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The problem

Two ways of providing a computable function f : N→ N to a
machine:

• Via the graph of f (infinite object),
• Via a program computing f (finite object).

Main questions

• Does it make a difference?
• Can the two machines perform the same tasks?
• Does the code of a program give more information about what it
computes?
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The problem

The answer depends on:
• Whether the functions f are partial or total,
• The task to be performed by the machine (e.g. decide or
semidecide something about f).

Decidability semidecidability
Partial functions

Total functions
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Partial functions
Decidability semidecidability

Partial functions ?

Total functions

Given (any enumeration of) the graph of f , one cannot decide whether
f(0) is defined.

Theorem (Turing, 1936)

Given a program for f , a machine cannot do better.
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Partial functions
Decidability semidecidability

Partial functions program ≡ graph

Total functions

More generally, what can be decided about f?

Answers
Given the graph of f , only trivial properties: the decision about λx.⊥
applies to every f .

Theorem (Rice, 1953)

Given a program for f , a machine cannot do better.
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Partial functions
Decidability semidecidability

Partial functions program ≡ graph program ≡ graph

Total functions

What can be semidecided about f?

Answers
Given the graph of f , exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Shapiro, 1956)

Given a program for f , a machine cannot do better.
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Total functions
Decidability semidecidability

Partial functions program ≡ graph program ≡ graph

Total functions program ≡ graph program > graph

What can be decided about f?

Theorem (Kreisel-Lacombe-Schœnfield/Ceitin, 1957/1962)

For properties of total computable functions,

decidable from a program ⇐⇒ decidable from the graph.

What can be semidecided about f?

Theorem (Friedberg, 1958)

For properties of total computable functions,

semidecidable from a program 6=⇒ semidecidable from the graph.
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Friedberg’s property

Figure: Friedberg’s property, taken from the Rogers

Defined in 1958, but easier to define using Kolmogorov complexity
(1960’s).

• K(n) = min{|p| : program p computes n}.
• K(n) ≤ log(n) +O(1).
• Say n ∈ N is compressible if K(n) < log(n):

• There are infinitely many incompressible numbers.
• Whether n is compressible is semidecidable.
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Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semideciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by its graph, we can never know.
• If f is given by a program p then evaluate f on inputs 0, . . . , 2|p|.
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Sum up

Two computation models:
• Markov-computability: given a program,
• Type-2-computability: given the graph.

Decidability semidecidability

Partial functions Markov ≡ Type-2
Rice

Markov ≡ Type-2
Rice-Shapiro

Total functions Markov ≡ Type-2
Kreisel-Lacombe-
Shœnfield/Ceitin

Markov > Type-2
Friedberg

Many other results by Selivanov, Spreen, Grassin, Korovina, Kudinov
and others.
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Let f be a computable function. All the programs computing f share
some common information about f :

• The information needed to recover the graph of f ,
• Plus some extra information about f .

Question

What is the extra information?

Answer
A bound on the Kolmogorov complexity of f !
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We define
K(f) = min{|p| : p computes f}.

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is Markov-semidecidable,
• f ∈ P is Type-2-semidecidable given any upper bound on K(f).

In other words, the only useful information provided by a program p
for f is:

• the graph of f (by running p),
• an upper bound on K(f) (namely, |p|).



The problem Historical results New results Limitations

More general results

The result is much more general and holds for:
• many classes of objects other than total functions

(2ω, R, any effective topological space)

• many computability notions other than semidecidability
(computable functions, n-c.e. properties, Σ0

2 properties).

We now give 2 such results.
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More general results

Let X,Y be effective topological spaces and f : X → Y .
In general,

f is Markov-computable 6=⇒ f is Type-2-computable.

However,

Theorem (Computable functions)

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.
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More general results

Theorem (Selivanov, 1984)

For properties of partial functions,

2-c.e. in the Markov-model 6=⇒ 2-c.e. in the Type-2-model.

However,

Theorem

n-c.e. in the Markov-model ⇐⇒ n-c.e. in the (Type-2,K)-model.
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Better understanding Markov-computability?

• Now the relation between Markov-computability and
Type-2-computability is more clear.

• Can we better understand Markov-computability?

Remark
Type-2-computability is well-understood: equivalent to effective
topology.

• Type-2-semidecidable property ≡ effective open set (Σ0
1)

• Type-2-computable function ≡ effectively continuous function

We now investigate the following question:
What do the Markov-semidecidable properties look like?
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Complexity of Markov-semidecidable properties

Theorem
Every Markov-semidecidable property is Π0

2.

Proof.
The property P is (Type-2,K)-semidecidable, via a machine M . M
behaves the same on (f, n) for all n ≥ K(f). As a result,

f ∈ P ⇐⇒ ∀k,∃n ≥ k, M accepts (f, n).

This is tight.

Theorem
There is a Markov-semidecidable property that is not Σ0

2:

∀n,K(f�n) < n+ c.
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The shape of Markov-semidecidable properties

What do Markov-semidecidable properties look like?

• On NN, open question.
• On N∞, complete answer.
• On the class of primitive recursive functions, complete answer.
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The shape of Markov-semidecidable properties
Space of objects : N∞ = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1 . . ..

Examples of Type-2-semidecidable properties

• Singletons: e.g. {6},
• Semi-lines: e.g. [10,∞],

Examples of Markov-semidecidable properties

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!
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The shape of Markov-semidecidable properties

Space of objects : primitive recursive functions. Here, only
primitive recursive programs are allowed.

Example of Type-2-decidable property

A cylinder:

f(2) = 4 ∧ f(3) = 9 ∧ f(4) = 16

Example of Markov-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
They generate all the Markov-semidecidable properties.

Idem for FPTIME, provably total functions, etc.
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The shape of Markov-semidecidable properties

On the class of total computable functions,

Type-2-semidecidable properties

The effective open sets.

Example of Markov-semidecidable property

∀n,K(f�n) < h(n)

Theorem
They do not generate all the Markov-semidecidable properties.
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“The only extra information shared by programs computing an object
is bounding its Kolmogorov complexity.”

True to a large extent
See previous results.

Not always true
See next results.
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Relativization

Does the main result holds relative to any oracle?
• On partial functions, NO.
• On total functions, YES.
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Relativization

Properties of partial functions.

Reminder: Rice-Shapiro theorem

Markov-semidecidable ⇐⇒ (Type-2,K)-semidecidable
⇐⇒ Type-2-semidecidable

However,

Proposition

Markov-semidecidable∅
′
6=⇒ (Type-2,K)-semidecidable∅

′

(Type-2,K)-semidecidable∅
′′
6=⇒ Type-2-semidecidable∅

′′
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Relativization

Properties of total functions.

Theorem
For each oracle A ⊆ N,

Markov-semidecidableA ⇐⇒ (Type-2,K)-semidecidableA

There are two cases, whether A computes ∅′ or not.

Theorem
There is no uniform argument.
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Computable functions

Reminder
Let X,Y be countably-based topological spaces and f : X → Y .

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.

Does it still hold if Y not countably-based? For instance,

Y = {open subsets of NN}.

• When X = {partial functions}, NO.
• When X = {total functions}, open question.
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Future work

• What are the Markov-semidecidable properties of total
functions?

• Precise limits of the equivalence Markov≡(Type-2,K)?

• Does the implication hold?
ω-c.e. in the Markov model =⇒ ω-c.e. in the (Type-2,K) model?

• The objects always lived in countably-based topological spaces.
What about other represented spaces? For instance, NNN

?

Thank you for your attention!
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Proof of the main result

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is Markov-semidecidable,
• f ∈ P is Type-2-semidecidable given any upper bound on K(f).
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Proof: main ingredient

Let P be a property of total computable functions containing λx.0.

• If P is Type-2-semi-decidable then
∃n, ∀g, [g(0) = . . . = g(n) = 0 implies g ∈ P ],

and n can be computed.

• If P is Markov-semi-decidable then
∀g,∃n, [g(0) = . . . = g(n) = 0 implies g ∈ P ],

and n can be computed from a program for g.

• As a result for all k,
∃n, ∀g s.t. K(g) ≤ k, [g(0) = . . . = g(n) = 0 implies g ∈ P ],

and n can be computed from k.



The problem Historical results New results Limitations

Proof: main ingredient

Let P be a property of total computable functions containing λx.0.
Assume that P is Markov-semi-decidable.

Lemma
One has ∀g,∃n s.t. [g(0) = . . . = g(n) = 0 implies g ∈ P ], and n can
be computed from a program for g.

Proof.
Let M be the machine Markov-semideciding P . Define a program p:

p(t) =

{
0 if M(p) does not halt within t steps,
g(t) otherwise.

• M(p) must halt.
• Taking n = halting time of M(p) works.
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Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 0 (warm-up)

The opponent simply writes down the list of programs.

The player has a winning strategy: wait for a program “print i”,
then announce n = i.
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Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 1 (Type-2)

The opponent writes down a list of programs and is allowed to remove
some of them later (definitively). The list is what remains.

The player does not have a winning strategy.
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Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 2 (Markov)

Idem, but the opponent is a program, known by the player.

The player has a winning strategy. For each i ∈ N, it is possible to
define a program pi that prints only i and will not be removed by the
opponent.
The strategy is as before: wait for a program pi, then announce n = i.

pi is defined this way: print i and if pi is eventually removed by the
opponent, print every j ∈ N.
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Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 3 (Type-2,K)

Again the opponent is a program. The player just has an upper
bound on its size.

The player has a winning strategy.

Let k be the upper bound. Define programs pi,j that print i and if
program j eventually halts, prints every natural number.
The strategy is: look for i such that pi,j appears for every j ≤ k, then
announce n = i.
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