Computability in ergodic theory

Mathieu Hoyrup

Given a computable dynamical system,

- is it possible to compute its invariant measures? the ergodic ones?
- is it possible to compute the speed of convergence of Birkhoff averages?
- is it possible to compute the ergodic decomposition of invariant measures?

Computability of invariant measures

```
Proposition (Galatolo, H. & Rojas, 2009)
```

There exists a computable dynamical system $T: \mathscr{S}^1 \to \mathscr{S}^1$ with no computable invariant measure.

Computability of invariant measures

```
Proposition (Galatolo, H. & Rojas, 2009)
```

There exists a computable dynamical system $T: \mathscr{S}^1 \to \mathscr{S}^1$ with no computable invariant measure.

But. . .

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Computability of invariant measures

```
Proposition (Galatolo, H. & Rojas, 2009)
```

There exists a computable dynamical system $T: \mathscr{S}^1 \to \mathscr{S}^1$ with no computable invariant measure.

But. . .

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Open question

What about the finitely ergodic case?

Birkhoff ergodic theorem

Let $\sigma: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable σ -invariant measure.

$$f^{(n)} = rac{f+f\circ\sigma+\ldots+f\circ\sigma^{n-1}}{n} \stackrel{}{\longrightarrow} f^* \quad (L^1(\mu) ext{ and a.s.})$$

Theorem (V'yugin, 1997) Let $f(x) = x_0$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^* is not computable.

Birkhoff ergodic theorem

Let $\sigma: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable σ -invariant measure.

$$f^{(n)} = rac{f+f\circ\sigma+\ldots+f\circ\sigma^{n-1}}{n} \stackrel{}{\longrightarrow} f^* \quad (L^1(\mu) ext{ and a.s.})$$

Theorem (V'yugin, 1997) Let $f(x) = x_0$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^* is not computable.

Theorem (Avigad, Gerhardy & Towsner, 2010) The speed of convergence of $f^{(n)}$ to f^* is always computable from fand $||f^*||_2$. In particular, if μ is ergodic then the speed is computable from f, as $||f^*||_2 = ||f||_1$.

Computable probability measure

Definition

A **probability measure** μ **is computable** if the following equivalent conditions hold:

• there is an algorithm $A:\{0,1\}^*\times\mathbb{N}\to\mathbb{Q}$ such that

 $|A(w,n) - \mu[w]| < 2^{-n},$

• there is a randomized algorithm computing a.s. a sequence $x \in \{0, 1\}^{\mathbb{N}}$, whose distribution is μ , i.e.

 $\mathbb{P}(x\in [w])=\mu[w].$

- Let μ be a computable σ -invariant measure.
- By definition of *computable*, there is a randomized algorithm computing sequences with distribution μ .

Definition

The **ergodic decomposition of** μ **is computable** if there is a randomized algorithm with *two* random oracles ω_1, ω_2 computing a.s. a sequence x, such that

- the distribution of x is μ ,
- for a.e. fixed ω_1 , the distribution of x is an ergodic measure.

The Pólya urn

$$\mu[w] = \frac{|w|_0! \times |w|_1!}{(|w|+1)!}.$$

- μ is σ -invariant
- μ is the uniform average of the Bernoulli measures μ_p , $0 \le p \le 1$:

$$\mu[w] = \int_0^1 \mu_p[w] \,\mathrm{d}p.$$

• its ergodic decomposition is computable: for each oracle ω_1 , the algorithm $A(\omega_2)$ simulates μ_p where $p = 0.\omega_1$.

Computational consequences in terms of memory [Freer & Roy, 2009].

Let μ be a computable $\sigma\text{-invariant}$ measure. The following are equivalent:

- the ergodic decomposition of μ is computable,
- there exists a probabilistic algorithm computing a.s. an ergodic measure $\nu,$ and such that

 $\mu[w] = \mathbb{E}(\nu[w]),$

- the speed of convergence of $\mathbf{1}_{[w]}^{(n)}$ to $\mathbf{1}_{[w]}^*$ is computable (unif. in w),
- the mapping $L^1(\mu) \to L^1(\mu), f \mapsto f^*$ is computable.

Let μ be a computable $\sigma\text{-invariant}$ measure. The following are equivalent:

- the ergodic decomposition of μ is computable,
- there exists a probabilistic algorithm computing a.s. an ergodic measure $\nu,$ and such that

$$\mu[w] = \mathbb{E}(\nu[w]),$$

- the speed of convergence of $\mathbf{1}_{[w]}^{(n)}$ to $\mathbf{1}_{[w]}^*$ is computable (unif. in w),
- the mapping $L^1(\mu) \to L^1(\mu), f \mapsto f^*$ is computable.

When $\mu = \alpha_1 \mu_1 + \ldots + \alpha_n \mu_n$ ($0 < \alpha_i \le 1$, $\sum \alpha_i = 1$, μ_i ergodic), the decomposition of μ is computable iff all α_i, μ_i are computable.

There exists a computable σ -invariant measure μ whose decomposition is not computable.

There exists a computable σ -invariant measure μ whose decomposition is not computable.

Proof.

• The ergodic decomposition operator is discontinuous (at every non-ergodic measure).

There exists a computable σ -invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_n ergodic converging to μ_∞ non-ergodic: the decomposition of μ_n does not converge to the decomposition of μ_∞ .

There exists a computable σ -invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_n ergodic converging to μ_∞ non-ergodic: the decomposition of μ_n does not converge to the decomposition of μ_∞ .

• Let

$$\mu = \sum_{i} 2^{-i} \mu_{t(i)}$$

where $t(i) \in \mathbb{N} \cup \{\infty\}$ is the halting time of program number *i*.

There exists a computable σ -invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_n ergodic converging to μ_∞ non-ergodic: the decomposition of μ_n does not converge to the decomposition of μ_∞ .
- Let

$$\mu = \sum_{i} 2^{-i} \mu_{t(i)}$$

where $t(i) \in \mathbb{N} \cup \{\infty\}$ is the halting time of program number *i*.

• μ is computable but its decomposition is not.

• $\mu := \sum_i 2^{-i} \mu_{t(i)}$

- $\mu := \sum_i 2^{-i} \mu_{t(i)}$
- Every ergodic component u of μ satisfies
 - **1** either $\nu[1] = \frac{1}{2}$ ($\nu = \mu_n$ for some $n < \infty$), **2** or $\nu[1] = 0$ ($\nu = \delta_{000...}$), **3** or $\nu[1] = 1$ ($\nu = \delta_{111...}$).

• $\mu := \sum_i 2^{-i} \mu_{t(i)}$

• Every ergodic component u of μ satisfies

- **1** either $\nu[1] = \frac{1}{2}$ ($\nu = \mu_n$ for some $n < \infty$), **2** or $\nu[1] = 0$ ($\nu = \delta_{000...}$), **3** or $\nu[1] = 1$ ($\nu = \delta_{111...}$).
- The three events are "isolated from each other", hence distinguishable: their probabilities are computable if the decomposition of μ is computable.

• $\mu := \sum_i 2^{-i} \mu_{t(i)}$

• Every ergodic component u of μ satisfies

- **1** either $\nu[1] = \frac{1}{2} (\nu = \mu_n \text{ for some } n < \infty)$, **2** or $\nu[1] = 0 (\nu = \delta_{000...})$, **3** or $\nu[1] = 1 (\nu = \delta_{111...})$.
- The three events are "isolated from each other", hence distinguishable: their probabilities are computable if the decomposition of μ is computable.
- But $\mathbb{P}(\nu[1] = \frac{1}{2}) = \sum_{i \in K} 2^{-i}$ is not computable!

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \to \mathbb{R}$ such that f' is not computable.

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \to \mathbb{R}$ such that f' is not computable.

Proof.

• The differentiation operator $\frac{d}{dx}: \mathscr{C}[0,1] \to \mathscr{C}[0,1]$ is not continuous.
Proposition

There exists a computable differentiable $f:[0,1] \to \mathbb{R}$ such that f' is not computable.

Proof.

- The differentiation operator $\frac{d}{dx}: \mathscr{C}[0,1] \to \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{\infty}} f_{\infty}$ with $f'_n(0) = 1$.

Figure: $f_n(x) = \frac{\sin(nx)}{n}$

Proposition

There exists a computable differentiable $f:[0,1] \to \mathbb{R}$ such that f' is not computable.

Proof.

- The differentiation operator $\frac{d}{dx}: \mathscr{C}[0,1] \to \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{\infty}} f_{\infty}$ with $f'_n(0) = 1$.

Figure:	$f_n(x) =$	$\sin(nx)$
		n

• Define $f = \sum_i 2^{-i} f_{t(i)}$.

Proposition

There exists a computable differentiable $f:[0,1] \to \mathbb{R}$ such that f' is not computable.

Proof.

- The differentiation operator $\frac{d}{dx}: \mathscr{C}[0,1] \to \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{\infty}} f_{\infty}$ with $f'_n(0) = 1$.

Figure: $f_n(x) = \frac{\sin(nx)}{n}$

- Define $f = \sum_i 2^{-i} f_{t(i)}$.
- f' is not computable as $f'(0) = \sum_{i \in K} 2^{-i}$.

Proposition

There exists a continuous $f:[0,1]\to\mathbb{R}$ which is computable in L^1 but not in $\mathscr{C}[0,1].$

Proposition

There exists a continuous $f:[0,1] \to \mathbb{R}$ which is computable in L^1 but not in $\mathscr{C}[0,1]$.

Proof.

• id : $L^1[0,1] \to \mathscr{C}[0,1]$ is not continuous (anywhere).

Proposition

There exists a continuous $f:[0,1] \to \mathbb{R}$ which is computable in L^1 but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^1[0,1] \to \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{L^1}} 0$ with $f_n(0) = 1$.

Proposition

There exists a continuous $f:[0,1] \to \mathbb{R}$ which is computable in L^1 but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^1[0,1] \to \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{L^1}} 0$ with $f_n(0) = 1$.

• Define $f = \sum_i 2^{-i} f_{t(i)}$.

Proposition

There exists a continuous $f:[0,1] \to \mathbb{R}$ which is computable in L^1 but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^1[0,1] \to \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty} = 0$ and $f_n \rightarrow_{\|.\|_{L^1}} 0$ with $f_n(0) = 1$.

- Define $f = \sum_i 2^{-i} f_{t(i)}$.
- f is not computable as $f(0) = \sum_{i \in K} 2^{-i}$.

More generally

Theorem (Pour-El & Richards, 1989)

Let X and Y be effective Banach spaces and $T : X \to Y$ a linear operator with c.e. closed graph. If T is unbounded then there exists a computable point x such that T(x) is not computable.

More generally

Theorem (Pour-El & Richards, 1989)

Let X and Y be effective Banach spaces and $T: X \to Y$ a linear operator with c.e. closed graph. If T is unbounded then there exists a computable point x such that T(x) is not computable.

Examples

The following operators are unbounded

- id : $L^1[0,1] \to L^2[0,1]$,
- id : $L^1[0,1] \to \mathscr{C}[0,1]$,
- $\frac{d}{dx}: \mathscr{C}[0,1] \to \mathscr{C}[0,1]$,
- solution operator of the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu = \frac{\mu_1 + \mu_2}{2}$ (with μ_1, μ_2 ergodic) is computable, are μ_1 and μ_2 computable as well?

The preceding technic does not apply.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu = \frac{\mu_1 + \mu_2}{2}$ (with μ_1, μ_2 ergodic) is computable, are μ_1 and μ_2 computable as well?

The preceding technic does not apply. Still,

Theorem (H., 2011)

There exist ergodic measures μ_1, μ_2 that are not computable relative to $\frac{\mu_1 + \mu_2}{2}$.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu = \frac{\mu_1 + \mu_2}{2}$ (with μ_1, μ_2 ergodic) is computable, are μ_1 and μ_2 computable as well?

The preceding technic does not apply. Still,

Theorem (H., 2011)

There exist ergodic measures μ_1, μ_2 that are not computable relative to $\frac{\mu_1 + \mu_2}{2}$.

Theorem (H., 2012)

There exist ergodic measures μ_1, μ_2 that are not computable while $\frac{\mu_1 + \mu_2}{2}$ is computable.

Theorem (H., 2011)

There exist ergodic measures μ_1, μ_2 that are not computable relative to $\frac{\mu_1 + \mu_2}{2}$.

The set of such pairs is even co-meager!

 $\mathcal{M}_{\sigma} = \{\sigma \text{-invariant measures}\}.$

Lemma

Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $(\mu_1, \mu_2) \mapsto \frac{\mu_1 + \mu_2}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

 $\mathcal{M}_{\sigma} = \{\sigma \text{-invariant measures}\}.$

Lemma

Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $(\mu_1, \mu_2) \mapsto \frac{\mu_1 + \mu_2}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

• Let $(\mu_1, \mu_2) \in C$

 $\mathcal{M}_{\sigma} = \{\sigma \text{-invariant measures}\}.$

Lemma

Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $(\mu_1, \mu_2) \mapsto \frac{\mu_1 + \mu_2}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

- Let $(\mu_1, \mu_2) \in C$
- $\bullet \ (\mu_1',\mu_2') \notin C$

 $\mathcal{M}_{\sigma} = \{\sigma \text{-invariant measures}\}.$

Lemma

Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $(\mu_1, \mu_2) \mapsto \frac{\mu_1 + \mu_2}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

- Let $(\mu_1, \mu_2) \in C$
- $(\mu'_1,\mu'_2) \notin C \dots$
- ... for (μ'_1, μ'_2) in an open set.

Hence

• For each oracle Turing machine M, the set

 $C_M := \{(\mu_1, \mu_2) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma} : M^{\frac{\mu_1 + \mu_2}{2}} \text{ computes } \mu_1\}$

is nowhere dense.

Hence

• For each oracle Turing machine M, the set

 $C_M := \{(\mu_1, \mu_2) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma} : M^{\frac{\mu_1 + \mu_2}{2}} \text{ computes } \mu_1\}$

is nowhere dense.

• In $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$, $\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.

Hence

• For each oracle Turing machine M, the set

 $C_M := \{(\mu_1, \mu_2) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma} : M^{\frac{\mu_1 + \mu_2}{2}} \text{ computes } \mu_1\}$

is nowhere dense.

- In $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$, $\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.
- So in $\mathcal{M}_{\sigma} imes \mathcal{M}_{\sigma}$, the set

$$(\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}) \setminus \bigcup_{M} C_{M}$$

 $\{(\mu_1,\mu_2)\in\mathscr{E}_{\sigma}\times\mathscr{E}_{\sigma}:\mu_1\text{ is not computable relative to }\frac{\mu_1+\mu_2}{2}\}$

is co-meager.

Hence

• For each oracle Turing machine M, the set

 $C_M := \{ (\mu_1, \mu_2) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma} : M^{\frac{\mu_1 + \mu_2}{2}} \text{ computes } \mu_1 \}$

is nowhere dense.

- In $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$, $\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.
- So in $\mathcal{M}_{\sigma} imes \mathcal{M}_{\sigma}$, the set

$$(\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}) \setminus \bigcup_{M} C_{M}$$

 $\{(\mu_1,\mu_2)\in\mathscr{E}_{\sigma}\times\mathscr{E}_{\sigma}:\mu_1\text{ is not computable relative to }\frac{\mu_1+\mu_2}{2}\}$

is co-meager.

• As $\mathcal{M}_{\sigma} imes \mathcal{M}_{\sigma}$ is a Baire space, the set is non-empty.

Theorem (H., 2012)

There exist ergodic measures μ_1, μ_2 that are not computable while $\frac{\mu_1 + \mu_2}{2}$ is computable.

- The construction is a game between a player and a countably infinite number of opponents (the programs).
- The player privately builds μ_1 and μ_2 and publicly describes $\frac{\mu_1 + \mu_2}{2}$.
- Each opponent tries to guess μ_1 , i.e. to publicly describe μ_1 .
- The player wins if the opponent fails.
- Any public statement is irrevocable.

- The construction is a game between a player and a countably infinite number of opponents (the programs).
- The player privately builds μ_1 and μ_2 and publicly describes $\frac{\mu_1 + \mu_2}{2}$.
- Each opponent tries to guess μ_1 , i.e. to publicly describe μ_1 .
- The player wins if the opponent fails.
- Any public statement is irrevocable.

Theorem

The player has a computable winning strategy.

Against one opponent

Start from any ergodic $\mu_1 \neq \mu_2$ and describe $\frac{\mu_1 + \mu_2}{2}$.

Knowledge of the player

Knowledge of the opponent

Against one opponent

Start from any ergodic $\mu_1 \neq \mu_2$ and describe $\frac{\mu_1 + \mu_2}{2}$.

Knowledge of the player

Knowledge of the opponent

Against one opponent

Start from any ergodic $\mu_1 \neq \mu_2$ and describe $\frac{\mu_1 + \mu_2}{2}$.

Knowledge of the player

Knowledge of the opponent

Against one opponent

Start from any ergodic $\mu_1 \neq \mu_2$ and describe $\frac{\mu_1 + \mu_2}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:

1 the opponent remains silent forever: do nothing.

Against one opponent

Knowledge of the player

Knowledge of the opponent

Three cases:

- 1 the opponent remains silent forever: do nothing.
- 2 the opponent eventually makes a wrong guess: do nothing.

Against one opponent

Knowledge of the player

Knowledge of the opponent

Three cases:

- 1 the opponent remains silent forever: do nothing.
- 2 the opponent eventually makes a wrong guess: do nothing.
- **3** the opponent eventually makes a correct guess:

Against one opponent

Start from any ergodic $\mu_1 \neq \mu_2$ and describe $\frac{\mu_1 + \mu_2}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:

- 1 the opponent remains silent forever: do nothing.
- 2 the opponent eventually makes a wrong guess: do nothing.
- (3) the opponent eventually makes a correct guess: move μ_1 and μ_2 much but $\mu_1 + \mu_2$ very little.

Against infinitely many opponents

Based on the "priority method with finite injury".

• Run the strategies S_i in parallel at different scales.

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_i in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_i has priority over S_j if i < j.

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_i in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_i has priority over S_j if i < j.
- When S_i acts, it can "injure" S_j 's past actions if i < j, but S_j is restarted.

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_i in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_i has priority over S_j if i < j.
- When S_i acts, it can "injure" S_j 's past actions if i < j, but S_j is restarted.
- Every strategy eventually settles, so every strategy eventually acts without being injured any more ("finite injury").
Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_i in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_i has priority over S_j if i < j.
- When S_i acts, it can "injure" S_j 's past actions if i < j, but S_j is restarted.
- Every strategy eventually settles, so every strategy eventually acts without being injured any more ("finite injury").
- The limit measures μ_1 and μ_2 are not computed by any opponent. However the player computes $\frac{\mu_1 + \mu_2}{2}$.

More generally

Let X be an effective Polish space and Y a second-countable topological space.

Definition

- $f: X \to Y$ is irreversible if
 - $\exists U \neq \emptyset$ open s.t. $\operatorname{int}(f(U)) = \emptyset$ (inside f(X)),
 - the same holds for the restriction $f_{|B}$ to any open B.
- f is **computably irreversible** if U_B can be computed from B.

More generally

Let X be an effective Polish space and Y a second-countable topological space.

Definition

- $f: X \to Y$ is irreversible if
 - $\exists U \neq \emptyset$ open s.t. $\operatorname{int}(f(U)) = \emptyset$ (inside f(X)),
 - the same holds for the restriction $f_{|B}$ to any open B.
- f is **computably irreversible** if U_B can be computed from B.

Theorem (H., 2012)

If f is computable and computably irreversible then

- the set $\{x \in X : x \text{ is not computable from } f(x)\}$ is co-meager,
- there exist a non-computable x such that f(x) is computable.