
M-SVM2 user’s guide

Yann Guermeur

November 16, 2010

Contents

1 Introduction 3

2 Architecture of the software 3
2.1 Programs . 3
2.2 How to compile . 3

3 Solving multi-class problems 3
3.1 Four simple examples . 3
3.2 Structure of the files containing the data 4
3.3 Training the M-SVM2 . 4
3.4 Testing the M-SVM2 . 5
3.5 Stopping criterion . 7

4 General comments 8

2

1 Introduction

This software is an implementation of the multi-class SVM (M-SVM) named
M-SVM2 introduced in [6] (the initial version of the paper can be found in the
subdirectory Tech). It is written in C ANSI, and thus can be used under the
various releases of UNIX, Linux, IRIX, etc. It is the property of CNRS and is
governed by the CeCILL-B license as circulated by CEA, CNRS and INRIA
at the following URL http://www.cecill.info. It has been registered
at the “Agence pour la Protection des Programmes” (APP) under number
IDDN.FR.001.370001.000.S.P.2010.000.30000. The training algorithm
is a variant of Rosen’s gradient projection method [9] which implements a
decomposition strategy. Notations used in this guide are those of [6].

2 Architecture of the software

2.1 Programs

This application is made up of two main programs: train SVM performs
the training of the M-SVM, whereas eval SVM is used to assess the model
performance on the training and test sets.

2.2 How to compile

train SVM and eval SVM can be compiled thanks to the commands:
compile train SVM and compile eval SVM

(the corresponding makefiles are in the subdirectory make).

3 Solving multi-class problems

3.1 Four simple examples

A simple way to become familiar with the use of the software consists in run-
ning it on the four examples provided, named “Gaussians”, “iris”, “Lee”,
and “toy”. The corresponding training and test sets are located in the
subdirectory Data. The first of these examples is the three-Gaussian prob-
lem that illustrates [5]. The second one corresponds to the iris data set
of Fisher, available at the UCI repository [1]. The third one is the nu-
merical example used in [7]. At last, the fourth problem is a 3-class toy

3

problem borrowed from [3]1. In order to select any of the four problems,
it suffices to use the corresponding script, either configure.gaussians,
configure.iris, configure.Lee or configure.toy. Once this is done,
the files Fichcom/train SVM.com and Fichcom/eval SVM.com (see below)
contain the appropriate parameters, and the file of dual variables is initial-
ized with a feasible solution (by default the null vector). Suffice it to use
the command execute train SVM to start training. While training is un-
derway, the command execute eval SVM can be used to assess its progress
and compute the training and test performance.

3.2 Structure of the files containing the data

The files containing the data must be text files, with a specific structure.
We illustrate this structure on Elisseeff’s toy problem. The name of the
corresponding file is Data/toy.app.

1000 ←− number of points in the set
2 ←− number of predictors (components of the vectors coding the input

data)
0.781323 0.298303 1←− description of the first example: two compo-

nents of the input vector plus the label of the category, here 1.
...

3.3 Training the M-SVM2

Training is initiated with the command
execute train SVM

In order to specify the nature of the problem to be solved, the file
Fichcom/train SVM.com

must preliminary be filled. It is made up of seven lines. Its structure, illus-
trated on the aforementioned toy problem, is as follows:

3 ←− number of categories for the problem
1 ←− nature of the kernel
100.0 ←− value of the soft margin parameter C
4 ←− size of the chunk (see the technical documentation)
Data/toy.app ←− name of the file where the training data is stored

1The programs to generate the corresponding data sets and display them are located
in the subdirectory Toy.

4

Alpha/toy.alpha ←− name of the file containing the initial values of
the dual variables αik

Alpha/toy.alpha ←− name of the file where the updated values of the
dual variables αik are stored during training

Currently, only three types of kernels are implemented: a linear kernel, a
RBF (Gaussian) kernel and a polynomial one. A value of 1 for the “nature of
the kernel” corresponds to a linear kernel (Euclidean inner product), whereas
a value of 2 corresponds to a Gaussian kernel and a value of 3 corresponds
to a polynomial kernel. The parameters: width of the Gaussian kernel and
degree of the polynomial kernel, can be changed by modifying adequately
the functions gaussian and polynomial in the file algebre.c. This file can
also be used to store the functions corresponding to the new kernels a user
could find useful to add.

A feasible solution of the dual problem (which can be used to initialize
the vector of dual variables α) is the null vector. Care must be taken to the
fact that the dummy variables αiyi must always remain equal to 0.

During training, the following pieces of information are displayed:

*** Iteration: 1000 ←− number of gradient ascent steps since the
beginning of training

Number of support vectors: 632 ←− number of training examples
for which at least one of the dual variables αik is positive (different from 0)

Note that the current value of the (dual) objective function can also
be displayed. This is obtained by uncommenting the call to the function
compute objective function in the main function of train SVM. Further-
more, the file of dual variables is regularly copied in the Save alpha subdi-
rectory.

3.4 Testing the M-SVM2

Testing is initiated with the command
execute eval SVM

The structure of the file
Fichcom/eval SVM.com

containing the parameters used by the program eval SVM, is pretty similar
to the structure of the file Fichcom/train SVM.com. Here is an example,

5

corresponding once more to the toy problem:

3 ←− number of categories for the problem
1 ←− nature of the kernel
100.0 ←− value of the soft margin parameter C
Data/toy.app ←− name of the file where the training data is stored
Data/toy.test ←− name of the file where the test data is stored
Save alpha/toy.alpha←− name of the file where the values of the dual

variables αik are read
Data/toy.output←− name of the file where the outputs of the M-SVM2

will be stored

The program execute eval SVM displays several pieces of information
regarding the feasibility of the current solution, the values of the objective
functions and the training and test performance. Once more, we illustrate
its behaviour on the toy problem.

The maximum value among the dual variables is: 3.407756e+02
←− largest value of the dual variables αik (which are unbounded)

Satisfaction of the equality constraints:

8.931949e-10
-2.243681e-10
-6.880256e-10
←− values of the left-hand sides of the Q − 1 equations defining the

equality constraints of the training problem (dual formulation):

∀k ∈ [[1, Q− 1]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
αil = 0.

Vector b before centering

b 1 = -9.008381e-01
b 2 = -8.480913e-01
b 3 = 1.125504e+00

Sum of the components of b: -6.234254e-01

6

←− value of the vector b = (bk)16k6Q of the biases of the affine model.
At the optimum, the sum of its components is null.

1^T alpha = 2CQ 1^T xi = 9.690762e+04←− value of the quantities:

1T
Qmα = 2CQ1T

Qmξ

Dual objective function: 3.540782e+04
Estimated primal objective function: 1.801829e+05
(ratio 19.65%)
←− These three lines provide the user with the value of the dual ob-

jective function JM-SVM2,d(α), an upper bound on the value of the primal
objective function and the value of the corresponding ratio (its limit as the
number of iterations goes to infinity is 1).

Recognition rate: 62.40%

Confusion matrix:

164 91 0
0 351 153

127 5 109

Matthews coefficients:

C1: 0.45
C2: 0.51
C3: 0.24
←− These figures characterize the training performance. The defini-

tion of the Pearson’s/Matthews’ correlation coefficients can be found in [8].
Details regarding the test performance follow those regarding the training
performance. They are displayed in the same way.

3.5 Stopping criterion

This application has been designed to process very large data sets. This is
the reason why the training procedure incorporates a decomposition method.
As a consequence, the cpu time needed to check the Kuhn-Tucker optimality
conditions [4] is far superior to that of a gradient step. Thus, in order not to
slow down the training algorithm drastically, no test is made in the program
train SVM regarding the optimality of the current feasible solution α. There

7

is only a variable named nb iter which limits the number of iterations
(steps in the gradient ascent). Its value can be set utterly arbitrarily. The
computation of the feasibility gap [2] is performed by the program eval SVM
(see Section 3.4). A rule of sumb is that one can stop training as soon as
the ratio exceeds 98.00%.

4 General comments

This application is intended to be used for academic research purposes only.
It should evolve frequently. Please, feel free to report any suggestion you
could have to improve the programs or this document to the following ad-
dress: Yann.Guermeur@loria.fr

Acknowledgments Thanks are due to A. Iouditski for interesting discus-
sions on the programming of M-SVMs.

References

[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[2] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge Univer-
sity Press, Cambridge, 2000.

[3] A. Elisseeff. Etude de la complexité et contrôle de la capacité des systèmes
d’apprentissage : SVM multi-classe, réseaux de régularisation et réseaux
de neurones multicouches. PhD thesis, ENS Lyon, 2000. (in French).

[4] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
Chichester, second edition, 1987.

[5] Y. Guermeur, M. Maumy, and F. Sur. Model selection for multi-class
SVMs. In ASMDA’05, pages 507–517, 2005.

[6] Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for
which a radius-margin bound applies. INFORMATICA, 2010. (condi-
tionally accepted).

[7] Y. Lee and Z. Cui. Characterizing the solution path of multicategory
support vector machines. Statistica Sinica, 16(2):391–409, 2006.

8

[8] B.W. Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim. Biophys. Acta, 405:442–451,
1975.

[9] J.B. Rosen. The gradient projection method for nonlinear programming.
Part I. Linear constraints. Journal of the Society for Industrial and
Applied Mathematics, 8(1):181–217, 1960.

9

