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Probabilistic process

We consider a probabilistic process that produces bits. It is fully
described by a stationary probability measure P over {0, 1}N.

Box
x = 011010 . . .

Each w ∈ {0, 1}∗ has a probability P(w) of appearing at time 0.
P is stationary: w appears at time n with the same probability as at time
0, for every n.
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Limit frequencies

Theorem (Birkhoff, 1931)
For P-almost every x ∈ {0, 1}N, for each w ∈ {0, 1}∗ the following limit
exists:

Px(w) := lim
n→∞

#occ(w , x0x1 . . . xn−1)

n
.

Definition
A sequence x is generic if Px(w) exists for every w ∈ {0, 1}∗.

Property
For every generic x , Px is a stationary probability measure.

Question
Can we say more about Px?
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Example 1
Coin flipping

Coin (p, 1− p)
x = 011010 . . .

Bp(w) = p|w |1(1− p)|w |0

Strong law of large numbers
Bp-almost surely, the limit frequency Px(w) of occurrences of w is
Bp(w). Hence Px = Bp for Bp-almost every x .
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Example 2
Coins flipping

1/2

1/2

Coin 1 (p1, 1− p1)

Coin 2 (p2, 1− p2)

x = 011010 . . .

• First step: choose coin 1 or 2 at random ((1/2, 1/2), say), once for
all.

• Following steps: flip the chosen coin.

P =
1
2
(Bp1 + Bp2).

With probability 1/2, the induced measure will be Bp1 . With probability
1/2, it will be Bp2 .
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Ergodicity

Definition
A stationary measure P has a decomposition if P = αP1 + (1− α)P2
where:

• 0 < α < 1,
• P1 and P2 are stationary,
• P1 6= P2.

A stationary measure is ergodic if it has no decomposition.

The 2 examples

1 The Bernoulli measure Bp is ergodic for every p.
2 Of course, 1

2 (Bp1 + Bp2) is not ergodic if p1 6= p2.
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Ergodic decomposition

Question
Can we say more about Px?

The ergodic case

Theorem (Birkhoff, 1931)
Let P be an ergodic stationary measure. For P-almost every sequence x,
Px = P.

The non-ergodic case

Theorem (Ergodic decomposition)
Let P be a stationary measure. For P-almost every sequence x, Px is
ergodic.
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Ergodic decomposition
Every stationary process can be decomposed into:

• First step: pick an ergodic process at random.
• Following steps: run the chosen process.

...

mP

Ergodic processes
x = 011010 . . .

Every stationary measure P ∈ P(X ) is a barycenter of the ergodic
measures: there is a probability measure mP ∈ P(P(X )) supported on the
ergodic measures such that

P(w) =

∫
Q(w) dmP(Q)

for every w ∈ {0, 1}∗.
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Dynamical systems

(thanks to Thierry)
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Dynamical systems

• X = S × [0, 1] where S = [0, 1] mod 1 is the unit circle.
• T (x , y) = (x + y mod 1, y).

y =
√

2− 1

y = 7/9
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Randomness
Let P = B1/2.

0000000000000000000000 . . . non-random
1011011011011011011011 . . . non-random
0101110100010010101100 . . . possibly random

Martin-Löf, 1966
To each probability measure P is associated the set RP of P-random
sequences, defined as the intersection of all the “constructive” sets of
measure one.

P(RP) = 1.

The theory can be extended to many separable metric spaces: Rn,
C ([0, 1]), K(Rn), P({0, 1}N), . . .
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Randomness vs ergodic theory

General direction
Understand the properties of the sequences that are random with respect
to invariant measures.
Kučera (1985), V’yugin (1997, 1998), Nakamura (2005), Gács, Galatolo,
H., Rojas (2008, 2009), Bienvenu, Day, Mezhirov, Shen (2010)
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Randomness

V’yugin (1997): Bikhoff’s ergodic theorem holds for random sequences.

Theorem (V’yugin, 1997)
Let P be a stationary probability measure:

• Every P-random sequence x is generic.
• When P is ergodic, Px = P for every P-random x.

Ergodic decomposition for random sequences?
Let P be a stationary probability measure. If x be P-random, is Px
ergodic?
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a. Effective decomposition

a. Effective decomposition

Reminder: if P ∈ P(X ) is stationary, then there exists mP ∈ P(P(X ))
such that for every w ∈ {0, 1}∗,

P(w) =

∫
Q(w) dmP(Q).

...

mP

Ergodic processes
x = 011010 . . .

Definition
Let P be a computable stationary measure. The ergodic decomposition
of P is effective if the measure mP is computable.
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a. Effective decomposition

Theorem
Let P be an effectively decomposable stationary measure. The following
statements are equivalent:

• x is P-random,
• there is an mP -random measure P ′ such that x is P ′-random.

Lemma
Every mP -random measure is ergodic.

Corollary
If x is P-random, then

• Px is mP -random,
• Px is ergodic,
• x is Px -random.
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a. Effective decomposition

a. Effective decomposition
Reminder: decomposition of the set of random points

RP =
⋃
n∈N

Rn
P with Rn

P ⊆ Rn+1
P and P(Rn

P) > 1− 2−n.

Definition
A function f : X → R is P-layerwise computable if there is a machine
that computes (successive approximations of) f (x) from x and n such
that x ∈ Rn

P .

n x ∈ Rn
P

M
f(x)
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a. Effective decomposition

a. Effective decomposition

Theorem
Let P be a computable stationary measure. The following statements are
equivalent:

• P is effectively decomposable (i.e., mP is computable),
• the function x 7→ Px is P-layerwise computable.
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a. Effective decomposition
A counter-example due to V’yugin (1997)

• First step: pick i ∈ {1, 2, 3, . . .} with probability 2−i .
Let pi = 2−ti where ti is the halting time of Turing machine Mi
(pi = 0 when Mi does not halt).

• Following steps: run the following Markov chain
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The mixture P =
∑

i 2
−iPi is computable, but mP is not computable.

Open question

• What about finitely decomposable invariant measures?
• Let P = 1

2 (P1 + P2) with P1,P2 ergodic and P1 6= P2. If P is
computable, are P1,P2 computable?
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b. The ergodic case

b. The ergodic case
Open question
Let P be an ergodic stationary measure, which is not computable. Is the
constant function f (x) = P layerwise computable?
Weaker question: given a P-random sequence x , is P computable relative
to x?

Theorem
If P belongs to an effective closed set of ergodic measures, then the
constant function x 7→ P is P-layerwise computable.

n x ∈ Rn
P

M
f(x)
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b. The ergodic case

b. The ergodic case
Effective convergence

Theorem
The following are equivalent:

1 P belongs to some effective closed class of ergodic measures,
2 there is a computable function n(i ,w , ε) such that for every x ∈ Ri

P
and every n ≥ n(i ,w , ε),∣∣∣∣#occ(w , x0x1 . . . xn−1)

n
− P(w)

∣∣∣∣ < ε.

(the convergence of frequencies is P-layerwise effective)

Observation
Using Baire’s theorem, there exist ergodic measures that do not satisfy
this property.
Question: if w is fixed, is the convergence always effective?
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b. The ergodic case

Example
X = S × [0, 1] where S = [0, 1] mod 1 is the unit circle.
T (x , y) = (x + y mod 1, y).

y =
√

2− 1

y = 7/9

Specific answers

• Every point is generic and induces an ergodic measure P(x,y).
• For every (x , y), the induced measure P(x,y) is computable relative
to (x , y).
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Open questions

• If P is a computable stationary measure that has a finite
decomposition (e.g. P = 1

2 (P1 + P2)), are P1,P2 computable?
• If P is ergodic and x is P-random, is P computable from x?
• Given a stationary measure P and a P-random sequence x ,

• is Px always ergodic?
• is Px always mP -random?
• is x always Px -random?
• is Px computable relative to x?

Thank you!
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