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What is randomness?

1 What does randomness look like?

2 How does randomness appear?

1. Probability theory

What properties should random sequences satisfy?

Strong law of large numbers

In random sequences, number of 0’s = number of 1’s.
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What is randomness?

1 What does randomness look like?

2 How does randomness appear?

2. Ergodic theory

In deterministic dynamical systems, as unpredictability.

Entropy of a dynamical system

Measures the unpredictability/randomness/
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Deterministic dynamical system

...observed with sharp eyes

• Space X ,

• Transformation T : X → X .

• Laplace’s demon.

ABCD
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Deterministic dynamical system
...observed with finite precision

• Space X ,

• Transformation T : X → X ,

• Precision ε > 0.

s0, s1, s2, s3, s4, . . .
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Deterministic dynamical systems
probabilistic point of view

• Space X ,

• Transformation T : X → X ,

• Invariant measure µ.

x

Tx

T 2x
T 3x

T 4x

Measure-theoretic entropy hµ(T ).
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What is randomness?

1 What does randomness look like?

2 How does randomness appear?

1. Probability theory

What properties should random sequences satisfy?

Algorithmic randomness (Martin-Löf, 1966)

{0, 1}N = Rµ ] Nµ

00000000000000000000000 . . .

non-random

00111001110011100111001 . . .

non-random

01010001011011011100110 . . .

random
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{0, 1}N = Rµ ] Nµ

00000000000000000000000 . . . non-random

00111001110011100111001 . . . non-random

01010001011011011100110 . . . random

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 7 / 59



What is randomness?

1 What does randomness look like?
2 How does randomness appear?

2. Ergodic theory

In deterministic dynamical systems, as unpredictability.

Algorithmic complexity of orbits (Kolmogorov, 1965 – Brudno, 1978)

“A system is unpredictable

⇐⇒
its orbits are algorithmically unpredictable”

00000000000000000000000 . . .

00111001110011100111001 . . .

01010001011011011100110 . . .
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Contributions

Computability, Randomness and Ergodic Theory

on Metric Spaces.

• Study of algorithmic randomness on general spaces,

• Development of algorithmic probability theory,

• Contributions to algorithmic complexity of orbits, relations with
algorithmic randomness.
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1 Computability/Semi-computability

2 Algorithmic randomness
Random sequences
Random points in metric spaces

3 Computability on probability spaces
Computability theory is topological
Definitions
Existence of almost decidable sets

4 Complexity of dynamical systems
Classical setting
Orbit complexity
Topological relations

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 9 / 59



1 Computability/Semi-computability

2 Algorithmic randomness
Random sequences
Random points in metric spaces

3 Computability on probability spaces
Computability theory is topological
Definitions
Existence of almost decidable sets

4 Complexity of dynamical systems
Classical setting
Orbit complexity
Topological relations

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 10 / 59



Computability/Semi-computability
on R

Fast convergence: qi � x means d(qi , x) < 2−i .

Computable real x ∈ R

algorithm
qi�x //

Computable function f : R→ R

qi�x // algorithm
q′

i �f (x)
//

Examples

• Computable real numbers:
√

2, π, e,etc.

• Computable real functions:
√

x , cos, ln,etc.
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Computability/Semi-computability
on R

Lower convergence: qi ↗ x means qi ≤ qi+1, qi → x .

Lower semi-computable real x ∈ R

algorithm
qi↗x //

Lower semi-computable function f : R→ R

qi�x // algorithm
q′

i↗f (x)
//

Example

• Lower semi-computable real function: 1(0,1)
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Computability/Semi-computability
on R

Rc = {computable real numbers}
Rsc = {semi-computable real numbers}

Both Rc and Rsc are countable. But...

Computability

Rc is “effectively uncountable”

Semi-computability

Rsc is “effectively countable”
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Computability/Semi-computability
Abstract structures

qi � x means d(qi , x) < 2−i .

Computable metric space

to express computability

• Rn, euclidean distance,

• C ([0, 1]),
uniform distance ‖.‖∞,

• Compact subsets of R,
Hausdorff distance,

• M(X ),
Prokhorov distance.

qi ↗ x means qi ≤ qi+1, qi → x .

Enumerative lattice

to express semi-computability

• R, order ≤,

• P(N), order ⊆,

X computable metric space:

• τX , order ⊆,

• LC (X ,R)a, order ≤.

acalled C(X , R) in the thesis.
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Computability/Semi-computability
Computable probability measure

Theorem (2.1.4.1)

Let µ ∈M(X ) be a probability measure.

µ is computable ⇐⇒ all µ(B1 ∪ . . . ∪ Bn) are lower semi-computable.

On R
µ is computable ⇐⇒ all µ(q1, q2) are lower semi-computable.

On {0, 1}N

µ is computable ⇐⇒ all µ([w ]) are computable (w ∈ {0, 1}∗).
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Computability/Semi-computability
Abstract structures

Computable metric space

to express computability

The set of computable objects
is “effectively uncountable”
(in general)

Enumerative lattice

to express semi-computability

The set of semi-computable
objects is “effectively countable”
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1 Computability/Semi-computability

2 Algorithmic randomness
Random sequences
Random points in metric spaces

3 Computability on probability spaces
Computability theory is topological
Definitions
Existence of almost decidable sets

4 Complexity of dynamical systems
Classical setting
Orbit complexity
Topological relations
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Algorithmically random sequences

00000000000000000000000 . . . non-random

00111001110011100111001 . . . non-random

01010001011011011100110 . . . maybe random
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Algorithmically random sequences
Martin-Löf, 1966

µ (computable) probablity measure on {0, 1}N

Definition (Martin-Löf, 1966)

A µ-test is a function t : {0, 1}N → [0,+∞] such that:

1
∫

t dµ <∞,

2 t is lower semi-computable.

A sequence ω withstands the test if t(ω) <∞.

Definition (Martin-Löf, 1966)

A sequence ω is µ-random if it withstands all µ-tests.
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A µ-test is a function t : {0, 1}N → [0,+∞] such that:

1
∫

t dµ <∞,

2 t is lower semi-computable.

A sequence ω withstands the test if t(ω) <∞.

Definition (Martin-Löf, 1966)
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Algorithmically random sequences
Application to probability theory

Definition

A property P is testable if there is a µ-test t such that:

t(ω) <∞ =⇒ P(ω) holds.

P(ω) holds for µ-almost every sequence ω

becomes
P(ω) holds for every µ-random sequence ω.

Examples

Strong law of large numbers, law of the iterated logarithm, etc.
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Algorithmically random sequences
Martin-Löf, 1966

Theorem (Martin-Löf, 1966)

There is a universal µ-test t:

ω is µ-random ⇐⇒ ω withstands t.

This test can be expressed in terms of Kolmogorov complexity.
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Algorithmically random sequences

Binary sequences

• Kolmogorov,

• Martin-Löf, 1966,

• Levin,

• Chaitin,

• Schnorr,

• Gács,

• V’yugin,

• Vovk,

• Asarin,

• Van Lambalgen,

• Downey,
• Hirschfeldt,

• Li,

• Vitanyi,

• Miller,

• Nies,

• Reimann,

• Bienvenu,

• Calude,

• Lutz,

• Doty,

• Stephan,

• Hitchcock,

• Kucera

• Slaman

• Kurtz

More general objects

• Asarin, 1986.
Random functions (Brownian
motion).

• Barmpalias et al., 2007.
Random closed subsets of {0, 1}N.

Abstract spaces

• Weihrauch, Hertling, 1998.
Topological spaces.

• Gács, 2005.
Metric spaces.

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 23 / 59



1 Computability/Semi-computability

2 Algorithmic randomness
Random sequences
Random points in metric spaces

3 Computability on probability spaces
Computability theory is topological
Definitions
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4 Complexity of dynamical systems
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Algorithmic randomness: two extensions
Martin-Löf, 1966  Gács, 2005

First extension: space {0, 1}N  computable metric space X
sequence ω  point x

Definition (Martin-Löf, 1966)

A µ-test is a function t : {0, 1}N → [0,+∞] satisfying:

1
∫

t dµ < +∞,

2 t is lower semi-computable.

A sequence ω withstands the test t if t(ω) <∞.

Definition (Martin-Löf, 1966)

A sequence ω is µ-random if it withstands all µ-tests t.
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sequence ω  point x

Definition (Martin-Löf, 1966 – Gács, 2005)
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Algorithmic randomness
Martin-Löf, 1966  Gács, 2005

Second extension: µ-test t  uniform test T

Definition (Martin-Löf, 1966 – Gács, 2005)

A µ-test is a function t : X → [0,+∞] such that:
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Algorithmic randomness
Martin-Löf, 1966  Gács, 2005

Computable metric space X .

Theorem (Gács, 2005)

Suppose X satisfies the Boolean inclusion property.

There is a universal uniform test T :M(X )× X → [0,+∞]:

a point x is µ-random ⇐⇒ x passes the test Tµ.

Theorem

The Boolean inclusion property is not necessary.
Every computable metric space admits a universal uniform test.

Let µ be a probability measure on X , and t : X → [0,+∞] a µ-test:

Theorem (µ-tests versus uniform tests)

There is a uniform test T :M(X )× X → [0,+∞] such that Tµ = t.

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 28 / 59



Algorithmic randomness
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Applications of algorithmic randomness

Probabilistic statement:

P(ω) holds for µ-almost every sequence ω

becomes
P(ω) holds for every µ-random sequence ω.

Examples

Strong law of large numbers, law of the iterated logarithm, etc.
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Applications of algorithmic randomness

Probabilistic statement:

P(x) holds for µ-almost every point x

becomes
P(x) holds for every µ-random point x .

Examples

Birkhoff ergodic theorem, Shannon-McMillan-Breiman theorem,
convergence of random variables, etc.
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Computability theory is topological

Theorem

On R, every computable function is continuous.

Theorem

On R, nothing is decidable.

Theorem

Representing real numbers by their binary expansion is not suitable.

bin(x) // algorithm
bin(f (x)) //

It makes the function x 7→ 3x non-computable.

Proof.

[0, 1] and {0, 1}N are not homeomorphic.
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Computability theory is topological

0 10.5

bin(x) // algorithm
bin(f (x)) //

[0, 1] and {0, 1}N, with the Lebesgue measure, are isomorphic.

Computing on probability spaces ? almost-everywhere computability,
decidability ?
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Algorithmic probability theory

Definition (2.2.0.1)

(X , µ) is a computable probability space if:

• X is a computable metric space,

• µ is a computable probability measure on X .

Definition (attempt...)

f : X → Y is almost computable if it is computable on a

constructive Gδ-

set A satisfying µ(A) = 1.

Theorem (1.6.2.1)

Let f : X → Y be an almost computable function. There is a function g
which coincides with f on A, and is computable on a
constructive Gδ-set containing A.
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Definition (2.2.0.1)

(X , µ) is a computable probability space if:

• X is a computable metric space,

• µ is a computable probability measure on X .

Definition (2.2.0.2)

f : X → Y is almost computable if it is computable on a
constructive Gδ-set A satisfying µ(A) = 1.

Theorem (1.6.2.1)
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Algorithmic probability theory

Definition (2.2.1.2)

A set A ⊆ X is almost decidable if the function 1A : X → {0, 1} is almost
computable.

On R
Interval [x1, x2] with x1, x2 computable and µ(x1) = µ(x2) = 0.

Proposition (2.2.1.1)

If µ is computable and A is almost decidable, then µ(A) is computable.

Definition (2.2.0.2)

A morphism f : (X , µ)→ (Y , ν) is an almost computable function
f : X → Y which maps µ to ν (i.e. ν = µf −1).
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Algorithmic probability theory and Random points

Theorem

When restricting to random points,

On (X , µ)  On (Rµ, µ)

function almost computable computable

set almost decidable decidable

sequence effective a.e. convergence pointwise convergence

Proposition (3.2.0.8)

• Morphisms preserve randomness.

• Isomorphisms, when restricted to random points, are computable
homeomorphisms.
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Algorithmic probability theory
Existence of almost decidable sets

X = [0, 1], µ computable probability measure.

Question

Is it possible that µ({x}) 6= 0 for all computable x ?

µ

0 1

Theorem (2.2.1.2)

No. There is a computable dense sequence of µ-continuity points.

Proof.

Application of: “Rc is effectively uncountable”.
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Algorithmic probability theory
Existence of almost decidable sets

(X , µ) computable probability space.

Theorem (2.2.1.2)

There is a basis of almost decidable balls.

Theorem (2.2.1.1)

(X , µ) admits a generalized binary representation.

Theorem (2.2.2.1)

When µ has no mass point, (X , µ) is isomorphic to ({0, 1}N, Lebesgue).

Applications

Transfer of algorithmic randomness, computable symbolic models.
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Observing a dynamical system...

...with sharp eyes

• Space X ,

• Transformation T : X → X .

• Laplace’s demon.

ABCD
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Observing a dynamical system...
...with sharp eyes

• Space X ,

• Transformation T : X → X ,

• Laplace’s demon.

x

Tx
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Observing a dynamical system...
...with sharp eyes

• Space X ,

• Transformation T : X → X ,

• Laplace’s demon.

x

Tx

T 2x
T 3x

ABCD
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Observing a dynamical system...
...with sharp eyes

• Space X ,

• Transformation T : X → X ,

• Laplace’s demon.

x

Tx

T 2x
T 3x

T 4x

ABCD
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Observing a dynamical system...
...with finite precision

• Space X ,

• Transformation T : X → X ,

• Precision ε > 0.

s0, s1, s2, s3, s4, . . .
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Observing a dynamical system...
...through a partition

• Space X ,

• Transformation T : X → X ,

• Partition P = {A,B,C,D}.

A B

C D

CBABA. . .
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Complexity of a dynamical system
Topological point of view Probabilistic point of view

Topological system:

• X compact topological space,

• T : X → X continuous.

x

Tx

T 2x
T 3x

T 4x

Topological entropy h(T ).

Ergodic dynamical system:

• (X , µ) probability space,

• T : X → X ergodic endomorphism.

x

Tx

T 2x
T 3x

T 4x

Measure-theoretic entropy hµ(T ).
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Complexity of a dynamical system
Topological point of view Probabilistic point of view

h(T ) hµ(T )

variational

principle

K(x ,T ) Kµ(x ,T )

Theorem (Variational principle)

(X ,T ) topological dynamical system:

h(T ) = sup
µ invariant

hµ(T )
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Complexity of a dynamical system
Algorithmic point of view

• Space X ,

• Transformation T : X → X .

x

Tx

T 2x
T 3x

T 4x

K (x ,T ): algorithmic complexity of the orbit of x under T .
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Observing a dynamical system...
...with finite precision ...through a partition

• (X ,T ) topological system,

• precision ε > 0.

x

Tx

T 2x
T 3x

T 4x

Kn(x ,T )

= K (s0, s1, s2, s3, s4)

• (X , µ,T ) ergodic dynamical
system

• partition P = {A,B,C,D}

x

Tx

T 2x
T 3x

T 4x

Kn(x ,T )

= K (CBABA)

Mathieu Hoyrup (ENS) Comput., Rand. and Ergodic Theory June 17, 2008 50 / 59



Observing a dynamical system...
...with finite precision ...through a partition

• (X ,T ) topological system,

• precision ε > 0.

x

Tx

T 2x
T 3x

T 4x

s0 x

s1
Tx

s2
T 2x

s3
T 3x

s4
T 4x

K5(x ,T , ε) = K (s0, s1, s2, s3, s4)

• (X , µ,T ) ergodic dynamical
system

• partition P = {A,B,C,D}

A B

C D

x

Tx

T 2x
T 3x

T 4x

K5(x ,T |P) = K (CBABA)
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Orbit complexity
...with finite precision ...through a partition

(X ,T ) topological system

K(x ,T , ε) = limn
Kn(x ,T ,ε)

n

K(x ,T , ε) = limn
Kn(x ,T ,ε)

n

Definition (Galatolo, 2000 –
generalizing Brudno, 1983)

K(x ,T ) = sup
ε>0
K(x ,T , ε)

K(x ,T ) = sup
ε>0
K(x ,T , ε)

(X , µ,T ) ergodic system

K(x ,T |P) = limn
Kn(x ,T |P)

n

K(x ,T |P) = limn
Kn(x ,T |P)

n

Definition (Brudno, 1983 +
computable partitions)

Kµ(x ,T ) = sup
P comp.

K(x ,T |P)

Kµ(x ,T ) = sup
P comp.

K(x ,T |P)
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ε>0
K(x ,T , ε)

K(x ,T ) = sup
ε>0
K(x ,T , ε)

(X , µ,T ) ergodic system

K(x ,T |P) = limn
Kn(x ,T |P)

n

K(x ,T |P) = limn
Kn(x ,T |P)

n

Definition (Brudno, 1983 +
computable partitions)

Kµ(x ,T ) = sup
P comp.

K(x ,T |P)

Kµ(x ,T ) = sup
P comp.

K(x ,T |P)
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Orbit complexity vs entropy
topological context probabilistic context

h(T ) hµ(T )//variational

principle
oo

K(x ,T )

theorem 5.2.3.1

Kµ(x ,T )
��

Brudno

theorem 5.1.4.2

(random)

OO

Theorem (Brudno, 1978)

(X , µ,T ) ergodic dynamical system:

Kµ(x ,T )
?
=

Kµ(x ,T ) = hµ(T ) for µ-almost every x

for every µ-random x
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theorem 5.2.3.1
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Brudno

theorem 5.1.4.2

(random)

OO

Theorem (5.1.4.2)
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theorem 5.1.4.2
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OO
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Orbit complexity vs entropy
topological context probabilistic context

h(T ) hµ(T )//variational

principle
oo

K(x ,T )

theorem 5.2.3.1

zz

Brudno

White

::vvvvvvvvvvvvvvvvvvv
Kµ(x ,T )

��

Brudno

theorem 5.1.4.2

(random)

OO

Theorem (Brudno, 1983 – White, 1993)

(X ,T ) topological dynamical system:

K(x ,T ) = K(x ,T ) = hµ(T ) for µ-almost every x

for every µ-random x
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Orbit complexity vs entropy
topological context probabilistic context

h(T ) hµ(T )//variational

principle
oo

K(x ,T )

theorem 5.2.3.1

zz

Brudno

White

::vvvvvvvvvvvvvvvvvvv
Kµ(x ,T )

��

Brudno

theorem 5.1.4.2

(random)

OO

//theorem 5.3.0.3

(random)
oo

Theorem (5.3.0.3)

(X , µ,T ) computable ergodic dynamical system, with X compact:

K(x ,T ) = Kµ(x ,T )

K(x ,T ) = Kµ(x ,T )
for every µ-random x
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Orbit complexity vs entropy

Proof.
• Shannon-McMillan-Breiman theorem for random points,

• Birkhoff ergodic theorem for random points,

• both derived from V’yugin’s results on {0, 1}N, using computable
partitions.
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1 Computability/Semi-computability

2 Algorithmic randomness
Random sequences
Random points in metric spaces

3 Computability on probability spaces
Computability theory is topological
Definitions
Existence of almost decidable sets

4 Complexity of dynamical systems
Classical setting
Orbit complexity
Topological relations
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Orbit complexity vs entropy
topological context probabilistic context

h(T ) hµ(T )//variational

principle
oo

K(x ,T )

theorem 5.2.3.1

zz

Brudno

White

::vvvvvvvvvvvvvvvvvvv
Kµ(x ,T )

��

Brudno

theorem 5.1.4.2

(random)

OO

//theorem 5.3.0.3

(random)
oo

Theorem (5.2.3.1)

(X ,T ) topological system:

sup
x
K(x ,T ) = sup

x
K(x ,T ) = h(T )
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Orbit complexity vs entropy
Topological point of view

(X ,T ) topological system.

Upper-bound:

Theorem (Brudno)

For all x,

K(x ,T ) ≤ h(T ).

The set of simple orbits is small.

Theorem (5.2.3.2)

Let Yα = {x : K(x ,T ) ≤ α}.

h(T ,Yα) ≤ α.

Corollary

h(T ) = sup
x
K(x ,T ) = sup

x
K(x ,T )
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Conclusion
Contributions

1 Structure dedicated to semi-computability,

2 Framework for computability and probabilities,

3 Integration of algorithmic randomness to general probability theory,

4 Results about algorithmic complexity of orbits, relations with
algorithmic randomness.
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Conclusion
Further questions

1 Computability and measure

1 Effective integration theory (Edalat, 2007) and randomness,
2 Computation models on “physical” spaces,

2 Algorithmic randomness

1 Particular applications (e.g. Asarin’s work on random functions),
2 Characterization of randomness using Kolmogorov complexity on

metric spaces,

3 Dynamical systems

1 Computability of invariant measures,
2 Relations between algorithmic complexity and Lyapunov exponents,
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