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Abstract
We describe a generic method to implement and
extract partial recursive algorithms in Coq in a
purely constructive way, using L. Paulson’s if-
then-else normalization as a running example.

Implementing complicated recursive schemes
in a Type Theory such as Coq is a challenging
task. A landmark result is the Bove&Capretta
approach [BCO5] based on accessibility predi-
cates, and in case of nested recursion, simulta-
neous Inductive-Recursive (IR) definitions of the
domain/function [Dyb00]. Limitations to this ap-
proach are discussed in e.g. [Set06, BKS16]. We
claim that the use of (1) IR, which is still absent
from Coq, and (2) an informative predicate (of sort
Set or Type) for the domain, preventing its erasing
at extraction time, can be circumvented through a
suitable bar inductive predicate.

type Q=0 | 0 of QxQxQ
let rec nm e =match e with
| o =
| o(a,y,z) = (0, nm y,nm z)
| o(w(a,b,c),y,z) = nm(w(a,nm(w(b, y,z)),nm(w(c,y,2))))

Figure 1: L. Paulson’s if-then-else normalisation algorithm.

We illustrate our technique on L. Paulson’s al-
gorithm for if-then-else normalization [Gie97,
BCO5] displayed in Fig. 1. For concise state-
ments, we use @ to denote the ternary construc-
tor for if._then._else._ expressions, and o as
the nullary constructor for atoms. As witnessed in
the third match rule @(w(a,b,c),y,z), nm contains
(two) nested recursive calls, making its termination
depend on properties of its semantics. This cir-
cularity complicates the approach of well-founded
recursion and may even render it unfeasible.

Our method allows to show these properties af-
ter the (partial) function nm is defined, as proposed
in [KralO], but without the use of Hilbert’s &-
operator. We proceed purely constructively with-
out any extension to the existing Coq system and

the recursive definition of Fig. 1 can be extracted
as is from the Coq term that implements nm.

We start with the inductive definition of the
graph G : Q@ — Q — Prop of nm (Fig. 2) and we
show its functionality.! Then we define the do-
main/termination predicate D : QQ — Prop as a bar
inductive predicate with the three rules of Fig. 3.

Gyny Gzng
Gaa G (woayz) (o onyn;)
Gwbyz)n, G(wcyz)ne G(wanyn:)ng

G(w(wabc)yz) ng
Figure 2: Rules for the graph G : Q — Q — Prop of nm.

Dy Dz
Da D(woayz)
D(wbyz) D(wcyz)

Vapne, G(@byz)np—G (0cyz)n.—D (0anyn.)

D(w(wabc)yz)
Figure 3: Rules for the bar inductive definition of D : Q — Prop.

There, we single out recursive calls using G but
proceed by pattern-matching on e following the re-
cursive scheme of nm of Fig. 1. Then we define
nm_rec:Ve (D, :De), {n| G e n} as a fixpoint
using D, to ensure termination. However, the term
nm_rec e D, does not use D, to compute: the value
n satisfying G e n is computed by pattern-matching
on e and recursion, following the scheme of Fig. 1.

Finally, we define nm e D, := 7j (nm_rec e D,)
and get nm_spec ¢ D, : G ¢ (nm e D,) using the
second projection m. Extraction of OCaml code
from nm outputs exactly the algorithm of Fig. 1, il-
lustrating the purely logical (Prop) nature of D,.
In order to reason on I /nm we show that they sat-
isfy the IR specification given in Fig. 4: the con-
structors of D are sufficient to establish the simu-
lated constructors d_nm_[012], while nm_spec al-
lows us to derive the fixpoint equations of nm. Us-

lie.g nm_fun:Ven;ny, Gen =G eny—n =ny.
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ing g_nm_fun, we get proof-irrelevance of nm.>

Inductive Q:Set:=a:Q|0: Q=Q—-Q—=Q.
Inductive D:Q—Prop:=
|d_nm_0
|dom 1yz
|d_om 2abcyzDy D,

:Da
:Dy—Dz—D(wayz)
: D(wa(om (0 byz)Dy)
(am (0 ¢ y2) D,))
—~D(o(wabc)yz)
with Fixpoint nme (D, :De): Q:=match D, with
|d_nm_0 = o
|d_nm_1yzDyD, — o o (nmy Dy) (nmz D;)
|d_nm_2abcyzDyDe Dy nm (wa (nm (0 byz) D)
(am (@ ¢ y2) D)) Da
end.

Figure 4: IR spec. of D : Q@ —Prop and nm : Ve, D e — Q.

We show a dependent induction principle for
D (see Fig. 5). The term d_nm_ind states that
any dependent property P : Ve, D e — Prop con-
tains D as soon as it is closed under the simu-
lated constructors d_nm_[012] of D. The assump-
tion Ve D; Dy, P ¢ D| — P e D, restricts the prin-
ciple to proof-irrelevant properties about the de-
pendent pair (e,D,). This is exactly what we need
to establish properties of nm. Then we can show
partial correctness and termination as in [Gie97] —
in this example, nm happens to always terminate
on a normal form of its input. In a more rela-
tional approach, these properties can alternatively
be proved using nm_spec and induction on G x n,.

Theorem d_nm_ind (P:Ve,D e —Prop) :
VeD|D;,PeDy—PeD;)— (P_d_nm_0)
— (VyzDyD,,P_D;—P_D.—P_(d_nm_1yzD,D,))
— (VabcyzDyp D. Dy, P _Dp,—P_D.—P_D, ...
. —=P_(dam_2abcyzD, D, D,))
—VeD,, PeD,.

Figure 5: Dependent induction principle for D : Q — Prop.

Though our approach is inspired by IR defini-
tions, in contrast with previous work, e.g. [Bov09],
the corresponding principles are established in-
dependently of any consideration on the seman-
tics or termination of the target function (nm), i.e.
without proving any properties of D/nm a priori.
This postpones the study of termination after both
D and nm are defined together with constructors
and elimination scheme, fixpoint equations and
proof-irrelevance. Moreover, our domain/termina-
tion predicate ID is non-informative, i.e. it does not
carry any computational content. Thus the code
obtained by extraction is exactly as intended.

Zje. nm_pirr:Ve DDy, nme Dy =nme D;.
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Our Coq code is available under a Free Software
license [LWM18]. We have successfully imple-
mented other algorithms using the same technique:
F91, unification, depth first search as in [KralO],
quicksort, iterations until O, partial list map as
in [BKS16], Huet&Hullot’s list reversal [Gie97],
etc. The method is not constrained by nested/mu-
tual induction, partiality or dependent types. On
the other hand, spotting recursive sub-calls implies
the explicit knowledge of all the algorithms that
make such calls, a limitation that typically applies
to higher order recursive schemes such as e.g. sub-
stitutions under binders. Besides growing our bes-
tiary of examples, we aim at formally defining a
class of schemes for which our method is applica-
ble, and more practically propose some automation
like what is done in Equations [Soz10].
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