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1 Introduction

This technical documentation describes the implementation of the multi-
class SVM (M-SVM) introduced by Weston and Watkins (WW-M-SVM)
[9]. This machine can be seen as an instance of the generic model described
in [6].

2 Theoretical framework

Let us consider a Q-category pattern classification problem, with Q > 3.
We make the hypothesis that the covariates x live in a domain X . The set
of categories Y is identified with the set of indexes of the categories, i.e.,
J1, QK (no structure is assumed on Y). Let dm = {(xi, yi) : 1 6 i 6 m} be
a set of m labelled examples (dm ∈ (X × Y)m). Let κ be a real-valued posi-
tive type function/kernel [1] on X 2 and let

(
Hκ, 〈·, ·〉Hκ

)
be its reproducing

kernel Hilbert space (RKHS). The architecture considered to perform the
discriminant analysis, i.e., the function class H on which function selection
is performed based on dm, is the set of functions h = (hk)16k6Q from X into

RQ given by:

∀x ∈ X , h(x) =
(
〈h̄k, κx〉Hκ

+ bk
)

16k6Q
,

where
(
h̄k
)

16k6Q ∈ HQ
κ and (bk)16k6Q ∈ RQ.

We denote RQm (dm) the subset of RQm made up of the vectors v =
(vt)16t6Qm satisfying:

(
v(i−1)Q+yi

)
16i6m

= 0m. For the sake of simplicity,

the components of the vectors of RQm (dm) are written with two indices,
i.e., vik in place of v(i−1)Q+k, for i in J1,mK and k in J1, QK. For n in N∗,
let Mn,n (R) be the algebra of n × n matrices over R. Let MQm,Qm (dm)
be the subset of MQm,Qm (R) made up of the symmetric matrices M =

(mtu)16t,u6Qm satisfying: ∀j ∈ J1,mK,
(
mt,(j−1)Q+yj

)
16t6Qm

= 0Qm. Once

more for the sake of simplicity, the components of the matrices ofMQm,Qm (dm)
are written with four indices, i.e., mik,jl in place of m(i−1)Q+k,(j−1)Q+l, for
(i, j) in J1,mK2 and (k, l) in J1, QK2.
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3 Training the machine

3.1 Analytical expression of the primal

The training set dm being given, The optimal hyperplanes are solution of
the following quadratic programming (QP) problem:

Problem 1

min
h∈H, ξ∈RQm(dm)

{
1

2

Q∑
k=1

‖h̄k‖2Hκ
+ C

m∑
i=1

Q∑
k=1

ξik

}

subject to:{
hyi (xi)− hk (xi) > 1− δyi,k − ξik (1 6 i 6 m), (1 6 k 6 Q)
ξik > 0 (1 6 i 6 m), (1 6 k 6 Q)

,

where δ is the Kronecker symbol and the parameter C (the soft margin pa-
rameter), specifies the desired trade-off between training performance and
capacity control. Its value, fixed a priori, is taken in (0,+∞]. The objec-
tive function, hereafter denoted Jp, can be directly connected to a result of
uniform convergence of the empirical risk (see for instance [5]).

Solving Problem 1 amounts to finding a saddle point of the following
Lagrangian function:

L (h, ξ, α, β) =
1

2

Q∑
k=1

‖h̄k‖2Hκ
+ C

m∑
i=1

Q∑
k=1

ξik

−
m∑
i=1

Q∑
k=1

αik {hyi (xi)− hk (xi)− 1 + δyi,k + ξik} −
m∑
i=1

Q∑
k=1

βikξik

where α ∈ RQm+ (dm) and β ∈ RQm+ (dm) are the vectors of the Lagrange
multipliers. For technical reasons, among which the fact that the RKHS
can be infinite-dimensional, Problem 1 is solved in the form of its Wolfe
dual.

3.2 Analytical expression of the dual

At the optimum, the gradient of the Lagrangian function with respect to
the primal variables is null. As a consequence:

∇h̄kL (h∗, ξ∗, α∗, β∗) = 0Hκ (1 6 k 6 Q)
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and thus:

h̄∗k =
∑
{i:yi=k}

∑
l 6=k

α∗ilκxi −
∑
{i:yi 6=k}

α∗ikκxi (1 6 k 6 Q). (1)

Note that a consequence of Equation (1) is that
∑Q

k=1 h̄
∗
k = 0Hκ . Similarly,

∂

∂bk
L (h∗, ξ∗, α∗, β∗) = 0 (1 6 k 6 Q)

and consequently:∑
{i:yi=k}

∑
l 6=k

α∗il −
∑
{i:yi 6=k}

α∗ik = 0 (1 6 k 6 Q).

From

∂

∂ξik
L (h∗, ξ∗, α∗, β∗) = 0 (1 6 i 6 m), (1 6 k 6 Q), k 6= yi

we get:
α∗ik + β∗ik = C, (1 6 i 6 m), (1 6 k 6 Q), k 6= yi,

with the consequence that

α∗ik ∈ (0, C) =⇒ b∗yi − b
∗
k = 1− 〈h̄∗yi − h̄

∗
k, κxi〉Hκ

. (2)

These equations make it possible to eliminate the primal variables in the
expression of the Lagrangian function at the optimum. This gives us the
expression of the objective function of the dual problem (objective function
to be minimized):

Jd(α) =
1

2
αTHα− 1TQmα,

where H = (hik,jl)16i,j6m,16k,l6Q is the matrix of MQm,Qm (dm) with gen-
eral term

hik,jl =
(
δyi,yj − δyi,l − δyj ,k + δk,l

)
κ(xi, xj) (3)

and 1Qm is the vector of RQm (dm) of general term 1ik = 1 − δyi,k. The
expression of the dual problem is thus the following one:

Problem 2
min

α∈RQm+ (dm)
Jd(α)

subject to:{
0 6 αik 6 C (1 6 i 6 m), (1 6 k 6 Q)∑
{i:yi=k}

∑
l 6=k αil −

∑
{i:yi 6=k} αik = 0 (1 6 k 6 Q− 1)

.
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4 Assessment of the machine

The assessment of the machine involves the computation of the values of the
primal variables and the two objective functions (to check that the duality
gap is indeed negligible).

4.1 Computation of the primal variables

The analytical expression of the components of vector h̄∗ =
(
h̄∗k
)

16k6Q is

provided by Formula (1). The value of the vector b∗ = (b∗k)16k6Q can be

derived from the Karush–Kuhn–Tucker (KKT) conditions (Formula (2)), by
means of the computation of the gradient of the objective function of the dual
problem. The algebraic expression of this gradient is ∇Jd(α) = Hα − 1Qm
(so that it belongs to RQm (dm)). Its components are given by:

∀(i, k) ∈ J1,mK× J1, QK,
∂

∂αik
Jd(α) =∑

{j:yj=yi}

∑
l 6=yi

αjlκ (xj , xi)−
∑

{j:yj 6=yi}

αjyiκ (xj , xi)−
∑

{j:yj=k}

∑
l 6=k

αjlκ (xj , xi)+
∑

{j:yj 6=k}

αjkκ (xj , xi)+δyi,k−1.

Combining this formula with Formula (1) produces at the optimum

∀(i, k) ∈ J1,mK× J1, QK,
∂

∂αik
Jd (α∗) = 〈h̄∗yi − h̄

∗
k, κxi〉Hκ

+ δyi,k − 1, (4)

whose substitution into Formula (2) finally provides the desired expression
of the components of vector b∗:

α∗ik ∈ (0, C) =⇒ b∗yi − b
∗
k = − ∂

∂αik
Jd (α∗) (5)

(keeping in mind that without loss of generality, we can enforce the con-
straint

∑Q
k=1 b

∗
k = 0). With the vectors h̄∗ and b∗ at hand, the value of

the vector ξ∗ is obtaine once more through a direct application of the KKT
conditions:

α∗ik = C =⇒ ξ∗ik =
(
1 + h∗k (xi)− h∗yi (xi)

)
+
. (6)

4.2 Computation of the objective functions

The quadratic terms of both functions are equal, i.e.,

Q∑
k=1

‖h̄∗k‖2Hκ
= α∗THα∗.
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5 Solving the dual problem

To solve the dual problem, one can use the Frank-Wolfe algorithm [4]. The
principle of this linearization method is the following:

5.1 The Frank-Wolfe algorithm

We are interested in problems with linear constraints of the form:

min
t
f(t)

subject to: {
At = b
t > 0

.

The method is iterative and generates, starting from a feasible solution t(0),
a series of points t(0), t(1), . . . , t(n), . . . where, for each n, t(n+1) is deduced
from t(n) as follows:

(1) solve the linear programming (LP) problem LP (t(n)) given by:

min
u

{
∇f(t(n))Tu

}
subject to: {

Au = b
u > 0

.

(2) Let u(n) be an extreme point of the polyhedron which is an optimal
solution of LP (t(n)). Then t(n+1) is chosen so as to minimize f on the
interval

[
t(n), u(n)

]
.

5.2 Application to the WW-M-SVM

Applying this algorithm to train the WW-M-SVM raises no difficulties. One
can for instance choose α(0) = 0Qm. The linear program to be solved is:

Problem 3
min

γ∈RQm+ (dm)

{
∇Jd(α(n))Tγ

}
subject to:{

0 6 γik 6 C (1 6 i 6 m), (1 6 k 6 Q)∑
{i:yi=k}

∑
l 6=k γil −

∑
{i:yi 6=k} γik = 0 (1 6 k 6 Q− 1)
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with
∇Jd(α(n))Tγ = α(n)THγ − 1TQmγ.

Let θ(n) ∈ [0, 1] be the coefficient of the optimal convex combination between
α(n) and γ(n), i.e.,

θ(n) = Argminθ∈[0,1]Jd

(
(1− θ)α(n) + θγ(n)

)
.

The analytical expression of θ(n) can be obtained as follows:

Jd

(
(1− θ)α(n) + θγ(n)

)
=

1

2

{
(1− θ)α(n) + θγ(n)

}T
H
{

(1− θ)α(n) + θγ(n)
}
−1TQm

{
(1− θ)α(n) + θγ(n)

}
.

∂

∂θ
Jd

(
(1− θ)α(n) + θγ(n)

)
= θ

{
γ(n) − α(n)

}T
H
{
γ(n) − α(n)

}
+∇Jd(α(n))T

{
γ(n) − α(n)

}
.

In the non degenerate case where γ(n) 6= α(n), the derivative considered is an
affine function of θ with a positive slope. According to the definition of γ(n),
its intercept is nonpositive. Thus, the single value for which the derivative
is null is nonnegative. However, it can be superior to 1. In that case, the
optimal value of θ on [0, 1] is simply 1. This finally gives us:

θ(n) = min

{
−

∇Jd(α(n))T
{
γ(n) − α(n)

}{
γ(n) − α(n)

}T
H
{
γ(n) − α(n)

} , 1

}
.

5.3 Applying a decomposition method to the algorithm

The main difficulty met when one tries to solve the dual problem, let it
be with the Frank-Wolfe algorithm or other standard methods, rests in the
handling of the Hessian matrix H. Equation (3) shows that its components
are simple multiples of the components of the Gram matrix K ∈Mm,m(R),
of general term kij = κ(xi, xj). In the case of real-world problems, this
latter matrix can be huge, to an extent that it can fail to fit in memory.
Furthermore, its computation can be time consuming. A way to bypass
this difficulty consists in applying to the algorithm chosen a decomposition
technique. This approach was already applied in the early works dealing
with SVMs, works exposed in [2]. The chunking method used was the one
described in [8], Addendum I, in the particular case of a linear model. The
main decomposition techniques introduced afterwards are all based on the
solution of the dual problem in the case when the value of some of (most
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of actually) the variables are fixed. Hereafter, this case is considered in a
general way.

Without loss of generality, we assume that the optimization is performed
with respect to the dual variables associated with the NB first points in the
training set, the dual variables associated with the NH = m−NB last points
being fixed. The objective function can then be decomposed as follows:

Jd(α) =
1

2

(
αB
αH

)T (
HBB HBH

HHB HHH

)(
αB
αH

)
− 1TQm

(
αB
αH

)
.

This functional can still be rewritten as:

Jd(α) =
1

2
αTBHBBαB − (1TQNB − α

T
HHHB)αB +

1

2
αTHHHHαH − 1TQNHαH .

We have thus:

∇Jd(αB) = HBBαB +HBHαH − 1QNB =
(
HBB HBH

)
α− 1QNB .

It springs from this last equation that the expression of the gradient of the
objective function of the dual problem with respect to the free variables is
unchanged. In practice, in the framework of the implementation of the basic
Frank-Wolfe algorithm, the Hessian matrix H or the Gram matrix K appear
at three different levels:

1. initially, K is computed, which provides us with H;

2. at each iteration, the computation of the gradient makes use of the
computation of Hα(k);

3. at each iteration, the computation of θ(k) is based on the computation
of {

γ(n) − α(n)
}T

H
{
γ(n) − α(n)

}
.

With the implementation of a decomposition method, the computation of
HHH , or more precisely KHH , becomes useless. The aforementioned stages
are replaced with the following ones:

1. after each split of the training set, KBB and KBH are computed;

2. for a given split, the Frank-Wolfe algorithm requires one single initial
computation of HBHαH ;
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3. for a given split, at each iteration of the Frank-Wolfe algorithm, the

computation of the gradient makes use of the computation of HBBα
(n)
B ;

4. for a given split, at each iteration of the Frank-Wolfe algorithm, the

computation of θ(n) is based on the computation of
{
γ

(n)
B − α(n)

B

}T
HBB

{
γ

(n)
B − α(n)

B

}
.

One can readily point out the gain in terms of computation and memory
requirements made at each step (update of vector α), gain which is balanced
by the fact that the number of steps increases (it is a priori all the higher
as the number of free variables is lower). A decomposition method is ut-
terly specified by the algorithm computing the working set for the different
iterations. Many such algorithms can be found in literature. The interested
reader will find detailed overviews on the subject in Chapters 10, 11 and 12
of [7], as well as Chapter 7 of [3].

Acknowledgments Thanks are due to W. da Rocha for carefully reading
this documentation.
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