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1 Introduction

This application is an implementation of the multi-class SVM (M-SVM)
introduced by Weston and Watkins (WW-M-SVM) [8]. Contrary to the
implementation considered in [3], the machine is actually affine (and not
only linear) in the RKHS induced by the kernel. The programs are written
in C ANSI, and thus can be used under the various releases of UNIX, Linux,
IRIX, etc. The training algorithm is a chunked version of the Frank-Wolfe
algorithm [5].

2 Architecture of the software

2.1 Programs

This application is made up of three main programs. train SVM performs
the training of the machine, whereas eval _SVM is used to test it. train_SVM
calls 1p_solve, a solver for linear programming (LP) problems. 1lp_solve
has been developed by M. Berkelaar and implements an algorithm described
in [7]. Tt is released under the LGPL license.

2.2 How to compile

train_SVM and eval_SVM can be compiled thanks to the commands:
compile_train SVM and compile_eval_SVM
(the corresponding makefiles are in the subdirectory make).

If the binary 1p_solve is to be rebuilt, then the corresponding source code
can be found at the following address: https://osdn.net/projects/sfnet_
lpsolve/downloads/lpsolve/5.5.2.11/1p_solve_5.5.2.11_source.tar.
gz/.

3 Solving multi-class problems

3.1 Simple examples

A simple way to become familiar with the use of the software consists in run-
ning it on some of the eleven benchmarks provided. They correspond to the
data sets from the UCI repository [1] used to evaluate the consolidatin kernel
[2]. In order to select any of them, it suffices to use the corresponding script,
named configure.name, where name is the name of the data set as used in
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the directory Data (abalone, car, glass, ...). Once this is done, the files
Fichcom/train SVM.com and Fichcom/eval SVM.com (see below) contain
the appropriate parameters, and the file of dual variables is initialized with
a feasible solution. Suffice it to use the commands execute_train SVM and
execute_eval SVM to start training and evaluate the machine respectively.

3.2 Structure of the files containing the data

The files containing the data must be text files, with a specific structure. We
illustrate this structure on one of the five training sets of the Abalone prob-
lem. The name of the corresponding file is Data/DataXfold/abalone0.app.

3342 +— number of points in the set

8 +— number of components of the vectors coding the input data (de-
scriptions)

3 <— number of categories

0.58 0.44 0.175 1.2255 0.5405 0.2705 0.3265 10.0 3 +— descrip-
tion of the first example plus the label of its category (here 3).

3.3 Training the M-SVM

Training is initiated with the command
execute_train_SVM

In order to specify the nature of the problem to be solved, the file
Fichcom/train_SVM.com

must preliminary be filled. It is made up of six lines. Its structure, illus-

trated on the aforementioned Abalone problem, is as follows:

4 <— nature of the kernel

1.0 <— value of the soft margin parameter C of the objective function
(see Problem 1 in the technical documentation)

10 <— size of the chunk (see Section 5.3 of the technical documentation)

Data/abalone.app +— name of the file where the training data is stored

Alpha/abalone.alpha <— name of the file containing the initial values
of the dual variables «

Alpha/abalone.alpha ¢— name of the file where the updated values of
the dual variables « are stored during training



The functions implementing the kernels are located in the library algebre.c.
The only exception is the consolidation kernel. In that case, the correspond-
ing functions are located in the programs train SVM and eval SVM. The
values of the hyperparameters are set directly in the code. Four kernels are
implemented by default. They are listed in the order of the corresponding
value of the variable “nature of the kernel”:

1. linear kernel (Euclidean dot product);
2. Gaussian kernel;

3. polynomial kernel;

4. consolidation kernel.

A feasible solution to initialize the values of the dual variables « consists in
setting them all equal to 0. Care must be taken to the fact that the dummy
variables «;,, (see for instance [6] and the technical documentation) must
always remain equal to 0.

3.4 Testing the M-SVM

Testing is initiated with the command
execute_eval _SVM

The structure of the file

Fichcom/eval_SVM.com
containing the parameters used by the program eval_SVM, is similar to the
structure of the file Fichcom/train SVM.com. Here is an example, corre-
sponding once more to the Abalone problem:

4 +— nature of the kernel

1.0 <— value of the parameter C of the objective function

Data/abalone.app — name of the file where the training data is stored

Data/abalone.test <— name of the file where the test data is stored

Save_alpha/abalone.alpha <— name of the file where the values of the
dual variables o are read

SV/abalone.sv «— name of the file where the margin support vectors
and the corresponding categories will be stored

Data/abalone.output <— name of the file where the outputs of the
M-SVM will be stored



The program eval _SVM displays different pieces of information. The first
of them regard the satisfaction of the constraints of the learning problem
(Problem 2 in the technical documentation). Then come elements used to
estimate the components of vector b by means of Formula 5 in the techni-
cal documentation. This estimation is based on an identification of margin
support vectors. At last, the program displays the training and test perfor-
mances.

3.5 Stopping criteria

In order not to slow down the training algorithm, no test is made in the pro-
gram train SVM regarding the satisfaction of optimality conditions (Kuhn-
Tucker conditions...) [4]. However, every 100 iterations, the program dis-
plays the number of examples identified as margin support vectors. In the
case that the initial (feasible) solution is the null vector, then this number
usually increases almost monotonically during the first iterations, before
reaching a plateau and then decreasing. A rule of thumb is that as soon
as the decrease occurs, it is possible to start testing (use the eval SVM pro-
gram) and obtain a performance close to that associated with the optimal
solution (although this solution could be reached far later).

In the program eval SVM, the ratio between the dual and the primal
objective function is estimated. More precisely, the value of the dual ob-
jective function is computed, whereas an estimate of (upper bound on) the
primal objective function is obtained. Indeed, this latter program can be
used at any stage of the training process, including with the initial values
of the dual variables, with the drawback that in this case, there is no closed
form expression for the optimal value of vector b (Formula (2) in the tech-
nical documentation does not hold true). To sum up, given the specificities
of the application, we suggest the following three-step strategy to monitor
training:

1. start the program train SVM;

2. if the number of examples identified as margin support vectors has
started to decrease, then (with train_ SVM still running) use eval SVM
to check whether the feasibility gap is low enough;

3. stop training when the ratio of the objective functions (dual / primal)
is superior to 0.99.



4 General comments

Please, feel free to report any suggestions you could have to improve the
programs, this document or the technical documentation, to the following
address: Yann.Guermeur@cnrs.fr
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