Computability of invariant measures

Mathieu Hoyrup
Inria, Nancy (France)

Computability of in ergodic theory

Given a dynamical system,

- how to compute its invariant measures? the ergodic ones?
- how to compute the ergodic components of an invariant measure?
- how to compute the speed of convergence of Birkhoff averages?

Computability in ergodic theory

Given a dynamical system,

- can we compute its invariant measures? the ergodic ones?
- can we compute the ergodic components of an invariant measure?
- can we compute the speed of convergence of Birkhoff averages?

Ergodic decomposition

Simplex of invariant measures

Birkhoff's ergodic theorem

Let $\sigma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable shift-invariant measure.

$$
f^{(n)}=\frac{f+f \circ \sigma+\ldots+f \circ \sigma^{n-1}}{n} \underset{n \rightarrow \infty}{\longrightarrow} f^{*} \quad\left(L^{1}(\mu) \text { and a.s. }\right)
$$

Theorem (V'yugin, 1997)
Let $f\left(x_{0} x_{1} x_{2} \ldots\right)=x_{0}$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^{*} is not computable.

Birkhoff's ergodic theorem

Let $\sigma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable shift-invariant measure.

$$
f^{(n)}=\frac{f+f \circ \sigma+\ldots+f \circ \sigma^{n-1}}{n} \underset{n \rightarrow \infty}{\longrightarrow} f^{*} \quad\left(L^{1}(\mu) \text { and a.s. }\right)
$$

Theorem (V'yugin, 1997)
Let $f\left(x_{0} x_{1} x_{2} \ldots\right)=x_{0}$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^{*} is not computable.

Theorem (Avigad, Gerhardy \& Towsner, 2010)
If μ is ergodic then the speed is computable.

Question

V'yugin builds a countable combination of ergodic measures. What about finite ones?

Ergodic decomposition

Let $\mu=\frac{\mu_{1}+\mu_{2}}{2}$ with μ_{1}, μ_{2} ergodic.

The speed of convergence in Birkhoff's ergodic theorem is computable the measures μ_{1}, μ_{2} are computable.

Question
If $\mu=\frac{\mu_{1}+\mu_{2}}{2}$ is computable, are μ_{1}, μ_{2} computable?

Ergodic decomposition

Theorem (H., 2012)
There exist shift-invariant ergodic measures μ_{1}, μ_{2} such that:

- μ_{1}, μ_{2} are not computable,
- $\frac{\mu_{1}+\mu_{2}}{2}$ is computable.

Ergodic decomposition

Theorem (H., 2012)
There exist shift-invariant ergodic measures μ_{1}, μ_{2} such that:

- μ_{1}, μ_{2} are not computable,
- $\frac{\mu_{1}+\mu_{2}}{2}$ is computable.

Proof.

Game between a Player and infinitely many Opponents (the programs).

- The Player describes $\frac{\mu_{1}+\mu_{2}}{2}$,
- Each Opponent tries to guess μ_{1}.

Ergodic decomposition

Theorem (H., 2012)
There exist shift-invariant ergodic measures μ_{1}, μ_{2} such that:

- μ_{1}, μ_{2} are not computable,
- $\frac{\mu_{1}+\mu_{2}}{2}$ is computable.

Proof.

Game between a Player and infinitely many Opponents (the programs).

- The Player describes $\frac{\mu_{1}+\mu_{2}}{2}$,
- Each Opponent tries to guess μ_{1}.

We show that the Player has a computable winning strategy.

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Three cases:
(1) The Opponent remains silent forever: change nothing.

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Three cases:
(1) The Opponent remains silent forever: change nothing.
(2) The Opponent eventually makes a wrong guess: change nothing.

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Three cases:
(1) The Opponent remains silent forever: change nothing.
(2) The Opponent eventually makes a wrong guess: change nothing.
(3) The Opponent eventually makes a correct guess:

Strategy against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the Player

Knowledge of the Opponent

Three cases:
(1) The Opponent remains silent forever: change nothing.
(2) The Opponent eventually makes a wrong guess: change nothing.
(3) The Opponent eventually makes a correct guess: move μ_{1} and μ_{2} much but $\mu_{1}+\mu_{2}$ very little.

Strategy against infinitely many opponents

End of the proof.

- This strategy can be applied everywhere and at every scale,
- Hence it can be applied "in parallel" against infinitely many opponents.

Ergodic decomposition

Simplex of invariant measures

Simplex of invariant measures

Given a computable system (X, T), how computable is the set $\mathcal{M}_{T}(X)$ of T-invariant probability measures?

Computability of a set

Let $A \subseteq \mathbb{R}^{2}$ be closed.
Definition
A is computable if there is a program that draws A on a screen at any resolution.

Examples and counter-examples

- Hertling, 2005: if the hyperbolicity conjecture holds then the Mandelbrot set is computable.
- Braverman, Yampolsky, 2008: for each $c \in \mathbb{C}$, the filled Julia set K_{c} is computable from c (non uniformly).
- Braverman, Yampolsky, 2007: however, there exists a computable $c \in \mathbb{C}$ such that the Julia set J_{c} is not computable.
- Graça, Rojas, Zhong, 2017: the geometrical Lorenz attractor is computable.

Computability of a set

Counter-examples

- The subshift induced by a computable set of forbidden patterns is not always computable.
- The set of zeroes of a computable function $f:[0,1] \rightarrow \mathbb{R}$ is not always computable.

Computability of a set

Counter-examples

- The subshift induced by a computable set of forbidden patterns is not always computable.
- The set of zeroes of a computable function $f:[0,1] \rightarrow \mathbb{R}$ is not always computable.

But these sets are always semicomputable.
Definition
A is semicomputable if there is a program that recognizes whether $x \notin A$.

Computability of a set

Proposition

A is computable $\Longleftrightarrow A$ is semicomputable and contains a dense computable sequence.

Sometimes equivalent

- $\{x\}$ is computable $\Longleftrightarrow\{x\}$ is semicomputable $\Longleftrightarrow x$ is computable.
- Kůrka, 1999: for a minimal subshift, computable \qquad semicomputable (effective).
- Miller, 2002: in \mathbb{R}^{n}, if $A \cong$ a sphere then A computable $\Longleftrightarrow A$ semicomputable.

Simplex of invariant measures

Given a computable system (X, T),

- $\mathcal{M}_{T}(X)$ is semicomputable: given $\mu \in \mathcal{M}_{1}(X)$, one can eventually see that $T \mu \neq \mu$,
- Is $\mathcal{M}_{T}(X)$ computable?
- How uncomputable can $\mathcal{M}_{T}(X)$ be?

Simplex of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

Simplex of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Proof.
$\mathcal{M}_{T}(X)$ is a semicomputable singleton.

Simplex of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Proof. $\mathcal{M}_{T}(X)$ is a semicomputable singleton.

Question

What about the finitely ergodic case?

Finitely ergodic system

Proposition

If the system is finitely ergodic, then it has a computable invariant measure.

Proof.
$\mathcal{M}_{T}(X)$ is a semicomputable convex set of dimension k. Intersect with a rational hyperplane to produce a semicomputable convex set of dimension $k-1$, and apply induction.

Finitely ergodic system

Proposition

If the system is finitely ergodic, then it has a computable invariant measure.

Proof.
$\mathcal{M}_{T}(X)$ is a semicomputable convex set of dimension k. Intersect with a rational hyperplane to produce a semicomputable convex set of dimension $k-1$, and apply induction.

Question

Does it have a computable ergodic invariant measure?

Finitely ergodic system

Theorem (Coronel, Frank, H., Rojas, 2017)
There exists a computable system with two ergodic measures, none of which is computable.

Bratteli diagram

- Bratteli diagrams give a way to build Cantor minimal systems.
- Every Cantor minimal system is conjugate to a Bratteli diagram.
- In particular every Choquet simplex is affine homeomorphic to the set of invariant measures of a Bratteli diagram.

Bratteli diagram

Bratteli diagram

An infinite graph with finite set of vertices V_{n} at each level, and edges between V_{n} and V_{n+1}.

Bratteli diagram and Vershik map

Dynamical system

- Space X : the set of paths $\left(e_{1}, e_{2}, \ldots\right)$ with e_{n} between V_{n} and V_{n+1},
- Vershik map $T: X \rightarrow X$.

Bratteli diagram and Vershik map

Bratteli diagram and Vershik map

etc.

Bratteli diagram and Vershik map

Bratteli diagram

- If the graph is sufficiently connected then the system is minimal and expansive.
- If $\left|V_{n}\right| \leq k$ for all n, then the system has at most k ergodic measures.
- If the graph is computable and the minimal path is unique then the Vershik map is computable.

We now prove:
Theorem (Coronel, Frank, H., Rojas, 2017)
There exists a computable system with two ergodic measures, none of which is computable.

Two non-computable ergodic measures

- Take $\left|V_{n}\right|=2$ for all $n \geq 2$ and adjacency matrices $M_{n}=\left(\begin{array}{ccc}X_{n} & Y_{n} \\ Y_{n} & X_{n}\end{array}\right)$.

Two non-computable ergodic measures

- Take $\left|V_{n}\right|=2$ for all $n \geq 2$ and adjacency matrices $M_{n}=\left(\begin{array}{cc}X_{n} & Y_{n} \\ Y_{n} & X_{n}\end{array}\right)$.
- Take computable sequences $X_{n}, Y_{n} \in \mathbb{N}$ such that $\sum_{n} \frac{Y_{n}}{X_{n}}<\infty$ is not computable.

Two non-computable ergodic measures

- Take $\left|V_{n}\right|=2$ for all $n \geq 2$ and adjacency matrices $M_{n}=\left(\begin{array}{ll}X_{n} & Y_{n} \\ Y_{n} & X_{n}\end{array}\right)$.
- Take computable sequences $X_{n}, Y_{n} \in \mathbb{N}$ such that $\sum_{n} \frac{Y_{n}}{X_{n}}<\infty$ is not computable.
- The Vershik map has two ergodic measures, that are not computable.

Two non-computable ergodic measures

- Take $\left|V_{n}\right|=2$ for all $n \geq 2$ and adjacency matrices $M_{n}=\left(\begin{array}{ccc}X_{n} & Y_{n} \\ Y_{n} & X_{n}\end{array}\right)$.
- Take computable sequences $X_{n}, Y_{n} \in \mathbb{N}$ such that $\sum_{n} \frac{Y_{n}}{X_{n}}<\infty$ is not computable.
- The Vershik map has two ergodic measures, that are not computable.
- The weight $\mu(a)$ takes all values in $\left[\frac{1-r}{2}, \frac{1+r}{2}\right]$, where

$$
r=\prod_{n} \frac{X_{n}-Y_{n}}{X_{n}+Y_{n}}>0
$$

which is not computable.

Bratteli diagram

Let $\Delta_{k}=\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k}: \sum_{i} p_{i}=1\right\}$.
Theorem (Coronel, Frank, H., Rojas, 2017)
Every semicomputable convex set $S \subseteq \Delta_{n}$ is the projection of the invariant measures of some computable dynamical system.

Bratteli diagram

What are the invariant measures of a given Bratteli diagram?

- Let $u \in V_{n}$ and $v \in V_{n+1}$. For every invariant measure μ, one has

$$
\mu(u \mid v)=\frac{\text { number of paths to } v \text { through } u}{\text { number of paths to } v}
$$

which does not depend on μ.

- The invariant measures are exactly the ones with those transition probabilities.

Bratteli diagram

Building a Bratteli diagram

Lemma
Given a Bratteli diagram up to V_{n}, a set V_{n+1} and rational probability transitions $A(u, v)$, one can choose the edges between V_{n} and V_{n+1} so that $\mu(u \mid v)=A(u, v)$.

Proof.

Let $h(u)=$ number of paths to u. Write $\frac{A(u, v)}{h(u)}=\frac{p(u, v)}{q(v)}$
with $p(u, v), q(v) \in \mathbb{N}$. Take $p(u, v)$ edges from u to v. Then $q(v)=$ number of paths to v.

Bratteli diagram

Geometrical interpretation

- Let $\Delta_{k}=\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k}: \sum_{i} p_{i}=1\right\}$.
- The vector $\mu_{n}=(\mu(u))_{u \in V_{n}}$ is in $\Delta_{\left|V_{n}\right|}$.
- A stochastic matrix $A_{n}(u, v)$ corresponds to a linear map from $\Delta_{\left|V_{n+1}\right|}$ to $\Delta_{\left|V_{n}\right|}$.

Bratteli diagram

Geometrical interpretation

- Let $\Delta_{k}=\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k}: \sum_{i} p_{i}=1\right\}$.
- The vector $\mu_{n}=(\mu(u))_{u \in V_{n}}$ is in $\Delta_{\left|V_{n}\right|}$.
- A stochastic matrix $A_{n}(u, v)$ corresponds to a linear map from $\Delta_{\left|V_{n+1}\right|}$ to $\Delta_{\left|V_{n}\right|}$.
- The set of invariant measures is the inverse limit

$$
\Delta_{\left|V_{1}\right|} \stackrel{A_{1}}{\leftrightarrows} \Delta_{\left|V_{2}\right|} \stackrel{A_{2}}{\leftrightarrows} \Delta_{\left|V_{3}\right|} \stackrel{A_{3}}{\leftrightarrows} \ldots
$$

i.e. the set of sequences $\mu_{n} \in \Delta_{\left|V_{n}\right|}$ such that $\mu_{n}=A_{n} \mu_{n+1}$.

- In particular, by compactness, its projection on $\Delta_{\left|V_{1}\right|}$ is

$$
\bigcap_{n} A_{1} A_{2} \ldots A_{n}\left(\Delta_{\left|V_{n+1}\right|}\right) .
$$

Bratteli diagram

- Let $S \subseteq \Delta_{k}$ be a semicomputable convex set.

Bratteli diagram

- Let $S \subseteq \Delta_{k}$ be a semicomputable convex set.
- There exists a computable sequence of rational convex polytopes $P_{n+1} \subseteq P_{n}$ such that $S=\bigcap_{n} P_{n}$.

Bratteli diagram

- Let $S \subseteq \Delta_{k}$ be a semicomputable convex set.
- There exists a computable sequence of rational convex polytopes $P_{n+1} \subseteq P_{n}$ such that $S=\bigcap_{n} P_{n}$.
- Let $\left|V_{n}\right|=$ number of vertices of P_{n}.

Bratteli diagram

- Let $S \subseteq \Delta_{k}$ be a semicomputable convex set.
- There exists a computable sequence of rational convex polytopes $P_{n+1} \subseteq P_{n}$ such that $S=\bigcap_{n} P_{n}$.
- Let $\left|V_{n}\right|=$ number of vertices of P_{n}.

One can inductively build rational stochastic matrices A_{n} such that

$$
\begin{aligned}
A_{2}\left(\Delta_{\left|V_{2}\right|}\right) & =P_{2}, \\
A_{2} A_{3}\left(\Delta_{\left|V_{3}\right|}\right) & =P_{3}, \\
A_{2} A_{3} A_{4}\left(\Delta_{\left|V_{4}\right|}\right) & =P_{4},
\end{aligned}
$$

$$
\text { so } \bigcap_{n} A_{2} \ldots A_{n}\left(\Delta_{\left|V_{n}\right|}\right)=S \text {. }
$$

Bratteli diagram

Theorem
Every semicomputable finite-dimensional Choquet simplex S can be realized as the set of invariant measures of a computable dynamical system.

Proof.
Apply the previous construction with constant $\left|V_{n}\right|$ and one-to-one A_{n}, so that the inverse limit

$$
\Delta_{\left|V_{1}\right|} A_{1}^{A_{1}} \Delta_{\left|V_{2}\right|} \stackrel{A_{2}}{\leftrightarrows} \Delta_{\left|V_{3}\right|} \stackrel{A_{3}}{\leftrightarrows} \ldots
$$

is computably affine homeomorphic to $\bigcap_{n} A_{1} A_{2} \ldots A_{n}\left(\Delta_{\left|V_{1}\right|}\right)=S$.

Every Choquet simplex is affine homeomorphic to $\mathcal{M}_{T}(X)$ for some (X, T).

Open question

Is every semicomputable Choquet simplex computably affine homeomorphic to $\mathcal{M}_{T}(X)$ for some computable (X, T) ?

Every Choquet simplex is affine homeomorphic to $\mathcal{M}_{T}(X)$ for some (X, T).

Open question

Is every semicomputable Choquet simplex computably affine homeomorphic to $\mathcal{M}_{T}(X)$ for some computable (X, T) ?

Thank you!

