1pxiq “ s1pxjq. We deduce ps1, h11Ñ2q (l1 toallocpxiq.

In all four cases we have ps1, h11Ñ2q (l1 toallocpxiq;

B is tolooppxiq: let us suppose ps, h1Ñ2q (l tolooppxiq and let us prove ps1, h11Ñ2q (l1

tolooppxiq. We get four cases:

– hpspxiqq “ hphpspxiqqq. Then ps, hq (l tolooppxiq from which we get ps1, h1q (l1
tolooppxiq then ps1, h11Ñ2q (l1 tolooppxiq;

– hpspxiqq “ l1 “ l2. In both (C1) and (C2), l1{l11 verify pT3q, and l2 “ l1 iff l12 “ l11.
We get h1ps1pxiqq “ l11 and l11 “ l12 and thus ps1, h11Ñ2q (l1 tolooppxiq;

– l1 “ spxiq and hpl2q “ l2. In case (C1), l1{l11 verify pT2q and l2{l12 verify pT6q, hence
we get l11 “ s1pxiq and h1pl12q “ l12 and then ps1, h11Ñ2q (l1 tolooppxiq In case (C2),
l1 “ spxiq contradicts l1 R spVq;

– l1 “ l2 “ spxiq. l1{l
1
1 and l2{l12 verify pT2q in both (C1) and (C2), hence l11 “ l12 “

s1pxiq “ s1pxjq. We deduce ps1, h11Ñ2q (l1 tolooppxiq.

In all four cases we have ps1, h11Ñ2q (l1 tolooppxiq;

B is u ãÑ u: let us suppose ps, h1Ñ2q (l u ãÑ u and let us prove that ps1, h11Ñ2q (l1 u ãÑ u.
We get two cases.

– hplq “ l. We derive ps, hq (l u ãÑ u then ps1, h1q (l1 u ãÑ u and hence ps1, h11Ñ2q (l1

u ãÑ u;
– l “ l1 “ l2. l1{l11 verify pT1q, and l2 “ l1 iff l12 “ l11 holds in both (C1) and (C2).

Hence we get l1 “ l11 and l11 “ l12 and thus ps1, h11Ñ2q (l1 u ãÑ u.

In both cases we obtain ps1, h11Ñ2q (l1 u ãÑ u;

B is allocpuq: let us assume ps, h1Ñ2q (l allocpuq and let us prove that ps1, h11Ñ2q (l1

allocpuq. We get two cases.

– l P domphq. We derive ps, hq (l allocpuq then ps1, h1q (l1 allocpuq and hence
ps1, h11Ñ2q (l1 allocpuq;

– l “ l1. l1{l11 verify pT1q in both (C1) and (C2), hence we get l1 “ l11. We deduce
ps1, h11Ñ2q (l1 allocpuq.

In both cases we obtain ps1, h11Ñ2q (l1 allocpuq;

B is xi “ u: using ps, h, lq »b ps
1, h1, l1q, we derive the equivalences ps, h1Ñ2q (l xi “ u iff

ps, hq (l xi “ u iff ps1, h1q (l1 xi “ u iff ps1, h11Ñ2q (l1 xi “ u;

B is xi ãÑ u: let us suppose ps, h1Ñ2q (l xi ãÑ u and let us prove that ps1, h11Ñ2q (l1 xi ãÑ u.
We get two cases.

– hpspxiqq “ l. We derive ps, hq (l xi ãÑ u then ps1, h1q (l1 xi ãÑ u and hence
ps1, h11Ñ2q (l1 xi ãÑ u;

60 Stéphane Demri et al.

– l1 “ spxiq and l2 “ l. In case (C1), l1{l11 verify pT2q and l2{l12 verify pT1q, hence we
get l11 “ s1pxiq and l12 “ l1 and thus ps1, h11Ñ2q (l1 xi ãÑ u. In case (C2), l1 “ spxiq
contradicts l1 R spVq.

In both cases we obtain ps1, h11Ñ2q (l1 xi ãÑ u;

B is u ãÑ xj : let us suppose ps, h1Ñ2q (l u ãÑ xj and let us show ps1, h11Ñ2q (l1 u ãÑ xj . We
get two cases.
– hplq “ spxjq. We derive ps, hq (l u ãÑ xj then ps1, h1q (l1 u ãÑ xj and hence
ps1, h11Ñ2q (l1 u ãÑ xj ;

– l1 “ l and l2 “ spxiq. l1{l
1
1 verify pT1q and l2{l12 verify pT2q in both (C1) and (C2),

hence we get l11 “ l1 and l12 “ s1pxiq. We deduce ps1, h11Ñ2q (l1 u ãÑ xj .
In both cases we obtain ps1, h11Ñ2q (l1 u ãÑ xj .

This ends the proof of the basic equivalence ps, h1Ñ2, lq »b ps
1, h11Ñ2, l

1q.

Let us consider β-Equipotence (B.2). By Proposition 2.11, there are 3 possible values
for pred♥ps, h1Ñ2q:

if l1 R p♥ps, hq and l2 “ spxiq then the identity

pred♥ps, h1Ñ2, iq “ pred♥ps, h, iq Z tl1u

holds. We can treat the case of (C1) and (C2) simulaneously. As l1{l11 verify pT2–3q, l1{l11
also verify pT12q and we deduce l11 R p♥ps1, h1q. As l2{l12 verify pT2q, we get l12 “ s1pxiq.
Thus by Proposition 2.11 again, we have

pred♥ps
1, h11Ñ2, iq “ pred♥ps

1, h1, iq Z tl11u

From ps, h, lq »α ps1, h1, l), we have pred♥ps, h, iq „α pred♥ps
1, h1, iq by Proposition 2.11

and we derive Equipotence (B.2) using Lemma 2.19 and β ď α` 1;

if l1 P spVq and l2 P pred♥ps, h, iq then the identity

pred♥ps, h1Ñ2, iq “ pred♥ps, h, iq ´ tl2u

holds. We treat the case (C1) and (C2) separately.
On the one hand, if (C1) holds then, l1{l11 verify pT2q and thus also pT10q. Thus we
get l11 P s

1pVq. Moreover, l2{l12 verify pT1–6q and thus also pT18q. Thus we get l12 P
pred♥ps

1, h1, iq. We deduce

pred♥ps
1, h11Ñ2, iq “ pred♥ps

1, h1, iq ´ tl12u

by Proposition 2.11. Since l1 P spVq, we have β ` 1 “ α. Thus by Proposition 2.20, we
obtain Equipotence (B.2);
On the other hand, (C2) contradicts l1 P spVq;

in the otherwise case we have

`

l1 P p♥ps, hq or l2 ‰ spxiq
˘

and
`

l1 R spVq or l2 R pred♥ps, h, iq
˘

and pred♥ps, h1Ñ2, iq “ pred♥ps, h, iq. By a combination of the arguments of two pre-

vious cases, in both (C1) and (C2), we have

`

l11 P p♥ps1, h1q or l12 ‰ s1pxiq
˘

and
`

l11 R s
1pVq or l12 R pred♥ps

1, h1, iq
˘

and thus we get pred♥ps
1, h11Ñ2, iq “ pred♥ps

1, h1, iq by Proposition 2.11. Equipo-

tence (B.2) is immediate.

Let us consider β-Equipotence (B.3). We have loop♥ps, hq „α loop♥ps
1, h1q. By Propo-

sition 2.11, there are three cases for the value of loop♥ps, h1Ñ2q:

Separation Logic with One Quantified Variable 61

if l1 R p♥ps, hq and l1 “ l2 then loop♥ps, h1Ñ2q “ loop♥ps, hq Z tl1u. As l1{l11 verify pT12q,

and l2 “ l1 iff l12 “ l11, we deduce l11 R p♥ps1, h1q and l11 “ l12. Thus by Proposition 2.11, we
have loop♥ps

1, h11Ñ2q “ loop♥ps
1, h1qZtl11u. Since we have loop♥ps, hq „α loop♥ps

1, h1q,

we deduce Equipotence (B.3) using Lemma 2.19 and β ď α` 1;

if l1 P spVq and l2 P loop♥ps, hq then loop♥ps, h1Ñ2q “ loop♥ps, hq ´ tl2u.

On the one hand, if (C1) holds then l1{l11 verify pT10q and l2{l12 verify pT19q. Hence we get
l11 P s

1pVq and l12 P loop♥ps
1, h1q. We deduce loop♥ps

1, h11Ñ2q “ loop♥ps
1, h1q´tl12u. Since

l1 P spVq, we have β ` 1 “ α and thus by Proposition 2.20 we get Equipotence (B.3).
On the other hand, (C2) contradicts l1 P spVq;

in the otherwise case we have

`

l1 P p♥ps, hq or l1 ‰ l2q and
`

l1 R spVq or l2 R loop♥ps, hq
˘

and loop♥ps, h1Ñ2q “ loop♥ps, hq. By a combination of the arguments of two previous

cases, in both (C1) and (C2), we have

`

l11 P p♥ps1, h1q or l11 ‰ l12q and
`

l11 R s
1pVq or l12 R loop♥ps

1, h1q
˘

thus loop♥ps
1, h11Ñ2q “ loop♥ps

1, h1q. Equipotence (B.3) is immediate.

Let us consider β-Equipotence (B.4). We have rem♥ps, hq „α rem♥ps
1, h1q. By Propo-

sition 2.11, there are three cases for the value of rem♥ps, h1Ñ2q:

if l1 R p♥ps, hq Y tl2u and l2 R spVq then rem♥ps, h1Ñ2q “ rem♥ps, hqZtl1u. As l1{l11 verify

pT12q, l2 “ l1 iff l12 “ l11, and l2{l12 verify pT10q, we deduce l11 R p♥ps1, h1q, l11 ‰ l12 and
l12 R s

1pVq. Thus by Proposition 2.11, we have rem♥ps
1, h11Ñ2q “ rem♥ps

1, h1qZtl11u. Since

we have rem♥ps, hq „α rem♥ps
1, h1q, we deduce Equipotence (B.4) using Lemma 2.19

and β ď α` 1;

if l1 P spVq and l2 P rem♥ps, hq then rem♥ps, h1Ñ2q “ rem♥ps, hq ´ tl2u.

On the one hand, if Hypothesis (C1) holds then l1{l11 verify pT10q and l2{l12 verify
pT20q. Hence we get l11 P s

1pVq and l12 P rem♥ps
1, h1q. We deduce rem♥ps

1, h11Ñ2q “

rem♥ps
1, h1q ´ tl12u. Since l1 P spVq, we have β` 1 “ α and thus by Proposition 2.20 we

get Equipotence (B.4).
On the other hand, (C2) contradicts l1 P spVq;

in the otherwise case we have

`

l1 P p♥ps, hq Y tl2u or l2 P spVq
˘

and
`

l1 R spVq or l2 R rem♥ps, hq
˘

and rem♥ps, h1Ñ2q “ rem♥ps, hq. By a combination of the arguments of two previous

cases, in both (C1) and (C2), we have

`

l11 P p♥ps1, h1q Y tl12u or l12 P s
1pVq

˘

and
`

l11 R s
1pVq or l12 R rem♥ps

1, h1q
˘

thus rem♥ps
1, h11Ñ2q “ rem♥ps

1, h1q. Equipotence (B.4) is immediate. [\

Proposition 3.26 Let m “ ps, h, lq be a pointed memory state and l1, l2 P N be such that
l1 R domphqY p♥pmq. We have ps, h]rl1 ÞÑ l2s, lq »b ps, h, lq. Moreover, given α ě 0, if we
assume that one of the following conditions hold

(C1) l2 “ spxiq and cardppred♥ps, h, iqq ě α for some i P r1, qs;

(C2) l2 “ l1 and cardploop♥ps, hqq ě α;

(C3) l2 R spVq Y tl1u and cardprem♥ps, hqq ě α.

then we have ps, h] rl1 ÞÑ l2s, lq »α ps, h, lq.

62 Stéphane Demri et al.

Proof We write h1Ñ2 to denote h]rl1 ÞÑ l2s. First, without assuming any of (C1–3), let use
prove that ps, h1Ñ2, lq »b ps, h, lq holds. By Proposition 3.2 (monotonicity), we only need
to prove that ps, h1Ñ2q (l B implies ps, hq (l B for any formula B P Basicu. We proceed by
a case analysis on B:

B is xi “ xj : This only depends on the value of s and therefore we are done;

B is xi ãÑ xj : from ps, h1Ñ2q (l xi ãÑxj , we get h1Ñ2pspxiqq “ spxjq. But since l1 R p♥pmq,
we deduce l1 ‰ spxiq and thus hpspxiqq “ spxjq. We get ps, hq (l xi ãÑ xj ;

B is convpxi, xjq: from ps, h1Ñ2q (l convpxi, xjq, the identity h1Ñ2pspxiqq “ h1Ñ2pspxjqq
holds. But since l1 R tspxiq, spxjqu, we deduce hpspxiqq “ hpspxjqq and thus ps, hq (l
convpxi, xjq;

B is btwnpxi, xjq: from ps, h1Ñ2q (l btwnpxi, xjq, we get h1Ñ2ph1Ñ2pspxiqqq “ spxjq. But
since l1 R tspxiq, hpspxiqqu (remember hpspxiqq P p♥pmq), we get hphpspxiqqq “ spxjq and
thus ps, hq (l btwnpxi, xjq;

B is toallocpxiq: from ps, h1Ñ2q (l toallocpxiq, we deduce h1Ñ2pspxiqqq P domph1Ñ2q.
Since l1 ‰ spxiq, we get hpspxiqqq P domphq Y tl1u. Since hpspxiqq ‰ l1, we deduce
hpspxiqq P domphq and thus ps, hq (l toallocpxiq;

B is tolooppxiq: from ps, h1Ñ2q (l tolooppxiq we get h1Ñ2ph1Ñ2pspxiqqq “ h1Ñ2pspxiqq.
But since l1 R tspxiq, hpspxiqqu, we get hphpspxiqqq “ hpspxiqq and thus ps, hq (l
tolooppxiq;

B is u ãÑ u: from ps, h1Ñ2q (l uãÑu we get h1Ñ2plq “ l. But since l1 ‰ l, we deduce hplq “ l
and thus ps, hq (l u ãÑ u;

B is allocpuq: from ps, h1Ñ2q (l allocpuq we get l P domph1Ñ2q. But since l1 ‰ l and
domph1Ñ2q “ domphq Y tl1u, we deduce l P domphq and thus ps, hq (l allocpuq;

B is xi “ u: only depends on the values of s and l;

B is xi ãÑ u: from ps, h1Ñ2q (l xi ãÑ u we get h1Ñ2pspxiqq “ l. But since l1 ‰ spxiq, we
deduce hpspxiqq “ l and thus ps, hq (l xi ãÑ u;

B is u ãÑ xj : from ps, h1Ñ2q (l u ãÑ xj we get h1Ñ2plq “ spxiq. But since l1 ‰ l, we deduce
hplq “ spxiq and thus ps, hq (l u ãÑ xj .

Now we assume α ě 0 such that one of either (C1), (C2) or (C3) holds. Since we
already have ps, h1Ñ2, lq »b ps, h, lq, according to Proposition 3.10, we have to establish
three α-equipotence constraints:

pred♥ps, h1Ñ2, jq „α pred♥ps, h, jq for any j P r1, qs

loop♥ps, h1Ñ2q „α loop♥ps, hq

rem♥ps, h1Ñ2q „α rem♥ps, hq

If (C1) holds then by Proposition 2.11, we have pred♥ps, h1Ñ2, jq “ pred♥ps, h, jqZtl1u

if spxiq “ spxjq, pred♥ps, h1Ñ2, jq “ pred♥ps, h, jq if spxiq ‰ spxjq, loop♥ps, h1Ñ2q “

loop♥ps, hq and rem♥ps, h1Ñ2q “ rem♥ps, hq. Then we already have pred♥ps, h1Ñ2, jq „α
pred♥ps, h, jq when spxiq ‰ spxjq, loop♥ps, h1Ñ2q „α loop♥ps, hq and rem♥ps, h1Ñ2q „α

rem♥ps, hq. If spxiq “ spxjq holds then we have pred♥ps, h, jq “ pred♥ps, h, iq. As a con-

sequence, we get cardppred♥ps, h1Ñ2, jqq ě α ` 1 and cardppred♥ps, h, jqq ě α. Hence

pred♥ps, h1Ñ2, jq „α pred♥ps, h, jq holds as well.

If (C2) holds then by Proposition 2.11, we have pred♥ps, h1Ñ2, jq “ pred♥ps, h, jq.

Indeed, l2 “ spxjq implies l1 “ l2 P spVq which contradicts l1 R domphq Y p♥pmq. We
also get loop♥ps, h1Ñ2q “ loop♥ps, hq Z tl1u and rem♥ps, h1Ñ2q “ rem♥ps, hq. The three
α-equipotence constraints follow.

If (C3) holds then by Proposition 2.11, we have pred♥ps, h1Ñ2, jq “ pred♥ps, h, jq,

loop♥ps, h1Ñ2q “ loop♥ps, hq and rem♥ps, h1Ñ2q “ rem♥ps, hq Z tl1u. The α-equipotence
constraints follow. [\

Corollary 3.27 Let α ě 0. Let m “ ps, h, lq be a pointed memory state and h1 be a heap
such that domph1q X pdomphq Y p♥pmqq “ H. If for any u P domph1q one of the following
conditions holds

Separation Logic with One Quantified Variable 63

(C1) h1puq “ spxiq and cardppred♥ps, h, iqq ě α for some i P r1, qs;

(C2) h1puq “ u and cardploop♥ps, hqq ě α;

(C3) h1puq R spVq Y tuu and cardprem♥ps, hqq ě α.

then we have ps, h] h1, lq »α ps, h, lq.

Proof We prove the result by induction on (the size of the domain of) h1. If h1 “ � then
the result it trivial by reflexivity of »α. Otherwise, we can write h1 “ rl1 ÞÑ l2s] h2. From
domph1qXpdomphqYp♥pmqq “ H we deduce l1 R domphqYp♥pmq. We apply Proposition 3.26
to m, l1 and l2 and we get ps, h] rl1 ÞÑ l2s, lq »α ps, h, lq.

We then use the induction hypothesis on h2 (with h] rl1 ÞÑ l2s replacing h). Let us
verify the requirements:

– We have domph2qXpdomph]rl1 ÞÑ l2sqYp♥ps, h]rl1 ÞÑ l2s, lqq “ domph2qXpdomphqY
tl1u Y p♥ps, h, lqq “ H because l1 R domph2q and l1 R spVq.

– Let u P domph2q. Let us show that either (C1), (C2) or (C3) holds for u. We have
u P domph1q and h1puq “ h2puq. By hypothesis, one of the following conditions holds:
– h1puq “ spxiq and cardppred♥ps, h, iqq ě α for some i P r1, qs. From spVq Ď

p♥ps, h, lq, we deduce l1 R spVq. Thus by Proposition 2.11 we have

pred♥ps, h] rl1 ÞÑ l2s, iq P

pred♥ps, h, iq,pred♥ps, h, iq Z tl1u
(

hence cardppred♥ps, h] rl1 ÞÑ l2s, iqq ě α. We also have h2puq “ h1puq “ spxiq

hence Condition (C1) holds;
– h1puq “ u and cardploop♥ps, hqq ě α. By Proposition 2.11 again, from l1 R spVq we

deduce cardploop♥ps, h] rl1 ÞÑ l2sqq ě α. As h2puq “ h1puq “ u, Condition (C2)
holds;

– h1puq R spVq Y tuu and cardprem♥ps, hqq ě α. By Proposition 2.11 again, from

l1 R spVq we deduce cardprem♥ps, h]rl1 ÞÑ l2sqq ě α. As h2puq “ h1puq R spVqYtuu,
Condition (C3) holds.

As a consequence, we obtain ps, h] rl1 ÞÑ l2s] h2, lq »α ps, h] rl1 ÞÑ l2s, lq by induction
and thus ps, h] rl1 ÞÑ l2s] h2, lq »α ps, h, lq by transitivity of »α. [\

Proposition 3.29 Let α ě 1. We assume that the following conditions hold:

(a) m »α`1 m1;
(b) m0 »α`1 m10;
(c) domphq Ď p♥pmq;
(d) domph1q Ď p♥pm1q.
Let l1 P spVqzdomph0] hq and l2 P N. There exist l11, l

1
2 P N such that

1. l11 P s
1pVqzdomph10] h

1q;
2. l11, l

1
2 ď maxvalpm10q ` 1;

3. ps, h] rl1 ÞÑ l2s, lq »α ps1, h1] rl11 ÞÑ l12s, l
1q;

4. ps, h0] h] rl1 ÞÑ l2s, lq »α ps1, h10] h
1] rl11 ÞÑ l12s, l

1q.

Proof According to Lemma 3.19, we have both Rl Ď Tl and Rl
0 Ď Tl

0.

Let use define l11 to be the unique value such that l1 Rl l11. We also have l1 Rl
0 l
1
1. Hence

we get both l1 Tl l11 and l1 Tl
0 l
1
1. From l1 P p♥pmq and l1 Tl l11 we deduce l11 P p♥pm1q. Since

l1 P spVq and l1 R domph0] hq from l1 Tl
0 l
1
1 we deduce l11 P s

1pVqzdomph10] h1q by pT10q
and pT4q. Hence Property 1 holds.

Let us define l12 by Proposition 3.20: since α ě 1, we have m0 »2 m10, and thus there
exists l12 ď maxvalpm10q ` 1 such that l2 Tl

0 l12. Property 2 holds because l11 P s
1pVq and

l12 ď maxvalpm10q ` 1.

Let us establish Property 4, i.e. ps, h0] h] rl1 ÞÑ l2s, lq »α ps1, h10] h
1] rl11 ÞÑ l12s, l

1q.
We use Lemma 3.25 (C1) with m0{m10. We have both l1 R domph0]hq and l11 R domph10]h

1q.
l1{l11 verify pT1–3q because l1 Tl

0 l
1
1 holds. l2{l12 verify pT1–6q because l2 Tl

0 l
1
2 holds. Let us

check l1 “ l2 iff l11 “ l12:

64 Stéphane Demri et al.

– if l2 P p♥pm0q then l2 Rl
0 l
1
2 by Proposition 3.15 item 5. Since l1 Rl

0 l
1
1, l2 Rl

0 l
1
2 and Rl

0
is a bijection (Lemma 3.19), we deduce l1 “ l2 iff l11 “ l12;

– if l2 R p♥pm0q then l12 R p♥pm10q by pT21q with l2 Tl
0 l
1
2. But l1 P spVq and l11 P s

1pVq
hence l1 ‰ l2 and l11 ‰ l12 and we deduce l1 “ l2 iff l11 “ l12.

We apply Lemma 3.25 (C1) with Hypothesis (b) and we get Property 4.

Let us show Property 3, i.e. ps, h] rl1 ÞÑ l2s, lq »α ps1, h1] rl11 ÞÑ l12s, l
1q. We use

Lemma 3.25 (C1) with m{m1. Since l1 R domph0]hq and l11 R domph10]h
1q then l1 R domphq

and l11 R domph1q. l1{l11 verify pT1–3q because l1 Tl l11 holds. We already verified that l1 “ l2
iff l11 “ l12 holds. Let us check that l2{l12 verify pT1–6q, i.e. l2 Tl l12:

– if l2 P p♥pmq then, as l2 Tl
0 l12 holds, by Proposition 3.28, we get l2 Rl l12 and thus

l2 Tl l12;
– if l2 R p♥pmq then we must have l12 R p♥pm1q: otherwise if l12 P p♥pm1q holds then

we would have l2 Rl l12 by Proposition 3.28, which contradicts l2 R p♥pmq. Hence by
Hypotheses (c) and (d) we deduce l2 R domphq and l12 R domph1q. By Proposition 3.16
item 4, we deduce l2 Tl l12.

We apply Lemma 3.25 (C1) with Hypothesis (a) and we get Property 3. [\

Proposition 3.31 Let α ě 1. We assume that the following conditions hold:

(a) m »α m1;
(b) m0 »α m10;

Let l1 R domph0] hq Y spVq and l2 P N. There exist l11, l
1
2 P N such that

1. l11 R domph10] h
1q Y s1pVq

2. l11, l
1
2 ď maxvalpm10q ` 2;

3. ps, h] rl1 ÞÑ l2s, lq »α ps1, h1] rl11 ÞÑ l12s, l
1q;

4. ps, h0] h] rl1 ÞÑ l2s, lq »α ps1, h10] h
1] rl11 ÞÑ l12s, l

1q.

Proof According to Lemma 3.19, we have both Rl Ď Tl and Rl
0 Ď Tl

0.

Let us define l11 and simultaneously check Property 1 and prove that l11 ď maxvalpm10q`1,
l1 Tl

0 l
1
1 and l1 Tl l11 hold:

– if l1 P p♥pm0q then let us define l11 P p♥pm10q as the unique value such that l1 Rl
0 l
1
1. We

immediately deduce l1 Tl
0 l
1
1. As a consequence, l11 R domph10]h

1q by pT4q and l11 R s
1pVq

by pT10q. Hence Property 1 holds. As l11 P p♥pm10q, the relation l11 ď maxvalpm10q`1 holds
trivially. Only l1 Tl l11 remains. We use Proposition 3.28: if l1 P p♥pmq or l11 P p♥pm1q then
l1 Rl l11, hence l1 Tl l11; otherwise both l1 R domphq Y p♥pmq and l11 R domph1q Y p♥pm1q
hold and we deduce l1 Tl l11 by Proposition 3.16 item 4;

– if l1 R p♥pm0q then we define l11 “ maxvalpm10q ` 1 and Property 1 holds in an obvious
way. We also have l1 R domph0] hq Y p♥pm0q and l11 R domph10] h

1q Y p♥pm10q and we
deduce l1 Tl

0 l
1
1 by Proposition 3.16 item 4. A fortiori we have l1 R domphqY p♥pmq and

l11 R domph1q Y p♥pm1q and we deduce l1 Tl l11 by Proposition 3.16 item 4.

From l11 ď maxvalpm10q ` 1, we obviously derive Property 2 for l11.

Let us define l12 by choosing the first possible choice in the following list. We simultane-
ously check Property 2 for l12 and prove that l2{l12 verify pT2q, and that l2 “ l1 iff l12 “ l11
holds:

– if l2 “ l1 then we define l12 “ l11. In case, Property 2 obviously holds for l12 since it holds
for l11. Since l1 Tl

0 l
1
1 holds then l1{l11 verify pT2q, and thus l2{l12 verify pT2q. Since l2 “ l1

and l12 “ l11, the property l2 “ l1 iff l12 “ l11 holds;
– if l2 P spVq then we define l12 to be the unique location such that l2 Rl l12. Then
l12 P p♥pm1q Ď p♥pm10q and as a consequence, Property 2 holds for l12. From Rl Ď Tl

we deduce l2 Tl l12 and as a consequence, l2{l12 verify pT2q. We have l1 R spVq hence we
deduce l11 R s

1pVq using l1 Tl l11 and pT10q. We have l2 P spVq hence we deduce l12 P s
1pVq

using l2 Tl l12 and pT10q. We derive both l1 ‰ l2 and l11 ‰ l12. Thus the property l2 “ l1
iff l12 “ l11 holds;

– otherwise we have l2 R spVq and l1 ‰ l2 an we define l12 “ maxvalpm10q ` 2. Hence
Property 2 holds for l12. Moreover, as l11 ď maxvalpm10q ` 1, we deduce l11 ‰ l12. Thus the
property l2 “ l1 iff l12 “ l11 holds. Finally we have l2 R spVq and l12 R s

1pVq (because
l12 ą maxvalpp♥pm10qq). Hence l2{l12 verify pT2q.

We apply Lemma 3.25 (C2) with Hypothesis (a) and (b) and we get Property 3 and 4. [\

Separation Logic with One Quantified Variable 65

C Proofs of Section 4

Corollary 4.12 1SL2 is strictly more expressive than 1SL1.

Proof Let A be the sentence in 1SL2 that states that there is a path of length 3 between
x1 and x2 in the memory state and nothing else, for instance

A def
“ x1 ‰ x2 ^ C ^ pC ˚ empq

with

C def
“ Du1, u2

ˆ

u1 ‰ u2 ^ u1 ‰ x1 ^ u1 ‰ x2 ^ u2 ‰ x1 ^ u2 ‰ x2
^ x1 ãÑ u1 ^ u1 ãÑ u2 ^ u2 ãÑ x2

˙

Suppose that there is a sentence A1 in 1SL1 whose models are precisely the memory
states defined by A. Let us show that this leads to a contradiction.

By Theorem 4.11, there is a Boolean combination A2 of test formulae from Testuthpq,A1q

for some q ě 1 such that A1 and A2 are equivalent. Let s be the store with spx1q “ 0 and
spx2q “ 3. Let h1 be the heap such that h1p0q “ 1, h1p1q “ 2 and h1p2q “ 3. Similarly,
let h2 be the heap such that h2p0q “ 1, h2p1q “ 2 and h2p4q “ 3. And let l “ 0 for
instance (any other value would fit). We note that ps, h1q (l A and therefore ps, h1q (l A1
by assumption. Similarly, ps, h2q *l A and therefore ps, h2q *l A1 by assumption. However,
it is worth noting that for every test formula B from

Ť

αě1 Testα, we have ps, h1q (l B iff
ps, h2q (l B, which leads to a contradiction because A1 is a Boolean combination of formulae
from

Ť

αě1 Testα. [\

Lemma 4.15 Let q ě 1 and m P N. Let A be an 1SL1 formula with program variables
in V “ tx1, . . . , xqu and ps, h, lq be a pointed memory state. If we assume maxvalps, h, lq `
ϕpAq ď m then

bmc
`

q,m,V,A, ps, h, lq
˘

“ tt iff ps, hq (l A

Proof We proceed by induction on A and we prove the double implication, assuming that
maxvalps, h, lq ` ϕpAq ď m holds:

if A is atomic then bmc
`

q,m,V,A, ps, h, lq
˘

“ amc
`

q,V,A, ps, h, lq
˘

. The correctness of amc
is obvious and left to the reader;

if A is A1 then

bmc
`

q,m,V,A, ps, h, lq
˘

“ not bmc
`

q,m,V,A1, ps, h, lq
˘

We deduce the equivalences bmc
`

q,m,V,A, ps, h, lq
˘

“ tt iff bmc
`

q,m,V,A1, ps, h, lq
˘

‰

tt iff ps, hq *l A1 iff ps, hq (l A using the induction hypothesis;

if A is A1 ^A2 then

bmc
`

q,m,V,A, ps, h, lq
˘

“ bmc
`

q,m,V,A1, ps, h, lq
˘

and bmc
`

q,m,V,A2, ps, h, lq
˘

We deduce the equivalences bmc
`

q,m,V,A, ps, h, lq
˘

“ tt iff bmc
`

q,m,V,A1, ps, h, lq
˘

“

tt and bmc
`

q,m,V,A2, ps, h, lq
˘

“ tt iff ps, hq (l A1 and ps, hq (l A2 iff ps, hq (l A
using the induction hypotheses;

if A is DuA1, let us assume bmc
`

q,m,V, DuA1, ps, h, lq
˘

“ tt and prove ps, hq (l DuA1. By

definition, there exists l0 ď m such that l0`ϕpA1q ď m and bmc
`

q,m,V,A1, ps, h, l0q
˘

“

tt. We have maxvalps, hq ` ϕpA1q ď maxvalps, h, lq ` ϕpAq ď m by Proposition 4.13
item 1. Hence we deduce maxvalps, h, l0q `ϕpA1q ď m. By induction hypothesis we get
ps, hq (l0 A1 and thus ps, hq (l DuA1.
Now let us assume ps, hq (l DuA1 and prove bmc

`

q,m,V, DuA1, ps, h, lq
˘

“ tt. By
Corollary 4.5, there exists l0 ď maxvalps, hq ` 1 such that ps, hq (l0 A1. We have
maxvalps, hq ` 1 ` ϕpA1q ď maxvalps, h, lq ` ϕpAq ď m by Proposition 4.13 item 1.
Hence we get both l0 ` ϕpA1q ď m and maxvalps, hq ` ϕpA1q ď m and we deduce
maxvalps, h, l0q ` ϕpA1q ď m. By induction we derive bmc

`

q,m,V,A1, ps, h, l0q
˘

“ tt.

By definition of bmc, we conclude bmc
`

q,m,V, DuA1, ps, h, lq
˘

“ tt;

66 Stéphane Demri et al.

if A is A1 ˚A2, let us assume bmc
`

q,m,V,A1 ˚A2, ps, h, lq
˘

“ tt and let us prove ps, hq (l
A1 ˚ A2. By definition of bmc, there exists a heap h1 : r0,ms ã r0,ms such that
maxvalph1q `maxpϕpA1q, ϕpA2qq ď m and h1 Ď h and bmc

`

q,m,V,A1, ps, h1, lq
˘

“ tt

and bmc
`

q,m,V,A2, ps, h2, lq
˘

“ tt with h2 “ h ´ h1. For each c P t1, 2u, we have
maxvalps, hc, lq ` ϕpAcq ď maxvalps, h, lq ` ϕpAq ď m by Proposition 4.13 item 4.
Hence by induction hypotheses, we deduce ps, h1q (l A1 and ps, h2q (l A2. Given that
the identity h “ h1] h2 holds, we get ps, hq (l A1 ˚A2.
Now let us assume ps, hq (l A1 ˚ A2 and prove bmc

`

q,m,V,A1 ˚A2, ps, h, lq
˘

“ tt.
There exists h1 and h2 such that h “ h1] h2, ps, h1q (l A1 and ps, h2q (l A2.
For each c P t1, 2u, from hc Ď h we deduce maxvalps, hc, lq ` maxpϕpA1q, ϕpA2qq ď

maxvalps, h, lq ` ϕpAq ď m by Proposition 4.13 item 4. Hence we have the identities
bmc

`

q,m,V,A1, ps, h1, lq
˘

“ tt and bmc
`

q,m,V,A2, ps, h2, lq
˘

“ tt by induction hypoth-
esis. Moreover, we have subheapph1, hq “ tt and maxvalph1q`maxpϕpA1q, ϕpA2qq ď m
holds. As h2 “ h´ h1, by definition of bmc, we get bmc

`

q,m,V,A1 ˚A2, ps, h, lq
˘

“ tt;

if A is A1 ´̊ A2, let us assume bmc
`

q,m,V,A1 ´̊ A2, ps, h, lq
˘

“ tt and prove ps, hq (l
A1 ´̊ A2. For this we use Corollary 4.6. Let us consider h1 K h such that maxvalph1q ď
maxvalps, h, lq`15|A1 ´̊ A2|q2 and ps, h1q (l A1 and prove ps, h]h1q (l A2. We have

maxvalph1q `maxpϕpA1q, ϕpA2qq

ď maxvalps, h, lq ` 15|A1 ´̊ A2|q2 `maxpϕpA1q, ϕpA2qq

ď maxvalps, h, lq ` ϕpAq ď m

by Proposition 4.13 item 5. Let us prove the identity bmc
`

q,m,V,A1, ps, h1, lq
˘

“ tt. We
have maxvalps, h, lq ` ϕpA1q ď maxvalps, h, lq ` ϕpAq ď m by Proposition 4.13 item 5.
We also have maxvalph1q ` ϕpA1q ď maxvalph1q `maxpϕpA1q, ϕpA2qq ď m. Hence we
get maxvalps, h1, lq ` ϕpA1q ď m and by induction hypothesis, from ps, h1q (l A1, we
get bmc

`

q,m,V,A1, ps, h1, lq
˘

“ tt. Since maxvalph1q `maxpϕpA1q, ϕpA2qq ď m holds,

by definition of bmc we have h1 K h and bmc
`

q,m,V,A1, ps, h1, lq
˘

“ tt. Hence, to satisfy

bmc
`

q,m,V,A1 ´̊ A2, ps, h, lq
˘

“ tt, we must have bmc
`

q,m,V,A2, ps, h] h1, lq
˘

“ tt.
Then maxvalps, h1, lq ` ϕpA2q ď maxvalph1q ` maxpϕpA1q, ϕpA2qq ď m holds and
maxvalps, h, lq ` ϕpA2q ď maxvalps, h, lq ` ϕpAq ď m holds by Proposition 4.13 item 5.
We deduce maxvalps, h] h1, lq ` ϕpA2q ď m and thus we have ps, h] h1q (l A2 by
induction hypothesis.
Now let us assume ps, hq (l A1 ´̊ A2 and prove bmc

`

q,m,V,A1 ´̊ A2, ps, h, lq
˘

“ tt.
By definition of bmc, we pick h1 : r0,ms ã r0,ms and we verify that either maxvalph1q`
maxpϕpA1q, ϕpA2qq ą m or h1 K h does not hold or bmc

`

q,m,V,A1, ps, h1, lq
˘

“

ff or bmc
`

q,m,V,A2, ps, h] h1, lq
˘

“ tt. So we assume h1 K h and maxvalph1q `

maxpϕpA1q, ϕpA2qq ď m and bmc
`

q,m,V,A1, ps, h1, lq
˘

“ tt and we prove the identity

bmc
`

q,m,V,A2, ps, h] h1, lq
˘

“ tt. We have maxvalph1q ` ϕpA1q ď m and

maxvalps, h, lq ` ϕpA1q ď maxvalps, h, lq ` ϕpAq ď m

by Proposition 4.13 item 5. Hence we derive maxvalps, h1, lq ` ϕpA1q ď m thus by
induction hypothesis we get ps, h1q (l A1. As h1 K h we deduce ps, h] h1q (l A2. We
have maxvalph1q`ϕpA2q ď m and maxvalps, h, lq`ϕpA2q ď maxvalps, h, lq`ϕpAq ď m
by Proposition 4.13 item 5. Hence we derive maxvalps, h] h1, lq `ϕpA2q ď m and thus
by induction hypothesis we get bmc

`

q,m,V,A2, ps, h] h1, lq
˘

“ tt. [\

D Proofs of Section 5

Proposition 5.3 (Completeness of the saturation rules) If the (finite) subset P Ď
Basicu is closed under the rules of Figure 5.1 and ps,H,Lq is the canonical pre-model of P
then:

– s is a total function s : V Ñ r1, qs, hence s is a store;
– H is a finite and functional graph, hence H is the graph of some heap h;

Separation Logic with One Quantified Variable 67

– L is a singleton subset of N, i.e. L “ tlu for a location l;
– the inclusion domphq Ď ♥ps, hq Y tlu holds;
– for any formula B P Basicu we have ps, hq (l B iff B P P.

Proof Since P is closed under the three rules

x“ x

x“ y

y“ x

x“ y y“ z

x“ z

the relation tpx, yq | x “ y P Pu is an equivalence relation. Hence the function s is total:
indeed xi “ xi P P and the set tj | xi “ xj P Pu contains at least i. Hence spxiq is always
defined and we have xi “ xspxiq P P. Moreover we have

spxiq “ spxjq iff xi “ xj P P for all i, j P r1, qs (D.1)

Since P is closed under the two rules

convpxi, xjq

convpxj , xiq

convpxi, xjq convpxj , xkq

convpxi, xkq

the relation tpi, jq | convpxi, xjq P Pu is a partial equivalence relation and

hi,hj are both defined and hi “ hj iff convpxi, xjq P P for all i, j P r1, qs (D.2)

It is obvious that H is a finite graph. An important remark for the rest of the proof is
the following: by construction we have

t0u Z tspxiq | i P r1, qsu Z thi | i P r1, qs and hi is definedu Z t2q ` 1u Ď N (D.3)

i.e. these sets are mutually disjoint. Let u,w P N be such that pu,wq P H and let us check
the following characteristic properties of the graph H:

P1 one of the three following properties holds:
– eithers u “ spxiq for some i P r1, qs;
– or u “ hi for some i such that convpxi, xiq P P;
– or u “ 0;

P2 if u “ spxiq then
– either w “ spxjq and xi ãÑ xj P P for some j P r1, qs;
– or w “ hi and convpxi, xiq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H;

P3 if hi is defined and u “ hi then convpxi, xiq P P, txi ãÑ x1, . . . , xi ãÑ xqu X P “ H and:
– either w “ spxjq and btwnpxi, xjq P P for some j P r1, qs;
– or w “ hi and tolooppxiq P P;
– or w “ 0 and toallocpxiq P P and
tbtwnpxi, x1q, . . . , btwnpxi, xqq, tolooppxiqu X P “ H;

P4 if u “ 0 then tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H and:
– either w “ spxiq and u ãÑ xi P P for some i P r1, qs;
– or w “ 0 and u ãÑ u P P and tu ãÑ x1, . . . , u ãÑ xqu X P “ H;
– or w “ 2q ` 1 and allocpuq P P and tu ãÑ x1, . . . , u ãÑ xq , u ãÑ uu X P “ H.

We prove Properties P1 to P4 in that order:

– Property P1 holds by definition of H. We just have to check that when u “ hi then
convpxi, xiq P P but this is a consequence of Equivalence (D.2);

– let us check Property P2. By definition of H and Property (D.3), there are two possi-
bilities for pspxiq, wq P H:
– either pspxiq, wq “ pspxkq, spxjqq with xk ãÑ xj P P. But from spxkq “ spxiq we

deduce xk “ xi P P by Equivalence (D.1). As P is closed under the rule

xk “ xi xk ãÑ xj

xi ãÑ xj

we deduce xi ãÑ xj P P and v “ spxjq;

68 Stéphane Demri et al.

– or pspxiq, wq “ pspxkq, hjq with convpxk, xjq P P and txk ãÑx1, . . . , xk ãÑxquXP “ H.
From spxiq “ spxkq we deduce txk “ xi, xi “ xku Ď P by Equivalence (D.1). But P
is closed under the rule

xk “ xi convpxk, xjq

convpxi, xjq

convpxi, xjq

convpxj , xiq

convpxi, xjq convpxj , xiq

convpxi, xiq

xi “ xk xi ãÑ xp

xk ãÑ xp

hence we deduce tconvpxi, xjq, convpxi, xiqu P P and txi ãÑx1, . . . , xi ãÑxquXP “ H.
We conclude w “ hj “ hi using Equivalence (D.2);

– let us check Property P3. By definition of H and Property (D.3), there are three possi-
bilities for phi, wq P H:
– either phi, wq “ phk, spxjqq with btwnpxk, xjq P P and txk ãÑx1, . . . , xk ãÑxquXP “ H.

We deduce hi “ hk and w “ spxjq. Thus tconvpxi, xkq, convpxk, xiq, convpxi, xiqu Ď
P by Equivalence (D.2). Since P is closed under the rules

convpxk, xiq btwnpxk, xjq

btwnpxi, xjq

convpxi, xkq xi ãÑ xp

xk ãÑ xp

we deduce btwnpxi, xjq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H;
– phi, wq “ phk, hjq with tconvpxk, xjq, tolooppxkqu Ď P and txk ãÑx1, . . . , xk ãÑxquX

P “ H. We deduce hi “ hk and w “ hj . By Equivalence (D.2), we deduce the
inclusion tconvpxi, xkq, convpxk, xiq, convpxi, xiqu Ď P. Since P is closed under the
rules

convpxk, xiq tolooppxkq

tolooppxiq

convpxi, xkq xi ãÑ xp

xk ãÑ xp

we deduce tolooppxiq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H;
– phi, wq “ phk, 0q with toallocpxkq P P and
txk ãÑ x1, . . . , xk ãÑ xq , btwnpxk, x1q, . . . , btwnpxk, xqq, tolooppxkqu X P “ H. We
deduce hi “ hk and w “ 0. We get tconvpxi, xkq, convpxk, xiq, convpxi, xiqu Ď P
using Equivalence (D.2). Since P is closed under the rules

convpxk, xiq toallocpxkq

toallocpxiq

convpxi, xkq xi ãÑ xp

xk ãÑ xp

convpxi, xkq btwnpxi, xpq

btwnpxk, xpq

convpxi, xkq tolooppxiq

tolooppxkq

we deduce toallocpxiq P P and
txi ãÑ x1, . . . , xi ãÑ xq , btwnpxi, x1q, . . . , btwnpxi, xqq, tolooppxiqu X P “ H;

– let us finally check Property P4. By definition of H and Property (D.3), there are three
possibilities for p0, wq P H:
– p0, wq “ p0, spxiqq with uãÑxi P P and tx1“u, . . . , xq“u, x1 ãÑu, . . . , xq ãÑuuXP “ H;

Hence w “ spxiq and all the other properties hold;
– p0, wq “ p0, 0q with u ãÑ u P P and tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ u, u ãÑ

x1, . . . , u ãÑ xqu X P “ H. Hence w “ 0 and all the other properties hold;
– p0, wq “ p0, 2q ` 1q with allocpuq P P and
tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ u, u ãÑ x1, . . . , u ãÑ xq , u ãÑ uu X P “ H. Hence
w “ 2q ` 1 and all the other properties hold.

We can now check that H is a functional graph. Assume that tpu, vq, pu,wqu Ď H. Let
us show v “ w. We have three cases:

– either u “ spxiq
– v “ spxjq and w “ spxkq with txi ãÑ xj , xi ãÑ xku Ď P. But P is closed under the

rule
xi ãÑ xj xi ãÑ xk

xj “ xk

hence xj “ xk P P and thus v “ spxjq “ spxkq “ w by Equivalence (D.1);

Separation Logic with One Quantified Variable 69

– v “ spxjq and w “ hi is impossible because txi ãÑ x1, . . . , xi ãÑ xqu X P “ H

contradicts xi ãÑ xj P P;
– v “ hj and w “ hj imply v “ w;

– or u “ hi with convpxi, xiq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H
– v “ spxjq and w “ spxkq with tbtwnpxi, xjq, btwnpxi, xkqu Ď P. But P is closed under

the rule
btwnpxi, xjq btwnpxi, xkq

xj “ xk

hence xj “ xk P P and thus v “ spxjq “ spxkq “ w by Equivalence (D.1);
– v “ spxjq and w “ hi with tbtwnpxi, xjq, tolooppxiqxiu Ď P. But P is closed under

the rule
tolooppxiq btwnpxi, xjq

xi ãÑ xj

hence we deduce xi ãÑ xj which contradicts txi ãÑ x1, . . . , xi ãÑ xqu X P “ H;
– v “ spxjq and w “ 0 is impossible because btwnpxi, xjq P P contradicts
tbtwnpxi, x1q, . . . , btwnpxi, xqq, tolooppxiqu X P “ H;

– v “ hi and w “ hi implies v “ w;
– v “ hi and w “ 0 is impossible because tolooppxiq P P contradicts
tbtwnpxi, x1q, . . . , btwnpxi, xqq, tolooppxiqu X P “ H;

– v “ 0 and w “ 0 implies v “ w;
– or u “ 0 with tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H

– v “ spxiq and w “ spxjq with tu ãÑ xi, u ãÑ xiu Ď P. But P is closed under the rule

u ãÑ xi u ãÑ xj

xi “ xj

hence xi “ xj P P and thus v “ spxiq “ spxjq “ w by Equivalence (D.1);
– v “ spxiq and w “ 0 with tu ãÑ xi, u ãÑ uu Ď P. But P is closed under the rule

u ãÑ xi u ãÑ u

xi “ u

hence xi“ u P P which contradicts tx1“ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uuXP “ H;
– v “ spxiq and w “ 2q ` 1 is impossible because u ãÑ xi P P contradicts tu ãÑ

x1, . . . , u ãÑ xq , u ãÑ uu X P “ H;
– v “ 0 and w “ 0 implies v “ w;
– v “ 0 and w “ 2q` 1 is impossible because u ãÑ u P P contradicts tu ãÑ x1, . . . , u ãÑ

xq , u ãÑ uu X P “ H;
– v “ 2q ` 1 and w “ 2q ` 1 implies v “ w.

Let us now show that L is a singleton set. For that, we first show that L contains no
more than one location:

– if spxiq P L and spxjq P L then txi “ u, xj “ uu Ď P. But P is closed under the rules

xj “ u

u“ xj

xi “ u u“ xj

xi “ xj

thus xi “ xj P P and spxiq “ spxjq;
– spxiq P L and hj P L is impossible because xi“u P P contradicts tx1“u, . . . , xq“uuXP “
H;

– the case when spxiq P L and 0 P L is impossible because xi “ u P P contradicts tx1 “
u, . . . , xq “ u, . . .u X P “ H;

– if hi P L and hj P L then we have txi ãÑ u, xj ãÑ uu P P. But P is closed under the rule

xi ãÑ u xj ãÑ u

convpxi, xjq

hence convpxi, xjq P P and thus hi “ hj ;

70 Stéphane Demri et al.

– hi P L and 0 P L is impossible because xi ãÑ u P P contradicts t. . . , x1 ãÑ u, . . . , xq ãÑ

uu X P “ H.

Then we show that L is not empty. If there exists i such that xi “ u P P then spxiq P L.
Otherwise we have tx1“ u, . . . , xq “ uuXP “ H. If there exists j such that xj ãÑ u P P then,
because P is closed under the rule

xj ãÑ u xj ãÑ u

convpxj , xjq

we have convpxj , xjq P P and thus hj is defined (see Equivalence (D.2)) and we deduce
hj P L. Otherwise tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H and in that case 0 P L.

We consider the memory state ps, hq and the location l such that H is the graph of the
heap h and L “ tlu. Let us show that the inclusion domphq Ď ♥ps, hq Y tlu holds. For this
we show that the three following properties hold:

– domphq Ď tspxiq | i P r1, qsu Y thi | i P r1, qs and hi is definedu Y t0u;
– tspxiq | i P r1, qsu Y thi | i P r1, qs and hi is definedu Ď p♥ps, hq;
– if 0 P domphq then l “ 0.

The first property is trivial by definition of H. For the second property, we first notice
that tspxiq | i P r1, qsu Ď p♥ps, hq. Then if hi is defined then convpxi, xiq P P and txi ãÑ

x1, . . . , xi ãÑ xqu X P “ H by characteristic Property P3 of H. Hence we have pspxiq, hiq P
H and we deduce hi P hpsptx1, . . . , xquqq. Finally, if 0 P domphq then by characteristic
Property P4 of H we have tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H and as a
consequence we get 0 P L by definition of L. Hence l “ 0.

From the three previous properties we deduce domphq Ď p♥ps, hq Y tlu and hence the
inclusion domphq Ď ♥ps, hq Y tlu holds.

Let us finally show that for any basic formula B P Basicu we have ps, hq (l B iff B P P.
We proceed by case analysis on B:

if B is xi “ xj . Then ps, hq (l xi “ xj iff spxiq “ spxjq iff xi “ xj P P by Equivalence (D.1);

if B is xi ãÑ xj . Let us first assume ps, hq (l xi ãÑ xj and show xi ãÑ xj P P. We have
hpspxiqq “ spxjq hence pspxiq, spxjqq P H. By the characteristic Property P2 of H, the
only possibility is that there exists k such that spxjq “ spxkq and xi ãÑ xk P P. Hence
by Equivalence (D.1), we have xk “ xj P P. But P is closed under the rule

xk “ xj xi ãÑ xk

xi ãÑ xj

hence we derive xi ãÑ xj P P.
Let us now assume xi ãÑ xj P P. Then pspxiq, spxjqq P H by definition of H and thus
ps, hq (l xi ãÑ xj ;

if B is convpxi, xjq. Let us first assume ps, hq (l convpxi, xjq and show convpxi, xjq P P. We
have hpspxiqq “ hpspxjqq “ v. Hence tpspxiq, vq, pspxjq, vqu Ď H. By the characteristic
Property P2 of H and Property (D.3), we have two cases:
– v “ spxkq and v “ spxrq with txi ãÑxk, xj ãÑxru Ď P. We deduce spxkq “ spxrq and

thus xk “ xr P P by Equivalence (D.1). But P is closed under the rules

xk “ xr xi ãÑ xk

xi ãÑ xr

xi ãÑ xr xj ãÑ xr

convpxi, xjq

hence we get convpxi, xjq P P;
– v “ hi and v “ hj with tconvpxi, xiq, convpxj , xjqu Ď P. From hi “ hj , we deduce

convpxi, xjq P P by Equivalence (D.2);
Now let us assume convpxi, xjq P P and let us show ps, hq (l convpxi, xjq. We have two
cases:

Separation Logic with One Quantified Variable 71

– if xi ãÑ xk P P holds for some k P r1, qs then as P is closed under the rule

convpxi, xjq xi ãÑ xk

xj ãÑ xk

then xj ãÑ xk P P and tpspxiq, xkq, pspxjq, xkqu Ď H by definition of H. Hence
ps, hq (l convpxi, xjq;

– otherwise txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. From convpxi, xjq P P we deduce hi “
hj and convpxj , xjq P P by Equivalence (D.2). Hence by definition of H we have
tpspxiq, hjq, pspxjq, hjqu Ď H and we conclude ps, hq (l convpxi, xjq;

if B is btwnpxi, xjq. Let us first assume ps, hq (l btwnpxi, xjq and show btwnpxi, xjq P P. We
have tpspxiq, vq, pv, spxjqqu Ď H for some v. By characteristic Property P2 of H, we have
two cases:
– v “ spxkq with xi ãÑ xk P P. From pspxkq, spxjqq P H we deduce ps, hq (l xk ãÑ xj

and thus xk ãÑ xj P P (from the earlier case B “ xk ãÑ xj). Since P is closed under
the rule

xi ãÑ xk xk ãÑ xj

btwnpxi, xjq

we deduce btwnpxi, xjq P P;
– v “ hi with convpxi, xiq and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. By character-

istic Property P3 of H and Property (D.3), there is only one possible case for
phi, spxjqq P H: there must exist k such that spxjq “ spxkq and btwnpxi, xkq P P. By
Equivalence (D.1), we deduce xk “ xj P P. Since P is closed under the rule

xk “ xj btwnpxi, xkq

btwnpxi, xjq

we deduce btwnpxi, xjq P P;
Now let us assume btwnpxi, xjq P P and let us show ps, hq (l btwnpxi, xjq. We have two
cases:
– either xi ãÑ xk P P holds for some k P r1, qs. As P is closed under the rule

xi ãÑ xk btwnpxi, xjq

xk ãÑ xj

we deduce xk ãÑ xj P P and thus we have tpspxiq, spxkqq, pspxkq, spxjqqu Ď H by
definition of H. As a consequence, we get ps, hq (l btwnpxi, xjq;

– or txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. Since P is closed under the rule

btwnpxi, xjq

convpxi, xiq

we deduce convpxi, xiq P P and thus tpspxiq, hiq, phi, spxjqqu Ď H by definition of H.
As a consequence we derive ps, hq (l btwnpxi, xjq;

if B is tolooppxiq. Let us first assume ps, hq (l tolooppxiq and show tolooppxiq P P. We
have tpspxiq, vq, pv, vqu Ď H for some v P N. By characteristic Property P2 of H, we
have two cases for pspxiq, vq P H:
– v “ spxjq with xi ãÑ xj P P. From pspxjq, spxjqq P H we deduce ps, hq (l xj ãÑ xj

and thus xj ãÑ xj P P (from the earlier case B “ xj ãÑ xj). Since P is closed under
the rule

xi ãÑ xj xj ãÑ xj

tolooppxiq

we deduce tolooppxiq P P;
– v “ hi with convpxi, xiq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. By characteristic

Property P3 of H and Property (D.3), from phi, hiq P H we deduce tolooppxiq P P;

72 Stéphane Demri et al.

Now let us assume tolooppxiq P P and let us show ps, hq (l tolooppxiq. We have two
cases:
– either xi ãÑ xj P P holds for some for some j P r1, qs. As P is closed under the rule

xi ãÑ xj tolooppxiq

xj ãÑ xj

we deduce xj ãÑxj P P and thus we have both ps, hq (l xi ãÑxj and ps, hq (l xj ãÑxj
(from the earlier cases B “ xi ãÑ xj and B “ xj ãÑ xj). Hence we derive ps, hq (l
tolooppxiq;

– or txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. As P is closed under the rule

tolooppxiq

toallocpxiq

toallocpxiq

convpxi, xiq

we also get convpxi, xiq P P and thus tpspxiq, hiq, phi, hiqu Ď H by definition of H.
Hence ps, hq (l tolooppxiq;

if B is toallocpxiq. Let us first assume ps, hq (l toallocpxiq and show toallocpxiq P P.
We have tpspxiq, vq, pv, wqu Ď H for some v, w P N. By characteristic Property P2 of H,
we have two cases for pspxiq, vq P H:
– v “ spxjq with xi ãÑ xj P P. From pspxjq, wq P H we deduce ps, hq (l convpxj , xjq

and thus convpxj , xjq P P (from the earlier case B “ convpxj , xjq). Since P is closed
under the rule

xi ãÑ xj convpxj , xjq

toallocpxiq

we deduce toallocpxiq P P;
– v “ hi with convpxi, xiq P P and txi ãÑ x1, . . . , xi ãÑ xqu X P “ H. By characteristic

Property P3 of H, we have three cases for phi, wq P H.
– w “ spxjq with btwnpxi, xjq P P. But P is closed under the rule

btwnpxi, xjq

toallocpxiq

hence toallocpxiq P P;
– w “ hi with tolooppxiq P P. But P is closed under the rule

tolooppxiq

toallocpxiq

hence toallocpxiq P P;
– w “ 0 and in this case toallocpxiq P P;

Now let us assume toallocpxiq P P and let us show ps, hq (l toallocpxiq. We have four
cases:
– either xi ãÑ xj P P holds for some j P r1, qs. As P is closed under the rule

xi ãÑ xj toallocpxiq

convpxj , xjq

we deduce convpxj , xjq P P and thus we have both ps, hq (l xi ãÑ xj and ps, hq (l
convpxj , xjq (from the earlier cases B “ xi ãÑ xj and B “ convpxj , xjq). Hence we
derive ps, hq (l toallocpxiq;

– or txi ãÑ x1, . . . , xi ãÑ xqu X P “ H and btwnpxi, xjq P P for some j P r1, qs. Then
we have ps, hq (l btwnpxi, xjq (from the earlier case B “ btwnpxi, xjq). We deduce
ps, hq (l toallocpxiq;

– or txi ãÑx1, . . . , xi ãÑxq , btwnpxi, x1q, . . . , btwnpxi, xqquXP “ H and tolooppxiq P P.
Then we have ps, hq (l tolooppxiq (from the earlier case B “ tolooppxiq). We deduce
ps, hq (l toallocpxiq;

Separation Logic with One Quantified Variable 73

– or txi ãÑ x1, . . . , xi ãÑ xq , btwnpxi, x1q, . . . , btwnpxi, xqq, tolooppxiqu X P “ H. Since
P is closed under the rule

toallocpxiq

convpxi, xiq

we deduce convpxi, xiq P P and thus tpspxiq, hiq, phi, 0qu Ď H hence we conclude
ps, hq (l toallocpxiq;

if B is xi “ u. Let us first assume ps, hq (l xi “ u and show xi “ u P P. We have l “ spxiq.
According to the definition of L and Property (D.3), we must have l “ spxjq with
xj “ u P P. But then we have spxiq “ spxjq hence xi “ xj P P by Equivalence (D.1). As
P is closed under the rule

xi “ xj xj “ u

xi “ u

we get xi “ u P P.
Conversely, if we assume xi “ u P P then by definition of L we have spxiq P L and thus
l “ spxiq. As a consequence, we have ps, hq (l xi “ u;

if B is xi ãÑ u. Let us first assume ps, hq (l xi ãÑu and show xi ãÑu P P. We have pspxiq, lq P
H. By the characteristic Property P2 of H, we have two cases:
– either l “ spxjq with xi ãÑ xj P P for some j P r1, qs. We derive ps, hq (l xi ãÑ xj

from the earlier case B “ xi ãÑ xj and thus we get ps, hq (l xj “ u. Hence we have
xj “ u P P (from the earlier case B “ xj “ u). As P is closed under the rule

xj “ u xi ãÑ xj

xi ãÑ u

we get xi ãÑ u P P;
– or l “ hi. But in that case, according to the definition of L and Property (D.3), we

must have xi ãÑ u P P;
Now let us assume xi ãÑ u P P and let us show ps, hq (l xi ãÑ u. We have two cases:
– either xj “ u P P for some j P r1, qs. As P is closed under the rules

xj “ u

u“ xj

u“ xj xi ãÑ u

xi ãÑ xj

we get xi ãÑ xj P P. Then we have ps, hq (l xj “ u and ps, hq (l xi ãÑ xj (from the
earlier cases B “ xj “ u and B “ xi ãÑ xj). Hence we deduce ps, hq (l xi ãÑ u;

– or tx1 “ u, . . . , xq “ uu X P “ H and in that case l “ hi. But P is closed under the
rule

xi ãÑ u xi ãÑ u

convpxi, xiq

hence convpxi, xiq P P and thus pspxiq, hi “ lq P H by definition of H. We conclude
ps, hq (l xi ãÑ u;

if B is u ãÑ xi. Let us first assume ps, hq (l u ãÑ xi and show u ãÑ xi P P. According to the
definition of L, for l P L we have three cases:
– either l “ spxjq with xj “ u P P for some j P r1, qs. From pspxjq, spxiqq P H, using

characteristic Property P2 of H and Property (D.3), we deduce xj ãÑ xi P P. But P
is closed under the rule

xj “ u xj ãÑ xi

u ãÑ xi

hence we get u ãÑ xi P P;
– or l “ hj with xj ãÑu P P for some j P r1, qs. From phj , spxiqq P H, using characteristic

Property P3 of H and Property (D.3), we deduce btwnpxj , xiq P P. Since P is closed
under the rule

xj ãÑ u btwnpxj , xiq

u ãÑ xi

we get u ãÑ xi P P;

74 Stéphane Demri et al.

– or l “ 0. From p0, spxiqq P H, using characteristic Property P4 of H and Prop-
erty (D.3), we deduce spxiq “ spxjq and u ãÑ xj P P. From Equivalence (D.1) we get
xj “ xi P P and as P is closed under the rule

xj “ xi u ãÑ xj

u ãÑ xi

we conclude u ãÑ xi P P;
Now let us assume u ãÑ xi P P and let us show ps, hq (l u ãÑ xi. We have three cases for
l P L:
– either l “ spxjq with xj “ u P P for some j P r1, qs. As P is closed under the rules

xj “ u

u“ xj

u“ xj u ãÑ xi

xj ãÑ xi

we get xj ãÑ xi P P and thus ps, hq (l xj ãÑ xi from the earlier case B “ xj ãÑ xi.
We deduce ps, hq (l u ãÑ xi;

– or l “ hj with xj ãÑ u P P and tx1 “ u, . . . , xq “ uu X P “ H. As P is closed under
the rules

xj ãÑ u u ãÑ xi

btwnpxj , xiq

xj ãÑ xp xj ãÑ u

xp “ u

we get btwnpxj , xiq P P and txj ãÑ x1, . . . , xj ãÑ xquXP “ H. Hence by definition of
H we get phj , spxiqq P H. We deduce ps, hq (l u ãÑ xi;

– or l “ 0 and tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H. Then p0, spxiqq P H
by definition of H and we deduce ps, hq (l u ãÑ xi;

if B is u ãÑ u. Let us first assume ps, hq (l u ãÑ u and show u ãÑ u P P. According to the
definition of L, for l P L we have three cases:
– either l “ spxiq with xi “ u P P for some i P r1, qs. From the earlier case B “ xi “ u

we deduce ps, hq (l xi “ u. Hence we get ps, hq (l xi ãÑ xi and as a consequence
xi ãÑ xi P P. But P is closed under the rules

xi “ u xi ãÑ xi

u ãÑ xi

xi “ u u ãÑ xi

u ãÑ u

hence u ãÑ u P P;
– or l “ hi with xi ãÑ u P P and tx1 “ u, . . . xq “ uu X P “ H for some i P r1, qs.

We deduce ps, hq (l xi ãÑ u from the earlier case B “ xi ãÑ u. Hence we derive
ps, hq (l tolooppxiq and thus tolooppxiq P P from the earlier case B “ tolooppxiq.
But P is closed under the rule

xi ãÑ u tolooppxiq

u ãÑ u

hence u ãÑ u P P;
– or l “ 0. Then p0, 0q P H and by characteristic Property P4 of H and Property (D.3),

we must have u ãÑ u P P;
Now let us assume u ãÑ u P P and let us show ps, hq (l u ãÑ u. We have three cases for
l P L we have three cases:
– either l “ spxiq with xi “ u P P for some i P r1, qs. As P is closed under the rules

xi “ u

u“ xi

u“ xi u ãÑ u

xi ãÑ u

u“ xi xi ãÑ u

xi ãÑ xi

we get xi ãÑxi P P hence ps, hq (l xi ãÑxi (from the earlier case B “ xi ãÑxi). Since
l “ spxiq we deduce ps, hq (l u ãÑ u;

Separation Logic with One Quantified Variable 75

– or l “ hi with xi ãÑ u P P. As P is closed under the rule

xi ãÑ u u ãÑ u

tolooppxiq

we get tolooppxiq P P. From the earlier cases B “ xi ãÑ u and B “ tolooppxiq we
deduce ps, hq (l xi ãÑ u and ps, hq (l tolooppxiq hence ps, hq (l u ãÑ u;

– or l “ 0 and tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H. Then p0, 0q P H by
the definition of H and we deduce ps, hq (l u ãÑ u;

if B is allocpuq. Let us first assume ps, hq (l allocpuq and show allocpuq P P. According
to the definition of L, for l P L we have three cases:
– either l “ spxiq with xi“u P P for some i P r1, qs. We deduce spxiq P domphq and thus
ps, hq (l convpxi, xiq. Using the earlier case B “ convpxi, xiq, we get convpxi, xiq P P.
But P is closed under the rule

xi “ u convpxi, xiq

allocpuq

hence allocpuq P P;
– or l “ hi with xi ãÑ u P P for some i P r1, qs. Using the earlier case B “ xi ãÑ u, we

deduce ps, hq (l xiãÑu and then ps, hq (l toallocpxiq. Hence we get toallocpxiq P P
(from the earlier case B “ toallocpxiq). As P is closed under the rule

toallocpxiq xi ãÑ u

allocpuq

we get allocpuq P P;
– or l “ 0. Then p0, vq P H for some v P N. Using characteristic Property P4 we

deduce tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H and:
– either v “ spxiq and u ãÑ xi P P for some i P r1, qs. As P is closed under the

rule
u ãÑ xi

allocpuq

we get allocpuq P P;
– or v “ 0 and u ãÑ u P P and tu ãÑ x1, . . . , u ãÑ xqu X P “ H. As P is closed

under the rule
u ãÑ u

allocpuq

we get allocpuq P P;
– or v “ 2q ` 1 and allocpuq P P and tu ãÑ x1, . . . , u ãÑ xq , u ãÑ uu X P “ H;

Now let us assume allocpuq P P and let us show ps, hq (l allocpuq. We have three cases
for l P L:
– either l “ spxiq with xi “ u P P for some i P r1, qs. As P is closed under the rules

xi “ u

u“ xi

u“ xi allocpuq

convpxi, xiq

we get convpxi, xiq P P and thus ps, hq (l convpxi, xiq from the earlier case B “

convpxi, xiq. Hence l “ spxiq P domphq and we deduce ps, hq (l allocpuq;
– or l “ hi with xi ãÑ u P P and tx1 “ u, . . . , xq “ uu X P “ H. As P is closed under

the rules
xi ãÑ u allocpuq

toallocpxiq

we get toallocpxiq P P. We derive ps, hq (l xi ãÑu (from the earlier case B “ xi ãÑu)
and ps, hq (l toallocpxiq (from the earlier case B “ toallocpxiq). Hence we get
ps, hq (l allocpuq;

76 Stéphane Demri et al.

– or l “ 0 and tx1 “ u, . . . , xq “ u, x1 ãÑ u, . . . , xq ãÑ uu X P “ H. We consider three
cases:

– either u ãÑ xi P P holds for some i P r1, qs. In this case, p0, spxiqq P H by
definition of H and we get ps, hq (l allocpuq;

– or tu ãÑ x1, . . . , u ãÑ xqu X P “ H and u ãÑ u P P. In this case, p0, 0q P H by
definition of H and we get ps, hq (l allocpuq;

– or tuãÑx1, . . . , uãÑxq , uãÑuuXP “ H. In that case p0, 2q ` 1q P H by definition
of H and we get ps, hq (l allocpuq. [\

Proposition D.1 Let q ě 1. Let s be a store, h1 and h2 be two heaps and l be a location.
We assume that ♥ps, h1q Y tlu “ ♥ps, h2q Y tlu and that h1 and h2 are identical maps on
that subset of locations. Then ps, h1, lq »b ps, h2, lq.

Proof Let us denote D “ ♥ps, h1q Y tlu “ ♥ps, h2q Y tlu. We show that ps, h1q (l B implies
ps, h2q (l B by case analysis on B:

B is xi “ xj : if ps, h1q (l xi “ xj then spxiq “ spxjq and thus ps, h2q (l xi “ xj ;
B is xi ãÑ xj : if ps, h1q (l xi ãÑ xj then h1pspxiqq “ spxjq. Hence spxiq P refps, h1q Ď D and

we deduce h2pspxiqq “ h1pspxiqq “ spxjq. We conclude ps, h2q (l xi ãÑ xj ;
B is convpxi, xjq: if ps, h1q (l convpxi, xjq then h1pspxiqq “ h1pspxjqq. Hence we have the in-

clusion tspxiq, spxjqu Ď D and we deduce h2pspxiqq “ h1pspxiqq “ h1pspxjqq “ h2pspxjqq.
We conclude ps, h2q (l convpxi, xjq;

B is btwnpxi, xjq: if ps, h1q (l btwnpxi, xjq then h1ph1pspxiqqq “ spxjq. Hence we have
tspxiq, h1pspxiqqu Ď D and we deduce h2ph2pspxiqqq “ h2ph1pspxiqqq “ h1ph1pspxiqqq “
spxjq. We conclude ps, h2q (l btwnpxi, xjq;

B is toallocpxiq: if ps, h1q (l toallocpxiq then h1pspxiqq P domph1q. Hence we get the
inclusion tspxiq, h1pspxiqqu Ď D. Then h1 and h2 have the same value at spxiq hence
h2pspxiqq “ h1pspxiqq “ u. But h1 and h2 must also have the same value on u P D, hence
h2puq must be defined (and equal to h1puq) and we deduce h2pspxiqq “ u P domph2q.
We conclude ps, h2q (l toallocpxiq;

B is tolooppxiq: if ps, h1q (l tolooppxiq then h1ph1pspxiqqq “ h1pspxiqq. Hence we get
tspxiq, h1pspxiqqu Ď D. We deduce h2ph2pspxiqqq “ h2ph1pspxiqqq “ h1ph1pspxiqqq “
h1pspxiqq “ h2pspxiqq. We conclude ps, h2q (l tolooppxiq;

B is u ãÑ u: if ps, h1q (l u ãÑ u then h1plq “ l. As l P D, we deduce h2plq “ h1plq “ l and
we conclude ps, h2q (l u ãÑ u;

B is allocpuq: if ps, h1q (l allocpuq then l P domph1q. As l P D, we deduce l P domph2q
and we conclude ps, h2q (l allocpuq;

B is xi “ u: if ps, h1q (l xi “ u then spxiq “ l and we conclude ps, h2q (l xi “ u;
B is xi ãÑ u: if ps, h1q (l xi ãÑ u then h1pspxiqq “ l. Then spxiq P D and we deduce

h2pspxiqq “ h1pspxiqq “ l. We conclude ps, h2q (l xi ãÑ u;
B is u ãÑ xi: if ps, h1q (l u ãÑ xi then h1plq “ spxiq. As l P D, we deduce h2plq “ h1plq “

spxiq and we conclude ps, h2q (l u ãÑ xi. [\

Proposition 5.5 Let q ě 1. Let s : V Ñ N be a store, h : Nã N be a heap and l P N be a
location. Let pp1, . . . , pq , l, rq be a cardinality assignment such that:

1. spxiq “ spxjq implies pi “ pj for all i, j P r1, qs;
2. cardppred♥ps, h, iqq ď pi for any i P r1, qs;

3. cardploop♥ps, hqq ď l;

4. cardprem♥ps, hqq ď r.

There exists a heap h1 such that:

– ps, h, lq »b ps, h
1, lq;

– cardppred♥ps, h
1, iqq “ pi for any i P r1, qs;

– cardploop♥ps, h
1qq “ l;

– cardprem♥ps, h
1qq “ r.

Separation Logic with One Quantified Variable 77

Proof Let us define i “ mintj P r1, qs | spxiq “ spxjqu for every i P r1, qs,m “ maxvalps, h, lq,
n “ maxtp1, . . . , pq , l, ru, p1i “ pi ´ cardppred♥ps, h, iqq for every i P r1, qs, l1 “ l ´

cardploop♥ps, hqq and r1 “ r ´ cardprem♥ps, hqq. We define h1 by the following rules:

– h1puq “ v when u ď m and hpuq “ v;
– h1puq “ v when u “ m` 2` i.n` d, v “ spxiq, i P r1, qs, 1 ď d ď p1i;
– h1puq “ v when u “ m` 2` pq ` 1q.n` d, v “ u and 1 ď d ď l1;
– h1puq “ v when u “ m` 2` pq ` 2q.n` d, v “ m` 1 and 1 ď d ď r1.

Then it is easy to check that h1 is a heap that satisfies the following properties:

– ♥ps, h1q “ ♥ps, hq and thus ♥ps, h1q Y tlu “ ♥ps, hq Y tlu;
– the restrictions of h and h1 to ♥ps, hq Y tlu are identical maps;
– pred♥ps, h

1, iq “ pred♥ps, h, iq Z rm` 2` i.n` 1,m` 2` i.n` p1is;

– loop♥ps, h
1q “ loop♥ps, hq Z rm` 2` pq ` 2q.n` 1,m` 2` pq ` 2q.n` l1s;

– rem♥ps, h
1q “ rem♥ps, hq Z rm` 2` pq ` 2q.n` 1,m` 2` pq ` 2q.n` r1s.

Hence the cardinality identities cardppred♥ps, h
1, iqq “ pi for i P r1, qs, cardploop♥ps, h

1qq “ l

and cardprem♥ps, h
1qq “ r are obvious. The basic equivalence ps, h, lq »b ps

1, h1, lq comes from

Proposition D.1 (page 76 in Appendix D). [\

Proposition 5.7 If the conjunction of the formulæ in B` Y B´ Y S is satisfiable then
the triple pB`,B´, Sq is n-consistent for any n P t1, 2, 3u.

Proof Let us first prove the result for 1-consistency. Let us fix a triple pB`,B´, Sq and
consider a memory state ps, hq and a location l such all the formulæ in B` Y B´ Y S are
satisfied in ps, h, lq. Let us show that Conditions C1.1–4 hold:

C1.1 no formula in B´ is satisfied in ps, h, lq and by Proposition 5.1, all the formulæ of
clpB`q are satisfied in ps, h, lq. Hence we deduce B´ X clpB`q “ H;

C1.2 if xi “ xj P clpB`q and t# pred♥pxiq ě a, # pred♥pxjq ě bu Ď S then we deduce

spxiq “ spxjq, cardppred♥ps, h, iqq ě a and cardppred♥ps, h, jqq ă b. But spxiq “ spxjq

implies pred♥ps, h, iq “ pred♥ps, h, jq hence a ă b;

C1.3 if t# loop♥ ě a, # loop♥ ě bu Ď S then the relations cardploop♥ps, hqq ě a and

cardploop♥ps, hqq ă b hold hence a ă b;

C1.4 if t# rem♥ ě a, # rem♥ ě bu Ď S then the relations cardprem♥ps, hqq ě a and

cardprem♥ps, hqq ă b hold hence a ă b.

Let us prove the result for 2-consistency. Let us fix a triple pB`,B´, Sq. Let us consider
a memory state ps, hq and a location l such all the formulæ in B` Y B´ Y S are satisfied
in ps, h, lq. We have already established that pB`,B´, Sq is 1-consistent in this case. Let us
show that Conditions C2.1–2 hold.

C2.1 if txi“xj , u ãÑxiu Ď clpB`q and # pred♥pxjq ě 1 P S then we deduce spxiq “ spxjq,

hplq “ spxiq and cardppred♥ps, h, jqq ă 1. But then hplq “ spxjq hence l P predps, h, jq.

From pred♥ps, h, jq “ H we derive l P pred♥ps, h, jq hence l P ♥ps, hq Ď spVqYhpspVqq.
Hence ps, h, lq satisfies at least one formula B P EquYTou. We deduce that all the formulæ
of B` Y tBu Y B´ Y S are satisfied in ps, h, lq hence pB` Y tBu,B´, Sq is 1-consistent;

C2.2 if uãÑu P clpB`q and # loop♥ ě 1 P S then we have hplq “ l and cardploop♥ps, hqq ă

1. From loop♥ps, hq “ H and l P loop♥ps, hq we deduce l P ♥ps, hq Ď spVq Y hpspVqq.
Hence ps, h, lq satisfies at least one formula B P EquYTou. We deduce that all the formulæ
of B` Y tBu Y B´ Y S are satisfied in ps, h, lq hence pB` Y tBu,B´, Sq is 1-consistent;

Let us prove the result for 3-consistency. Let us fix a triple pB`,B´, Sq and consider a
memory state ps, hq and a location l such all the formulæ in B` Y B´ Y S are satisfied
in ps, h, lq. We have already established that pB`,B´, Sq is 2-consistent in this case. Let us
show that Condition C3.1 holds: if allocpuq P clpPq and # rem♥ ě 1 P S then l P domphq

and rem♥ps, hq “ H. Hence by Lemma 2.6, either l P ♥ps, hq or l P pred♥ps, h, iq for some

i P r1, qs or l P loop♥ps, hq. As a consequence, ps, h, lq satisfies at least one formula of

B P EquYTouYFmuYtu ãÑ uu. We deduce that all the formulæ of B`YtBuY B´Y S are
satisfied in ps, h, lq hence pB` Y tBu,B´, Sq is 2-consistent. [\

78 Stéphane Demri et al.

Proposition 5.8 If the triple pB`,B´,Sq is 3-consistent then the conjunction of the for-
mulæ in B` Y B´ Y S is satisfiable.

Proof Let us first consider the case where pB`,B´,Sq is 1-consistent (which is the weak-
est of the assumptions of 1-, 2- or 3-consistency). We define a cardinality assignment
pp1, . . . , pq , l, rq by:

pi “ max

a
ˇ

ˇ Dk P r1, qs, xi “ xk P clpB`q ^ # pred♥pxkq ě a P S
(

for i P r1, qs

l “ max

a
ˇ

ˇ # loop♥ ě a P S
(

r “ max

a
ˇ

ˇ # rem♥ ě a P S
(

where we assume maxpHq “ 0. Since pB`,B´, Sq is 1-consistent, we check that the following
properties hold for any a P N and all i, j P r1, qs:

(P0) if xi “ xj P clpB`q then pi “ pj ;
(P1) if # pred♥pxiq ě a P S then pi ě a; (P2) if # pred♥pxiq ě a P S then pi ă a;

(P3) if # loop♥ ě a P S then l ě a; (P4) if # loop♥ ě a P S then l ă a;

(P5) if # rem♥ ě a P S then r ě a; (P6) if # rem♥ ě a P S then r ă a.

Property (P0) let us assume xi “ xj P clpB`q and let us show pi ď pj . Let a P N and
k P r1, qs be such that xi “ xk P clpB`q and # pred♥pxkq ě a P S. Let us show a ď pj .

Since clpB`q is closed under rules

xi “ xj

xj “ xi

xj “ xi xi “ xk

xj “ xk

we deduce xj“xk P clpB`q. Hence by definition of pj (max), we get a ď pj . We conclude
pi ď pj . The relation pj ď pi is derived directly because xj “ xi P clpB`q holds as well;

Property (P1) if # pred♥pxiq ě a P S then, as clpB`q is closed under rule

xi “ xi

we deduce xi “ xi P clpB`q and thus a ď pi by definition of pi;

Property (P2) let us assume # pred♥pxiq ě a P S and let us show pi ă a. Hence, let

b P N and k P r1, qs be such that xi “ xk P clpB`q and # pred♥pxkq ě b P S and

let us show b ă a. From xi “ xk P clpB`q we deduce xk “ xi P clpB`q. As we also
have t# pred♥pxkq ě b, # pred♥pxiq ě au Ď S, by Property C1.2 (which holds for 1-

consistency) we deduce b ă a. We conclude pi ă a;

Property (P3) if # loop♥ ě a P S then by definition of l we have a ď l;

Property (P4) let us assume # loop♥ ě a P S and let us show l ă a. Hence, let b P N be

s.t. # loop♥ ě b P S and let us show b ă a. We have t# loop♥ ě b, # loop♥ ě au Ď S
hence by Property C1.3 we deduce b ă a. We conclude l ă a;

Property (P5) if # rem♥ ě a P S then by definition of r we have a ď r;

Property (P6) let us assume # rem♥ ě a P S and let us show r ă a. Hence, let b P N be such

that # rem♥ ě b P S and let us show b ă a. We have t# rem♥ ě b, # rem♥ ě au Ď S
hence by Property C1.4 we deduce b ă a. We conclude r ă a.

From Property (P0), we deduce that in the pre-canonical model ps, h, lq of clpB`q, if spxiq “
spxjq then pi “ pj by Proposition 5.3.

Now we show that the conjunction of the formulæ in B` Y B´ Y S is satisfiable if one
of following properties hold:

(S1) if pB`,B´, Sq is 1-consistent and either allocpuq R clpB`q or pEquYTouqXclpB`q ‰ H;
(S2) if pB`,B´, Sq is 2-consistent and pEqu Y Tou Y Fmu Y tu ãÑ uuq X clpB`q ‰ H;
(S3) if pB`,B´, Sq is 3-consistent.

Separation Logic with One Quantified Variable 79

Let us show (S1). We assume that pB`,B´, Sq is 1-consistent and either allocpuq R

clpB`q or pEquYTouqXclpB`q ‰ H hold, and we show that B`Y B´YS is satisfiable. We
consider the canonical pre-model ps, h, lq of clpB`q; see Proposition 5.3. If allocpuq R clpB`q
holds then l R domphq; and if pEquYTouqXclpB`q ‰ H holds then l P p♥ps, hq. As domphq Ď
♥ps, hqYtlu, under any of the two hypothesis allocpuq R clpB`q or pEquYTouqXclpB`q ‰ H
we have domphq Ď ♥ps, hq. Hence pred♥ps, h, iq “ loop♥ps, hq “ rem♥ps, hq “ H for any i P

r1, qs. Using Proposition 5.5 with Property (P0), there exists a heap h1 such that ps, h, lq »b
ps, h1, lq and cardppred♥ps, h

1, iqq “ pi, cardploop♥ps, h
1qq “ l and cardprem♥ps, h

1qq “ r.

By Properties (P1–6), we derive that ps, h1, lq satisfies all the formulæ of S. For instance,
if # loop♥ ě a P S then by (P4) we have cardploop♥ps, h

1qq “ l ă a and thus ps, h1q (l
 # loop♥ ě a. From ps, h, lq »b ps, h

1, lq, B´ X clpB`q “ H and Proposition 5.3, we deduce

that ps, h1, lq satisfies all the formulæ of B`Y B´. Hence the conjunction of B`Y B´YS
is satisfiable.

Let us show (S2). We assume that pB`,B´, Sq is 2-consistent and pEqu Y Tou Y Fmu Y

tuãÑuuqXclpB`q ‰ H and We show that B`Y B´YS is satisfiable. We can further assume
that allocpuq P clpB`q and pEqu Y Touq X clpB`q “ H because otherwise, as pB`,B´,Sq
is 1-consistent, by Property (S1) we already have that B` Y B´ Y S is satisfiable. Hence
have either Fmu X clpB`q ‰ H or u ãÑ u P clpB`q:

– if u ãÑ xi P clpB`q for some i P r1, qs. In the canonical pre-model ps, h, lq of clpB`q, we
have l P pred♥ps, h, iq. But since domphq Ď ♥ps, hqY tlu, we deduce pred♥ps, h, jq “ tlu

if spxiq “ spxjq, pred♥ps, h, jq “ H if spxiq ‰ spxjq and loop♥ps, hq “ rem♥ps, hq “ H.

We consider two sub-cases depending on t # pred♥pxjq ě 1 | xi “ xj P clpB`qu X S:

– if t # pred♥pxjq ě 1 | xi “ xj P clpB`qu X S “ H. Then let us define a new

cardinality assignment pp11, . . . , p
1
q , l, rq by p1j “ maxp1, pjq if xi“xj P clpB`q, p1j “ pj

if xi “ xj R clpB`q. Let us show that pp11, . . . , p
1
q , l, rq satisfies the requirements of

Proposition 5.5 for the canonical pre-model ps, h, lq of clpB`q: spxjq “ spxkq implies
xj “ xk P clpB`q implies pj “ pk implies p1j “ p1k for any j, k P r1, qs; if xi “ xj P

clpB`q then cardppred♥ps, h, jqq “ 1 ď maxp1, pjq “ p1j ; if xi “ xj R clpB`q then

cardppred♥ps, h, jqq “ 0 ď p1j ; cardploop♥ps, hqq “ 0 ď l; cardprem♥ps, hqq “ 0 ď r.

Using the cardinality assignment pp11, . . . , p
1
q , l, rq, we extend the canonical pre-model

ps, h, lq of clpB`q using Proposition 5.5 and we get a heap h1 such that ps, h, lq »b
ps, h1, lq, cardppred♥ps, h

1, jqq “ maxp1, pjq if spxiq “ spxjq, cardppred♥ps, h
1, jqq “

pj if spxiq ‰ spxjq, cardploop♥ps, h
1qq “ l and cardprem♥ps, h

1qq “ r. From the

equivalence ps, h, lq »b ps, h
1, lq we deduce that ps, h1, lq satisfies all the formulæ of

B` Y B´. Let us check that ps, h1, lq satisfies the formulæ of S:
‚ if # pred♥pxjq ě a P S then by Property (P1) we have a ď pj ď p1j “

cardppred♥ps, h
1, jqq, hence ps, h1q (l # pred♥pxjq ě a;

‚ if # pred♥pxjq ě a P S then either xi “ xj P clpB`q in which case a ą 1 and

thus cardppred♥ps, h
1, jqq “ maxp1, pjq ă a by Property (P2), or xi “ xj R

clpB`q in which case cardppred♥ps, h
1, jqq “ pj ă a by Property (P2). In any

case we have ps, h1q (l # pred♥pxjq ě a;

‚ if # loop♥ ě a P S then by Property (P3) we get cardploop♥ps, h
1qq “ l ě a,

hence ps, h1q (l # loop♥ ě a;

‚ if # loop♥ ě a P S then by Property (P4) we get cardploop♥ps, h
1qq “ l ă a,

hence ps, h1q (l # loop♥ ě a;

‚ if # rem♥ ě a P S then by Property (P5) we get cardprem♥ps, h
1qq “ r ě a,

hence ps, h1q (l # rem♥ ě a;

‚ if # rem♥ ě a P S then by Property (P6) we get cardprem♥ps, h
1qq “ r ă a,

hence ps, h1q (l # rem♥ ě a;

We deduce that ps, h1, lq satisfies the conjunction of the formulæ of B` Y B´ Y S;

– if t # pred♥pxjq ě 1 | xi “ xj P clpB`qu X S ‰ H. Then there exists some j P r1, qs

such that # pred♥pxjq ě 1 P S and xi “ xj P clpB`q. Then by Condition C2.1,

80 Stéphane Demri et al.

pB` Y tBu,B´, Sq is 1-consistent for some B P Equ Y Tou. By Property (S1), we
deduce that the conjunction of the formulæ of B` Y tBu Y B´ Y S is satisfiable.
Hence the conjunction of the formulæ of B` Y B´ Y S is satisfiable as well;

– if u ãÑ u P clpB`q. In the canonical pre-model of clpB`q, we have pred♥ps, h, iq “

rem♥ps, hq “ H for any i P r1, qs and loop♥ps, hq “ tlu. We consider two sub-cases:

– either # loop♥ ě 1 R S. As earlier, we extend the canonical pre-model ps, h, lq

under the cardinality assignment pp1, . . . , pq ,maxp1, lq, rq using Proposition 5.5 and
we get a heap h1 such that ps, h, lq »b ps, h

1, lq, cardppred♥ps, h
1, iqq “ pj for any

i P r1, qs, cardploop♥ps, h
1qq “ maxp1, lq and cardprem♥ps, h

1qq “ r. We can then

show that ps, h1, lq satisfies the conjunction of the formulæ of B` Y B´ Y S;
– or # loop♥ ě 1 P S. Then by Condition C2.2, pB` Y tBu,B´, Sq is 1-consistent

for some B P Equ Y Tou. By Property (S1), we deduce that the conjunction of the
formulæ of B`YtBuY B´YS is satisfiable. Hence the conjunction of the formulæ
of B` Y B´ Y S is satisfiable as well.

Let us finally show (S3). We assume that pB`,B´,Sq is 3-consistent and we prove that
the conjunction of the formulæ of B` Y B´ Y S is satisfiable. We further assume that
allocpuq P clpB`q and pEqu Y Tou Y Fmu Y tu ãÑ uuq X clpB`q “ H because otherwise
we can either apply Property (S1) or Property (S2). Hence in the canonical pre-model
ps, h, lq of clpB`q, we have l P rem♥ps, hq. But since domphq Ď ♥ps, hq Y tlu, we deduce

pred♥ps, h, iq “ H for any i P r1, qs, loop♥ps, hq “ H and rem♥ps, hq “ tlu. We consider
two cases:

– either # rem♥ ě 1 R S. As earlier, we extend the canonical model ps, h, lq under

the cardinal assignment pp1, . . . , pq , l,maxp1, rqq using Proposition 5.5 and we get a
heap h1 such that ps, h, lq »b ps, h

1, lq, cardppred♥ps, h
1, iqq “ pi for any i P r1, qs,

cardploop♥ps, h
1qq “ l and cardprem♥ps, h

1qq “ maxp1, rq. We deduce that ps, h1, lq sat-

isfies the conjunction of the formulæ of B` Y B´ Y S;

– or # rem♥ ě 1 P S. Then by Condition C3.1, pB`YtBu,B´,Sq is 2-consistent for some

B P Equ Y Tou Y Fmu Y tu ãÑ uu. By Property (S2), we deduce that the conjunction of
the formulæ of B`YtBuY B´YS is satisfiable. Hence the conjunction of the formulæ
of B` Y B´ Y S is satisfiable as well. [\

