
The problem Historical results New results Limitations

On the information carried by programs
about the objects they compute

Mathieu Hoyrup

LORIA - Inria, Nancy (France)

joint work with Cristóbal Rojas (Santiago)

The problem Historical results New results Limitations

The problem

Two ways of providing a computable function f : N→ N to a
machine:

• Via the graph of f (infinite object),
• Via a program computing f (finite object).

Main questions

• Does it make a difference?
• Can the two machines perform the same tasks?
• Does the code of a program give more information about what it
computes?

The problem Historical results New results Limitations

The problem

The answer depends on:
• Whether the functions f are partial or total,
• The task to be performed by the machine (e.g. decide or
semidecide something about f).

Decidability semidecidability
Partial functions

Total functions

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

Partial functions
Decidability semidecidability

Partial functions ?

Total functions

Given (any enumeration of) the graph of f , one cannot decide whether
f(0) is defined.

Theorem (Turing, 1936)

Given a program for f , a machine cannot do better.

The problem Historical results New results Limitations

Partial functions
Decidability semidecidability

Partial functions program ≡ graph

Total functions

More generally, what can be decided about f?

Answers
Given the graph of f , only trivial properties: the decision about λx.⊥
applies to every f .

Theorem (Rice, 1953)

Given a program for f , a machine cannot do better.

The problem Historical results New results Limitations

Partial functions
Decidability semidecidability

Partial functions program ≡ graph program ≡ graph

Total functions

What can be semidecided about f?

Answers
Given the graph of f , exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Shapiro, 1956)

Given a program for f , a machine cannot do better.

The problem Historical results New results Limitations

Total functions
Decidability semidecidability

Partial functions program ≡ graph program ≡ graph

Total functions program ≡ graph program > graph

What can be decided about f?

Theorem (Kreisel-Lacombe-Schœnfield/Ceitin, 1957/1962)

For properties of total computable functions,

decidable from a program ⇐⇒ decidable from the graph.

What can be semidecided about f?

Theorem (Friedberg, 1958)

For properties of total computable functions,

semidecidable from a program 6=⇒ semidecidable from the graph.

The problem Historical results New results Limitations

Friedberg’s property

Figure: Friedberg’s property, taken from the Rogers

Defined in 1958, but easier to define using Kolmogorov complexity
(1960’s).

• K(n) = min{|p| : program p computes n}.
• K(n) ≤ log(n) +O(1).
• Say n ∈ N is compressible if K(n) < log(n):

• There are infinitely many incompressible numbers.
• Whether n is compressible is semidecidable.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semideciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by its graph, we can never know.
• If f is given by a program p then evaluate f on inputs 0, . . . , 2|p|.

The problem Historical results New results Limitations

Sum up

Two computation models:
• Markov-computability: given a program,
• Type-2-computability: given the graph.

Decidability semidecidability

Partial functions Markov ≡ Type-2
Rice

Markov ≡ Type-2
Rice-Shapiro

Total functions Markov ≡ Type-2
Kreisel-Lacombe-
Shœnfield/Ceitin

Markov > Type-2
Friedberg

Many other results by Selivanov, Spreen, Grassin, Korovina, Kudinov
and others.

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

Let f be a computable function. All the programs computing f share
some common information about f :

• The information needed to recover the graph of f ,
• Plus some extra information about f .

Question

What is the extra information?

Answer
A bound on the Kolmogorov complexity of f !

The problem Historical results New results Limitations

We define
K(f) = min{|p| : p computes f}.

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is Markov-semidecidable,
• f ∈ P is Type-2-semidecidable given any upper bound on K(f).

In other words, the only useful information provided by a program p
for f is:

• the graph of f (by running p),
• an upper bound on K(f) (namely, |p|).

The problem Historical results New results Limitations

More general results

The result is much more general and holds for:
• many classes of objects other than total functions

(2ω, R, any effective topological space)

• many computability notions other than semidecidability
(computable functions, n-c.e. properties, Σ0

2 properties).

We now give 2 such results.

The problem Historical results New results Limitations

More general results

Let X,Y be effective topological spaces and f : X → Y .
In general,

f is Markov-computable 6=⇒ f is Type-2-computable.

However,

Theorem (Computable functions)

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.

The problem Historical results New results Limitations

More general results

Theorem (Selivanov, 1984)

For properties of partial functions,

2-c.e. in the Markov-model 6=⇒ 2-c.e. in the Type-2-model.

However,

Theorem

n-c.e. in the Markov-model ⇐⇒ n-c.e. in the (Type-2,K)-model.

The problem Historical results New results Limitations

Better understanding Markov-computability?

• Now the relation between Markov-computability and
Type-2-computability is more clear.

• Can we better understand Markov-computability?

Remark
Type-2-computability is well-understood: equivalent to effective
topology.

• Type-2-semidecidable property ≡ effective open set (Σ0
1)

• Type-2-computable function ≡ effectively continuous function

We now investigate the following question:
What do the Markov-semidecidable properties look like?

The problem Historical results New results Limitations

Complexity of Markov-semidecidable properties

Theorem
Every Markov-semidecidable property is Π0

2.

Proof.
The property P is (Type-2,K)-semidecidable, via a machine M . M
behaves the same on (f, n) for all n ≥ K(f). As a result,

f ∈ P ⇐⇒ ∀k,∃n ≥ k, M accepts (f, n).

This is tight.

Theorem
There is a Markov-semidecidable property that is not Σ0

2:

∀n,K(f�n) < n+ c.

The problem Historical results New results Limitations

The shape of Markov-semidecidable properties

What do Markov-semidecidable properties look like?

• On NN, open question.
• On N∞, complete answer.
• On the class of primitive recursive functions, complete answer.

The problem Historical results New results Limitations

The shape of Markov-semidecidable properties
Space of objects : N∞ = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1

Examples of Type-2-semidecidable properties

• Singletons: e.g. {6},
• Semi-lines: e.g. [10,∞],

Examples of Markov-semidecidable properties

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!

The problem Historical results New results Limitations

The shape of Markov-semidecidable properties

Space of objects : primitive recursive functions. Here, only
primitive recursive programs are allowed.

Example of Type-2-decidable property

A cylinder:

f(2) = 4 ∧ f(3) = 9 ∧ f(4) = 16

Example of Markov-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
They generate all the Markov-semidecidable properties.

Idem for FPTIME, provably total functions, etc.

The problem Historical results New results Limitations

The shape of Markov-semidecidable properties

On the class of total computable functions,

Type-2-semidecidable properties

The effective open sets.

Example of Markov-semidecidable property

∀n,K(f�n) < h(n)

Theorem
They do not generate all the Markov-semidecidable properties.

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

“The only extra information shared by programs computing an object
is bounding its Kolmogorov complexity.”

True to a large extent
See previous results.

Not always true
See next results.

The problem Historical results New results Limitations

Relativization

Does the main result holds relative to any oracle?
• On partial functions, NO.
• On total functions, YES.

The problem Historical results New results Limitations

Relativization

Properties of partial functions.

Reminder: Rice-Shapiro theorem

Markov-semidecidable ⇐⇒ (Type-2,K)-semidecidable
⇐⇒ Type-2-semidecidable

However,

Proposition

Markov-semidecidable∅
′
6=⇒ (Type-2,K)-semidecidable∅

′

(Type-2,K)-semidecidable∅
′′
6=⇒ Type-2-semidecidable∅

′′

The problem Historical results New results Limitations

Relativization

Properties of total functions.

Theorem
For each oracle A ⊆ N,

Markov-semidecidableA ⇐⇒ (Type-2,K)-semidecidableA

There are two cases, whether A computes ∅′ or not.

Theorem
There is no uniform argument.

The problem Historical results New results Limitations

Computable functions

Reminder
Let X,Y be countably-based topological spaces and f : X → Y .

f is Markov-computable ⇐⇒ f is (Type-2,K)-computable.

Does it still hold if Y not countably-based? For instance,

Y = {open subsets of NN}.

• When X = {partial functions}, NO.
• When X = {total functions}, open question.

The problem Historical results New results Limitations

Future work

• What are the Markov-semidecidable properties of total
functions?

• Precise limits of the equivalence Markov≡(Type-2,K)?

• Does the implication hold?
ω-c.e. in the Markov model =⇒ ω-c.e. in the (Type-2,K) model?

• The objects always lived in countably-based topological spaces.
What about other represented spaces? For instance, NNN

?

Thank you for your attention!

The problem Historical results New results Limitations

Proof of the main result

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is Markov-semidecidable,
• f ∈ P is Type-2-semidecidable given any upper bound on K(f).

The problem Historical results New results Limitations

Proof: main ingredient

Let P be a property of total computable functions containing λx.0.

• If P is Type-2-semi-decidable then
∃n, ∀g, [g(0) = . . . = g(n) = 0 implies g ∈ P],

and n can be computed.

• If P is Markov-semi-decidable then
∀g,∃n, [g(0) = . . . = g(n) = 0 implies g ∈ P],

and n can be computed from a program for g.

• As a result for all k,
∃n, ∀g s.t. K(g) ≤ k, [g(0) = . . . = g(n) = 0 implies g ∈ P],

and n can be computed from k.

The problem Historical results New results Limitations

Proof: main ingredient

Let P be a property of total computable functions containing λx.0.
Assume that P is Markov-semi-decidable.

Lemma
One has ∀g,∃n s.t. [g(0) = . . . = g(n) = 0 implies g ∈ P], and n can
be computed from a program for g.

Proof.
Let M be the machine Markov-semideciding P . Define a program p:

p(t) =

{
0 if M(p) does not halt within t steps,
g(t) otherwise.

• M(p) must halt.
• Taking n = halting time of M(p) works.

The problem Historical results New results Limitations

Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 0 (warm-up)

The opponent simply writes down the list of programs.

The player has a winning strategy: wait for a program “print i”,
then announce n = i.

The problem Historical results New results Limitations

Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 1 (Type-2)

The opponent writes down a list of programs and is allowed to remove
some of them later (definitively). The list is what remains.

The player does not have a winning strategy.

The problem Historical results New results Limitations

Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 2 (Markov)

Idem, but the opponent is a program, known by the player.

The player has a winning strategy. For each i ∈ N, it is possible to
define a program pi that prints only i and will not be removed by the
opponent.
The strategy is as before: wait for a program pi, then announce n = i.

pi is defined this way: print i and if pi is eventually removed by the
opponent, print every j ∈ N.

The problem Historical results New results Limitations

Bonus: let’s play

Game

• Player: tries to guess a number n.
• Opponent: produces in some way a list of all the programs that
eventually print n.

Version 3 (Type-2,K)

Again the opponent is a program. The player just has an upper
bound on its size.

The player has a winning strategy.

Let k be the upper bound. Define programs pi,j that print i and if
program j eventually halts, prints every natural number.
The strategy is: look for i such that pi,j appears for every j ≤ k, then
announce n = i.

	The problem
	Historical results
	New results
	Limitations

