Computability in ergodic theory

Mathieu Hoyrup

01101111
01110016
01101001
01101001
01100001
01101800
01101100
0110111
01110010
015110010
01101201
7110000101
oria
11001001 Li: Laboratoire lorrain de recherche
'00001011' en informatique et ses applications

Given a computable dynamical system,

- is it possible to compute its invariant measures? the ergodic ones?
- is it possible to compute the speed of convergence of Birkhoff averages?
- is it possible to compute the ergodic decomposition of invariant measures?

Computability of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

Computability of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

But. . .

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Computability of invariant measures

Proposition (Galatolo, H. \& Rojas, 2009)

There exists a computable dynamical system $T: \mathscr{S}^{1} \rightarrow \mathscr{S}^{1}$ with no computable invariant measure.

But...

Proposition

If a computable dynamical system is uniquely ergodic then its ergodic measure is computable.

Open question
What about the finitely ergodic case?

Birkhoff ergodic theorem

Let $\sigma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable σ-invariant measure.

$$
f^{(n)}=\frac{f+f \circ \sigma+\ldots+f \circ \sigma^{n-1}}{n} \underset{n \rightarrow \infty}{\longrightarrow} f^{*} \quad\left(L^{1}(\mu) \text { and a.s. }\right)
$$

Theorem (V'yugin, 1997)
Let $f(x)=x_{0}$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^{*} is not computable.

Birkhoff ergodic theorem

Let $\sigma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the shift map and μ a computable σ-invariant measure.

$$
f^{(n)}=\frac{f+f \circ \sigma+\ldots+f \circ \sigma^{n-1}}{n} \underset{n \rightarrow \infty}{\longrightarrow} f^{*} \quad\left(L^{1}(\mu) \text { and a.s. }\right)
$$

Theorem (V'yugin, 1997)
Let $f(x)=x_{0}$. There exists a computable shift-invariant measure μ such that the speed of convergence of $f^{(n)}$ to f^{*} is not computable.

Theorem (Avigad, Gerhardy \& Towsner, 2010)

The speed of convergence of $f^{(n)}$ to f^{*} is always computable from f and $\left\|f^{*}\right\|_{2}$.
In particular, if μ is ergodic then the speed is computable from f, as $\left\|f^{*}\right\|_{2}=\|f\|_{1}$.

Computable probability measure

Definition

A probability measure μ is computable if the following equivalent conditions hold:

- there is an algorithm $A:\{0,1\}^{*} \times \mathbb{N} \rightarrow \mathbb{Q}$ such that

$$
|A(w, n)-\mu[w]|<2^{-n},
$$

- there is a randomized algorithm computing a.s. a sequence $x \in\{0,1\}^{\mathbb{N}}$, whose distribution is μ, i.e.

$$
\mathbb{P}(x \in[w])=\mu[w] .
$$

Ergodic decomposition

- Let μ be a computable σ-invariant measure.
- By definition of computable, there is a randomized algorithm computing sequences with distribution μ.

Definition

The ergodic decomposition of μ is computable if there is a randomized algorithm with two random oracles ω_{1}, ω_{2} computing a.s. a sequence x, such that

- the distribution of x is μ,
- for a.e. fixed ω_{1}, the distribution of x is an ergodic measure.

Ergodic decomposition
The Pólya urn

Ergodic decomposition
The Pólya urn

-००००००

Ergodic decomposition
The Pólya urn

-०००००००

Ergodic decomposition

The Pólya urn

Ergodic decomposition

The Pólya urn

Ergodic decomposition
The Pólya urn

run 3 -०७०००००००००००००००००००००००७००००००...

Ergodic decomposition

The Pólya urn

$$
\mu[w]=\frac{|w|_{0}!\times|w|_{1}!}{(|w|+1)!}
$$

- μ is σ-invariant
- μ is the uniform average of the Bernoulli measures $\mu_{p}, 0 \leq p \leq 1$:

$$
\mu[w]=\int_{0}^{1} \mu_{p}[w] \mathrm{d} p
$$

- its ergodic decomposition is computable: for each oracle ω_{1}, the algorithm $A\left(\omega_{2}\right)$ simulates μ_{p} where $p=0 . \omega_{1}$.
Computational consequences in terms of memory [Freer \& Roy, 2009].

Ergodic decomposition

Let μ be a computable σ-invariant measure. The following are equivalent:

- the ergodic decomposition of μ is computable,
- there exists a probabilistic algorithm computing a.s. an ergodic measure ν, and such that

$$
\mu[w]=\mathbb{E}(\nu[w]),
$$

- the speed of convergence of $\mathbf{1}_{[w]}^{(n)}$ to $\mathbf{1}_{[w]}^{*}$ is computable (unif. in w),
- the mapping $L^{1}(\mu) \rightarrow L^{1}(\mu), f \mapsto f^{*}$ is computable.

Ergodic decomposition

Let μ be a computable σ-invariant measure. The following are equivalent:

- the ergodic decomposition of μ is computable,
- there exists a probabilistic algorithm computing a.s. an ergodic measure ν, and such that

$$
\mu[w]=\mathbb{E}(\nu[w]),
$$

- the speed of convergence of $\mathbf{1}_{[w]}^{(n)}$ to $\mathbf{1}_{[w]}^{*}$ is computable (unif. in w),
- the mapping $L^{1}(\mu) \rightarrow L^{1}(\mu), f \mapsto f^{*}$ is computable.

When $\mu=\alpha_{1} \mu_{1}+\ldots+\alpha_{n} \mu_{n}\left(0<\alpha_{i} \leq 1, \sum \alpha_{i}=1, \mu_{i}\right.$ ergodic $)$, the decomposition of μ is computable iff all α_{i}, μ_{i} are computable.

Theorem (V'yugin, 1997)

There exists a computable σ-invariant measure μ whose decomposition is not computable.

Theorem (V'yugin, 1997)

There exists a computable σ-invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).

Theorem (V'yugin, 1997)

There exists a computable σ-invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_{n} ergodic converging to μ_{∞} non-ergodic: the decomposition of μ_{n} does not converge to the decomposition of μ_{∞}.

Theorem (V'yugin, 1997)

There exists a computable σ-invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_{n} ergodic converging to μ_{∞} non-ergodic: the decomposition of μ_{n} does not converge to the decomposition of μ_{∞}.
- Let

$$
\mu=\sum_{i} 2^{-i} \mu_{t(i)}
$$

where $t(i) \in \mathbb{N} \cup\{\infty\}$ is the halting time of program number i.

Theorem (V'yugin, 1997)

There exists a computable σ-invariant measure μ whose decomposition is not computable.

Proof.

- The ergodic decomposition operator is discontinuous (at every non-ergodic measure).
- Take μ_{n} ergodic converging to μ_{∞} non-ergodic: the decomposition of μ_{n} does not converge to the decomposition of μ_{∞}.
- Let

$$
\mu=\sum_{i} 2^{-i} \mu_{t(i)}
$$

where $t(i) \in \mathbb{N} \cup\{\infty\}$ is the halting time of program number i.

- μ is computable but its decomposition is not.

Proof on an example.

μ_{n} is given by	$\mu_{\infty}=\frac{1}{2}\left(\delta_{000 \ldots}+\delta_{111 \ldots}\right)$
ergodic	non-ergodic
$1-2^{-n}$	$1 / 2$

Proof on an example.

μ_{n} is given by	$\mu_{\infty}=\frac{1}{2}\left(\delta_{000 \ldots}+\delta_{111 \ldots}\right)$
ergodic	non-ergodic
$1-2^{-n}$	$1 / 2$

- $\mu:=\sum_{i} 2^{-i} \mu_{t(i)}$

Proof on an example.

μ_{n} is given by	$\mu_{\infty}=\frac{1}{2}\left(\delta_{000 \ldots}+\delta_{111 \ldots}\right)$
ergodic	non-ergodic

- $\mu:=\sum_{i} 2^{-i} \mu_{t(i)}$
- Every ergodic component ν of μ satisfies
(1) either $\nu[1]=\frac{1}{2}\left(\nu=\mu_{n}\right.$ for some $\left.n<\infty\right)$,
(2) or $\nu[1]=0\left(\nu=\delta_{000 \ldots} \ldots\right)$,
(3) or $\nu[1]=1\left(\nu=\delta_{111 \ldots .}\right)$.

Proof on an example.

μ_{n} is given by	$\mu_{\infty}=\frac{1}{2}\left(\delta_{000 \ldots}+\delta_{111 \ldots}\right)$
ergodic	non-ergodic

- $\mu:=\sum_{i} 2^{-i} \mu_{t(i)}$
- Every ergodic component ν of μ satisfies
(1) either $\nu[1]=\frac{1}{2}\left(\nu=\mu_{n}\right.$ for some $\left.n<\infty\right)$,
(2) or $\nu[1]=0\left(\nu=\delta_{000 \ldots}\right)$,
(3) or $\nu[1]=1\left(\nu=\delta_{111 \ldots}\right)$.
- The three events are "isolated from each other", hence distinguishable: their probabilities are computable if the decomposition of μ is computable.

Proof on an example.

μ_{n} is given by	$\mu_{\infty}=\frac{1}{2}\left(\delta_{000 \ldots}+\delta_{111 \ldots}\right)$
ergodic	non-ergodic
$1 / 2$	$1 / 2$

- $\mu:=\sum_{i} 2^{-i} \mu_{t(i)}$
- Every ergodic component ν of μ satisfies
(1) either $\nu[1]=\frac{1}{2}\left(\nu=\mu_{n}\right.$ for some $\left.n<\infty\right)$,
(2) or $\nu[1]=0\left(\nu=\delta_{000 \ldots}\right)$,
(3) or $\nu[1]=1\left(\nu=\delta_{111 \ldots}\right)$.
- The three events are "isolated from each other", hence distinguishable: their probabilities are computable if the decomposition of μ is computable.
- But $\mathbb{P}\left(\nu[1]=\frac{1}{2}\right)=\sum_{i \in K} 2^{-i}$ is not computable!

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \rightarrow \mathbb{R}$ such that f^{\prime} is not computable.

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \rightarrow \mathbb{R}$ such that f^{\prime} is not computable.

Proof.

- The differentiation operator $\frac{d}{d x}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous.

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \rightarrow \mathbb{R}$ such that f^{\prime} is not computable.

Proof.

- The differentiation operator $\frac{d}{d x}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty}=0$ and $f_{n} \rightarrow\|\cdot\|_{\infty} f_{\infty}$ with $f_{n}^{\prime}(0)=1$.

Figure: $f_{n}(x)=\frac{\sin (n x)}{n}$

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \rightarrow \mathbb{R}$ such that f^{\prime} is not computable.

Proof.

- The differentiation operator $\frac{d}{d x}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty}=0$ and $f_{n} \rightarrow_{\|\cdot\|_{\infty}} f_{\infty}$ with $f_{n}^{\prime}(0)=1$.

Figure: $f_{n}(x)=\frac{\sin (n x)}{n}$

- Define $f=\sum_{i} 2^{-i} f_{t(i)}$.

The technic is much more general

Proposition

There exists a computable differentiable $f:[0,1] \rightarrow \mathbb{R}$ such that f^{\prime} is not computable.

Proof.

- The differentiation operator $\frac{d}{d x}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous.
- Let $f_{\infty}=0$ and $f_{n} \rightarrow_{\|\cdot\|_{\infty}} f_{\infty}$ with $f_{n}^{\prime}(0)=1$.

Figure: $f_{n}(x)=\frac{\sin (n x)}{n}$

- Define $f=\sum_{i} 2^{-i} f_{t(i)}$.
- f^{\prime} is not computable as $f^{\prime}(0)=\sum_{i \in K} 2^{-i}$.

The technic is much more general

Proposition

There exists a continuous $f:[0,1] \rightarrow \mathbb{R}$ which is computable in L^{1} but not in $\mathscr{C}[0,1]$.

The technic is much more general

Proposition

There exists a continuous $f:[0,1] \rightarrow \mathbb{R}$ which is computable in L^{1} but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^{1}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous (anywhere).

The technic is much more general

Proposition

There exists a continuous $f:[0,1] \rightarrow \mathbb{R}$ which is computable in L^{1} but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^{1}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty}=0$ and $f_{n} \rightarrow\|\cdot\|_{L^{1}} 0$ with $f_{n}(0)=1$.

The technic is much more general

Proposition

There exists a continuous $f:[0,1] \rightarrow \mathbb{R}$ which is computable in L^{1} but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^{1}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty}=0$ and $f_{n} \rightarrow\|\cdot\|_{L^{1}} 0$ with $f_{n}(0)=1$.

- Define $f=\sum_{i} 2^{-i} f_{t(i)}$.

The technic is much more general

Proposition

There exists a continuous $f:[0,1] \rightarrow \mathbb{R}$ which is computable in L^{1} but not in $\mathscr{C}[0,1]$.

Proof.

- id : $L^{1}[0,1] \rightarrow \mathscr{C}[0,1]$ is not continuous (anywhere).
- Let $f_{\infty}=0$ and $f_{n} \rightarrow\|\cdot\|_{L^{1}} 0$ with $f_{n}(0)=1$.

- Define $f=\sum_{i} 2^{-i} f_{t(i)}$.
- f is not computable as $f(0)=\sum_{i \in K} 2^{-i}$.

More generally

Theorem (Pour-El \& Richards, 1989)
Let X and Y be effective Banach spaces and $T: X \rightarrow Y$ a linear operator with c.e. closed graph. If T is unbounded then there exists a computable point x such that $T(x)$ is not computable.

More generally

Theorem (Pour-El \& Richards, 1989)
Let X and Y be effective Banach spaces and $T: X \rightarrow Y$ a linear operator with c.e. closed graph. If T is unbounded then there exists a computable point x such that $T(x)$ is not computable.

Examples

The following operators are unbounded

- id : $L^{1}[0,1] \rightarrow L^{2}[0,1]$,
- id : $L^{1}[0,1] \rightarrow \mathscr{C}[0,1]$,
- $\frac{d}{d x}: \mathscr{C}[0,1] \rightarrow \mathscr{C}[0,1]$,
- solution operator of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu=\frac{\mu_{1}+\mu_{2}}{2}$ (with μ_{1}, μ_{2} ergodic) is computable, are μ_{1} and μ_{2} computable as well?

The preceding technic does not apply.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu=\frac{\mu_{1}+\mu_{2}}{2}$ (with μ_{1}, μ_{2} ergodic) is computable, are μ_{1} and μ_{2} computable as well?

The preceding technic does not apply. Still,

Theorem (H., 2011)
There exist ergodic measures μ_{1}, μ_{2} that are not computable relative to $\frac{\mu_{1}+\mu_{2}}{2}$.

Main question

- V'yugin's example is an infinite combination of ergodic measures.
- What about the finite case?
- If $\mu=\frac{\mu_{1}+\mu_{2}}{2}$ (with μ_{1}, μ_{2} ergodic) is computable, are μ_{1} and μ_{2} computable as well?

The preceding technic does not apply. Still,

Theorem (H., 2011)
There exist ergodic measures μ_{1}, μ_{2} that are not computable relative to $\frac{\mu_{1}+\mu_{2}}{2}$.

Theorem (H., 2012)
There exist ergodic measures μ_{1}, μ_{2} that are not computable while $\frac{\mu_{1}+\mu_{2}}{2}$ is computable.

First result

Theorem (H., 2011)
There exist ergodic measures μ_{1}, μ_{2} that are not computable relative to $\frac{\mu_{1}+\mu_{2}}{2}$.

The set of such pairs is even co-meager!

First result

$\mathcal{M}_{\sigma}=\{\sigma$-invariant measures $\}$.
Lemma
Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $\left(\mu_{1}, \mu_{2}\right) \mapsto \frac{\mu_{1}+\mu_{2}}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

First result

$\mathcal{M}_{\sigma}=\{\sigma$-invariant measures $\}$.
Lemma
Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $\left(\mu_{1}, \mu_{2}\right) \mapsto \frac{\mu_{1}+\mu_{2}}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

- Let $\left(\mu_{1}, \mu_{2}\right) \in C$

First result

$\mathcal{M}_{\sigma}=\{\sigma$-invariant measures $\}$.
Lemma
Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $\left(\mu_{1}, \mu_{2}\right) \mapsto \frac{\mu_{1}+\mu_{2}}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

- Let $\left(\mu_{1}, \mu_{2}\right) \in C$
- $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right) \notin C$

First result

$\mathcal{M}_{\sigma}=\{\sigma$-invariant measures $\}$.
Lemma
Let $C \subseteq \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ be such that the function $\left(\mu_{1}, \mu_{2}\right) \mapsto \frac{\mu_{1}+\mu_{2}}{2}$ restricted to C is one-to-one and has a continuous inverse. C is nowhere dense.

Proof.

- Let $\left(\mu_{1}, \mu_{2}\right) \in C$
- $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right) \notin C \ldots$
- ... for $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right)$ in an open set.

First result

Hence

- For each oracle Turing machine M, the set

$$
C_{M}:=\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}: M^{\frac{\mu_{1}+\mu_{2}}{2}} \text { computes } \mu_{1}\right\}
$$

is nowhere dense.

First result

Hence

- For each oracle Turing machine M, the set

$$
C_{M}:=\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}: M^{\frac{\mu_{1}+\mu_{2}}{2}} \text { computes } \mu_{1}\right\}
$$

is nowhere dense.

- $\ln \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}, \mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.

First result

Hence

- For each oracle Turing machine M, the set

$$
C_{M}:=\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}: M^{\frac{\mu_{1}+\mu_{2}}{2}} \text { computes } \mu_{1}\right\}
$$

is nowhere dense.

- In $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}, \mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.
- So in $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$, the set

$$
\begin{gathered}
\left(\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}\right) \backslash \bigcup_{M} C_{M} \\
=
\end{gathered}
$$

$\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}: \mu_{1}\right.$ is not computable relative to $\left.\frac{\mu_{1}+\mu_{2}}{2}\right\}$
is co-meager.

First result

Hence

- For each oracle Turing machine M, the set

$$
C_{M}:=\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}: M^{\frac{\mu_{1}+\mu_{2}}{2}} \text { computes } \mu_{1}\right\}
$$

is nowhere dense.

- In $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}, \mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}$ is co-meager.
- So in $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$, the set

$$
\begin{gathered}
\left(\mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}\right) \backslash \bigcup_{M} C_{M} \\
=
\end{gathered}
$$

$\left\{\left(\mu_{1}, \mu_{2}\right) \in \mathscr{E}_{\sigma} \times \mathscr{E}_{\sigma}: \mu_{1}\right.$ is not computable relative to $\left.\frac{\mu_{1}+\mu_{2}}{2}\right\}$
is co-meager.

- As $\mathcal{M}_{\sigma} \times \mathcal{M}_{\sigma}$ is a Baire space, the set is non-empty.

Second result

Theorem (H., 2012)
There exist ergodic measures μ_{1}, μ_{2} that are not computable while $\frac{\mu_{1}+\mu_{2}}{2}$ is computable.

Second result

- The construction is a game between a player and a countably infinite number of opponents (the programs).
- The player privately builds μ_{1} and μ_{2} and publicly describes $\frac{\mu_{1}+\mu_{2}}{2}$.
- Each opponent tries to guess μ_{1}, i.e. to publicly describe μ_{1}.
- The player wins if the opponent fails.
- Any public statement is irrevocable.

Second result

- The construction is a game between a player and a countably infinite number of opponents (the programs).
- The player privately builds μ_{1} and μ_{2} and publicly describes $\frac{\mu_{1}+\mu_{2}}{2}$.
- Each opponent tries to guess μ_{1}, i.e. to publicly describe μ_{1}.
- The player wins if the opponent fails.
- Any public statement is irrevocable.

Theorem
The player has a computable winning strategy.

Second result

Against one opponent
Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Second result

Against one opponent
Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Second result

Against one opponent
Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Second result

Against one opponent
Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:
(1) the opponent remains silent forever: do nothing.

Second result

Against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:
(1) the opponent remains silent forever: do nothing.
(2) the opponent eventually makes a wrong guess: do nothing.

Second result

Against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:
(1) the opponent remains silent forever: do nothing.
(2) the opponent eventually makes a wrong guess: do nothing.
(3) the opponent eventually makes a correct guess:

Second result

Against one opponent

Start from any ergodic $\mu_{1} \neq \mu_{2}$ and describe $\frac{\mu_{1}+\mu_{2}}{2}$.

Knowledge of the player

Knowledge of the opponent

Three cases:
(1) the opponent remains silent forever: do nothing.
(2) the opponent eventually makes a wrong guess: do nothing.
(3) the opponent eventually makes a correct guess: move μ_{1} and μ_{2} much but $\mu_{1}+\mu_{2}$ very little.

Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_{i} in parallel at different scales.

Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_{i} in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_{i} has priority over S_{j} if $i<j$.

Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_{i} in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_{i} has priority over S_{j} if $i<j$.
- When S_{i} acts, it can "injure" S_{j} 's past actions if $i<j$, but S_{j} is restarted.

Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_{i} in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_{i} has priority over S_{j} if $i<j$.
- When S_{i} acts, it can "injure" S_{j} 's past actions if $i<j$, but S_{j} is restarted.
- Every strategy eventually settles, so every strategy eventually acts without being injured any more ("finite injury").

Second result

Against infinitely many opponents

Based on the "priority method with finite injury".

- Run the strategies S_{i} in parallel at different scales.
- The strategies may interfer. Put a priority ordering: S_{i} has priority over S_{j} if $i<j$.
- When S_{i} acts, it can "injure" S_{j} 's past actions if $i<j$, but S_{j} is restarted.
- Every strategy eventually settles, so every strategy eventually acts without being injured any more ("finite injury").
- The limit measures μ_{1} and μ_{2} are not computed by any opponent. However the player computes $\frac{\mu_{1}+\mu_{2}}{2}$.

More generally

Let X be an effective Polish space and Y a second-countable topological space.
Definition
$f: X \rightarrow Y$ is irreversible if

- $\exists U \neq \emptyset$ open s.t. $\operatorname{int}(f(U))=\emptyset$ (inside $f(X)$),
- the same holds for the restriction $f_{\mid B}$ to any open B. f is computably irreversible if U_{B} can be computed from B.

More generally

Let X be an effective Polish space and Y a second-countable topological space.
Definition
$f: X \rightarrow Y$ is irreversible if

- $\exists U \neq \emptyset$ open s.t. $\operatorname{int}(f(U))=\emptyset$ (inside $f(X)$),
- the same holds for the restriction $f_{\mid B}$ to any open B. f is computably irreversible if U_{B} can be computed from B.

Theorem (H., 2012)
If f is computable and computably irreversible then

- the set $\{x \in X: x$ is not computable from $f(x)\}$ is co-meager,
- there exist a non-computable x such that $f(x)$ is computable.

