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How to understand unpredictability, randomness?

Several possible answers:

The newtonian physicist

The evolution is deterministic, but:

• sensitivity to initial conditions,

• approximative knowledge of the state of the system.

Mathematical model: deterministic dynamical systems.

The computer scientist

Difficulty, impossibility to compute the evolution of the system.
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How to understand unpredictability, randomness?

Theorem

A dynamical system is strongly unpredictable if and only if it has strongly
uncomputable trajectories.

Along the talk, we will see:

• What strong chaos is.

• What strongly uncomputable trajectories are.

• Some relations between unpredictability and uncomputability.
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Topological entropy

• X is a compact metric space, T : X → X is a continuous map.

• We fix some small ε > 0: observations of the systems will be carried
out with precision ε.

• Unpredictability: given a set Y of possible initial states,
unpredictability arises when several significantly different (i.e. not
ε-close) trajectories start from Y

Topological entropy

Quantifies the speed of separation of trajectories.
[Adler, Konheim, McAndrew (1965)], [Bowen (1971)]
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Topological entropy
Let ε > 0 and n ∈ N.

• Two finite sequences x0, x1, . . . , xn−1 and y0, y1, . . . , yn−1 are ε-close
if d(xi , yi ) < ε for every i ≤ n − 1.

• Let NY (n, ε) be the minimal number of trajectories of length n such
that every trajectory starting from Y is ε-close to one of them.

Usually, NY (n, ε) grows exponentially fast as n→∞. The topological
entropy is the (maximal) exponential rate:

h(Y ,T , ε) := lim sup
log NY (n, ε)

n

and
h(Y ,T ) := lim

ε→0
h(Y ,T , ε) = sup

ε>0
h(Y ,T , ε)

and
h(T ) = h(X ,T ).
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Topological entropy
A few examples

• The entropy of the shift σ : ΣN → ΣN is h(σ) = log |Σ|. Indeed,

NX (n, 2−p) = |Σ|n+p so h(X , σ, 2−p) = lim sup (n+p) log |Σ|
n = log |Σ|.

• If the system is not sensitive to initial conditions, then h(T ) = 0.
Indeed, the number of distinguishable trajectories of length n is linear in n.

• Having positive entropy is a strong form of chaos.

• Topological entropy is a topological invariant: if two systems are
conjugated they have the same entropy.
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Topological entropy
A few remarks

• If Y is a singleton, then h(Y ,T ) = 0: it corresponds to the ideal
situation when you know exactly the initial state. The evolution is
then perfectly predictable (Laplace’s demon).

• Hence the unpredictability of a trajectory depends of the observer’s
knowledge of the initial state.
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Topological entropy
A few remarks

• Why h({x},T ) = 0?

• Because there is only one trajectory starting from {x}, as the system
is deterministic.

• In other words, one can surround the evolution of the system in a
narrow tube.

• But can one do this effectively? i.e. generate this tube with a
program?

Effective entropy

We define a “constructive version” of topological entropy, which takes this
problem of effectivity into account.
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Effective entropy
An ε-covering is a family E = (En)n∈N:

• En is a finite set of sequences of length n of representable points,

• every trajectory of length n starting from Y is ε-close to a sequence in
En.

Using ε-coverings, the topological entropy is

h(Y ,T , ε) = inf
ε-covering E

{
lim sup

log |En|
n

}
.

An effective ε-covering is an ε-covering E such that there is a program
which on input n, enumerates En (En is r.e. given n).

Definition (Effective entropy)

he(Y ,T , ε) := inf
effective ε-covering E

{
lim sup

log |En|
n

}
.
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Effective entropy

• Of course, h(Y ,T , ε) ≤ he(Y ,T , ε).

• If x is a computable point, then he({x},T ) = 0. What happens when
x is not computable?

Theorem

h(T ) = sup
x∈X

he({x},T ).

• he({x},T ) can be as large as possible.

• he({x},T ) expresses, in some way, the effective unpredictability – or
uncomputability – of the evolution of the system, when starting from
x .

Sequel of the talk

We make it more precise and show what this quantity is exactly.
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Kolmogorov complexity
Some background

• Let S be a countable set (elements of S can be identified with
integers or finite binary strings).

• If A : {0, 1}N → S is a computable function we define the
Kolmogorov complexity of an element x ∈ S relative to A as

KA(x) = min{|p| : p ∈ {0, 1}∗,A(p) = x}.

If there is no p such that A(p) = x , KA(x) =∞.

Theorem (Kolmogorov, 1965)

There is a universal optimal function U : {0, 1}∗ → S. For every
computable function A there is a constant cA such that

KU(x) ≤ KA(x) + cA for all x ∈ S .

(cA is the length of a code for the function A)
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Kolmogorov complexity
Some background

We fix U once for all and define the Kolmogorov complexity of x as

K (x) := KU(x).

Examples

• S = {0, 1}∗. There is a constant c such that

K (w) ≤ |w |+ c for all w ∈ {0, 1}∗.

(consider the function A(p) = p).

• S = N. There is a constant c such that K (n) ≤ log2(n) + c for all
n ∈ N. (consider the function A(p) = n where p is the binary
expansion of n).

The function x 7→ K (x) is not computable. Instead, it is
upper-computable, i.e. the set {(x , k) : K (x) < k} is r.e.
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Kolmogorov complexity
Some background

For w ∈ {0, 1}∗ we know that K (w) <
+ |w |. This bound is usually tight:

Lemma (1)

|{w ∈ {0, 1}n : K (w) < p}| < 2p.

In other words, most strings are complex:

• in {0, 1}n, the proportion of strings of complexity < p is 2p−n, i.e.,

• one half of the strings have complexity K (w) ≥ |w | − 1,

• one quarter have complexity K (w) ≥ |w | − 2,

• and so on...
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Kolmogorov complexity
Some background

To get upper bounds on K , one usually uses the following lemma.

Lemma (2)

If E ⊆ N× X is a r.e. set such that En := {x : (n, x) ∈ E} is finite for
every n, then there is a constant c such that for every n and x ∈ En,

K (x) ≤ 2 log n + log |En|+ c .

Proof.

Represent x ∈ En by n and the index of x in the enumeration of En.
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Algorithmic complexity of trajectories

• Let ε > 0. Computing a finite trajectory means computing a finite
sequence of representable points (rational numbers on R, e.g.) ε-close
to the actual trajectory.

• We first define the algorithmic complexity of a finite trajectory:

Kn(x ,T , ε) = min{K (q0, . . . , qn−1) : d(qi ,T
i (x)) < ε for 0 ≤ i < n}.

• Then we consider the growth rate of Kn(x ,T , ε) as n→∞:

K(x ,T , ε) := lim sup
Kn(x ,T , ε)

n

and
K(x ,T ) := lim

ε→0
K(x ,T , ε) = sup

ε>0
K(x ,T , ε).

[Brudno, 1983] [Galatolo, 2000]
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Algorithmic complexity of trajectories

• Roughly, one needs n.K(x ,T , ε) bits to encode the trajectory of
length n starting from x .

• If x is a computable point and T is a computable function then
K(x ,T ) = 0.
Indeed, Kn(x ,T , ε) <

+
log(n): there is a program which takes n as input and computes the

first n iterates of x (up to ε).

• If K(x ,T ) > 0 then the trajectory of x is strongly non-computable:
to compute its n first elements, one needs a program of length linear
in n.
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Relations

Theorem

he({x},T ) = K(x ,T ).
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Proof of he({x}, T ) ≤ K(x , T )
• Let β > K(x ,T , ε): there is n0 such that for all n ≥ n0,
Kn(x ,T , ε) < βn.

• Let
En := {(q0, . . . , qn−1) : K (q0, . . . , qn−1) < βn}.

• The sequence En is an effective ε-covering of {x}, so

he({x},T , ε) ≤ lim sup
log |En|

n
.

• Using a basic property of algorithmic complexity, we get

|En| ≤ 2βn.

• Hence he({x},T , ε) ≤ β for every β > K(x ,T , ε), so we get:

he({x},T , ε) ≤ K(x ,T , ε).
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Proof of K(x , T ) ≤ he({x}, T )

• Let E = (En)n∈N be an effective ε-covering of {x}.

• Using the lemma, for every (q0, . . . , qn−1) ∈ En, we have

K (q0, . . . , qn−1) <
+

log |En|+ 2 log(n).

• As a result,

Kn(x ,T , ε) <
+

log |En|+ 2 log(n)

K(x ,T , ε) ≤ lim sup
log |En|

n
.

• As this is true for every effective ε-covering En, we get:

K(x ,T , ε) ≤ he({x},T , ε).
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Relations

As a result,
h(T ) = sup

x
K(x ,T ).

In particular, for a computable system (X ,T ), the following statements
are equivalent:

1 The system is strongly unpredictable, i.e. h(T ) > 0,

2 The system has at least one trajectory which is strongly
non-computable, i.e. satisfying K(x ,T ) > 0.

Thank you
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