Dynamical systems: unpredictability vs uncomputability

Mathieu Hoyrup

INRIA Nancy (FRANCE)

How to understand unpredictability, randomness?

Several possible answers:

The newtonian physicist

The evolution is deterministic, but:

- sensitivity to initial conditions,
- approximative knowledge of the state of the system.

Mathematical model: deterministic dynamical systems.

The computer scientist

Difficulty, impossibility to compute the evolution of the system.

How to understand unpredictability, randomness?

Theorem

A dynamical system is strongly unpredictable if and only if it has strongly uncomputable trajectories.

Along the talk, we will see:

- What strong chaos is.
- What strongly uncomputable trajectories are.
- Some relations between unpredictability and uncomputability.

- 2 Effective entropy
- 3 Kolmogorov complexity
- 4 Algorithmic complexity of trajectories

3 Kolmogorov complexity

4 Algorithmic complexity of trajectories

5 Relations

- X is a compact metric space, $T : X \to X$ is a continuous map.
- We fix some small ε > 0: observations of the systems will be carried out with precision ε.
- Unpredictability: given a set Y of possible initial states, unpredictability arises when several significantly different (i.e. not *e*-close) trajectories start from Y

Topological entropy

Quantifies the speed of separation of trajectories. [Adler, Konheim, McAndrew (1965)], [Bowen (1971)]

Let $\epsilon > 0$ and $n \in \mathbb{N}$.

- Two finite sequences $x_0, x_1, \ldots, x_{n-1}$ and $y_0, y_1, \ldots, y_{n-1}$ are ϵ -close if $d(x_i, y_i) < \epsilon$ for every $i \le n-1$.
- Let N_Y(n, ε) be the minimal number of trajectories of length n such that every trajectory starting from Y is ε-close to one of them.

Usually, $N_Y(n, \epsilon)$ grows exponentially fast as $n \to \infty$. The topological entropy is the (maximal) exponential rate:

$$h(Y, T, \epsilon) := \limsup \frac{\log N_Y(n, \epsilon)}{n}$$

and

$$h(Y,T) := \lim_{\epsilon \to 0} h(Y,T,\epsilon) = \sup_{\epsilon > 0} h(Y,T,\epsilon)$$

and

h(T)=h(X,T).

A few examples

- The entropy of the shift $\sigma: \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ is $h(\sigma) = \log |\Sigma|$. Indeed, $N_X(n, 2^{-p}) = |\Sigma|^{n+p}$ so $h(X, \sigma, 2^{-p}) = \limsup \frac{(n+p)\log |\Sigma|}{n} = \log |\Sigma|$.
- If the system is not sensitive to initial conditions, then h(T) = 0. Indeed, the number of distinguishable trajectories of length *n* is linear in *n*.
- Having positive entropy is a strong form of chaos.
- Topological entropy is a topological invariant: if two systems are conjugated they have the same entropy.

A few remarks

- If Y is a singleton, then h(Y, T) = 0: it corresponds to the ideal situation when you know exactly the initial state. The evolution is then perfectly predictable (Laplace's demon).
- Hence the unpredictability of a trajectory depends of the observer's knowledge of the initial state.

A few remarks

• Why $h(\{x\}, T) = 0$?

- Because there is only one trajectory starting from {x}, as the system is deterministic.
- In other words, one can surround the evolution of the system in a narrow tube.
- But can one do this *effectively*? i.e. generate this tube with a program?

Effective entropy

We define a "constructive version" of topological entropy, which takes this problem of effectivity into account.

3 Kolmogorov complexity

4 Algorithmic complexity of trajectories

6 Relations

An ϵ -covering is a family $\mathbf{E} = (E_n)_{n \in \mathbb{N}}$:

- E_n is a finite set of sequences of length n of representable points,
- every trajectory of length *n* starting from Y is ϵ -close to a sequence in E_n .

Using ϵ -coverings, the topological entropy is

$$h(Y, T, \epsilon) = \inf_{\epsilon \text{-covering } \mathbf{E}} \left\{ \limsup \frac{\log |E_n|}{n} \right\}.$$

An **effective** ϵ -covering is an ϵ -covering **E** such that there is a program which on input *n*, enumerates E_n (E_n is r.e. given *n*).

- Of course, $h(Y, T, \epsilon) \leq h_e(Y, T, \epsilon)$.
- If x is a computable point, then h_e({x}, T) = 0. What happens when x is not computable?

Theorem

$$h(T) = \sup_{x \in X} h_e(\{x\}, T).$$

- h_e({x}, T) can be as large as possible.
- h_e({x}, T) expresses, in some way, the effective unpredictability or uncomputability of the evolution of the system, when starting from x.

Sequel of the talk

We make it more precise and show what this quantity is exactly.

4 Algorithmic complexity of trajectories

Kolmogorov complexity

Some background

- Let <u>S</u> be a countable set (elements of <u>S</u> can be identified with integers or finite binary strings).
- If A: {0,1}^N → S is a computable function we define the Kolmogorov complexity of an element x ∈ S relative to A as

 $K_A(x) = \min\{|p| : p \in \{0,1\}^*, A(p) = x\}.$

If there is no p such that A(p) = x, $K_A(x) = \infty$.

Theorem (Kolmogorov, 1965)

There is a universal optimal function $U : \{0,1\}^* \to S$. For every computable function A there is a constant c_A such that

 $K_U(x) \leq K_A(x) + c_A$ for all $x \in S$.

 $(c_A$ is the length of a code for the function A)

Kolmogorov complexity

Some background We fix U once for all and define the **Kolmogorov complexity** of x as

 $K(x) := K_U(x).$

Examples

• $S = \{0, 1\}^*$. There is a constant *c* such that

$${\sf K}(w)\leq |w|+c \quad ext{for all } w\in\{0,1\}^*.$$

(consider the function A(p) = p).

• $S = \mathbb{N}$. There is a constant c such that $K(n) \le \log_2(n) + c$ for all $n \in \mathbb{N}$. (consider the function A(p) = n where p is the binary expansion of n).

The function $x \mapsto K(x)$ is not computable. Instead, it is **upper-computable**, i.e. the set $\{(x, k) : K(x) < k\}$ is r.e.

Kolmogorov complexity

Some background

For $w \in \{0,1\}^*$ we know that $K(w) \stackrel{+}{\leq} |w|$. This bound is usually tight:

Lemma (1)

$$|\{w \in \{0,1\}^n : K(w) < p\}| < 2^p.$$

In other words, most strings are complex:

- in $\{0,1\}^n$, the proportion of strings of complexity < p is 2^{p-n} , i.e.,
- one half of the strings have complexity $K(w) \ge |w| 1$,
- one quarter have complexity $K(w) \ge |w| 2$,
- and so on...

Kolmogorov complexity Some background

To get upper bounds on K, one usually uses the following lemma.

Lemma (2)

If $E \subseteq \mathbb{N} \times X$ is a r.e. set such that $E_n := \{x : (n, x) \in E\}$ is finite for every *n*, then there is a constant *c* such that for every *n* and $x \in E_n$,

 $K(x) \leq 2\log n + \log |E_n| + c.$

Proof.

Represent $x \in E_n$ by *n* and the index of *x* in the enumeration of E_n .

3 Kolmogorov complexity

4 Algorithmic complexity of trajectories

5 Relations

Algorithmic complexity of trajectories

- Let
 ϵ > 0. Computing a finite trajectory means computing a finite sequence of representable points (rational numbers on ℝ, e.g.) *ϵ*-close to the actual trajectory.
- We first define the algorithmic complexity of a finite trajectory:

 $\mathcal{K}_n(x, T, \epsilon) = \min\{\mathcal{K}(q_0, \ldots, q_{n-1}) : d(q_i, T^i(x)) < \epsilon \text{ for } 0 \le i < n\}.$

• Then we consider the growth rate of $\mathcal{K}_n(x, \mathcal{T}, \epsilon)$ as $n \to \infty$:

$$\mathcal{K}(x, T, \epsilon) := \limsup \frac{\mathcal{K}_n(x, T, \epsilon)}{n}$$

and

$$\mathcal{K}(x, T) := \lim_{\epsilon \to 0} \mathcal{K}(x, T, \epsilon) = \sup_{\epsilon > 0} \mathcal{K}(x, T, \epsilon).$$

[Brudno, 1983] [Galatolo, 2000]

Algorithmic complexity of trajectories

- Roughly, one needs *n*.*K*(*x*, *T*, *ε*) bits to encode the trajectory of length *n* starting from *x*.
- If x is a computable point and T is a computable function then
 K(x, T) = 0.
 Indeed, *K_n*(x, T, ε) ⁺< log(n): there is a program which takes n as input and computes the
 first n iterates of x (up to ε).
- If K(x, T) > 0 then the trajectory of x is strongly non-computable: to compute its n first elements, one needs a program of length linear in n.

3 Kolmogorov complexity

4 Algorithmic complexity of trajectories

Relations

Theorem

$h_e(\{x\}, T) = \mathcal{K}(x, T).$

• Let $\beta > \mathcal{K}(x, T, \epsilon)$: there is n_0 such that for all $n \ge n_0$, $\mathcal{K}_n(x, T, \epsilon) < \beta n$.

- Let $\beta > \mathcal{K}(x, T, \epsilon)$: there is n_0 such that for all $n \ge n_0$, $\mathcal{K}_n(x, T, \epsilon) < \beta n$.
- Let

$$E_n := \{(q_0, \ldots, q_{n-1}) : K(q_0, \ldots, q_{n-1}) < \beta n\}.$$

• Let $\beta > \mathcal{K}(x, T, \epsilon)$: there is n_0 such that for all $n \ge n_0$, $\mathcal{K}_n(x, T, \epsilon) < \beta n$.

Let

$$E_n := \{(q_0, \ldots, q_{n-1}) : K(q_0, \ldots, q_{n-1}) < \beta n\}.$$

• The sequence E_n is an effective ϵ -covering of $\{x\}$, so

$$h_e(\{x\}, T, \epsilon) \leq \limsup \frac{\log |E_n|}{n}.$$

• Let $\beta > \mathcal{K}(x, T, \epsilon)$: there is n_0 such that for all $n \ge n_0$, $\mathcal{K}_n(x, T, \epsilon) < \beta n$.

Let

$$E_n := \{(q_0, \ldots, q_{n-1}) : K(q_0, \ldots, q_{n-1}) < \beta n\}.$$

• The sequence E_n is an effective ϵ -covering of $\{x\}$, so $h_e(\{x\}, T, \epsilon) \leq \limsup \frac{\log |E_n|}{r}$.

• Using a basic property of algorithmic complexity, we get $|E_n| < 2^{\beta n}.$

M. Hoyrup (INRIA Nancy) Dynamical systems: unpredict. vs uncomput

- Let $\beta > \mathcal{K}(x, T, \epsilon)$: there is n_0 such that for all $n \ge n_0$, $\mathcal{K}_n(x, T, \epsilon) < \beta n$.
- Let

$$E_n := \{(q_0, \ldots, q_{n-1}) : K(q_0, \ldots, q_{n-1}) < \beta n\}.$$

- The sequence E_n is an effective ϵ -covering of $\{x\}$, so $h_e(\{x\}, T, \epsilon) \leq \limsup \frac{\log |E_n|}{r}$.
- Using a basic property of algorithmic complexity, we get $|E_n| \leq 2^{\beta n}$.
- Hence $h_e(\{x\}, T, \epsilon) \leq \beta$ for every $\beta > \mathcal{K}(x, T, \epsilon)$, so we get: $h_e(\{x\}, T, \epsilon) \leq \mathcal{K}(x, T, \epsilon).$

• Let $\mathbf{E} = (E_n)_{n \in \mathbb{N}}$ be an effective ϵ -covering of $\{x\}$.

- Let $\mathbf{E} = (E_n)_{n \in \mathbb{N}}$ be an effective ϵ -covering of $\{x\}$.
- Using the lemma, for every $(q_0, \ldots, q_{n-1}) \in E_n$, we have

$$K(q_0,\ldots,q_{n-1}) \stackrel{+}{\leq} \log |E_n| + 2\log(n).$$

- Let $\mathbf{E} = (E_n)_{n \in \mathbb{N}}$ be an effective ϵ -covering of $\{x\}$.
- Using the lemma, for every $(q_0, \ldots, q_{n-1}) \in E_n$, we have

$$K(q_0,\ldots,q_{n-1}) \stackrel{+}{\leq} \log |E_n| + 2\log(n).$$

• As a result,

$$\mathcal{K}_n(x, T, \epsilon) \stackrel{+}{\leq} \log |E_n| + 2 \log(n)$$

 $\mathcal{K}(x, T, \epsilon) \leq \limsup \frac{\log |E_n|}{n}.$

- Let $\mathbf{E} = (E_n)_{n \in \mathbb{N}}$ be an effective ϵ -covering of $\{x\}$.
- Using the lemma, for every $(q_0, \ldots, q_{n-1}) \in E_n$, we have

$$K(q_0,\ldots,q_{n-1}) \stackrel{+}{\leq} \log |E_n| + 2\log(n).$$

• As a result,

$$\mathcal{K}_n(x, T, \epsilon) \stackrel{+}{\leq} \log |E_n| + 2 \log(n)$$

 $\mathcal{K}(x, T, \epsilon) \leq \limsup \frac{\log |E_n|}{n}.$

• As this is true for every effective ϵ -covering E_n , we get:

 $\mathcal{K}(x, T, \epsilon) \leq h_e(\{x\}, T, \epsilon).$

Relations

As a result,

$$h(T) = \sup_{x} \mathcal{K}(x, T).$$

In particular, for a computable system (X, T), the following statements are equivalent:

- **1** The system is strongly unpredictable, i.e. h(T) > 0,
- 2 The system has at least one trajectory which is strongly non-computable, i.e. satisfying K(x, T) > 0.

Relations

As a result,

$$h(T) = \sup_{x} \mathcal{K}(x, T).$$

In particular, for a computable system (X, T), the following statements are equivalent:

- **1** The system is strongly unpredictable, i.e. h(T) > 0,
- 2 The system has at least one trajectory which is strongly non-computable, i.e. satisfying K(x, T) > 0.

Thank you