
Graph-based decision for Gödel-Dummett logics

Dominique Larchey-Wendling
LORIA – CNRS
Campus Scientifique, BP 239
54 506 Vandœuvre-lès-Nancy
France

Abstract. We present a graph-based decision procedure for Gödel-Dummett log-
ics and an algorithm to compute counter-models. A formula is transformed into a
conditional bi-colored graph in which we detect some specific cycles and alternating
chains using matrix computations. From an instance graph containing no such cycle
(resp. no (n + 1)-alternating chain) we extract a counter-model in LC (resp. LCn).

Keywords: Gödel-Dummett logic, sequent calculus, decision procedures, graphs,
counter-models.

1. Introduction

Gödel-Dummett logic LC and its finitary versions (LCn)n>0 are the
intermediate logics (between classical and intuitionistic logics) charac-
terized by linear Kripke models. LC was introduced by Gödel in [10] and
later axiomatized by Dummett in [7]. It is now one of the most studied
intermediate logics and has been recognized as one of the fundamental
t-norm based fuzzy logics [11]. Recently, the counter-model search prob-
lem in LCn has been characterized as a resource consumption bounding
problem for a simple process calculus [14].

Proof-search in LC has benefited from the development of proof-
search in intuitionistic logic with two important seeds: the contraction-
free calculus of Dyckhoff [1, 8, 9] and the hyper-sequent calculus of
Avron [2, 16]. Two recent contributions propose a similar approach
based on a set of local and strongly invertible proof rules1 (for either
sequent [12] or hyper-sequent [2] calculus,) and a semantic criterion
to decide irreducible (hyper)-sequents and eventually build a counter-
model. The sequents-of-relations calculi also provide a nice framework
for proof-search in LC [4] and more generally, in many-valued logics [6].

In one further but nonetheless fundamental step, we have success-
fully completed the integration of proof- and counter-model search in
LC, through the merge of all proof-search branches into a conditional

1 A rule is local if it can be applied by changing (hyper-)sequents only locally, for
example by decomposing one formula into some of its constituents. A rule is strongly
invertible if it preserves counter-models from the premises to the conclusion.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

larchey_final.tex; 30/06/2006; 16:04; p.1



2 Dominique Larchey-Wendling

graph. This method was first presented in [13] and the present paper
contains a full description of this technique with the corresponding
results and their proofs. It also includes the case of the finitary ver-
sions LCn and integrates the finite and infinite cases. Moreover, we
compare our system with the sequent calculus of Dyckhoff [9], the
hyper-sequent calculi of Avron [2] and Baaz [5] and with the sequent
and hyper-sequent of relations calculi [4, 6].

After having introduced the family of Gödel-Dummett logics and
their algebraic semantics, we present a proof-search method based on
two steps: first, formulæ are flattened using an indexing technique and
the constant ⊥ is removed. Then they are decomposed into atomic
implications using some strongly invertible sequent calculus proof rules.

After the proof-search phase, we obtain a set of implicational se-
quents (which only contain atomic implications). A bi-colored graph
is associated to each implicational sequent and the sequent is decided
in LC (resp. LCn) by searching for ⇒-cycles (resp. (n + 1)-alternating
chains) in the associated bi-colored graph. A counter-model construc-
tion algorithm for implicational sequents is also provided.

Then, we merge all the proof-search branches by attaching a boolean
selector to some arrows of bi-colored graphs. By instantiation of the
selectors, it is possible to recover all the bi-colored graphs corresponding
to each proof-search branch. In fact, selectors encode branching in the
proof-search space.

Finally, we present the algorithm which directly builds a condi-
tional bi-colored graph from a formula of LC, and a method for de-
tecting ⇒-cycles (resp. (n + 1)-alternating chains) in the instances of
this conditional bi-colored graph. This method is based on algebraic
computations on generalized boolean matrices.

2. The syntax and semantics of LCn

We present the family of propositional Gödel-Dummett logics LCn,
their algebraic semantics, and some sound (i.e. admissible) sequent
calculus proof rules for LCn.

2.1. Syntactic notions

LCn is a family of intermediate logics indexed by a value n which
belongs to the set IN

? = {1, 2, . . .} ∪ {∞} of strictly positive natural
numbers with its natural order 6, augmented with a greatest element
∞. All these logics share the same syntax which is the common syntax
to intuitionistic IL and classical CL propositional logics. Of course, the
set of universally valid formulæ varies, depending on the value of n.

larchey_final.tex; 30/06/2006; 16:04; p.2



Graph-based decision for LCn 3

The set of propositional formulæ, denoted Form, is defined induc-
tively, starting from a set of propositional variables denoted by Var
with an additional bottom constant ⊥ denoting absurdity and using
the connectives ∧, ∨ and ⊃.

A substitution, denoted by σ, is any function that associates a for-
mula to every propositional variable. We denote by Aσ the result of the
application of the substitution σ to the atoms in A. IL will denote the set
of formulæ that are provable in any intuitionistic propositional calculus
(see [8]) and CL will denote the classically valid formulæ. As usual
an intermediate propositional logic [1] is a set of formulæ L satisfying
IL ⊆ L ⊆ CL and closed under the rule of modus ponens (if A ∈ L
and A ⊃ B ∈ L then B ∈ L) and under an arbitrary substitution of
variables (if A ∈ L and σ is any substitution then Aσ ∈ L.)

Among the elements of Var, we distinguish two variables � and ♦
which play a particular role during the proof-search process. These
variables should not be used for another purpose, so we require that
the formulæ which would be decided by the method described in this
paper should be built from atoms in {⊥} ∪ (Var − {�,♦}). Up to the
renaming of variables, this does not restrict the scope of the method.

A formula is implicational if it is of the form X⊃Y with X, Y ∈ Var.
A formula is flat if it is either implicational or of the form X⊃ (Y ~Z)
or (X ~ Y )⊃ Z with X, Y, Z ∈ Var and ~ ∈ {∧,∨,⊃}.

A context, denoted Γ or ∆, is a multiset of formulæ. A sequent is a
pair of contexts denoted Γ`∆. A sequent is implicational if it contains
only implicational formulæ.

DEFINITION 1 (♦-contexts and flat sequents).
A ♦-context ∆♦ is a non-empty context which contains only implica-
tions (not necessarily atomic implications) and such that for any A⊃B
occurring in ∆♦ the formula ♦⊃B also occurs in ∆♦.

Γ `∆♦ is a flat sequent if the context Γ contains only flat formulæ
and ∆♦ is a ♦-context which contains only implicational formulæ.

For example, {X ⊃ Y,♦ ⊃ Y } and {♦ ⊃ X} are ♦-contexts but
{X ∨Y } or {X⊃Y,♦⊃X} are not ♦-contexts. As a ♦-context is non-
empty, it necessarily contains at least one formula of the form ♦ ⊃ F
for some formula F .2 The notions of ♦-context or flat sequent might
seem obscure for the moment but their use is explained in details in
section 4.

2 This property is essential in the proof of Proposition 3.

larchey_final.tex; 30/06/2006; 16:04; p.3



4 Dominique Larchey-Wendling

2.2. Algebraic semantics

For any n ∈ IN
? the Gödel-Dummett logic LCn is an intermediate

logic.3 LCn can be semantically characterized by the linear Kripke
models of size smaller that n [7]. If we identify the logic LCn and the set
of its valid formulæ, the following strictly decreasing sequence holds:

CL = LC1 ⊃ · · · ⊃ LCn ⊃ · · · ⊃ LC∞ = LC ⊃ IL

In the particular case of LC, the logic has a simple Hilbert axiomatic
system: (X ⊃ Y ) ∨ (Y ⊃X) added to the axioms of IL. In this paper,
we use the algebraic semantics characterization of LCn [2] rather than
the Kripke semantics.

Let us fix a particular n ∈ IN
?. The algebraic model is the set

[0, n) = [0, n[∪{∞} composed of n + 1 elements, with the convention
[0,∞) = IN ∪ {∞}. With our particular representation, the algebraic
models [0, n) form a strictly increasing sequence of subsets of [0,∞).

An interpretation of propositional variables [[·]] : Var → [0, n) is in-
ductively extended to formulæ: ⊥ interpreted by 0, the conjunction ∧
is interpreted by the minimum function denoted ∧, the disjunction ∨
by the maximum function ∨ and the implication ⊃ by the operator _
defined by a _ b = if a 6 b then ∞ else b. So the following identities
hold:

[[A ∧B]] = [[A]] ∧ [[B]] [[⊥]] = 0
[[A ∨B]] = [[A]] ∨ [[B]] [[A⊃B]] = [[A]] _ [[B]]

We also point out the following property: for any a, b, α ∈ [0, n), if
a _ b < α holds then a _ b = α _ b = b holds. Albeit trivial, it is
nonetheless very useful, as exemplified in the proofs of Proposition 3
and Theorem 3.

PROPOSITION 1. Let [[·]] : Var → [0, n) be an interpretation and A,
A′, B, B′ be formulæ. If both [[A]] > [[B]] and [[A]]′ 6 [[B]]′ hold then
[[A⊃A′]] 6 [[B ⊃B′]] holds.

The proof of this result is trivial with the previous definition of _.
Given an interpretation [[·]] : Var → [0, n) and a value α ∈ [0, n[, we
define the translated interpretation [[·]]−α the following way:

[[X]]−α =


∞ if [[X]] = ∞
[[X]]− α if [[X]] > α
0 if [[X]] < α

3 The logic LC∞, also denoted by LC, is the usual Gödel-Dummett logic.

larchey_final.tex; 30/06/2006; 16:04; p.4



Graph-based decision for LCn 5

PROPOSITION 2. Let A be a formula not containing the constant ⊥,
α a value in [0, n) and [[·]] : Var→ [0, n) an interpretation such that for
any variable X occurring in A the inequality [[X]] > α holds. The two
following properties are satisfied:

1) [[A]] > α 2) if α 6= ∞ then [[A]]−α = [[A]]− α

Proof. These two properties are proved by induction on the structure
of the formula A. For any a, b ∈ [0, n) and ~ ∈ {∧,∨,_}, if a > α and
b > α hold, then a~ b > α holds. Moreover the semantic interpretation
∧ = min (resp. ∨ = max and _) of the connective ∧ (resp. ∨ and ⊃)
commutes with the (·)− α operation (with α 6= ∞).

A model of a formula A in LCn is an interpretation [[·]] : Var→ [0, n)
such that [[A]] = ∞. A counter-model in LCn is an interpretation [[·]] :
Var → [0, n) such that [[A]] < ∞. A formula is (universally) valid if it
has no counter-model. From now, we will always use the term valid
implying universal validity.

The two contexts Γ ≡ A1, . . . , Ap and ∆ ≡ B1, . . . , Bq of the sequent
Γ `∆ are interpreted the following way:

bbΓcc = [[A1]] ∧ · · · ∧ [[Ap]] bb∅cc = ∞
dd∆ee = [[B1]] ∨ · · · ∨ [[Bq]] dd∅ee = 0

An interpretation [[·]] : Var→[0, n) is a model of the sequent Γ`∆ in LCn

if bbΓcc 6 dd∆ee holds. On the other hand, it is a counter-model to this
sequent in LCn if dd∆ee < bbΓcc holds. In particular, if p > 0 and q > 0,
for any i and j the inequality [[Bj ]] < [[Ai]] holds. Moreover, the sequent
`A and the formula A have the same models (and counter-models). A
sequent is valid if it has no counter-model.

2.3. Semantical results

We introduce a semantical result which relates the interpretation of
♦-contexts and of the variable ♦: in the case of counter-models, the
variable ♦ might play the role of the ∞ semantic value.

PROPOSITION 3. Let ∆♦ be a ♦-context and [[·]] : Var → [0, n)
an interpretation of variables such that dd∆♦ee < ∞. Then we have
dd∆♦ee < [[♦]].

Proof. As ∆♦ is composed of implications and is not empty, there
exists A⊃B ∈ ∆♦ such that dd∆♦ee = [[A⊃B]]. Also ♦⊃B ∈ ∆♦. Thus
[[♦ ⊃ B]] 6 dd∆♦ee = [[A ⊃ B]] < ∞ holds. We deduce [[A ⊃ B]] = [[B]]
and [[♦]] > [[B]]. Therefore dd∆♦ee = [[A⊃B]] = [[B]] < [[♦]].

larchey_final.tex; 30/06/2006; 16:04; p.5



6 Dominique Larchey-Wendling

We present some logical equivalences useful for designing rules that
are suitable for reducing flat formulæ into implicational ones. The no-
tation A 'n B means that A and B always have the same semantic
value, i.e. for any interpretation [[·]] : Var→ [0, n) we have [[A]] = [[B]].

PROPOSITION 4. The following semantical equivalences hold in LCn:

1) (A ∧B)⊃ C 'n (A⊃ C) ∨ (B ⊃ C)
2) (A ∨B)⊃ C 'n (A⊃ C) ∧ (B ⊃ C)

3) A⊃ (B ∧ C) 'n (A⊃B) ∧ (A⊃ C)
4) A⊃ (B ∨ C) 'n (A⊃B) ∨ (A⊃ C)
5) A⊃ (B ⊃ C) 'n (A⊃ C) ∨ (B ⊃ C)

6) A ∧B 'n A ∧ (A⊃B)

Proof. We present the proof of case 1). Similar arguments work for
cases 2) to 5). We distinguish between [[A]] 6 [[B]] and [[A]] > [[B]]. If
[[A]] 6 [[B]] then [[(A∧B)⊃C]] = ([[A]]∧ [[B]]) _ [[C]] = [[A]] _ [[C]]. By
Proposition 1, [[A⊃C]] > [[B ⊃C]] holds. Then [[(A⊃C)∨ (B ⊃C)]] =
[[A⊃C]]∨[[B⊃C]] = [[A⊃C]]. Thus [[(A∧B)⊃C]] = [[(A⊃C)∨(B⊃C)]]
holds. The handling of case [[A]] > [[B]] is similar.

We now present the proof of case 6). If [[A]] 6 [[B]] holds, then
[[A ⊃ B]] = [[A]] _ [[B]] = ∞ and we compute [[A ∧ B]] = [[A]] ∧ [[B]] =
[[A]] = [[A]]∧∞ = [[A]]∧ [[A⊃B]] = [[A∧ (A⊃B)]]. If [[A]] > [[B]] holds,
then [[A ⊃ B]] = [[B]] and [[A ∧ B]] = [[A]] ∧ [[B]] = [[A]] ∧ [[A ⊃ B]] =
[[A ∧ (A⊃B)]].

2.4. Proof rules and related notions

A proof rule of arity k is a set of writings of the form : H1 . . . Hk

C
which elements are called instances. The H1,. . . ,Hk are the premises
and C is the conclusion. In our case, the premises and the conclusion
are sequents and we will only use axioms (k = 0), unary (k = 1) and
binary (k = 2) proof rules.

A proof rule is sound in LCn if for any instance of the rule, the
validity of all the Hi in LCn implies the validity of C in LCn. It is
strongly sound in LCn if for any instance of the rule and interpretation
[[·]] : Var→ [0, n), if [[·]] is a model of all the Hi, then it also a model of
C. It is clear than strong soundness implies soundness.

A proof rule is invertible in LCn if for any instance of the rule, the
invalidity of at least one of the Hi in LCn implies the invalidity of C in
LCn. It is strongly invertible in LCn if for any instance of the rule and

larchey_final.tex; 30/06/2006; 16:04; p.6



Graph-based decision for LCn 7

interpretation [[·]] : Var→ [0, n), if [[·]] is a counter-model of at least one
of the Hi, then it also a counter-model of C. It is also clear than strong
invertibility implies invertibility. The difference between the two is that
(simple) invertibility does not necessarily preserve counter-models.

PROPOSITION 5. These rules are strongly sound for LCn:

1) Γ `∆
Γ, A `∆

[WeakL] 4) Γ, A `B ∆, A′ `B′

Γ,∆, A ∧A′ `B ∧B′ [∧M ]

2) Γ, A `∆ Γ′ `A,∆′

Γ,Γ′ `∆,∆′ [Cut] 5) Γ, A `B ∆, A′ `B′

Γ,∆, A ∨A′ `B ∨B′ [∨M ]

3) ΓA,B `∆
Γ, A, A⊃B `∆

[⊃1
L] 6) Γ, B `A ∆, A′ `B′

Γ,∆, A⊃A′ `B ⊃B′ [⊃M ]

Proof. We present the proof of strong soundness for rules 2), 3) and
6). The case of rule 1) is trivial and the cases of rules 4) and 5) are
similar to that of 6).

Let us start with rule 2). Let [[·]] : Var→ [0, n) be a model of Γ, A`∆
and of Γ′ `A,∆′. Then the inequalities bbΓcc ∧ [[A]] 6 dd∆ee and bbΓ′cc 6
[[A]] ∨ dd∆′ee hold. We compute bbΓ,Γ′cc = bbΓcc ∧ bbΓ′cc 6 bbΓcc ∧ ([[A]] ∨
dd∆′ee) = (bbΓcc ∧ [[A]])∨ (bbΓcc ∧ dd∆′ee) 6 dd∆ee ∨ dd∆′ee = dd∆,∆′ee. Thus
bbΓ,Γ′cc 6 dd∆,∆′ee holds.

Now we consider rule 3).We compute using the equivalence 6) of
Proposition 4: bbΓ, A, A ⊃ Bcc = bbΓcc ∧ [[A]] ∧ [[A ⊃ B]] = bbΓcc ∧ [[A ∧
(A⊃B)]] = bbΓcc ∧ [[A ∧B]] = bbΓcc ∧ [[A]] ∧ [[B]] = bbΓ, A, Bcc. Thus the
premise and the conclusion have the same models.

We now consider rule 6). Suppose bbΓcc∧[[B]] 6 [[A]] and bb∆cc∧[[A′]] 6
[[B′]] both hold. We distinguish between three cases: a) [[B]] 6 [[B′]],
b) [[B]] > [[B′]] and [[A]] 6 [[A′]], and c) [[B]] > [[B′]] and [[A]] > [[A′]].

a) bbΓ,∆, A⊃A′cc 6 ∞ = [[B ⊃B′]] holds;

b) bbΓ,∆cc ∧ [[B]] = bbΓcc ∧ bb∆cc ∧ [[B]] 6 bb∆cc ∧ [[A]] 6 bb∆cc ∧ [[A′]] 6
[[B′]]. Thus bbΓ,∆cc ∧ [[B]] 6 [[B′]] holds and since [[B]] > [[B′]],
and then, bbΓ,∆cc 6 [[B′]] holds. We compute bbΓ,∆cc ∧ [[A⊃A′]] 6
bbΓ,∆cc 6 [[B′]] = [[B⊃B′]]. Thus bbΓ,∆, A⊃A′cc 6 [[B⊃B′]] holds;

c) we compute bbΓ,∆, A⊃A′cc = bbΓcc∧bb∆cc∧[[A⊃A′]] = bbΓcc∧bb∆cc∧
[[A′]] 6 bbΓcc ∧ [[B′]] 6 [[B′]] = [[B ⊃ B′]]. Thus bbΓ,∆, A ⊃ A′cc 6
[[B ⊃B′]] holds.

larchey_final.tex; 30/06/2006; 16:04; p.7



8 Dominique Larchey-Wendling

3. Flattening and the elimination of the constant

We consider a formula D. We want to reduce it into an “equivalent” flat
sequent S such that D is valid if and only if S is valid and the counter-
models of D and S are related in a sense described in Theorem 2.

We recall that D should not contain occurrences of the special vari-
ables � and ♦ but it may contain occurrences of the constant ⊥. So in
the flattening process, we also remove occurrences of ⊥.

We start by indexing the occurrences of subformulæ of D (i.e. the
subtrees of the decomposition tree of D). Thus we define a finite map-
ping K 7→ XK : the index XK of a subformula occurrence K should be
unique, i.e. it should not collide with either the variables of D or the
two special variables � and ♦ or the index of another occurrence of a
subformula of D.

We define two multisets δ+
K and δ−K by mutual structural induction

on the occurrence of the subformula K of D:

δ+
⊥ = X⊥ ⊃�

δ+
V = XV ⊃ V,�⊃ V when V is a variable occurring in D

δ+
A~B = δ+

A , δ+
B ,XA~B ⊃ (XA ~ XB) when ~ ∈ {∧,∨}

δ+
A⊃B = δ−A , δ+

B ,XA⊃B ⊃ (XA ⊃XB)

δ−⊥ = �⊃X⊥
δ−V = V ⊃XV ,�⊃ V when V is a variable occurring in D
δ−A~B = δ−A , δ−B , (XA ~ XB)⊃XA~B when ~ ∈ {∧,∨}
δ−A⊃B = δ+

A , δ−B , (XA ⊃XB)⊃XA⊃B

PROPOSITION 6. The two following properties are satisfied:

1) For any subformula occurrence K of D, the formulæ occurring in
δ+
K and δ−K are flat and do not contain the constant ⊥;

2) For any variable V occurring in D, the atomic implication �⊃ V
occurs in both δ−D and δ+

D;

3) The size of δ−D and δ+
D is linear in the size of D.

The proofs of these results are trivial.4 Let σ be the syntactic substi-
tution σ = {⊥ 7→ �}, we denote K� the result Kσ of the substitution
of ⊥ by � in K.

PROPOSITION 7. For any subformula occurrence K of D, the two
sequents δ+

K ,XK `K� and δ−K ,K� ` XK are valid in LCn.
4 Two remarks about property 3) of Proposition 6: the size of formulæ and

multisets is measured by the number of symbols. Moreover, property 3) is cited
for completeness only as indexation is just an intermediate step in our method.

larchey_final.tex; 30/06/2006; 16:04; p.8



Graph-based decision for LCn 9

Proof. We prove this result by mutual structural induction on an
occurrence K of a subformula of D. Suppose K is an occurrence of ⊥
then the two sequents look like X⊥ ⊃ �,X⊥ ` � and � ⊃ X⊥,� ` X⊥
which are both valid, because of equivalence 6) of Proposition 4. If K
is an occurrence of a variable V , then we obtain XV ⊃V,�⊃V,XV `V
and V ⊃XV ,�⊃ V, V ` XV which again are both valid.

Now we consider the case K ≡ A∧B. By induction, the four sequents
δ+
A ,XA ` A� and δ−A , A� ` XA and δ+

B ,XB ` B� and δ−B , B� ` XB are
valid. Let us consider the proof tree:

δ+
A ,XA `A� δ+

B ,XB `B�
[∧M ]

δ+
A , δ+

B ,XA ∧ XB `A� ∧B�
[WeakL]

δ+
A , δ+

B ,XA ∧ XB ,XA∧B `A� ∧B�
[⊃1

L]
δ+
A , δ+

B ,XA∧B ⊃ (XA ∧ XB),XA∧B `A� ∧B�

The last sequent (at the root of the proof tree) is identical to δ+
K ,XK `

K�. Thus, since the leaves of the proof tree are valid sequents, so is its
root. Let us consider this other proof tree:

XA∧B ` XA∧B
[WeakL]

XA ∧ XB ,XA∧B ` XA∧B
[⊃1

L]
XA ∧ XB , (XA ∧ XB)⊃XA∧B ` XA∧B

δ−A , A� ` XA δ−B , B� ` XB
[∧M ]

δ−A , δ−B , A� ∧B� ` XA ∧ XB
[Cut]

δ−A , δ−B , (XA ∧ XB)⊃XA∧B , A� ∧B� ` XA∧B

The last (root) sequent is identical to δ−K ,K� ` XK . The three leaf
sequents of this proof tree are valid, two by induction hypothesis and
the last XA∧B ` XA∧B is also obviously valid. Thus the root sequent
δ−K ,K� ` XK is valid.

The cases K ≡ A ∨B and K ≡ A⊃B can be handled with similar
arguments.

PROPOSITION 8. If [[·]] is such that [[�]] = 0 and [[XK ]] = [[K]] for
any occurrence of subformula K of D, then bbδ−Dcc = bbδ+

Dcc = ∞ holds.
Proof. The formulæ occurring in δ+

D or δ−D are either implicational
of the forms X⊥⊃�, �⊃X⊥, XV ⊃V , V ⊃XV and �⊃V or else of the
forms XA~B ⊃ (XA ~ XB) and (XA ~ XB)⊃XA~B for ~ ∈ {∧,∨,⊃}.

As [[X⊥]] = [[⊥]] = 0 = [[�]] holds, then [[X⊥ ⊃�]] = [[�⊃ X⊥]] = ∞
holds. As [[XV ]] = [[V ]] holds, [[XV ⊃ V ]] = [[V ⊃ XV ]] = ∞ also holds.
As [[�]] = 0 6 [[V ]] holds, [[�⊃ V ]] = ∞ holds too.

We compute [[XA~XB]] = [[XA]]~′ [[XB]] = [[A]]~′ [[B]] and [[XA~B]] =
[[A ~ B]] = [[A]] ~′ [[B]] for (~,~′) being either (∧,∧), (∨,∨) or (⊃,_).
In either case, [[XA ~ XB]] = [[XA~B]] holds and thus we have [[(XA ~
XB)⊃XA~B]] = [[XA~B ⊃ (XA ~ XB)]] = ∞.

larchey_final.tex; 30/06/2006; 16:04; p.9



10 Dominique Larchey-Wendling

THEOREM 1. If the sequent δ−D ` ♦ ⊃ XD is valid in LCn then the
formula D is valid in LCn.

Proof. Let [[·]] : Var → [0, n) be an interpretation. We define a new
interpretation [[·]]′ by [[V ]]′ = [[V ]] for any V variable occurring in D,
[[XK ]]′ = [[K]] for any K subformula occurring in D, [[♦]]′ = ∞ and
[[�]]′ = 0. Then since [[·]]′ and [[·]] have identical values on the atoms of
D, for any subformula K of D, they also have identical values on the
atoms of K and thus the identity [[K]]′ = [[K]] holds. So [[XK ]]′ = [[K]]′

and [[�]]′ = 0 both hold. By Proposition 8, we obtain bbδ−Dcc
′ = ∞.

Since δ−D ` ♦ ⊃ XD is valid in LCn, [[·]]′ is a model of this sequent and
then [[♦ ⊃ XD]]′ = ∞ holds. But [[♦]]′ = ∞ and thus [[XD]]′ = ∞.
Finally, [[D]] = [[XD]]′ = ∞. Since we have proved that [[D]] = ∞ for
any interpretation [[·]] : Var→ [0, n), then D is valid in LCn.

THEOREM 2. If [[·]] : Var → [0, n) is a counter-model of the sequent
δ−D ` ♦ ⊃ XD in LCn then [[�]] < ∞ and for α = [[�]], the translated
interpretation [[·]]−α is a counter-model of D in LCn.

Proof. Let [[·]] : Var→ [0, n) be a counter-model of δ−D`♦⊃XD. Thus
[[♦ ⊃ XD]] < bbδ−Dcc holds and we deduce [[♦ ⊃ XD]] < ∞ and [[XD]] =
[[♦]]_ [[XD]] < ∞. Thus [[XD]] < bbδ−Dcc. By Proposition 7, δ−D, D� `XD

is a valid sequent so we compute bbδ−Dcc ∧ [[D�]] 6 [[XD]] < bbδ−Dcc. Thus
bbδ−Dcc ∧ [[D�]] < bbδ−Dcc holds and so [[D�]] < bbδ−Dcc.

We show that for any variable V of D, the inequality [[V ]] > [[�]]
holds. First, if D contains no variable at all (i.e. its only atoms are
occurrences of the constant ⊥) then the previously stated property
is trivially verified. Otherwise, we consider a variable V0 of D which
realizes the minimum value γ among the non-empty set {[[� ⊃ V ]] |
V variable of D}. Thus γ = [[� ⊃ V0]] and for any variable V of D,
[[�⊃V ]] > γ. Since V0 is a variable of D, by Proposition 6, the formula
�⊃ V0 occurs in δ−D and thus bbδ−Dcc 6 [[�⊃ V0]] = γ.

We show that [[�]] 6 γ by contradiction. Suppose [[�]] > γ = [[� ⊃
V0]]. Let V be a variable of D�: either V ≡ � and [[V ]] = [[�]] > γ or
V is a variable of D and [[�⊃V ]] > γ, thus, necessarily [[V ]] > γ holds.
In either case, [[V ]] > γ. By Proposition 2.1, since D� does not contain
⊥, we have [[D�]] > γ. We obtain γ 6 [[D�]] < bbδ−Dcc 6 [[� ⊃ V0]] = γ.
So we get a contradiction. Therefore [[�]] 6 γ holds. For any variable
V of D, [[�]] 6 γ 6 [[�⊃ V ]] = [[�]] _ [[V ]] holds. Thus necessarily, for
any variable V of D, [[�]] 6 [[V ]].

As a consequence, by Proposition 2.1, [[D�]] > [[�]] holds.5 But
[[D�]] < bbδ−Dcc and then [[�]] < ∞ holds. Let α = [[�]]. Since [[�]]−α =

5 D� does not contain the constant ⊥. Any variable X of D� is either � or a
variable of D. And [[X]] > [[�]] holds both when X is variable of D, or when X ≡ �.

larchey_final.tex; 30/06/2006; 16:04; p.10



Graph-based decision for LCn 11

Γ, A⊃ C `∆♦ Γ, B ⊃ C `∆♦

Γ, (A ∧B)⊃ C `∆♦
[∧⊃]

Γ, A⊃B,A⊃ C `∆♦

Γ, A⊃ (B ∧ C) `∆♦
[⊃∧]

Γ, A⊃ C,B ⊃ C `∆♦

Γ, (A ∨B)⊃ C `∆♦
[∨⊃]

Γ, A⊃B `∆♦ Γ, A⊃ C `∆♦

Γ, A⊃ (B ∨ C) `∆♦
[⊃∨]

Γ, B ⊃ C `A⊃B,♦⊃B,∆♦ Γ,♦⊃ C `∆♦

Γ, (A⊃B)⊃ C `∆♦
[⊃⊃]

Γ, A⊃ C `∆♦ Γ, B ⊃ C `∆♦

Γ, A⊃ (B ⊃ C) `∆♦
[⊃⊃]

Figure 1. Proof rules for decomposing flat sequents

[[�]] − α = 0 = [[⊥]]−α, we obtain [[D]]−α = [[D�]]−α and by Proposi-
tion 2.2, [[D�]]−α = [[D�]] − α. Since [[D�]] < bbδ−Dcc holds, [[D�]] < ∞
and then [[D�]] − α < ∞. Therefore [[D]]−α < ∞ holds and [[·]]−α is a
counter-model of D in LCn.

4. Reduction of flat sequents by proof-search

In the preceding section, we have proved that the problem of deciding if
a formula D is valid or has a counter-model in LCn can be transformed
into deciding the sequent δ−D `♦⊃XD, by combination of Theorems 1
and 2. By Proposition 6, the sequent δ−D ` ♦ ⊃ XD is obviously flat
and does not contain the constant ⊥. It contains the special variable �
(resp. ♦) which intuitively represents the semantic value 0 (resp. ∞).
But in the proof-search process, � and ♦ are treated as variables, not
as constants.

We propose a set of rules to reduce flat sequents Γ`∆♦ into implica-
tional sequents in Figure 1.6 We point out that rule [~⊃] decomposes a
formula of type (A~B)⊃C into implications and rule [⊃~] decomposes
a formula of type A⊃ (B ~ C) into implications. Moreover, those rules
preserve flat sequents when applied bottom-up: in particular, in the
left premise of rule [⊃⊃], A⊃B,♦⊃B,∆♦ is a ♦-context when ∆♦ is
♦-context.

THEOREM 3. The rules of Figure 1 are strongly sound for LCn.

6 Except from rule [⊃⊃], the other rules are just instances of rules of [2, 9] in the
context of flat sequents.

larchey_final.tex; 30/06/2006; 16:04; p.11



12 Dominique Larchey-Wendling

Proof. We propose the proofs for rules [∧⊃] and for [⊃⊃]. The other
rules are treated by similar arguments as rule [∧⊃]. The case of rule
[⊃⊃] is different and more difficult to prove.

Let us start with rule [∧⊃]. Let [[·]] be an interpretation which is a
model of both Γ, A ⊃ C `∆♦ and Γ, B ⊃ C `∆♦. Thus the following
inequalities hold: bbΓcc∧ [[A⊃C]] 6 dd∆♦ee and bbΓcc∧ [[B⊃C]] 6 dd∆♦ee.
We compute using equivalence 1) of Proposition 4: bbΓcc ∧ [[(A ∧ B) ⊃
C]] = bbΓcc ∧ [[(A ⊃ C) ∨ (B ⊃ C)]] = bbΓcc ∧ ([[A ⊃ C]] ∨ [[B ⊃ C]]) =
(bbΓcc ∧ [[A⊃C]]) ∨ (bbΓcc ∧ [[B ⊃C]]) 6 dd∆♦ee. So [[·]] is a model of the
sequent Γ, (A ∧B)⊃ C `∆♦.

Now we prove that rule [⊃⊃] is strongly sound. Let [[·]] be an inter-
pretation which is a model of both premises of rule [⊃⊃]. Thus both
bbΓcc∧[[B⊃C]] 6 [[A⊃B]]∨[[♦⊃B]]∨dd∆♦ee and bbΓcc∧[[♦⊃C]] 6 dd∆♦ee
hold. Let us consider two trivial cases:

− if bbΓcc 6 dd∆♦ee, it is clear that bbΓcc ∧ [[(A ⊃ B) ⊃ C]] 6 dd∆♦ee
holds and [[·]] is a model of the conclusion of rule [⊃⊃];

− if [[♦]] 6 [[A⊃B]] then, by Proposition 1, [[(A⊃B)⊃C]] 6 [[♦⊃C]]
and thus bbΓcc ∧ [[(A⊃B)⊃ C]] 6 bbΓcc ∧ [[♦⊃ C]] 6 dd∆♦ee. So [[·]]
is a model of the conclusion of rule [⊃⊃];

So we are left with the case where dd∆♦ee < bbΓcc and [[A ⊃ B]] < [[♦]]
both hold. We can deduce dd∆♦ee < ∞ and thus dd∆♦ee < [[♦]] by
Proposition 3. From bbΓcc ∧ [[♦ ⊃ C]] 6 dd∆♦ee we deduce [[♦ ⊃ C]] 6
dd∆♦ee < ∞. So [[C]] = [[♦⊃ C]] 6 dd∆♦ee.

From [[A⊃B]] < [[♦]] we deduce [[A⊃B]] = [[♦⊃B]] = [[B]] < [[♦]]. We
compute bbΓcc∧[[B⊃C]] 6 [[A⊃B]]∨[[♦⊃B]]∨dd∆♦ee 6 [[B]]∨dd∆♦ee. Now
suppose that [[B]] 6 [[C]] then [[B⊃C]] = ∞ and bbΓcc = bbΓcc∧[[B⊃C]] 6
[[B]]∨ dd∆♦ee 6 [[C]]∨ dd∆♦ee 6 dd∆♦ee. Thus bbΓcc 6 dd∆♦ee holds which
contradicts the previous assumption dd∆♦ee < bbΓcc. Since [[B]] 6 [[C]]
leads to a contradiction, the property [[C]] < [[B]] necessarily holds.
Then [[(A⊃B)⊃C]] = [[A⊃B]]_ [[C]] = [[B]]_ [[C]] = [[C]] = [[♦⊃C]].
We conclude by bbΓcc∧ [[(A⊃B)⊃C]] 6 bbΓcc∧ [[♦⊃C]] 6 dd∆♦ee. Hence,
[[·]] is a model of the conclusion of rule [⊃⊃].

THEOREM 4. The rules of Figure 1 are strongly invertible for LCn.
Proof. We prove strong invertibility of [∧⊃]. Let [[·]] be a counter-

model of Γ, A⊃C `∆♦. We compute dd∆♦ee < bbΓcc ∧ [[A⊃C]] 6 [[Γ]]∧
([[A⊃C]]∨[[B⊃C]]) = bbΓ, (A∧B)⊃Ccc. Thus dd∆♦ee < bbΓ, (A∧B)⊃Ccc
holds and [[·]] is a counter-model of Γ, A⊃C`∆♦. The case of [[·]] being a
counter-model of Γ, B⊃C`∆♦ can be handled with the same argument.

To finish, we prove that rule [⊃⊃] is strongly invertible. First let
[[·]] be a counter-model of the left premise, i.e. [[A ⊃ B]] ∨ [[♦ ⊃ B]] ∨

larchey_final.tex; 30/06/2006; 16:04; p.12



Graph-based decision for LCn 13

dd∆♦ee < bbΓcc ∧ [[B ⊃ C]] holds. So [[A ⊃ B]] < ∞ holds and then
[[A⊃B]] = [[B]] < [[A]]. We deduce [[(A⊃B)⊃C]] = [[B ⊃C]] and then
[[∆♦]] < bbΓcc∧ [[B⊃C]] = bbΓcc∧ [[(A⊃B)⊃C]] so [[·]] is a counter-model
of the conclusion of rule [⊃⊃].

Finally let [[·]] be a counter-model of the right premise. Thus dd∆♦ee <
bbΓcc ∧ [[♦ ⊃ C]] holds. So dd∆♦ee < ∞ and thus dd∆♦ee < [[♦]] by
Proposition 3. Also dd∆♦ee < [[♦⊃C]]. If we suppose [[C]] 6 dd∆♦ee then
[[C]] < [[♦]] so [[♦ ⊃ C]] = [[C]] and dd∆♦ee < [[C]] which is absurd. So
necessarily, dd∆♦ee < [[C]] holds. Finally dd∆♦ee < [[C]] 6 [[(A⊃B)⊃C]]
thus dd∆♦ee < bbΓcc ∧ [[(A⊃B)⊃C]] holds and [[·]] is a counter-model of
the conclusion of rule [⊃⊃].

PROPOSITION 9. The flat sequents which are irreducible by rules
[~⊃] and [⊃~] for ~ ∈ {∧,∨,⊃} are implicational sequents.

Proof. Flat sequents contain no constant (i.e. ⊥) and only atomic
implications on the right-hand side of the ` sign. If there exists a
formula of type (X ~ Y ) ⊃ Z (resp. X ⊃ (Y ~ Z)) on the left-hand
side, then the rule [~⊃] (resp. [⊃~]) can be applied backwards. So if the
sequent is irreducible, it cannot contain formulæ of type (X ~ Y )⊃ Z
or X ⊃ (Y ~ Z) on the left hand side. Thus, the left-hand side only
contains atomic implications.

Its is clear that the backward application of proof rules [~⊃] and
[⊃~], starting from δ−D`♦⊃XD, terminates since the number of formulæ
of type (X ~ Y )⊃ Z or X ⊃ (Y ~ Z) decreases by one each time such
a rule is applied. Moreover, the reader could notice that the order in
which the proof rules are applied in each branch of the proof-search
tree does not change the final result. These final results, which are the
sequents at the leaves of proof-search branches, are irreducible by any
of the rules [~⊃] or [⊃~]. Thus, these sequents are implicational.

The variables � and ♦ play a special role during the indexation
phase and the reduction phase: � is introduced so that the constant
⊥ does not occur in δ−D and ♦ is intimately related to the definition of
♦-context, and thus of flat sequents. Once the decomposition process
is finished, � and ♦ cease to play a special role: they are considered as
normal variables in implicational sequents.

5. Counter-models of implicational sequents

In this section, we present a criterion to decide implicational sequents
in LCn. These sequents are transformed into a graph on which we detect
alternating chains or ⇒-cycles to build counter-models.

larchey_final.tex; 30/06/2006; 16:04; p.13



14 Dominique Larchey-Wendling

5.1. Bi-colored graph of an implicational sequent

Let S = X1⊃Y1, . . . , Xk⊃Yk`A1⊃B1, . . . , Al⊃Bl be an implicational
sequent. We build a bi-colored graph GS which has nodes in the set
{Xi}∪ {Yi}∪ {Ai}∪ {Bi} and has two kinds of arrows, green (denoted
by →) and red (denoted by ⇒). The set of arrows is:

{X1 → Y1, . . . , Xk → Yk} ∪ {B1 ⇒A1, . . . , Bl ⇒Al}

The red arrow Bi ⇒ Ai is in the direction opposite to that in the
implication Ai ⊃ Bi. We also have a set of arrows so even if X ⊃ Y
has multiple occurrences in S, there is only one arrow X → Y in GS .

DEFINITION 2 (Bi-colored graph). A bi-colored graph is a finite di-
rected graph with two kinds of arrows denoted → and ⇒.

We will often use the same symbols → and ⇒ to denote the corre-
sponding incidence relation in the graph. So for example, →⇒ denotes
the composition of the two relations and u→⇒w means there exists a
chain u→ v ⇒ w in GS . Also →? is the reflexive and transitive closure
of →, i.e. the accessibility for the → relation, and →+⇒ is the union
of relations.

5.2. Bi-heights, alternating chains and ⇒-cycles

We define a notion of bi-height in bi-colored graphs. The idea is simple:
a green arrow → weighs 0 and a red arrow ⇒ weighs 1, and the height
of a node v is the greatest weight of paths leading to v.

DEFINITION 3 (Bi-height). Let G be a bi-colored graph. A bi-height
is a function h : G → IN such that for any u, v ∈ G, if u→ v ∈ G then
h(u) 6 h(v) and if u⇒ v ∈ G then h(u) < h(v).

As we will see, bi-heights are used to compute counter-models. We
characterize graphs that admit bi-heights by the notion of ⇒-cycle.
This notion is similar to the notion of G-cycle in [3] but here we give
a simple and efficient algorithm to find cycles and compute counter-
models of the corresponding implicational sequent.

DEFINITION 4 (⇒-cycle). A chain of the form u(→ + ⇒)? ⇒ u for
some node u is called a ⇒-cycle.

It is clear that if a graph has a ⇒-cycle, then there is no bi-height:
we would obtain h(u) < h(u). Conversely, we give a linear7 algorithm
to compute a bi-height when there is no ⇒-cycle.

7 Linearity is measured w.r.t. the number of vertexes and arrows in the graph.

larchey_final.tex; 30/06/2006; 16:04; p.14



Graph-based decision for LCn 15

THEOREM 5. Let G be a bi-colored graph. One can decide if G has
⇒-cycles in linear time and if not, one can compute a bi-height h for
G in linear time.

Proof. Even if it has no ⇒-cycle, G may still contain green (→)
cycles. To remove all cycles, we introduce the contracted graph G′ of
G: let C be the set of strongly connected components for the “green”
sub-graph of G (i.e. G→), C = {[u] | u ∈ G→} and [u] is the strongly
connected component of u in G→. The graph G′ has C as set of nodes,
and the set of arrows is described by:

[u]→ [v] iff [u] 6= [v] and ∃u′, v′, [u] = [u′], [v] = [v′] and u′→ v′ ∈ G
[u]⇒ [v] iff ∃u′, v′, [u] = [u′], [v] = [v′] and u′⇒ v′ ∈ G

G′ is computed in linear time by standard depth first search algorithms.
G′ has no green (→) cycle (because they collapse into a strongly con-
nected component) and so G′ has a cycle (with either → or ⇒ arrows)
if and only if G has a ⇒-cycle. Finding a cycle in G′ takes linear time
in the size of G′ (which is smaller than the size of G).

Now suppose that G′ has no cycle (i.e. no ⇒-cycle in G). The relation
(→ + ⇒)? is a finite partial order and we can define h′ : G′ → IN
inductively by:

h′([v]) = max
{

h′([u]) for [u]→ [v] ∈ G′
h′([u]) + 1 for [u]⇒ [v] ∈ G′

}
We can compute the whole function h′ in linear time by sorting the
nodes of G′ along (→ + ⇒)?, again by depth first search. We define
h(u) = h′([u]) and prove that h is a bi-height in G. If u→ v ∈ G: first
case [u] = [v] and then h(u) = h(v), second case [u] 6= [v] and then
[u]→ [v] ∈ G′ thus h′([u]) 6 h′([v]) by definition of h′, so h(u) 6 h(v).
If u⇒v ∈ G then [u]⇒ [v] ∈ G′ and h′([u])+1 6 h′([v]) so h(u) < h(v).

DEFINITION 5 (Alternating chain). A k-alternating chain is a chain
of type (→?⇒)k.

A k-alternating chain contains exactly k occurrences of a red arrow
⇒ and ends with a red arrow ⇒. Obviously, by cycling around a ⇒-
cycle, one can build k-alternating chains for any k ∈ IN .

THEOREM 6. Let k > 0 be an integer. If G has no k-alternating
chain then it contains no ⇒-cycle and the height h of Theorem 5
satisfies ∀v ∈ G, h(v) < k.

Proof. In G′, if h′([v]) = k then there exists a chain [u](⇒→?)k[v]
in G′. This result is straightforwardly proved by induction on k. Then
suppose that there exists v such that h(v) = m > k. We obtain a

larchey_final.tex; 30/06/2006; 16:04; p.15



16 Dominique Larchey-Wendling

chain of type (⇒→?)m in G′. Expanding the “green” strongly connected
components of G, we obtain a chain of type (→?(⇒→?)→?)m in G. Since
m > k, it contains a subchain of type (→?⇒)k and thus a k-alternating
chain.

THEOREM 7. Let G be a bi-colored graph with no ⇒-cycle. Then,
for k greater than the number of nodes of G, the graph G has no k-
alternating chain.

Proof. Let s be the number of nodes of G. Let k be greater or equal
to s, k > s. Suppose that G has a chain of the form u0 →? ⇒u1 →?

⇒· · · →? ⇒uk. If all the ui are different then the set {u0, u1, . . . , uk}
contains k +1 > s nodes of G. This is not possible. So let i < j be such
that ui = uj . The chain ui →? ⇒· · · →? ⇒uj is a ⇒-cycle.

5.3. Counter-models vs. chains in bi-colored graphs

We relate alternating chains and ⇒-cycles in the bi-colored graph
associated with a sequent to the counter-models of that sequent.

PROPOSITION 10. Let S be an implicational sequent and GS its
associated bi-colored graph. Let [[·]] : Var → [0, n) be a counter-model
of S in LCn and X1 → · · · → Xk ⇒ Y a 1-alternating chain in GS .
Then [[X1]] 6 · · · 6 [[Xk]] < [[Y ]] holds.

Proof. Let S = Γ`∆. As [[·]] is a counter-model, the relation dd∆ee <
bbΓcc holds. As Xk ⇒ Y ∈ GS , the formula Y ⊃Xk is an element of ∆.
So we deduce [[Y ⊃Xk]] 6 dd∆ee < ∞. Thus we obtain [[Y ]] > [[Xk]] and
[[Xk]] = [[Y ⊃Xk]] 6 dd∆ee. Also Xk−1→Xk ∈ GS , so Xk−1⊃Xk belongs
to Γ. Thus [[Xk]] 6 dd∆ee < bbΓcc 6 [[Xk−1⊃Xk]] holds. So it is necessary
that [[Xk−1]] 6 [[Xk]] (because otherwise, [[Xk−1 ⊃ Xk]] = [[Xk]] holds)
and we deduce [[Xk−1]] 6 [[Xk]] 6 dd∆ee. By descending induction on i
for k − 1, k − 2, . . . , 2, we can prove that [[Xi−1]] 6 [[Xi]] 6 dd∆ee.

THEOREM 8 (n < ∞). An implicational sequent S has a counter-
model in LCn if and only if its associated graph GS does not contain
(n + 1)-alternating chains.

Proof. Let S ≡ Γ ` ∆. First we prove the if part. We suppose that
GS contains no chain of the form (→?⇒)n+1. Then by Theorem 6,
there exists a bi-height function h : GS→ [0, n]. We define the semantic
function [[·]] : Var → [0, n): if X occurs in S (i.e. is a node of GS),
[[X]] = h(X) if h(X) < n and [[X]] = ∞ if h(X) = n; if X does not
occur in S, [[X]] = ∞ (any other value would also fit). Let us prove that
[[·]] is a counter-model of S. Indeed, if X⊃Y ∈ Γ then X→Y ∈ GS and

larchey_final.tex; 30/06/2006; 16:04; p.16



Graph-based decision for LCn 17

then h(X) 6 h(Y ). It follows that [[X]] 6 [[Y ]] and so [[X⊃Y ]] = ∞. We
have bbΓcc = ∞. If X⊃Y ∈ ∆ then Y ⇒X ∈ GS . Thus h(Y ) < h(X) and
[[X⊃Y ]] = [[Y ]] = h(Y ) < h(X) 6 n. So [[X⊃Y ]] 6 n−1 holds for any
X ⊃ Y ∈ ∆ and then dd∆ee 6 n− 1. Finally, dd∆ee 6 n− 1 < ∞ = bbΓcc
and so [[·]] is a counter-model of S.

Now we prove the only if part. Let [[·]] : Var → [0, n) be a counter-
model of S. Suppose there is a chain of the form (→?⇒)n+1 in GS :
X0→?⇒X1→?⇒X2→?⇒· · ·→?⇒Xn→?⇒Xn+1. So for any i, there is
a chain Xi→?⇒Xi+1 and by Proposition 10, we obtain [[Xi]] < [[Xi+1]].
Then, [[X0]] < [[X1]] < · · · < [[Xn+1]] is a strictly increasing sequence
of n + 2 elements in [0, n). As this set has n + 1 elements, we get a
contradiction.

THEOREM 9 (n = ∞). An implicational sequent S has a counter-
model in LC if and only if its associated graph GS has no ⇒-cycle.

Proof. For the if part, if GS has no ⇒-cycle, by Theorem 5, there is
a height h : GS → IN . We define [[X]] ∈ IN ∪ {∞} by [[X]] = h(X) and
obtain a counter-model of S in LC. For the only if part, the existence
of a chain X →? ⇒→? ⇒· · ·→? ⇒X would lead to [[X]] < [[X]] by the
same argument as before.

5.4. An example of proof and counter-model search

In this section, we apply the proof-search and counter-model search
techniques previously described on the formula expressing the law of
the excluded middle: D ≡ A ∨ (A⊃⊥).

First we index this formula by listing all the occurrences of its
subformulæ in a depth-first search manner, giving a number to each
occurrence: 0 ≡ A ∨ (A ⊃ ⊥), 1 ≡ A, 2 ≡ A ⊃ ⊥, 3 ≡ A, 4 ≡ ⊥. Then,
we compute δ−D:

δ−D = A⊃ 1,�⊃A, 3⊃A,�⊃A,�⊃ 4, (3⊃ 4)⊃ 2, (1 ∨ 2)⊃ 0

For convenience, we denote by Γ the context containing the atomic
implications of δ−D: Γ ≡ A ⊃ 1,� ⊃ A, 3 ⊃ A,� ⊃ A,� ⊃ 4. Then we
compute the proof-search tree of δ−D ` ♦ ⊃ 0:

Γ, 4⊃ 2, 1⊃ 0, 2⊃ 0 ` 3⊃ 4,♦⊃ 4,♦⊃ 0 Γ,♦⊃ 2, 1⊃ 0, 2⊃ 0 ` ♦ ⊃ 0
[⊃⊃]

Γ, (3⊃ 4)⊃ 2, 1⊃ 0, 2⊃ 0 ` ♦ ⊃ 0
[∨⊃]

Γ, (3⊃ 4)⊃ 2, (1 ∨ 2)⊃ 0 ` ♦ ⊃ 0

Then we obtain two proof-search branches corresponding to the choice
between left and right premise in the instance of rule [⊃⊃]. We present

larchey_final.tex; 30/06/2006; 16:04; p.17



18 Dominique Larchey-Wendling

the two bi-colored graphs corresponding to the two implicational se-
quents at the leaves of the proof-search tree:

♦0

1 2

3 4

A

0

�

♦0

1 2

3 4

A

0

�

The right bi-colored graph contains a⇒-cycle:♦→2→0⇒♦ whereas
the left bi-colored graph does not contain any ⇒-cycle, as a bi-height
can be computed for it:

4 � 2

3 A 1 0

♦

h = 0

h = 1

h = 2

Indeed, on this particular presentation of the graph, it is clear that
green arrows → either go up or stay on the same level whereas red
arrows ⇒ strictly go up. We remark that there is no 3-alternating chain
so we will find a counter-model in LC2. On the other hand, there exists
a 2-alternating chain which corresponds to the fact that A ∨ (A ⊃ ⊥)
is valid in LC1 = CL which is classical propositional logic.

From the bi-height h, we compute the following minimal counter-
model of A ∨ (A ⊃ ⊥), [[·]] : Var → [0, 2) with [[A]] = hA = 1. We can
check that this is indeed a counter-model: [[A∨(A⊃⊥)]] = 1∨(1_0) =
1 ∨ 0 = 1 < ∞ in [0, 2).

5.5. Counter-models by matrix computation

We have seen that the existence of counter-models of implicational
sequents in LC is equivalent to the absence of ⇒-cycles in the associated
bi-colored graphs. Now we present an algebraic formula that expresses
the existence of ⇒-cycles. Let G be a bi-colored graph of k nodes with
its incidence relations → and ⇒. The relation → (or ⇒) can be viewed
as an incidence k × k matrix whose rows and columns are indexed
by the nodes of G. The cells of these matrices take their value in the
boolean algebra {0, 1}. So there is a 1 at cell (u, v) in the matrix of
→ if and only if u→ v ∈ G. We define + as the disjunction (or logical
“or”) and · as the conjunction (or logical “and”) in the boolean algebra

larchey_final.tex; 30/06/2006; 16:04; p.18



Graph-based decision for LCn 19

{0, 1}. These operations extend naturally to sum and multiplication of
square boolean matrices.

If we identify the relations → and ⇒ with their respective matrices,
the composed relation →⇒ has a corresponding matrix → · ⇒ and
the union of relations → and ⇒ has a corresponding matrix → + ⇒.
The relation →? corresponds to a limit matrix →0 + · · ·+→i + · · · by
the Warshall theorem [17].8 So ((→+⇒)?⇒)u,u = 1 means that there
exists a chain of the form u(→ + ⇒)? ⇒ u in the graph G. Let tr(·)
denote the trace of matrices defined by tr(M) =

∑
u Mu,u.

PROPOSITION 11. G = (→,⇒) contains a ⇒-cycle if and only if

tr((→+⇒)?⇒) = 1

We conclude this section by a criterion to determine the minimal
n for which a given sequent S has a counter-model in LCn. Let

∑
M

denote the sum of all the elements of the matrix M :
∑

M =
∑

u,v Mu,v.

PROPOSITION 12. Let S be an implicational sequent not valid in
LC and GS = (→,⇒) be its associated bi-colored graph. There exists a
smallest n such that S has a counter-model in LCn and it is the least
n such that ∑

(→?⇒)n+1 = 0

Proof. By Theorem 8, S has a counter-model in LCn, iff GS has no
chain of the form (→?⇒)n+1. Having no chain of the form (→?⇒)n+1

means the matrix of the corresponding relation is the zero matrix, i.e.∑
(→?⇒)n+1 = 0. As S is not valid in LC, by Theorem 9, its bi-colored

graph GS has no ⇒-cycle. Then, there is an n such that GS has no chain
of the form (→?⇒)n by Theorem 7. Thus there exists a smallest one.

6. Combining proof-search and counter-model computation

Our system has a very important property that the other sequent [9, 12]
or hyper-sequent [2] systems lack: proof-search can be seen as the incre-
mental construction of a semantic graph. See section 9 for a discussion
on this point. The nodes of this graph do not depend on the proof-search
branch; only the choices of arrows depend on the chosen branch.

8 The sequence (→0 + · · ·+→i)i∈IN is increasing in the finite point-wise ordered
poset {0, 1}k×k. Thus, its limit exists and is reached within a finite number of steps.
This result is still valid if {0, 1} is replaced by any other finite boolean algebra like
for example in section 8.

larchey_final.tex; 30/06/2006; 16:04; p.19



20 Dominique Larchey-Wendling

Γ,X−A ⊃X−A∧B `∆♦ Γ,X−B ⊃X−A∧B `∆♦

Γ, (X−A ∧ X−B )⊃X−A∧B `∆♦
[∧⊃]

∧−

A− B−

∧−

A− B−

Γ,X+
A∧B ⊃X+

A ,X+
A∧B ⊃X+

B `∆♦

Γ,X+
A∧B ⊃ (X+

A ∧ X+
B ) `∆♦

[⊃∧]
∧+

A+ B+

Γ,X−A ⊃X−A∨B ,X−B ⊃X−A∨B `∆♦

Γ, (X−A ∨ X−B )⊃X−A∨B `∆♦
[∨⊃]

∨−

A− B−

Γ,X+
A∨B ⊃X+

A `∆♦ Γ,X+
A∨B ⊃X+

B `∆♦

Γ,X+
A∨B ⊃ (X+

A ∨ X+
B ) `∆♦

[⊃∨]
∨+

A+ B+

∨+

A+ B+

Γ,X−B ⊃X−A⊃B ` X+
A ⊃X−B ,♦⊃X−B ,∆♦

... Γ,♦⊃X−A⊃B `∆♦

Γ, (X+
A ⊃X−B )⊃X−A⊃B `∆♦

[⊃⊃]

⊃−

A+ B−

♦ ⊃−

A+ B−

♦

Γ,X+
A⊃B ⊃X+

B `∆♦ Γ,X−A ⊃X+
B `∆♦

Γ,X+
A⊃B ⊃ (X−A ⊃X+

B ) `∆♦
[⊃⊃]

⊃+

A− B+

⊃+

A− B+

Figure 2. Proof rules as bi-colored graph construction

6.1. Graphic view of the proof-search process

Let us fix a particular formula D. Using previous results, D is indexed
into an equivalent flat sequent δ−D `♦⊃X

−
D .9 Let us study the formulæ

occurring in δ−D. From the definition of δ (see section 3), here are the
formulæ in δ−D for each occurrence of a subformula of D:

− if V is a variable occurring positively (resp. negatively) in D, the
formula X+

V ⊃V (resp. V ⊃X−V ) appears in δ−D. Also �⊃V appears
in δ−D whether V occurs positively or negatively in D. These im-
plications are already atomic and will not be further decomposed
during proof-search;

− if ⊥ is a positive (resp. negative) occurrence of the constant, the
formula X+

⊥ ⊃ � (resp. � ⊃ X−⊥ ) appears in δ−D. Again, these
implications will not be decomposed further during proof-search;

9 For the sake of completeness, we recall the polarity of occurrences of subformulæ
by suffixing their indexes like in X+

K or X−K . X−D has a negative polarity because it
is the index of the root formula D and in δ−D, we start polarizing negatively.

larchey_final.tex; 30/06/2006; 16:04; p.20



Graph-based decision for LCn 21

− if A ~ B occurs positively (resp. negatively) in D, X+
A~B ⊃ (X+

A ~
X+

B ) (resp. (X−A ~ X−B ) ⊃ X−A~B) appears in δ−D and could be
decomposed once using rule [⊃~] (resp. [~⊃]), for ~ ∈ {∧,∨};

− if A⊃B occurs positively (resp. negatively), X+
A⊃B ⊃ (X−A ⊃ X+

B )
(resp. (X+

A ⊃X−B )⊃X−A⊃B) appears in δ−D and could be decomposed
once using rule [⊃⊃] (resp. [⊃⊃]).

What are the atomic implications occurring in the sequent obtained
at the end of a completed proof-search branch starting from δ−D ` ♦ ⊃
X−D ? Some appear already at the root of the proof-search tree:

− X+
V ⊃ V , V ⊃ X−V and � ⊃ V on the left hand side of the ` sign

when V is an occurrence of a variable of D;

− X+
⊥ ⊃�, �⊃X−⊥ on the left hand side of the ` sign for occurrences

of ⊥ in D;

− ♦⊃X−D on the right hand side of the ` sign.

These atomic implications are not decomposed by proof rules and are
kept untouched from the root sequent δ−D `♦⊃X

−
D to the implicational

sequents at the leaves of the proof-search tree. So in the corresponding
bi-colored graphs, there are arrows X+

V →V , V →X−V , �→V , �→X−⊥ ,
X+
⊥ →� and X−D ⇒♦. The situation is summarized in the figure below:

X−D ♦

X+
V X−V

V

X+
⊥ X−⊥

�

Now we consider what happens to the non-implicational formulæ of
the form (X ~Y )⊃Z or X⊃ (Y ~Z) in δ−D `♦⊃X

−
D . There is exactly

one logical rule for each case: [⊃~] for ~+ and [~⊃] for ~−. The left
column of Figure 2 presents all these cases. The complete set of arrow
introduction rules is given in the right column of Figure 2. With this
set of rules, each internal occurrence of a subformula introduces arrows
in the bi-colored graph, depending on the choice of the left premise
or right premise for the cases ∧−, ∨+, ⊃−, and ⊃+. Since rules ∧+

and ∨− only have one premise, there is no choice in these cases and
proof-search does not branch. So the end-sequent of a completed proof-
search branch and its corresponding bi-colored graph is characterized

larchey_final.tex; 30/06/2006; 16:04; p.21



22 Dominique Larchey-Wendling

by a choice of left or right premise for internal nodes of the shape ∧−,
∨+, ⊃−, and ⊃+.

The reader is reminded that the proof rules involved in proof-search
are all strongly invertible and in fact, their are all permutable: the
order in which they are applied does not influence the set of leaves of
the proof-search tree.

6.2. Conditional bi-colored graphs and their instances

To be able to represent all the proof-search branches in a common
graph structure, we propose to represent the choice between the two
premises of binary rules by a boolean selector, i.e. a boolean variable
x which has two instances x = 1 and x = 0. For example, we obtain
the following transformation of rule [⊃∨] for a positive occurrence of
disjunction ∨+:

∨+

A+ B+

∨+

A+ B+

−→ x x

∨+

A+ B+

Instantiating the selectors, if we keep arrows only in case the selector
evaluates to 1, then we see that when the selector x equals 1, then the
selector x = 0 and so, the left branch is selected, whereas when x = 0,
then x = 1 and the right branch is selected.

DEFINITION 6 (Conditional graph). A conditional bi-colored graph
is a bi-colored graph where arrows (either → or ⇒) may be indexed
with boolean selectors (like x or x).

Several boolean variables might be introduced for selectors because a
new variable has to be chosen for each proof rule instance. Considering
boolean selectors as representatives for boolean functions and given a
valuation v, a boolean selector e is instantiated to the boolean value
[[e]]v ∈ {0, 1}. We obtain an instance graph: an arrow indexed with a
boolean expression e belongs to this instance if and only if [[e]]v = 1.
The case of an unconditional (i.e. not indexed) arrow can be handled by
considering that it has an implicit boolean condition of value 1 (which
is the tautology that always evaluates to 1) and non-existing arrows
have the implicit boolean condition of value 0 (that always evaluates
to 0).

DEFINITION 7 (Instance graph). Let G be a conditional bi-colored
graph and v be a valuation of boolean variables in {0, 1}. The instance
graph Gv is defined as the bi-colored graph obtained when one evaluates
boolean selectors indexing arrows, keeping exactly those valued 1 in v.

larchey_final.tex; 30/06/2006; 16:04; p.22



Graph-based decision for LCn 23

If we come back to the example of section 5.4, the following condi-
tional bi-colored graph would be suited as a merge of the two bi-colored
graphs corresponding to completed proof-search branches:

♦0

1 2

3 4

A �

x
x

x

x

It visually appears that the two instances (x = 1 and x = 0) of this
conditional graph are the bi-colored graphs of section 5.4.

7. Proof-search as the construction of a conditional graph

We introduce our counter-model search system which is a combination
of the graphical system of Figure 2 and the idea of postponing choice
of left or right premise by introducing selectors. In this system, there
is no more branching in the search space.

The system is presented in Figure 3. We fix a formula D which is
indexed and polarized starting from D− and propagating the polarity
through the connectives ∧,∨ and through the right branch of connective
⊃. The polarity is inverted on the left branch of connective ⊃.

We start from the leaves of the decomposition tree of D− (V +, V −,
⊥+ or ⊥−). We add one new node for each variable V occurring in D.10

We also add two nodes for � and ♦. Then, we add the arrow D−⇒♦
(D− is the root of the decomposition tree) and arrows V + → V (resp.
V → V −) for each positive (resp. negative) occurrence of the variable
V . We add arrows � → V for every variable occurring in D. We add
⊥+ → � (resp. �→⊥−) for each positive (resp. negative) occurrence
of the constant ⊥. This is summarized by the left side of Figure 3.
All these arrows are not indexed with selectors: they are unconditional
arrows.

Then for each internal node ~+ or ~−, we add arrows according
to the schemes of the right part of Figure 3. There is one scheme for
each case in {∧,∨,⊃} × {+,−}. For the schemes ∧−, ∨+, ⊃+ and
⊃−, we introduce conditional arrows indexed with a boolean selector
of the form x or x. This selector has to be new: there is exactly one

10 For a variable V occurring in D, there might be a positive occurrence V + or a
negative occurrence V − in the decomposition tree of D but there is only one extra
node for the variable V , not one for each occurrence.

larchey_final.tex; 30/06/2006; 16:04; p.23



24 Dominique Larchey-Wendling

D− ♦

V + V −

V

⊥+ ⊥−

�

x x

∧−

A− B−

∨−

A− B− x

x x

x⊃−

A+ B−

♦

∧+

A+ B+

x x

∨+

A+ B+

x

x

⊃+

A− B+

Figure 3. Counter-model search system for LCn

selector for each instance of a scheme.11 Each scheme introduces two or
four arrows so the construction of the conditional bi-colored graph is a
process which take linear time w.r.t. the size of D. The order in which
we apply the schemes has no influence on the obtained conditional
graph, up to the renaming of the boolean selectors.

THEOREM 10. Let D be a formula and G be the corresponding con-
ditional bi-colored graph obtained by the previously described process.
Then D has a counter model in LC if and only if there exists a valuation
v on the selectors such that the instance graph Gv contains no ⇒-cycle.

Proof. Because all the proof rules are strongly invertible, [[·]] is a
counter-model of D if and only if it is a counter-model of at least
one of the implicational sequent at the leaf of a completed proof-
search branch. This sequent is characterized by choices of left or right
premises and these choices corresponds to a valuation on selectors. By
Theorem 9, the leaf-sequent of a completed proof-search branch has a
counter-model if and only if its associated bi-colored graph has no ⇒-
cycle. But this graph is exactly the instance Gv where v is the valuation
on selectors corresponding to the proof-search branch.

THEOREM 11. D has a counter-model in LCn iff there exists a val-
uation v on the selectors such that the instance graph Gv contains no
(n + 1)-alternating chain.

Proof. For LCn with n 6= ∞, we just have to apply Theorem 8
instead of Theorem 9 used in the proof of Theorem 10. The proof rules
are common for all the family LCn (including n = ∞).

11 For example, the selector could be indexed with the root node of the
corresponding scheme instance to ensure uniqueness.

larchey_final.tex; 30/06/2006; 16:04; p.24



Graph-based decision for LCn 25

Back to the example of section 5.4, we present the conditional graph
obtained for the formula A ∨ (A⊃⊥):

♦∨−

A− ⊃−

A+ ⊥−

A �

x
x

x

x

As expected, this conditional graph is isomorphic to the graph pre-
sented on page 23 which was a merge of the two proof-search branches
of the decomposition of formula A ∨ (A⊃⊥).

As a trivial consequence of Theorems 5, 10 and 11, we obtain direct
proof that deciding LCn is a co-NP problem for any n ∈ IN

?.
Computing the conditional bi-colored graph from a given formula

takes linear time but finding all the ⇒-cycles in a graph and solving the
boolean constraints system have both exponential complexity. Indeed,
there exists formulæ for which the conditional bi-colored graph has
exponentially many cycles. So on the complexity side, finding cycles
and then building a constraint system is not a good idea.

We observe that we do not need the list of all the⇒-cycles to decide a
formula in LC: we only need to compute and solve the boolean condition
characterizing the existence of ⇒-cycles.

8. Practical detection of alternating chains and ⇒-cycles

To implement conditional graphs, we can represent the relations → and
⇒ as generalized incidence matrices. In an incidence matrix, there is a 1
in a cell if the corresponding arrow exists in the graph. Generalized in-
cidence matrix cells might contain not only 0 or 1 (for unconditional ar-
rows) but also arbitrary boolean expressions built upon atomic boolean
selectors. These expressions are considered up to boolean equivalence.
For example, they could be implemented using a shared BDD as in [15].

DEFINITION 8 (Conditional matrix). A conditional matrix on set S
of size k is a k × k array with values in the free boolean algebra over
the set of selectors.

So a conditional bi-colored graph is viewed as a pair (→,⇒) of
conditional matrices. The algebraic operations we have defined like

larchey_final.tex; 30/06/2006; 16:04; p.25



26 Dominique Larchey-Wendling

→ + ⇒, → · ⇒, →?, tr(·) and
∑

(·) extend naturally12 to conditional
matrices because they rely only on the boolean operators · and +. If
v is a valuation of boolean variables in {0, 1}, we obtain instance ma-
trices corresponding to instance graphs. Instantiation commutes with
algebraic operations on matrices because it commutes with the boolean
operators · and +. For example [→+⇒]v = →v +⇒v.

THEOREM 12. Let G = (→,⇒) be a conditional bi-colored graph.
There exists a ⇒-cycle in every instance Gv of G if and only if the
following identity between boolean expressions holds:

tr((→+⇒)?⇒) = 1

Proof. Straightforward: [tr((→+⇒)?⇒)]v = tr((→v +⇒v)?⇒v) and
then, application of Theorem 10.

The reader is reminded that the equation tr((→ + ⇒)?⇒) = 1 is
an equivalence of boolean expressions, not an equality between boolean
value in {0, 1}. The result for the finitary version LCn is the following:

THEOREM 13. Let G = (→,⇒) be a conditional bi-colored graph.
There exists an instance graph Gv of G containing no (n+1)-alternating
chain if and only if the following inequality between boolean expressions
holds: ∑

(→?⇒)n+1 6= 1

To compute the smallest n such that a formula is not valid in LCn,
we sequentially compute until

∑
(→?⇒)n+1 6= 1 and then, find a valu-

ation v such that the instance is refuted:
∑

(→?
v⇒v)n+1 = 0. From the

corresponding instance graph Gv, we extract a counter-model in LCn.
We have implemented in Objective Caml13 a prototype of counter-

model search engine for LC based on these principles. Implementation
details of this system are described in full details in [15].

9. Comparison with existing systems

The sequent or hyper-sequent calculi proposed for LC can be distin-
guished by the shape of their irreducible sequents.

12 The infinitary (·)? extends as well because as noticed earlier, Bk×k is a finite
point-wise ordered poset whenever B is {0, 1} or any other finite boolean algebra
like the free boolean algebra built over a finite set of selectors.

13 It is available at http://www.loria.fr/~larchey/LC.

larchey_final.tex; 30/06/2006; 16:04; p.26



Graph-based decision for LCn 27

Indeed, Dyckhoff [9] does not focus on the efficiency of the decision
procedure corresponding to his sequent system. But, to our knowledge,
it was the first (purely) sequent system for LC where all the proof
rules are invertible. Unfortunately, the proof-search algorithm tries to
reduce implicational sequents but they are not irreducible in this sys-
tem. Proof-search procedures are not efficient at deciding implicational
sequents and can take exponential time whereas a counter-model search
as the one presented in this paper takes linear time.

We have already noticed and solved this problem in [12] with a
sequent calculus that does not try to reduce implicational sequents. A
counter-model search algorithm with linear complexity based on a fix-
point computation is provided to solve irreducible sequents which are
composed of atomic implications and variables. Unfortunately, it is not
easy to guess how to combine the proof-search branches in a common
structure on which we could search for counter-models simultaneously
on every branch.

The hyper-sequent calculi popularized by Avron [2] and Baaz [5] also
have irreducible sequents composed of atomic implication and variables.
They associate these irreducible sequents with constraint systems and
search for G-cycles in those constraints. The concept of G-cycles is close
to the one of ⇒-cycle but it is not expressed in graph theoretical terms
and no algorithm is explicitly given to solve these constraints. Only the
fact that they are polynomially solvable is stated. In [6], using relational
hyper-sequents, they obtain another kind of constraints which is proved
to be polynomially solvable by linear programming techniques. In this
paper, we provide a linear algorithm to solve these kind of constraints.

Because of the choice of hyper-sequents and the fact that constraints
are not visualized in graphs, it seems that the problem of trying to
merge proof-search branches did not appear as an obvious extension of
the work on either hyper-sequents or even relational (hyper-)sequents.
It might be possible to obtain such systems in which proof-search
branches could be merged into a common graph structure or constraint
system, but we think that the proof rules need to be tailored towards
such a goal as we have done in the case of the sequent calculus.

Finally, our system, first presented in [13], is based on the idea
that we should not try to decompose atomic implications and that we
should have the structure of irreducible sequents as simple as possible.
It was thus a straightforward idea to encode a variable X with an
atomic implication ♦⊃X. What remained to be done was to provide
strongly invertible proof-rules for such sequents. Once proof-rules for
these uniform irreducible sequents were obtained, the bi-colored graph
structure became obvious and the decision algorithm followed.

larchey_final.tex; 30/06/2006; 16:04; p.27



28 Dominique Larchey-Wendling

References

1. Avellone, A., M. Ferrari, and P. Miglioli: 1999, ‘Duplication-Free Tableau Cal-
culi and Related Cut-Free Sequent Calculi for the Interpolable Propositional
Intermediate Logics’. Logic Journal of the IGPL 7(4), 447–480.

2. Avron, A.: 2000, ‘A Tableau System for Gödel-Dummett Logic Based on a
Hypersequent Calculus’. In: TABLEAUX 2000, Vol. 1847 of LNAI. pp. 98–111.

3. Avron, A. and B. Konikowska: 2001, ‘Decomposition Proof Systems for Gödel-
Dummett Logics’. Studia Logica 69(2), 197–219.

4. Baaz, M., A. Ciabattoni, and C. Fermüller: 2001, ‘Cut-Elimination in a
Sequents-of-Relations Calculus for Gödel Logic’. In: ISMVL 2001. pp. 181–186.

5. Baaz, M., A. Ciabattoni, and C. Fermüller: 2003, ‘Hypersequent Calculi for
Gödel Logics – A Survey’. Journal of Logic and Computation 13(6), 835–861.

6. Ciabattoni, A., C. Fermüller, and G. Metcalfe: 2004, ‘Uniform Rules and Di-
alogue Games for Fuzzy Logics’. In: LPAR 2004, Vol. 3452 of LNCS. pp.
496–510.

7. Dummett, M.: 1959, ‘A Propositional Calculus with a Denumerable matrix’.
Journal of Symbolic Logic 24, 96–107.

8. Dyckhoff, R.: 1992, ‘Contraction-free Sequent Calculi for Intuitionistic Logic’.
Journal of Symbolic Logic 57(3), 795–807.

9. Dyckhoff, R.: 1999, ‘A Deterministic Terminating Sequent Calculus for Gödel-
Dummett logic’. Logical Journal of the IGPL 7(3), 319–326.

10. Gödel, K.: 1932, ‘Zum intuitionistischen Aussagenkalkül’. In: Anzeiger
Akademie des Wissenschaften Wien, Vol. 69. pp. 65–66.

11. Hajek, P.: 1998, Metamathematics of Fuzzy Logic. Kluwer Academic Publishers.
12. Larchey-Wendling, D.: 2002, ‘Combining Proof-Search and Counter-Model

Construction for Deciding Gödel-Dummett Logic’. In: CADE-18, Vol. 2392
of LNAI. pp. 94–110.

13. Larchey-Wendling, D.: 2004, ‘Counter-model search in Gödel-Dummett logics’.
In: IJCAR 2004, Vol. 3097 of LNAI. pp. 274–288.

14. Larchey-Wendling, D.: 2005a, ‘Bounding Resource Consumption with Gödel-
Dummett Logics’. In: LPAR 2005, Vol. 3835 of LNAI. pp. 682–696.

15. Larchey-Wendling, D.: 2005b, ‘Gödel-Dummett counter-models through matrix
computation’. Electronic Notes in Theoretical Computer Science 125(3), 137–
148.

16. Metcalfe, G., N. Olivetti, and D. Gabbay: 2003, ‘Goal-Directed Calculi for
Gödel-Dummett Logics’. In: CSL’03, Vol. 2803 of LNCS. pp. 413–426.

17. Warshall, S.: 1962, ‘A Theorem on Boolean Matrices’. J. ACM 9(1), 11–12.

larchey_final.tex; 30/06/2006; 16:04; p.28


