Computability, Randomness and Ergodic Theory on Metric Spaces

(Calculabilité, aléatoire et théorie ergodique sur les espaces métriques)

Mathieu Hoyrup

ENS

June 17, 2008

1 What does randomness look like?

- 1 What does randomness look like?
- 2 How does randomness appear?

- What does randomness look like?
- 2 How does randomness appear?

1. Probability theory

What properties should random sequences satisfy?

- What does randomness look like?
- 2 How does randomness appear?

1. Probability theory

What properties should random sequences satisfy?

Strong law of large numbers

In random sequences, number of 0's = number of 1's.

- What does randomness look like?
- 2 How does randomness appear?

2. Ergodic theory

In deterministic dynamical systems, as unpredictability.

- Space X,
- Transformation $T: X \rightarrow X$.

- Space X,
- Transformation $T: X \rightarrow X$,

- Space X,
- Transformation $T: X \rightarrow X$,

- Space X,
- Transformation $T: X \rightarrow X$,

- Space X,
- Transformation $T: X \rightarrow X$,

- Space X,
- Transformation $T: X \rightarrow X$,

... observed with sharp eyes

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

 $S_0, S_1, S_2, S_3, S_4, \ldots$

Deterministic dynamical systems probabilistic point of view

- Space X,
- Transformation $T: X \rightarrow X$,
- Invariant measure μ .

What does randomness look like?

1. Probability theory

What properties should random sequences satisfy?

Algorithmic randomness (Martin-Löf, 1966)

 $\{0,1\}^{\mathbb{N}}=R_{\mu}\uplus N_{\mu}$

000000000000000000000000...

001110011100111001...

01010001011011011100110 . . .

Mathieu Hoyrup (ENS)

What does randomness look like?

1. Probability theory

What properties should random sequences satisfy?

Algorithmic randomness (Martin-Löf, 1966)

 $\{0,1\}^{\mathbb{N}}=R_{\mu}\uplus N_{\mu}$

000000000000000000000000... non-random

001110011100111001...

01010001011011011100110 . . .

Mathieu Hoyrup (ENS)

What does randomness look like?

1. Probability theory

What properties should random sequences satisfy?

Algorithmic randomness (Martin-Löf, 1966)

 $\{0,1\}^{\mathbb{N}}=R_{\mu}\uplus N_{\mu}$

00111001110011100111001 . . . non-random

01010001011011011100110 . . .

Mathieu Hoyrup (ENS)

What does randomness look like?

1. Probability theory

What properties should random sequences satisfy?

Algorithmic randomness (Martin-Löf, 1966)

 $\{0,1\}^{\mathbb{N}}=R_{\mu}\uplus N_{\mu}$

00111001110011100111001 . . . non-random

01010001011011011100110... random

Mathieu Hoyrup (ENS)

Comput., Rand. and Ergodic Theory

What does randomness look like?
How does randomness appear?

2. Ergodic theory

In deterministic dynamical systems, as unpredictability.

Algorithmic complexity of orbits (Kolmogorov, 1965 – Brudno, 1978)

"A system is unpredictable

\Leftrightarrow

its orbits are algorithmically unpredictable"

Computability, Randomness and Ergodic Theory on Metric Spaces.

- Study of algorithmic randomness on general spaces,
- Development of algorithmic probability theory,
- Contributions to algorithmic complexity of orbits, relations with algorithmic randomness.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

$\underset{\text{on }\mathbb{R}}{\textbf{Computability}/\text{Semi-computability}}$

Fast convergence: $q_i \rightarrow x$ means $d(q_i, x) < 2^{-i}$.

$\underset{\text{on }\mathbb{R}}{\textbf{Computability}/\text{Semi-computability}}$

Fast convergence: $q_i \rightarrow x$ means $d(q_i, x) < 2^{-i}$.

Computable function
$$f: \mathbb{R} \to \mathbb{R}$$

$$q_i \rightarrow x$$
 algorithm $q'_i \rightarrow f(x)$

Examples

- Computable real numbers: $\sqrt{2}, \pi, e, \text{etc.}$
- Computable real functions: \sqrt{x} , cos, ln, etc.

$\underset{\text{on }\mathbb{R}}{\text{Computability}}/\text{Semi-computability}$

Lower convergence: $q_i \nearrow x$ means $q_i \le q_{i+1}, q_i \rightarrow x$.

Lower semi-computable function $f : \mathbb{R} \to \mathbb{R}$

$$q_i \rightarrow x$$
 algorithm $q'_i \nearrow f(x)$

Example

• Lower semi-computable real function: $\mathbf{1}_{(0,1)}$

$\mathbb{R}_{c} = \{ \text{computable real numbers} \}$ $\mathbb{R}_{sc} = \{ \text{semi-computable real numbers} \}$

Both \mathbb{R}_{c} and \mathbb{R}_{sc} are countable. But...

Computability

 \mathbb{R}_{c} is "effectively uncountable"

Semi-computability

 \mathbb{R}_{sc} is "effectively countable"

Computability/Semi-computability

Abstract structures

 $q_i \rightarrow x$ means $d(q_i, x) < 2^{-i}$.

 $q_i \nearrow x$ means $q_i \le q_{i+1}, q_i \to x$.

Computability/Semi-computability Abstract structures

 $q_i \rightarrow x$ means $d(q_i, x) < 2^{-i}$.

$$q_i \nearrow x$$
 means $q_i \le q_{i+1}, q_i \to x$.

Computable metric space

to express computability

Enumerative lattice

to express semi-computability

Computability/Semi-computability

Abstract structures

$$q_i \rightarrow x$$
 means $d(q_i, x) < 2^{-i}$.

$$q_i \nearrow x$$
 means $q_i \leq q_{i+1}, q_i \to x$.

Computable metric space

to express computability

- Rⁿ, euclidean distance,
- C([0, 1]), uniform distance ||.||∞,
- Compact subsets of ℝ, Hausdorff distance,

Enumerative lattice

to express semi-computability

- $\overline{\mathbb{R}}$, order \leq ,
- $\mathcal{P}(\mathbb{N})$, order \subseteq ,
- X computable metric space:
 - τ_X , order \subseteq ,
 - $LC(X, \overline{\mathbb{R}})^a$, order \leq .

^acalled $\mathcal{C}(X, \overline{\mathbb{R}})$ in the thesis.
Computability/Semi-computability

Abstract structures

$$q_i \rightarrow x$$
 means $d(q_i, x) < 2^{-i}$.

$$q_i \nearrow x$$
 means $q_i \leq q_{i+1}, q_i \to x$.

Computable metric space

to express computability

- Rⁿ, euclidean distance,
- C([0, 1]), uniform distance ||.||∞,
- Compact subsets of ℝ, Hausdorff distance,
- *M*(*X*),
 Prokhorov distance.

Enumerative lattice

to express semi-computability

- $\overline{\mathbb{R}}$, order \leq ,
- $\mathcal{P}(\mathbb{N})$, order \subseteq ,
- X computable metric space:
 - τ_X , order \subseteq ,
 - $LC(X, \overline{\mathbb{R}})^a$, order \leq .

^acalled $\mathcal{C}(X, \overline{\mathbb{R}})$ in the thesis.

Computability/Semi-computability

Computable probability measure

Theorem (2.1.4.1)

Let $\mu \in \mathcal{M}(X)$ be a probability measure.

 μ is computable \iff all $\mu(B_1 \cup \ldots \cup B_n)$ are lower semi-computable.

$\overline{\mathsf{On}}\ \mathbb{R}$

 μ is computable \iff all $\mu(q_1, q_2)$ are lower semi-computable.

On $\{0,1\}^{\mathbb{N}}$

 μ is computable \iff all $\mu([w])$ are computable ($w \in \{0,1\}^*$).

Computability/Semi-computability

Abstract structures

Computable metric space

to express computability

Enumerative lattice

to express semi-computability

The set of computable objects is "effectively uncountable" (in general) The set of semi-computable objects is "effectively countable"

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

 μ (computable) probablity measure on $\{0,1\}^{\mathbb{N}}$

Definition (Martin-Löf, 1966)

A sequence ω is μ -random if it withstands all μ -tests.

```
\mu (computable) probablity measure on \{0,1\}^{\mathbb{N}}
```

Definition (Martin-Löf, 1966)

- A μ -test is a function $t: \{0,1\}^{\mathbb{N}} \to [0,+\infty]$ such that:
 - $\int t \,\mathrm{d}\mu < \infty,$
 - **2** t is lower semi-computable.

Definition (Martin-Löf, 1966)

A sequence ω is μ -random if it withstands all μ -tests.

```
\mu (computable) probablity measure on \{0,1\}^{\mathbb{N}}
```

Definition (Martin-Löf, 1966)

- A μ -test is a function $t: \{0,1\}^{\mathbb{N}} \to [0,+\infty]$ such that:

 - 2 t is lower semi-computable.

A sequence ω withstands the test if $t(\omega) < \infty$.

Definition (Martin-Löf, 1966)

A sequence ω is μ -random if it withstands all μ -tests.

Algorithmically random sequences

Application to probability theory

Definition

A property *P* is testable if there is a μ -test *t* such that:

 $t(\omega) < \infty \implies P(\omega)$ holds.

 $P(\omega)$ holds for μ -almost every sequence ω

becomes

 $P(\omega)$ holds for every μ -random sequence ω .

Examples

Strong law of large numbers, law of the iterated logarithm, etc.

Mathieu Hoyrup (ENS)

Comput., Rand. and Ergodic Theory

Algorithmically random sequences Martin-Löf, 1966

Theorem (Martin-Löf, 1966)

There is a universal μ -test **t**:

 ω is μ -random $\iff \omega$ withstands **t**.

This test can be expressed in terms of Kolmogorov complexity.

Algorithmically random sequences

Binary sequences

- Kolmogorov,
- Martin-Löf, 1966,
- Levin,
- Chaitin,
- Schnorr,
- Gács,
- V'yugin,
- Vovk,
- Asarin,
- Van Lambalgen,
- Downey,
- Hirschfeldt,
- Li,
- Vitanyi,
- Miller,

Mathieu Hoyrup (ENS)

More general objects

- Asarin, 1986.
 Random functions (Brownian motion).
- Barmpalias et al., 2007.
 Random closed subsets of {0,1}^ℕ.

Abstract spaces

- Weihrauch, Hertling, 1998. Topological spaces.
- Gács, 2005.

Metric spaces.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3) Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Definition (Martin-Löf, 1966)

- A μ -test is a function $t: \{0,1\}^{\mathbb{N}} \to [0,+\infty]$ satisfying:

 - 2 t is lower semi-computable.

A sequence ω withstands the test *t* if $t(\omega) < \infty$.

Definition (Martin-Löf, 1966)

A sequence ω is μ -random if it withstands all μ -tests t.

Algorithmic randomness: extensions Martin-Löf, 1966 ~ Gács, 2005

First extension: space $\{0,1\}^{\mathbb{N}} \longrightarrow \text{computable metric space } X$ sequence $\omega \longrightarrow \text{point } x$ Definition (Martin-Löf, 1966) A μ -test is a function $t : \{0,1\}^{\mathbb{N}} \rightarrow [0,+\infty]$ satisfying: 1) $\int t \, d\mu < +\infty$, 2) t is lower semi-computable. A sequence ω withstands the test t if $t(\omega) < \infty$.

Definition (Martin-Löf, 1966)

A sequence ω is μ -random if it withstands all μ -tests t.

First extension:space $\{0,1\}^{\mathbb{N}} \rightarrow$ \rightsquigarrow computable metric space Xsequence $\omega \rightarrow$ point x

Definition (Martin-Löf, 1966 – Gács, 2005)

A μ -test is a function $t: X \to [0, +\infty]$ satisfying:

2 t is lower semi-computable.

A point x withstands the test t if $t(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

- A μ -test is a function $t: X \to [0, +\infty]$ such that:

 - **2** *t* is lower semi-computable.

A point x withstands the test t if $t(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

- A uniform test is a function $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that:

 - **2** *t* is lower semi-computable.

A point x withstands the test t if $t(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

A uniform test is a function $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that:

- $\ \ \, \mathbf{0} \ \ \, \int \mathcal{T}_\mu \, \mathrm{d} \mu < \infty \ \text{for each} \ \ \, \mu \in \mathcal{M}(X) \qquad \text{(where } \ \ \, \mathcal{T}_\mu(.) = \mathcal{T}(\mu,.)\text{)},$
- (2) t is lower semi-computable.

A point x withstands the test t if $t(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

A uniform test is a function $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that:

- $\textbf{0} \ \int \mathcal{T}_{\mu} \, \mathrm{d} \mu < \infty \text{ for each } \mu \in \mathcal{M}(X) \qquad \text{(where } \mathcal{T}_{\mu}(.) = \mathcal{T}(\mu,.)\text{)},$
- **2** T is lower semi-computable.

A point x withstands the test t if $t(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

A uniform test is a function $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that:

- $\textbf{0} \ \int \mathcal{T}_{\mu} \, \mathrm{d} \mu < \infty \text{ for each } \mu \in \mathcal{M}(X) \qquad \text{(where } \mathcal{T}_{\mu}(.) = \mathcal{T}(\mu,.)\text{)},$
- **2** T is lower semi-computable.

A point x withstands the test T_{μ} if $T_{\mu}(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Definition (Martin-Löf, 1966 – Gács, 2005)

A uniform test is a function $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that:

- 1) $\int T_{\mu} d\mu < \infty$ for each $\mu \in \mathcal{M}(X)$ (where $T_{\mu}(.) = T(\mu,.)$),
- **2** T is lower semi-computable.

A point x withstands the test T_{μ} if $T_{\mu}(x) < \infty$.

Definition (Martin-Löf, 1966 – Gács, 2005)

Martin-Löf, 1966 ~> Gács, 2005

Computable metric space X.

Theorem (Gács, 2005)

There is a universal uniform test $T : \mathcal{M}(X) \times X \to [0, +\infty]$:

a point x is μ -random \iff x passes the test \mathbf{T}_{μ} .

Martin-Löf, 1966 ~> Gács, 2005

Computable metric space X.

Theorem (Gács, 2005)

Suppose X satisfies the Boolean inclusion property. There is a universal uniform test $T : \mathcal{M}(X) \times X \to [0, +\infty]$:

a point x is μ -random \iff x passes the test \mathbf{T}_{μ} .

Martin-Löf, 1966 ~> Gács, 2005

Computable metric space X.

Theorem (Gács, 2005)

Suppose X satisfies the Boolean inclusion property. There is a universal uniform test $\mathbf{T} : \mathcal{M}(X) \times X \to [0, +\infty]$:

a point x is μ -random \iff x passes the test \mathbf{T}_{μ} .

Theorem

The Boolean inclusion property is not necessary. Every computable metric space admits a universal uniform test.

Martin-Löf, 1966 ~> Gács, 2005

Computable metric space X.

Theorem (Gács, 2005)

Suppose X satisfies the Boolean inclusion property. There is a universal uniform test $\mathbf{T} : \mathcal{M}(X) \times X \to [0, +\infty]$:

a point x is μ -random \iff x passes the test \mathbf{T}_{μ} .

Theorem

The Boolean inclusion property is not necessary. Every computable metric space admits a universal uniform test.

Let μ be a probability measure on X, and $t: X \to [0, +\infty]$ a μ -test:

Martin-Löf, 1966 ~> Gács, 2005

Computable metric space X.

Theorem (Gács, 2005)

Suppose X satisfies the Boolean inclusion property. There is a universal uniform test $\mathbf{T} : \mathcal{M}(X) \times X \to [0, +\infty]$:

a point x is μ -random \iff x passes the test \mathbf{T}_{μ} .

Theorem

The Boolean inclusion property is not necessary. Every computable metric space admits a universal uniform test.

Let μ be a probability measure on X, and $t: X \to [0, +\infty]$ a μ -test:

Theorem (μ -tests versus uniform tests)

There is a uniform test $T : \mathcal{M}(X) \times X \to [0, +\infty]$ such that $T_{\mu} = t$.

Probabilistic statement:

$$P(\omega)$$
 holds for μ -almost every sequence ω

becomes

 $P(\omega)$ holds for every μ -random sequence ω

Examples

Strong law of large numbers, law of the iterated logarithm, etc.

Probabilistic statement:

$$R(x)$$
 holds for μ -almost every point x

becomes

R(x) holds for every μ -random point x

Examples

Birkhoff ergodic theorem, Shannon-McMillan-Breiman theorem, convergence of random variables, etc.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Theorem

On \mathbb{R} , every computable function is continuous.

Theorem

On \mathbb{R} , every computable function is continuous.

Theorem

On \mathbb{R} , nothing is decidable.

Theorem

On \mathbb{R} , every computable function is continuous.

Theorem

On \mathbb{R} , nothing is decidable.

Theorem

Representing real numbers by their binary expansion is not suitable.

$$\frac{bin(x)}{algorithm} \xrightarrow{bin(f(x))}$$

It makes the function $x \mapsto 3x$ non-computable.

Theorem

On \mathbb{R} , every computable function is continuous.

Theorem

On \mathbb{R} , nothing is decidable.

Theorem

Representing real numbers by their binary expansion is not suitable.

$$\frac{bin(x)}{algorithm} \xrightarrow{bin(f(x))}$$

It makes the function $x \mapsto 3x$ non-computable.

Proof. [0, 1] and $\{0, 1\}^{\mathbb{N}}$ are not homeomorphic. Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 32 / 59

Computability theory is topological

Mathieu Hoyrup (ENS)

Comput., Rand. and Ergodic Theory

June 17, 2008 33 / 59

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Definition (2.2.0.1)

 (X, μ) is a computable probability space if:

- X is a computable metric space,
- μ is a computable probability measure on X.

Definition (2.2.0.1)

(X, μ) is a computable probability space if:

- X is a computable metric space,
- μ is a computable probability measure on X.

Definition (attempt...)

 $f: X \to Y$ is almost computable if it is computable on a set A satisfying $\mu(A) = 1$.

Definition (2.2.0.1)

(X, μ) is a computable probability space if:

- X is a computable metric space,
- μ is a computable probability measure on X.

Definition (attempt...)

 $f: X \to Y$ is almost computable if it is computable on a set A satisfying $\mu(A) = 1$.

Theorem (1.6.2.1)

Let $f : X \to Y$ be an almost computable function. There is a function g which coincides with f on A, and is computable on a constructive G_{δ} -set containing A.

Definition (2.2.0.1)

(X, μ) is a computable probability space if:

- X is a computable metric space,
- μ is a computable probability measure on X.

Definition (2.2.0.2)

 $f: X \to Y$ is almost computable if it is computable on a constructive G_{δ} -set A satisfying $\mu(A) = 1$.

Theorem (1.6.2.1)

Let $f : X \to Y$ be an almost computable function. There is a function g which coincides with f on A, and is computable on a constructive G_{δ} -set containing A.

Definition (2.2.1.2)

A set $A \subseteq X$ is almost decidable if the function $1_A : X \to \{0, 1\}$ is almost computable.

On \mathbb{R}

Interval $[x_1, x_2]$ with x_1, x_2 computable and $\mu(x_1) = \mu(x_2) = 0$.

Definition (2.2.1.2)

A set $A \subseteq X$ is almost decidable if the function $1_A : X \to \{0, 1\}$ is almost computable.

On \mathbb{R}

Interval $[x_1, x_2]$ with x_1, x_2 computable and $\mu(x_1) = \mu(x_2) = 0$.

Proposition (2.2.1.1)

If μ is computable and A is almost decidable, then $\mu(A)$ is computable.

Definition (2.2.1.2)

A set $A \subseteq X$ is almost decidable if the function $1_A : X \to \{0, 1\}$ is almost computable.

$\mathsf{On}\ \mathbb{R}$

Interval $[x_1, x_2]$ with x_1, x_2 computable and $\mu(x_1) = \mu(x_2) = 0$.

Proposition (2.2.1.1)

If μ is computable and A is almost decidable, then $\mu(A)$ is computable.

Definition (2.2.0.2)

A morphism $f : (X, \mu) \to (Y, \nu)$ is an almost computable function $f : X \to Y$ which maps μ to ν (i.e. $\nu = \mu f^{-1}$).

Algorithmic probability theory and Random points

Theorem

When restricting to random points,

	$On(X,\mu) \longrightarrow$	$On(R_{\mu},\mu)$
function	almost computable	computable
set	almost decidable	decidable
sequence	effective a.e. convergence	pointwise convergence

Proposition (3.2.0.8)

- Morphisms preserve randomness.
- Isomorphisms, when restricted to random points, are computable homeomorphisms.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

4 Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Existence of almost decidable sets

X = [0, 1], μ computable probability measure.

Question

Is it possible that $\mu(\{x\}) \neq 0$ for all computable x ?

Existence of almost decidable sets

X = [0, 1], μ computable probability measure.

Question

Is it possible that $\mu({x}) \neq 0$ for all computable x ?

Existence of almost decidable sets

X = [0, 1], μ computable probability measure.

Question

Is it possible that $\mu({x}) \neq 0$ for all computable x ?

Theorem (2.2.1.2)

No. There is a computable dense sequence of μ -continuity points.

Existence of almost decidable sets

X = [0, 1], μ computable probability measure.

Question

Is it possible that $\mu({x}) \neq 0$ for all computable x ?

Theorem (2.2.1.2)

No. There is a computable dense sequence of μ -continuity points.

Proof.

Application of: " \mathbb{R}_c is effectively uncountable".

Mathieu Hoyrup (ENS)

Comput., Rand. and Ergodic Theory

June 17, 2008 39 /

 (X, μ) computable probability space.

Theorem (2.2.1.2)

There is a basis of almost decidable balls.

 (X, μ) computable probability space.

Theorem (2.2.1.2)

There is a basis of almost decidable balls.

Theorem (2.2.1.1)

 (X, μ) admits a generalized binary representation.

 (X, μ) computable probability space.

Theorem (2.2.1.2)

There is a basis of almost decidable balls.

Theorem (2.2.1.1)

 (X, μ) admits a generalized binary representation.

Theorem (2.2.2.1)

When μ has no mass point, (X, μ) is isomorphic to $(\{0, 1\}^{\mathbb{N}}, Lebesgue)$.

 (X, μ) computable probability space.

Theorem (2.2.1.2)

There is a basis of almost decidable balls.

Theorem (2.2.1.1)

 (X, μ) admits a generalized binary representation.

Theorem (2.2.2.1)

When μ has no mass point, (X, μ) is isomorphic to $(\{0, 1\}^{\mathbb{N}}, Lebesgue)$.

Applications

Transfer of algorithmic randomness, computable symbolic models.

Mathieu Hoyrup (ENS)

Comput., Rand. and Ergodic Theory

June 17, 2008 40 / 59

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3) Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

Complexity of dynamical systems

- Classical setting
- Orbit complexity
- Topological relations

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

Complexity of dynamical systems
Classical setting

- Orbit complexity
- Topological relations

- Space X,
- Transformation $T: X \rightarrow X$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Laplace's demon.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

*s*₀, *s*₁, *s*₂, *s*₃

- Space X,
- Transformation $T: X \rightarrow X$,
- Precision $\epsilon > 0$.

 $s_0, s_1, s_2, s_3, s_4, \ldots$

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Observing a dynamical system... ...through a partition

- Space X,
- Transformation $T: X \rightarrow X$,
- Partition $P = \{A, B, C, D\}$.

Topological point of view

Probabilistic point of view

Topological system:

- X compact topological space,
- $T: X \to X$ continuous.

Ergodic dynamical system:

- (X, μ) probability space,
- $T: X \rightarrow X$ ergodic endomorphism.

Topological entropy h(T).

Measure-theoretic entropy $h_{\mu}(T)$.

Topological point of view

Probabilistic point of view

h(T) $h_{\mu}(T)$

Topological point of view

Probabilistic point of view

$$h(T) \xleftarrow{\text{variational}}{principle} h_{\mu}(T)$$

Theorem (Variational principle)

(X, T) topological dynamical system:

$$h(T) = \sup_{\mu \text{ invariant}} h_{\mu}(T)$$

Mathieu Hoyrup (ENS)

June 17, 2008 47 / 59

Algorithmic point of view

- Space X,
- Transformation $T: X \rightarrow X$.

K(x, T): algorithmic complexity of the orbit of x under T.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

Complexity of dynamical systems
Classical setting

- Orbit complexity
- Topological relations

Observing a dynamical system...

 \ldots with finite precision

...through a partition

• (X, T) topological system,

(X, μ, T) ergodic dynamical system

 $\mathcal{K}_n(x,T)$

 $\mathcal{K}_n(x,T)$

Observing a dynamical system...

 \ldots with finite precision

...through a partition

- (X, T) topological system,
- precision $\epsilon > 0$.

- (X, μ, T) ergodic dynamical system
- partition $P = \{A, B, C, D\}$

 $\mathcal{K}_5(x, T|P) = K(\mathsf{CBABA})$

 $\mathcal{K}_5(x, T, \epsilon) = \mathcal{K}(s_0, s_1, s_2, s_3, s_4)$

Orbit complexity ...with finite precision

...through a partition

(X, T) topological system

$$\overline{\mathcal{K}}(x, T, \epsilon) = \overline{\lim}_n \frac{\mathcal{K}_n(x, T, \epsilon)}{n}$$

 $\underline{\mathcal{K}}(x, T, \epsilon) = \underline{\lim}_n \frac{\mathcal{K}_n(x, T, \epsilon)}{n}$

 (X, μ, T) ergodic system $\overline{\mathcal{K}}(x, T|P) = \overline{\lim}_n \frac{\mathcal{K}_n(x, T|P)}{n}$

$$\underline{\mathcal{K}}(x, T|P) = \underline{\lim}_n \frac{\mathcal{K}_n(x, T|P)}{n}$$

Orbit complexity ...with finite precision

...through a partition

(X, T) topological system

$$\overline{\mathcal{K}}(x, T, \epsilon) = \overline{\lim}_n \frac{\mathcal{K}_n(x, T, \epsilon)}{n}$$

 $\underline{\mathcal{K}}(x, T, \epsilon) = \underline{\lim}_n \frac{\mathcal{K}_n(x, T, \epsilon)}{n}$

$$(X, \mu, T)$$
 ergodic system

 $\overline{\mathcal{K}}(x, T|P) = \overline{\lim}_n \frac{\mathcal{K}_n(x, T|P)}{n}$

$$\underline{\mathcal{K}}(x, T|P) = \underline{\lim}_n \frac{\mathcal{K}_n(x, T|P)}{n}$$

Definition (Galatolo, 2000 – generalizing Brudno, 1983)

$$\overline{\mathcal{K}}(x, T) = \sup_{\epsilon > 0} \overline{\mathcal{K}}(x, T, \epsilon)$$

$$\underline{\mathcal{K}}(x, T) = \sup_{\epsilon > 0} \underline{\mathcal{K}}(x, T, \epsilon)$$

$$\overline{\mathcal{K}}_{\mu}(x, T) = \sup_{\substack{P \text{ comp.} \\ P \text{ comp.}}} \overline{\mathcal{K}}(x, T|P)$$
$$\underline{\mathcal{K}}_{\mu}(x, T) = \sup_{\substack{P \text{ comp.} \\ P \text{ comp.}}} \underline{\mathcal{K}}(x, T|P)$$

probabilistic context

probabilistic context

Theorem (Brudno, 1978)

 (X, μ, T) ergodic dynamical system:

 $\overline{\mathcal{K}}_{\mu}(x,T) = h_{\mu}(T)$ for μ -almost every x

June 17, 2008 52 / 59

probabilistic context

Theorem (5.1.4.2)

 (X, μ, T) computable ergodic dynamical system:

 $\overline{\mathcal{K}}_{\mu}(x, T) = h_{\mu}(T)$ for every μ -random x

probabilistic context

Theorem (5.1.4.2)

 (X, μ, T) computable ergodic dynamical system:

 $\underline{\mathcal{K}}_{\mu}(x,T) \stackrel{?}{=} \overline{\mathcal{K}}_{\mu}(x,T) = h_{\mu}(T)$ for every μ -random x

Theorem (Brudno, 1983 – White, 1993)

(X, T) topological dynamical system:

 $\underline{\mathcal{K}}(x,T) = \overline{\mathcal{K}}(x,T) = h_{\mu}(T)$ for μ -almost every x

June 17, 2008 52 / 59

Theorem (5.3.0.3)

 (X, μ, T) computable ergodic dynamical system, with X compact:

$$\underline{\mathcal{K}}(x, T) = \underline{\mathcal{K}}_{\mu}(x, T)$$

for every μ -random x
 $\overline{\mathcal{K}}(x, T) = \overline{\mathcal{K}}_{\mu}(x, T)$

June 17, 2008 52 / 59

Proof.

- Shannon-McMillan-Breiman theorem for random points,
- Birkhoff ergodic theorem for random points,
- both derived from V'yugin's results on $\{0,1\}^{\mathbb{N}},$ using computable partitions.

Computability/Semi-computability

2 Algorithmic randomness

- Random sequences
- Random points in metric spaces

3 Computability on probability spaces

- Computability theory is topological
- Definitions
- Existence of almost decidable sets

Complexity of dynamical systems
Classical setting

- Orbit complexity
- Topological relations

June 17, 2008 55 / 59

Theorem (5.2.3.1)

(X, T) topological system:

$$\sup_{x} \underline{\mathcal{K}}(x, T) = \sup_{x} \overline{\mathcal{K}}(x, T) = h(T)$$

Mathieu Hoyrup (ENS)

June 17, 2008 55 / 59

Orbit complexity vs entropy Topological point of view

(X, T) topological system.

Upper-bound:

Theorem (Brudno)

For all x,

 $\overline{\mathcal{K}}(x,T) \leq h(T).$

The set of simple orbits is small.

Theorem (5.2.3.2)

Let
$$Y_{\alpha} = \{x : \underline{\mathcal{K}}(x, T) \leq \alpha\}.$$

 $h(T, Y_{\alpha}) \leq \alpha.$

Orbit complexity vs entropy Topological point of view

(X, T) topological system.

Upper-bound:The set of simple orbits is small.Theorem (Brudno)Theorem (5.2.3.2)For all x,
 $\overline{\mathcal{K}}(x, T) \leq h(T)$.Let $Y_{\alpha} = \{x : \underline{\mathcal{K}}(x, T) \leq \alpha\}$.
 $h(T, Y_{\alpha}) \leq \alpha$.

Corollary

$$h(T) = \sup_{x} \underline{\mathcal{K}}(x, T) = \sup_{x} \overline{\mathcal{K}}(x, T)$$

Mathieu Hoyrup (ENS)

- Structure dedicated to semi-computability,
- Pramework for computability and probabilities,
- **8** Integration of algorithmic randomness to general probability theory,
- ④ Results about algorithmic complexity of orbits, relations with algorithmic randomness.

Computability and measure

- Effective integration theory (Edalat, 2007) and randomness,
- Ocomputation models on "physical" spaces,
- 2 Algorithmic randomness
 - Particular applications (e.g. Asarin's work on random functions),
 - Characterization of randomness using Kolmogorov complexity on metric spaces,

Oynamical systems

- Computability of invariant measures,
- 2 Relations between algorithmic complexity and Lyapunov exponents,

Merci Thanks Grazie ممنون شکر ا