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Given a computable dynamical system,
• is it possible to compute its invariant measures? the ergodic ones?
• is it possible to compute the speed of convergence of Birkhoff
averages?

• is it possible to compute the ergodic decomposition of invariant
measures?



Computability of invariant measures

Proposition (Galatolo, H. & Rojas,
2009)
There exists a computable dynamical
system T : S 1 → S 1 with no computable
invariant measure.

0 1 = 0

T

But. . .

Proposition
If a computable dynamical system is uniquely ergodic then its ergodic
measure is computable.

Open question
What about the finitely ergodic case?
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Birkhoff ergodic theorem

Let σ : {0, 1}N → {0, 1}N be the shift map and µ a
computable σ-invariant measure.

f (n) =
f + f ◦ σ + . . .+ f ◦ σn−1

n
−→
n→∞

f∗ (L1
(µ) and a.s.)

Theorem (V’yugin, 1997)
Let f(x) = x0. There exists a computable shift-invariant measure µ such
that the speed of convergence of f (n) to f∗ is not computable.

Theorem (Avigad, Gerhardy & Towsner, 2010)
The speed of convergence of f (n) to f∗ is always computable from f
and ‖f∗‖2.
In particular, if µ is ergodic then the speed is computable from f ,
as ‖f∗‖2 = ‖f‖1.
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Computable probability measure

Definition
A probability measure µ is computable if the following equivalent
conditions hold:
• there is an algorithm A : {0, 1}∗ × N→ Q such that

|A(w, n)− µ[w]| < 2−n,

• there is a randomized algorithm computing a.s. a
sequence x ∈ {0, 1}N, whose distribution is µ, i.e.

P(x ∈ [w]) = µ[w].



Ergodic decomposition

• Let µ be a computable σ-invariant measure.
• By definition of computable, there is a randomized algorithm
computing sequences with distribution µ.

Definition
The ergodic decomposition of µ is computable if there is a
randomized algorithm with two random oracles ω1, ω2 computing a.s. a
sequence x, such that
• the distribution of x is µ,
• for a.e. fixed ω1, the distribution of x is an ergodic measure.



Ergodic decomposition
The Pólya urn

run 0

. . .
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Ergodic decomposition
The Pólya urn

run 0 . . .

run 1 . . .

run 2 . . .

run 3 . . .

run 4 . . .

run 5 . . .

run 6 . . .

. . .



Ergodic decomposition
The Pólya urn

µ[w] =
|w|0!× |w|1!
(|w|+ 1)!

.

• µ is σ-invariant
• µ is the uniform average of the Bernoulli measures µp, 0 ≤ p ≤ 1:

µ[w] =

∫ 1

0

µp[w] dp.

• its ergodic decomposition is computable: for each oracle ω1, the
algorithm A(ω2) simulates µp where p = 0.ω1.

Computational consequences in terms of memory [Freer & Roy, 2009].



Ergodic decomposition

Let µ be a computable σ-invariant measure. The following are
equivalent:
• the ergodic decomposition of µ is computable,
• there exists a probabilistic algorithm computing a.s. an ergodic
measure ν, and such that

µ[w] = E(ν[w]),

• the speed of convergence of 1(n)
[w] to 1∗[w] is computable (unif. in w),

• the mapping L1(µ)→ L1(µ), f 7→ f∗ is computable.

When µ = α1µ1 + . . .+ αnµn (0 < αi ≤ 1,
∑
αi = 1, µi ergodic), the

decomposition of µ is computable iff all αi, µi are computable.
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Theorem (V’yugin, 1997)
There exists a computable σ-invariant measure µ whose decomposition is
not computable.

Proof.

• The ergodic decomposition operator is discontinuous (at every
non-ergodic measure).

• Take µn ergodic converging to µ∞ non-ergodic: the decomposition
of µn does not converge to the decomposition of µ∞.

• Let
µ =

∑
i

2−iµt(i)

where t(i) ∈ N ∪ {∞} is the halting time of program number i.
• µ is computable but its decomposition is not.
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Proof on an example.

µn is given by µ∞ = 1
2 (δ000... + δ111...)
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ergodic non-ergodic

• µ :=
∑
i 2
−iµt(i)

• Every ergodic component ν of µ satisfies
1 either ν[1] = 1

2
(ν = µn for some n <∞),

2 or ν[1] = 0 (ν = δ000...),
3 or ν[1] = 1 (ν = δ111...).

• The three events are “isolated from each other”, hence
distinguishable: their probabilities are computable if the
decomposition of µ is computable.

• But P(ν[1] = 1
2 ) =

∑
i∈K 2−i is not computable!
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The technic is much more general

Proposition
There exists a computable differentiable f : [0, 1]→ R such that f ′ is not
computable.

Proof.

• The differentiation operator d
dx : C [0, 1]→ C [0, 1] is not continuous.

• Let f∞ = 0 and fn →‖.‖∞ f∞ with f ′n(0) = 1.

Figure: fn(x) = sin(nx)
n

• Define f =
∑
i 2
−ift(i).

• f ′ is not computable as f ′(0) =
∑
i∈K 2−i.
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The technic is much more general
Proposition
There exists a continuous f : [0, 1]→ R which is computable in L1 but
not in C [0, 1].

Proof.

• id : L1[0, 1]→ C [0, 1] is not continuous (anywhere).
• Let f∞ = 0 and fn →‖.‖L1

0 with fn(0) = 1.

• Define f =
∑
i 2
−ift(i).

• f is not computable as f(0) =
∑
i∈K 2−i.
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More generally

Theorem (Pour-El & Richards, 1989)
Let X and Y be effective Banach spaces and T : X → Y a linear
operator with c.e. closed graph. If T is unbounded then there exists a
computable point x such that T (x) is not computable.

Examples
The following operators are unbounded
• id : L1[0, 1]→ L2[0, 1],
• id : L1[0, 1]→ C [0, 1],
• d

dx : C [0, 1]→ C [0, 1],

• solution operator of the wave equation ∂2u
∂t2 = ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 .
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Main question

• V’yugin’s example is an infinite combination of ergodic measures.
• What about the finite case?
• If µ = µ1+µ2

2 (with µ1, µ2 ergodic) is computable, are µ1 and µ2

computable as well?

The preceding technic does not apply.

Still,

Theorem (H., 2011)
There exist ergodic measures µ1, µ2 that are not computable relative
to µ1+µ2

2 .

Theorem (H., 2012)
There exist ergodic measures µ1, µ2 that are not computable while µ1+µ2

2
is computable.
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First result

Theorem (H., 2011)
There exist ergodic measures µ1, µ2 that are not computable relative
to µ1+µ2

2 .

The set of such pairs is even co-meager!



First result

Mσ = {σ-invariant measures}.

Lemma
Let C ⊆Mσ ×Mσ be such that the function (µ1, µ2) 7→ µ1+µ2

2
restricted to C is one-to-one and has a continuous inverse. C is nowhere
dense.

Proof.
• Let (µ1, µ2) ∈ C

• (µ′1, µ
′
2) /∈ C

• . . . for (µ′1, µ
′
2) in an

open set.

M

µ1

µ2

(µ1 + µ2)/2
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First result

Hence
• For each oracle Turing machine M , the set

CM := {(µ1, µ2) ∈Mσ ×Mσ :M
µ1+µ2

2 computes µ1}

is nowhere dense.

• InMσ ×Mσ, Eσ × Eσ is co-meager.
• So inMσ ×Mσ, the set

(Eσ × Eσ) \
⋃
M

CM

=

{(µ1, µ2) ∈ Eσ × Eσ : µ1 is not computable relative to
µ1 + µ2

2
}

is co-meager.
• AsMσ ×Mσ is a Baire space, the set is non-empty.
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Second result

Theorem (H., 2012)
There exist ergodic measures µ1, µ2 that are not computable while µ1+µ2

2
is computable.



Second result

• The construction is a game between a player and a countably infinite
number of opponents (the programs).

• The player privately builds µ1 and µ2 and publicly describes µ1+µ2

2 .
• Each opponent tries to guess µ1, i.e. to publicly describe µ1.
• The player wins if the opponent fails.
• Any public statement is irrevocable.

Theorem
The player has a computable winning strategy.
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Second result
Against one opponent

Start from any ergodic µ1 6= µ2 and describe µ1+µ2

2 .

µ1

µ2

(µ1 + µ2)/2

Knowledge of the player

(µ1 + µ2)/2

Knowledge of the opponent

Three cases:
1 the opponent remains silent forever: do nothing.
2 the opponent eventually makes a wrong guess: do nothing.
3 the opponent eventually makes a correct guess: move µ1 and µ2

much but µ1 + µ2 very little.
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Second result
Against infinitely many opponents

Based on the “priority method with finite injury”.

• Run the strategies Si in parallel at different scales.

• The strategies may interfer. Put a priority ordering: Si has priority
over Sj if i < j.

• When Si acts, it can “injure” Sj ’s past actions if i < j, but Sj is
restarted.

• Every strategy eventually settles, so every strategy eventually acts
without being injured any more (“finite injury”).

• The limit measures µ1 and µ2 are not computed by any opponent.
However the player computes µ1+µ2

2 .
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More generally

Let X be an effective Polish space and Y a second-countable topological
space.

Definition
f : X → Y is irreversible if
• ∃U 6= ∅ open s.t. int(f(U)) = ∅ (inside f(X)),
• the same holds for the restriction f|B to any open B.

f is computably irreversible if UB can be computed from B.

Theorem (H., 2012)
If f is computable and computably irreversible then
• the set {x ∈ X : x is not computable from f(x)} is co-meager,
• there exist a non-computable x such that f(x) is computable.
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