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Abstract

Using a support vector machine (SVM) requires to set the values of two types of hyperparam-
eters: the soft margin parameter C and the parameters of the kernel. To perform this model
selection task, the method of choice is cross-validation. Its leave-one-out variant is known to
produce an estimator of the generalization error which is almost unbiased. Its major drawback
rests in its requirements in terms of computational time. To overcome this di�culty, several
upper bounds on the leave-one-out error of the pattern recognition SVM have been derived.
Among those bounds, the most popular one is probably the radius-margin bound. It applies to
the hard margin machine, and, by extension, to the 2-norm SVM. In this article, we introduce
a variant of the multi-class SVM of Lee, Lin and Wahba: the M-SVM2. This quadratic loss
machine can be seen as a direct extension of the 2-norm SVM to the multi-class case. For this
machine, a generalized radius-margin bound is then established.

Keywords: Multi-class SVMs, model selection, leave-one-out cross-validation error, radius-
margin bounds

1 Introduction

Using a SVM [3, 7] requires to set the values of two types of hyperparameters: the soft margin
parameter C and the parameters of the kernel. To perform this model selection task, several
approaches are available (see for instance [18, 24]). The solution of choice consists in applying
a cross-validation procedure. Among those procedures, the leave-one-out one appears especially
attractive, since it is known to produce an estimator of the generalization error which is almost
unbiased [23]. The seamy side of things is that it is highly time consuming. This is the reason why,
in recent years, a number of upper bounds on the leave-one-out error of the (standard) pattern
recognition SVM have been proposed in literature (see [5] for a survey). Among those bounds,
the tightest one is the span bound [30]. However, the results of Chapelle and co-workers presented
in [5] show that another bound, the radius-margin one [29], achieves equivalent performance for
model selection while being far simpler to compute. These results are corroborated by those of
several comparative studies, among which [9]. As a consequence, this bound, which applies to the
hard margin machine and, by extension, to the 2-norm SVM (see for instance Chapter 7 in [27]),
is currently the most popular one. Several variants have been proposed, for instance in [6]. During
the last few years, several multi-class SVMs (M-SVMs) have been introduced by di�erent teams
(see [13] for a survey). However, to the best of our knowledge, literature only proposes a single
multi-class extension of the radius-margin bound. This bound, introduced in [32, 33], makes use of
the bi-class bound in the framework of the one-versus-one decomposition method. As such, it does
not represent a direct generalization of the initial result to a M-SVM, and the authors state that
�such a theoretical generalization of this bound is not that straightforward because this bound is
rooted in the theoretical basis of binary SVMs.�

In this article, a new multi-class SVM is introduced: the M-SVM2. It can be seen either as a
quadratic loss variant of the M-SVM of Lee, Lin and Wahba (LLW-M-SVM) [22] or as a multi-class
extension of the 2-norm SVM. A generalized radius-margin bound on the leave-one-out error of the
hard margin version of the LLW-M-SVM is then established and assessed. This provides us with
a di�erentiable objective function to perform model selection for the M-SVM2.

The organization of this paper is as follows. Section 2 presents the M-SVMs, by describing their
common architecture and the general form taken by their di�erent training algorithms. Section 3
focuses on the M-SVM of Lee, Lin and Wahba and Section 4 introduces the M-SVM2. Section 5
is devoted to the formulation, proof and analysis of the corresponding multi-class radius-margin
bound. At last, we draw conclusions and outline our ongoing research in Section 6.

2 Multi-Class SVMs

Like the SVMs, the M-SVMs are large margin classi�ers which are devised in the framework of
Vapnik's statistical learning theory [29].
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2.1 Formalization of the learning problem

We are interested here in multi-class pattern recognition problems. Formally, we consider the case
of Q-category classi�cation problems with 3 6 Q < ∞, but our results extend to the case of
dichotomies. Each object is represented by its description x ∈ X and the set Y of the categories
y can be identi�ed with the set of indices of the categories: [[ 1, Q ]]. We assume that the link
between descriptions and categories can be described by an unknown probability measure P on
the product space X × Y. The learning problem then consists in selecting in a set G of functions
g = (gk)16k6Q from X into RQ a function classifying data in an optimal way. The criterion
which is to be optimized must be speci�ed. The function g assigns x ∈ X to the category l
if and only if gl(x) > maxk 6=l gk(x). In case of ex æquo, x is assigned to a dummy category
denoted by ∗. Let f be the decision function (from X into Y

⋃
{∗}) associated with g. With these

de�nitions at hand, ideally, the objective function to be minimized over G is the probability of
error P (f (X) 6= Y ). In practice, since P is unknown, other criteria are used and the optimization
process, called training, is based on empirical data. More precisely, we assume that there exists
a random pair (couple) (X, Y ) ∈ X × Y distributed according to P , and we are provided with a
m-sample Dm = ((Xi, Yi))16i6m of independent copies of (X, Y ). Those copies form the training
set.

There are two questions raised by such problems: how to properly choose the class of functions
G and how to determine the best candidate g∗ in this class, using only Dm. This article focuses
on the �rst question, named model selection, in the particular case when the model considered is
a M-SVM. The second question, named function selection, is addressed for instance in [14].

2.2 Architecture and training algorithms

M-SVMs, like all the SVMs, belong to the family of kernel machines [26]. As such, they operate on a
class of functions induced by a positive semide�nite function/kernel. This calls for the formulation
of some de�nitions and basic results. For the sake of simplicity, we consider real-valued functions
only, although the general form of these de�nitions and results involves complex-valued functions.

De�nition 1 (Positive semide�nite (positive type) function) A real-valued function κ on
X 2 is called a positive semide�nite function (or a positive type function) if it is symmetric and

∀n ∈ N∗, ∀ (xi)16i6n ∈ X
n, ∀ (ai)16i6n ∈ Rn,

n∑
i=1

n∑
j=1

aiajκ (xi, xj) > 0.

De�nition 2 (Reproducing kernel Hilbert space [2]) Let (H, 〈·, ·〉H) be a Hilbert space of
real-valued functions on X . A real-valued function κ on X 2 is a reproducing kernel of H if and
only if

1. ∀x ∈ X , κx = κ (x, ·) ∈ H;

2. ∀x ∈ X ,∀h ∈ H, 〈h, κx〉H = h(x) (reproducing property).

A Hilbert space of real-valued functions which possesses a reproducing kernel is called a reproducing
kernel Hilbert space (RKHS) or a proper Hilbert space.

The connection between positive semide�nite functions and RKHSs is provided by the Moore-
Aronszajn theorem.

Theorem 1 (Moore-Aronszajn theorem [1]) Let κ be a real-valued positive semide�nite func-
tion on X 2. There exists only one Hilbert space (H, 〈·, ·〉H) of real-valued functions on X with κ
as reproducing kernel. The subspace H0 of H spanned by the functions κx is dense in H and H
is the set of functions on X which are pointwise limits of Cauchy sequences in H0 with the inner
product

〈h, h′〉H0 =
n∑

i=1

n′∑
j=1

aia
′
jκ
(
xi, x

′
j

)
2



where h =
∑n

i=1 aiκxi and h′ =
∑n′

j=1 a′jκx′
j
.

Proposition 1 Let κ be a real-valued positive semide�nite function on X 2. There exists a map Φ
from X into a Hilbert space

(
EΦ(X ), 〈·, ·〉

)
such that:

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x),Φ(x′)〉. (1)

In the sequel, such a map Φ will be called a feature map and EΦ(X ) a feature space. Taking
advantage of the fact that the value of the inner product is the same in all the feature spaces
(since it only depends on the choice of the kernel κ), we will also make the slight abuse of language
consisting in calling Φ the feature map and EΦ(X ) the feature space. Let κ be a real-valued positive

semide�nite kernel on X 2 and let (Hκ, 〈·, ·〉Hκ
) be the corresponding RKHS. Let H̄ = (Hκ, 〈·, ·〉Hκ

)Q

and let H = ((Hκ, 〈·, ·〉Hκ
) + {1})Q

. By construction, H is the class of vector-valued functions
h = (hk)16k6Q on X such that their component functions are �nite a�ne combinations of the
form

hk(·) =
mk∑
i=1

βikκ (xik, ·) + bk

where the xik are elements of X (the βik and bk are scalars), as well as the limits of these functions
as the sets {xik : 1 6 i 6 mk} become dense in X , in the norm induced by the inner product 〈·, ·〉Hκ

(see also [31]). Due to Equation 1, H can alternatively be seen as a multivariate a�ne model on
Φ (X ). Functions h can then be rewritten as

h(·) = (〈wk, ·〉+ bk)16k6Q

where the vectors wk are elements of EΦ(X ). They are thus described by the pair (w,b) with

w = (wk)16k6Q ∈ EQ
Φ(X ) and b = (bk)16k6Q ∈ RQ. As a consequence, H̄ can be seen as a

multivariate linear model on Φ (X ), endowed with a norm ‖ · ‖H̄ given by:

∀h̄ ∈ H̄,
∥∥h̄∥∥H̄ =

√√√√ Q∑
k=1

‖wk‖2 = ‖w‖ ,

where ‖wk‖ =
√
〈wk, wk〉. With these de�nitions, theorems and propositions at hand, a generic

de�nition of the M-SVMs can be formulated as follows.

De�nition 3 (M-SVM, De�nition 42 in [14]) Let ((xi, yi))16i6m ∈ (X × [[ 1, Q ]])m
and λ ∈

R∗+. A Q-category M-SVM is a large margin discriminant model obtained by minimizing over the

hyperplane
∑Q

k=1 hk = 0 of H a penalized risk JM-SVM of the form:

JM-SVM (h) =
m∑

i=1

`M-SVM (yi, h (xi)) + λ
∥∥h̄∥∥2

H̄

where the data �t component involves a loss function `M-SVM which is convex.

The M-SVMs thus di�er according to the nature of the function `M-SVM which corresponds to a
multi-class extension of the hinge loss function.

De�nition 4 (Hard and soft margin M-SVM) If a M-SVM is trained subject to the con-
straint that the data �t component is null (

∑m
i=1 `M-SVM (yi, h (xi)) = 0), it is called a hard margin

M-SVM. Otherwise, it is called a soft margin M-SVM.

Three main models of M-SVMs can be found in literature (see [13] for a survey). The �rst one
in chronological order is the model of Weston and Watkins [34, 29, 4]. Following the common usage
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in machine learning, we denote by (·)+ the truncate function max(0, ·). The loss function `WW of
the M-SVM of Weston and Watkins is then given by:

`WW(y, h(x)) =
∑
k 6=y

(1− hy(x) + hk(x))+ .

The second machine is due to Crammer and Singer [8] and corresponds to the loss function `CS
de�ned as:

`CS(y, h̄(x)) =
(

1− h̄y(x) + max
k 6=y

h̄k(x)
)

+

.

The most recent model is the one of Lee, Lin and Wahba [22]. Its loss function `LLW is given by:

`LLW (y, h(x)) =
∑
k 6=y

(
hk(x) +

1
Q− 1

)
+

. (2)

Among the three models, the M-SVM of Lee, Lin and Wahba is the only one that implements
asymptotically the theoretically optimal classi�cation rule, the so-called Bayes decision rule. It is
Fisher consistent [22, 35, 28].

2.3 Geometrical margins

From a geometrical point of view, the algorithms described above select functions h∗ (sets of the
form {(w∗

k, b∗k) : 1 6 k 6 Q}) associated with sets of separating hyperplanes that tend to maximize

globally the
(
Q
2

)
margins between the di�erent categories. If these margins are de�ned as in the

bi-class case, their analytical expression is more complex.

De�nition 5 (Geometrical margins, De�nition 7 in [13]) Let n be a positive integer and let
dn = {(xi, yi) : 1 6 i 6 n} be a set of n examples (belonging to X × Y). If a function h in H
classi�es these examples without error, then for any pair of distinct categories (k, l), its margin
between k and l (computed with respect to dn), γkl(h), is de�ned as the smallest distance of a point
of dn either in k or l to the hyperplane separating those categories. Let us denote

d(h) = min
16k<l6Q

{
min

i:yi∈{k,l}
|hk(xi)− hl(xi)|

}
and for 1 6 k < l 6 Q, let dkl(h) be

dkl(h) =
1

d(h)
min

i:yi∈{k,l}
|hk(xi)− hl(xi)| − 1.

Then we have

∀(k, l) : 1 6 k < l 6 Q, γkl(h) = γlk(h) = d(h)
1 + dkl(h)
‖wk − wl‖

.

Remark 1 The positivity of d(h) is a direct consequence of the fact that the decision function
takes the value ∗ in case of ex æquo. By de�nition, if h ∈ H classi�es the examples of dn without
error, then

min
16k<l6Q

dkl(h) = 0.

However, for the hard margin versions of the three main models of M-SVMs, the assumption that
all the values of the parameters dkl (h∗) are equal to 0 cannot be made a priori.

In the case of the M-SVMs (satisfying
∑Q

k=1 wk = 0), the connection between the geometrical
margins and the penalizer of JM-SVM is given by the following equation:

∑
k<l

‖wk − wl‖2 = Q

Q∑
k=1

‖wk‖2, (3)

the proof of which can for instance be found in Chapter 2 of [13].
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3 The M-SVM of Lee, Lin and Wahba

We now present in more detail the LLW-M-SVM, from which the M-SVM2 is derived. The reason
for this reminder is self-completeness: some of the formulas established in this section will be used
in the presentation of the new machine and the proof of the radius-margin bound. We refer the
reader to [10] for an introduction to the basic notions of optimization used in the sequel.

3.1 Training algorithms

The substitution in De�nition 3 of `M-SVM with the expression of the loss function `LLW given
by Equation 2 provides us with the expressions of the quadratic programming (QP) problems
corresponding to the training algorithms of the hard margin and soft margin versions of the LLW-
M-SVM.

Problem 1 (Hard margin LLW-M-SVM, primal formulation)

min
w,b

JHM (w,b)

s.t.


∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk,Φ(xi)〉+ bk 6 − 1

Q−1∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JHM (w,b) =
1
2

Q∑
k=1

‖wk‖2.

Problem 2 (Soft margin LLW-M-SVM, primal formulation)

min
w,b,ξ

JSM (w,b, ξ)

s.t.


∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk,Φ(xi)〉+ bk 6 − 1

Q−1 + ξik

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , ξik > 0∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JSM (w,b, ξ) =
1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

∑
k 6=yi

ξik.

In Problem 2, the ξik are slack variables introduced in order to relax the constraints of correct
classi�cation. For convenience of notation, the vector ξ of these variables is represented as follows:
ξ = (ξik)16i6m,16k6Q ∈ RQm

+ . ξik is thus its component of index (i − 1)Q + k and the ξiyi are
dummy variables, all equal to 0. Using the notation en to designate the vector of Rn such that all its
components are equal to e, we have thus (ξiyi)16i6m = 0m. The coe�cient C, which characterizes

the trade-o� between the prediction accuracy (on the training set) and the smoothness of the
minimizer h∗, can be expressed in terms of the regularization coe�cient λ as follows: C = (2λ)−1.
It is called the soft margin parameter. Instead of directly solving Problems 1 and 2, one usually
solves their Wolfe dual. We now derive the dual problem of Problem 2. One of the speci�cities of
the LLW-M-SVM compared to the other two M-SVMs rests in the fact that the primal formulation
of its training algorithm must incorporate explicitly the sum-to-0 constraint

∑Q
k=1 wk = 0. In the

framework of the implementation of the Lagrangian duality, this raises a di�culty since the feature
space can be in�nite dimensional. To overcome this di�culty, Lee and her co-authors reformulate
the primal problem by making use of a representer theorem [22, 21]. Their approach is the most
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elegant one. However, in what follows, since our aim is simply to reestablish some useful formulas,
we handle the aforementioned constraint directly irrespective of the dimensionality of EΦ(X ).

Let α = (αik)16i6m,16k6Q ∈ RQm
+ be the vector of Lagrange multipliers associated with the

constraints of good classi�cation. Similarly, let β = (βik)16i6m,16k6Q ∈ RQm
+ be the vector of

Lagrange multipliers associated with the constraints of nonnegativity of the slack variables. These
vectors are built according to the same principle as vector ξ. Let γ ∈ EΦ(X ) be the Lagrange

multiplier associated with the constraint
∑Q

k=1 wk = 0 and δ ∈ R the Lagrange multiplier associated

with the constraint
∑Q

k=1 bk = 0. The Lagrangian function of Problem 2 is given by:

L1 (w,b, ξ, α, β, γ, δ) =

1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

Q∑
k=1

ξik +
m∑

i=1

Q∑
k=1

αik

(
〈wk,Φ(xi)〉+ bk +

1
Q− 1

− ξik

)
−

m∑
i=1

Q∑
k=1

βikξik

−〈γ,

Q∑
k=1

wk〉 − δ

Q∑
k=1

bk. (4)

Setting the gradient of L1 with respect to wk equal to the null vector provides us with Q alternative
expressions for the optimal value of vector γ:

∀k ∈ [[ 1, Q ]] , γ∗ = w∗
k +

m∑
i=1

α∗ikΦ(xi). (5)

Since by hypothesis,
∑Q

k=1 w∗
k = 0, summing over the index k provides us with the expression of

γ∗ as a function of dual variables only:

γ∗ =
1
Q

m∑
i=1

Q∑
k=1

α∗ikΦ(xi).

By substitution into (5), we get the expression of the vectors wk at the optimum:

∀k ∈ [[ 1, Q ]] , w∗
k =

m∑
i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ilΦ(xi), (6)

where δk,l is the Kronecker symbol. Let us now set the gradient of L1 with respect to b equal to
the null vector. We get

∀k ∈ [[ 1, Q ]] , δ∗ =
m∑

i=1

α∗ik

and thus

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗il = 0. (7)

Given the constraint
∑Q

k=1 bk = 0,

m∑
i=1

Q∑
k=1

α∗ikb∗k =
Q∑

k=1

b∗k

m∑
i=1

α∗ik = δ∗
Q∑

k=1

b∗k = 0. (8)

Setting the gradient of L1 with respect to ξ equal to the null vector gives:

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik + β∗ik = C. (9)
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By application of (6),

Q∑
k=1

‖w∗
k‖

2 =
Q∑

k=1

〈
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ilΦ(xi),

m∑
j=1

Q∑
n=1

(
1
Q
− δk,n

)
α∗jnΦ(xj)〉

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

{
Q∑

k=1

(
1
Q
− δk,l

)(
1
Q
− δk,n

)}
α∗ilα

∗
jn〈Φ(xi),Φ(xj)〉

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

(
δl,n −

1
Q

)
α∗ilα

∗
jnκ(xi, xj). (10)

Still by application of (6),

m∑
i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 =

m∑
i=1

Q∑
k=1

α∗ik〈
m∑

j=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗jlΦ(xj),Φ(xi)〉

=
m∑

i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ikα∗jlκ(xi, xj). (11)

Combining (10) and (11) gives:

1
2

Q∑
k=1

‖w∗
k‖

2 +
m∑

i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 = −1

2

Q∑
k=1

‖w∗
k‖

2

= −1
2

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
δk,l −

1
Q

)
α∗ikα∗jlκ(xi, xj). (12)

Extending to the case of matrices the double subscript notation used to designate the general terms
of the vectors α, β and ξ, let us de�ne H as the matrix of MQm,Qm (R) of general term:

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).

With these notations at hand, reporting (8), (9) and (12) in (4) provides us with an algebraic
expression of the Lagrangian function at the optimum where the primal variables have been elim-
inated. This provides us in turn with the following expression for the objective function of the
Wolfe dual of Problem 2:

JLLW,d (α) = −1
2
αT Hα +

1
Q− 1

1T
Qmα.

The constraints of this problem are derived from Equations 7 and 9. The Wolfe dual of Problem 2
is thus:

Problem 3 (Soft margin LLW-M-SVM, dual formulation)

max
α

JLLW,d(α)

s.t.

{
∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , 0 6 αik 6 C

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0

where

JLLW,d(α) = −1
2
αT Hα +

1
Q− 1

1T
Qmα,

with the general term of the Hessian matrix H being

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).
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With slight modi�cations, the derivation above can be adapted to express the Wolfe dual of Prob-
lem 1. This leads to:

Problem 4 (Hard margin LLW-M-SVM, dual formulation)

max
α

JLLW,d(α)

s.t.

{
∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , αik > 0

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0

.

3.2 Geometrical margins

The geometrical margins of the hard margin Q-category LLW-M-SVM can be characterized thanks
to three propositions among which the two last will prove useful to establish the radius-margin
bound.

Proposition 2 Let us consider a hard margin Q-category LLW-M-SVM. Then,

d (h∗) >
Q

Q− 1
.

Proof First, note that if h ∈ H classi�es the examples of the set {(xi, yi) : 1 6 i 6 n} without
error, then d(h) = min16i6n mink 6=yi (hyi(xi)− hk(xi)). By application of the formula giving `LLW,

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , h∗k (xi) 6 − 1
Q− 1

.

Since
∑Q

k=1 h∗k = 0, this implies that

∀i ∈ [[ 1,m ]] , h∗yi
(xi) > 1

and thus d (h∗) > Q
Q−1 .

Proposition 3 For the hard margin Q-category LLW-M-SVM trained on {(xi, yi) : 1 6 i 6 m},
in the non-trivial case when α∗ 6= 0, there exists a mapping I from [[ 1, Q ]] to [[ 1,m ]] such that

∀k ∈ [[ 1, Q ]] , h∗k
(
xI(k)

)
= − 1

Q− 1
.

Proof This proposition results readily from the Karush-Kuhn-Tucker (KKT) optimality condi-
tions and the form taken by the constraints of Problem 4. Indeed, if α∗ 6= 0, then for all k, there
exists at least one dual variable α∗ik which is positive.

Proposition 4 For the hard margin Q-category LLW-M-SVM, we have

d (h∗)2

Q

∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

=
Q∑

k=1

‖w∗
k‖2 = α∗T Hα∗ =

1
Q− 1

1T
Qmα∗.

Proof

• d(h∗)2

Q

∑
k<l

(
1+dkl(h

∗)
γkl(h∗)

)2

=
∑Q

k=1 ‖w∗
k‖2

This equation is a direct consequence of De�nition 5 and Equation 3.
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•
∑Q

k=1 ‖w∗
k‖2 = α∗T Hα∗

This is a direct consequence of Equation 12 and the de�nition of matrix H.

• α∗T Hα∗ = 1
Q−11T

Qmα∗

The general term of the gradient ∇JLLW,d (α∗) is

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]]\{yi} ,
∂

∂αik
JLLW,d (α∗) = − (Hα∗)ik+

1
Q− 1

= 〈w∗
k,Φ(xi)〉+

1
Q− 1

.

By application of the KKT complementary conditions

m∑
i=1

Q∑
k=1

α∗ik

(
〈w∗

k,Φ(xi)〉+ b∗k +
1

Q− 1

)
= −α∗T Hα∗ +

1
Q− 1

1T
Qmα∗ +

m∑
i=1

Q∑
k=1

α∗ikb∗k = 0.

Using Equation 8, the right-hand side of this equation simpli�es into α∗T Hα∗ = 1
Q−11T

Qmα∗.

4 The M-SVM2

4.1 Quadratic loss multi-class SVMs: motive and principle

The M-SVMs presented in Section 2.2 share a common feature with the standard pattern recog-
nition SVM: the contribution of the slack variables to their objective functions is linear. Let ξ be
the vector of these variables. In the cases of the M-SVMs of Weston and Watkins and Lee, Lin
and Wahba, we have ξ = (ξik)16i6m,16k6Q with (ξiyi

)16i6m = 0m, and in the case of the model of

Crammer and Singer, it is simply ξ = (ξi)16i6m. In both cases, the contribution to the objective
function is C‖ξ‖1. In the bi-class case, there exists a variant of the standard SVM which is known
as the 2-norm SVM since for this machine, the empirical contribution to the objective function is
C‖ξ‖2

2. Its main advantage, underlined for instance in the Chapter 7 of [27], is that its training
algorithm can be expressed, after an appropriate change of kernel, as the training algorithm of
a hard margin machine. As a consequence, its leave-one-out cross-validation error can be upper
bounded thanks to the radius-margin bound.

Unfortunately, a naive extension of the 2-norm SVM to the multi-class case, resulting from
substituting in the objective function of either of the three M-SVMs ‖ξ‖1 with ‖ξ‖2

2, does not
preserve this property. Section 2.4.1.4 of [13] gives detailed explanations about that point. The
strategy that we propose to exhibit interesting multi-class generalizations of the 2-norm SVM
consists in studying the class of quadratic loss M-SVMs, i.e., the class of extensions of the M-SVMs
such that the contribution of the slack variables is a quadratic form:

CξT Mξ = C

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

mik,jlξikξjl

where M = (mik,jl)16i,j6m,16k,l6Q is such that its submatrix M ′ obtained by suppressing the rows
and columns whose indices respectively satisfy k = yi and l = yj is symmetric positive de�nite.
The constraints on M correspond to necessary and su�cient conditions for ξT Mξ to be a norm of
ξ.
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4.2 The M-SVM2 as a multi-class generalization of the 2-norm SVM

In this section, we establish that the idea introduced above provides us with a solution to the
problem of interest when the M-SVM used is the one of Lee, Lin and Wahba and M is the block
diagonal matrix of general term

mik,jl = (1− δyi,k)
(
1− δyj ,l

)
δi,j (δk,l + 1) .

We �rst note that the corresponding matrix M ′ is actually symmetric positive de�nite. Indeed, it
can be rewritten as follows:

M ′ = Im ⊗ (δk,l + 1)16k,l6Q−1 , (13)

where Im designates the identity matrix of size m and ⊗ denotes the Kronecker product. Its
spectrum is thus identical to the one of the matrix (δk,l + 1)16k,l6Q−1, i.e., made up of two positive

eigenvalues: 1 and Q. The corresponding machine is named M-SVM2. Its training algorithm is
given by the following QP problem.

Problem 5 (M-SVM2, primal formulation)

min
w,b,ξ

JM-SVM2 (w,b, ξ)

s.t.


∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk,Φ(xi)〉+ bk 6 − 1

Q−1 + ξik∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JM-SVM2 (w,b, ξ) =
1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(1− δyi,k)
(
1− δyj ,l

)
δi,j (δk,l + 1) ξikξjl.

Keeping the notations of the preceding sections, the expression of the Lagrangian function associ-
ated with this problem is:

L2 (w,b, ξ, α, γ, δ) =

1
2

Q∑
k=1

‖wk‖2 + CξT Mξ +
m∑

i=1

Q∑
k=1

αik

(
〈wk,Φ(xi)〉+ bk +

1
Q− 1

− ξik

)

−〈γ,

Q∑
k=1

wk〉 − δ

Q∑
k=1

bk. (14)

Setting the gradient of L2 with respect to ξ equal to the null vector gives

2CMξ∗ = α∗. (15)

The coe�cient (1− δyi,k)
(
1− δyj ,l

)
has been introduced in the general term of the matrix M so

as to verify:
∀i ∈ [[ 1,m ]] , 2C (Mξ)iyi

= αiyi = 0.

It springs from (15) that

Cξ∗T Mξ∗ − α∗T ξ∗ = −Cξ∗T Mξ∗. (16)

Using the same reasoning that we used to derive the objective function of Problem 3 and (16), at
the optimum, (14) simpli�es into

L2 (w∗,b∗, ξ∗, α∗, γ∗, δ∗) = −1
2
α∗T Hα∗ − Cξ∗T Mξ∗ +

1
Q− 1

1T
Qmα∗.

10



Proving that the M-SVM2 exhibits the same property as the 2-norm SVM amounts to exhibiting
a kernel κ′ such that

Cξ∗T Mξ∗ =
1
2
α∗T H ′α∗ (17)

with the general term of the matrix H ′ being:

h′ik,jl =
(

δk,l −
1
Q

)
κ′(xi, xj).

Combining (15) and (17) gives:

1
2
α∗T H ′α∗ = 2C2ξ∗T MT H ′Mξ∗ = Cξ∗T Mξ∗.

After some algebra, we get the general term of the matrix MT H ′M , which is

(1− δyi,k)
(
1− δyj ,l

)
(δk,l + 1) κ′ (xi, xj) .

Thus, 2Cξ∗T MT H ′Mξ∗ = ξ∗T Mξ∗ provided that

∀(i, j) ∈ [[ 1,m ]]2 , κ′ (xi, xj) =
1

2C
δi,j .

This expression of the second kernel is precisely the one obtained in the case of the 2-norm SVM.
With this de�nition of κ′, the objective function of the dual problem simpli�es into

JM-SVM2,d(α) = −1
2
αT H̃α +

1
Q− 1

1T
Qmα,

where the matrix H̃ is deduced from H by substituting to the kernel κ the kernel κ̃ equal to κ+κ′

(H̃ = H + H ′). Since ∇bL2 (w,b, ξ, α, γ, δ) = ∇bL1 (w,b, ξ, α, β, γ, δ), the equality constraints of
the dual are still given by (7). On the contrary, the only inequality constraints correspond to the
nonnegativity of the Lagrange multipliers αik. Thus, the Wolfe dual of Problem 5 is:

Problem 6 (M-SVM2, dual formulation)

max
α

JM-SVM2,d(α)

s.t.

{
∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , αik > 0

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0

.

where

JM-SVM2,d(α) = −1
2
αT H̃α +

1
Q− 1

1T
Qmα,

with the general term of the Hessian matrix H̃ being

h̃ik,jl =
(

δk,l −
1
Q

)(
κ(xi, xj) +

1
2C

δi,j

)
.

This problem is precisely Problem 4 with κ+κ′ as kernel, which establishes that for the M-SVM2,
as for the 2-norm SVM, a radius-margin bound can be used to choose the soft margin parameter
C. By application of Proposition 4 and (17), at the optimum,

JM-SVM2 (w∗,b∗, ξ∗) =
1
2

Q∑
k=1

‖w∗
k‖2 + Cξ∗T Mξ∗ =

1
2
α∗T Hα∗ +

1
2
α∗T H ′α∗ =

1
2
α∗T H̃α∗.

Once more by application of Proposition 4,

JM-SVM2,d (α∗) = −1
2
α∗T H̃α∗ +

1
Q− 1

1T
Qmα∗ =

1
2
α∗T H̃α∗.

This enables us to check that JM-SVM2 (w∗,b∗, ξ∗) = JM-SVM2,d (α∗).
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4.3 Properties and implementation of the M-SVM2

Contrary to the training algorithm of the standard pattern recognition SVM, the training algorithm
of the 2-norm SVM does not incorporate explicitly the constraints of nonnegativity of the slack
variables. This is just useless. Indeed, these constraints are actually satis�ed by the optimal
solution, for which the expression of the slack variables as a function of the (nonnegative) dual
variables is simply:

∀i ∈ [[ 1,m ]] , ξ∗i =
1

2C
α∗i .

Problem 5 does not incorporate the constraints of nonnegativity of the slack variables either. In
that case however, this makes a signi�cant di�erence since some of these variables can be negative.
At the optimum, their expression can be deduced from (13) and (15), by inverting matrix M ′.

M ′−1 = Im ⊗
(
(δk,l + 1)16k,l6Q−1

)−1

= Im ⊗
(

δk,l −
1
Q

)
16k,l6Q−1

.

We then get

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , ξ∗ik =
1

2C

Q∑
l=1

(
δk,l −

1
Q

)
α∗il (18)

or equivalently:
∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , ξ∗ik = (H ′α∗)ik . (19)

The optimal values of the slack variables are only positive on average, since applying on (18) a
summation over both indices gives

1T
Qmξ∗ =

1
2CQ

1T
Qmα∗.

The relaxation of the constraints of nonnegativity of the slack variables alters the meaning of the
constraints of good classi�cation, although the global connection between a small value of the norm
on ξ and a small training error is preserved. We conjecture that for any of the three M-SVMs, no
choice of the matrix M can give rise to a machine such that its Wolfe dual problem is the one of a
hard margin machine and its slack variables are all nonnegative.

To solve Problem 6, we implemented the Frank-Wolfe algorithm [11] in the same way as we did
in [16] to train the M-SVM of Weston and Watkins. The corresponding piece of software is available
at the following address: http://www.loria.fr/~guermeur/M_SVM_2.tar.gz. The computation
of the primal variables and the values taken by the component functions hk as a function of the
data and the dual variables calls for some explanations. At any iteration of the gradient ascent,
the expression of the linear part of the model is simply deduced from (6):

∀x ∈ X , ∀k ∈ [[ 1, Q ]] , h̄k(x) = 〈wk,Φ(x)〉 =
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
αilκ (xi, x) .

This expression can be reformulated in the case when x belongs to the training set:

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] , h̄k (xi) = − (Hα)ik .

This is useful indeed, as the computation of the vector Hα can also appear as a step in the
computation of the dual objective function. The di�culty rests in the computation of the vectors
b and ξ. In the case of the LLW-M-SVM, the KKT complementary conditions imply that at the
optimum:

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik ∈ (0, C) =⇒ 〈w∗
k,Φ (xi)〉+ b∗k = − 1

Q− 1
,
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i.e.,

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik ∈ (0, C) =⇒ b∗k = − ∂

∂αik
JLLW,d (α∗) .

This last formula can also be used before the optimum is reached, simply to obtain a �sensible�
(but suboptimal) value for b. Let us de�ne the sets Sk as follows:

∀k ∈ [[ 1, Q ]] , Sk = {i ∈ [[ 1,m ]] : α∗ik ∈ (0, C)} .

Setting

∀k ∈ [[ 1, Q ]] , b′k = − 1
|Sk|

∑
i∈Sk

∂

∂αik
JLLW,d (α)

and

∀k ∈ [[ 1, Q ]] , bk = b′k −
1
Q

Q∑
k=1

b′k

provides us in turn with a value for the vector ξ thanks to the formula

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , ξik =
(

∂

∂αik
JLLW,d (α) + bk

)
+

. (20)

Plugging this expression of vector ξ in the formula giving JSM, one readily obtains an upper bound
on the value of the primal objective function (at any step of the gradient ascent). Let b∗ (w) and
ξ∗ (w) respectively denote the optimal values of b and ξ corresponding to w (or equivalently α).

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , ξ∗ik (w) =
(

∂

∂αik
JLLW,d (α) + b∗k (w)

)
+

.

We have precisely

JLLW,d (α) 6 JLLW,d (α∗) = JSM (w∗,b∗, ξ∗) 6 JSM (w,b∗ (w) , ξ∗ (w)) 6 JSM (w,b, ξ) ,

with the limit of JSM (w,b, ξ) as the number of gradient steps increases being JSM (w∗,b∗, ξ∗),
which makes it possible to specify a stopping criterion for training based on the value of JSM (w,b, ξ)−
JLLW,d (α). This criterion, by the way, can be an early stopping one. Going back to the M-SVM2,
once more, the KKT complementary conditions provide us with the value of b∗. We get

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik > 0 =⇒ 〈w∗
k,Φ (xi)〉+ b∗k = − 1

Q− 1
+ ξ∗ik.

Making use of (19), this can be reformulated as:

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik > 0 =⇒ − (Hα∗)ik + b∗k = − 1
Q− 1

+ (H ′α∗)ik

and �nally

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik > 0 =⇒ b∗k =
(
H̃α∗

)
ik
− 1

Q− 1
= − ∂

∂αik
JM-SVM2,d (α∗) .

Obviously, the derivation of this formula is one step shorter if one considers the hard margin
machine instead of the M-SVM2. As in the case of the LLW-M-SVM, it can be used to derive a
value for vector b, but this does not give rise directly to a value for vector ξ (and thus to an upper
bound on the minimum value of the primal objective function at w, JM-SVM2 (w,b∗ (w) , ξ∗ (w))),
since there is no analytical expression for vector ξ. The reason why there is no equivalent to (20)
for the M-SVM2 is precisely the relaxation of the constraints of nonnegativity of the slack variables.
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No help can be expected from considering the hard margin machine instead of the M-SVM2. The
value of its primal objective function:

JHM (w̃,b) =
1
2

Q∑
k=1

‖w̃k‖2 =
1
2
αT H̃α

cannot be used as an upper bound on JLLW,d (α∗) = 1
2α∗T H̃α∗, because the vector α does not

necessarily correspond to a feasible solution of the primal (hard margin) problem (Problem 1
with κ̃ as kernel). As a consequence, it does not provide us either with an upper bound on
JM-SVM2 (w,b∗ (w) , ξ∗ (w)). As a matter of fact, the null vector is a feasible solution of Problem 6,
whereas it is associated with a function in H taking a constant value equal to b. To sum up, for
a given value of α corresponding to a feasible solution of Problem 6, obtaining an upper bound
on JM-SVM2 (w,b∗ (w) , ξ∗ (w)) useful to decide to stop training requires to solve an additional
optimization problem with b and ξ as vectors of parameters (or at least ξ). Among the criteria
remaining to characterize the vicinity of the optimal solution is the convergence of αT H̃α and

1
Q−11T

Qmα towards an identical value (see Proposition 4).

5 Radius-Margin Bound on the Leave-One-Out Cross-Validation

Error of the Hard Margin LLW-M-SVM

Like its bi-class counterpart, our multi-class radius-margin bound is based on a key lemma.

5.1 Multi-class key lemma

Lemma 1 (Multi-class key lemma) Let us consider a hard margin Q-category LLW-M-SVM
on a domain X . Let dm = {(xi, yi) : 1 6 i 6 m} be its training set. Consider now the same
machine trained on dm \ {(xp, yp)}. If it makes an error on (xp, yp), then the inequality

max
16k6Q

α∗pk >
Q

(Q− 1)3D2
m

holds, where Dm is the diameter of the smallest sphere of the feature space enclosing the set
{Φ(xi) : 1 6 i 6 m}.

Proof Let hp ∈ H be the optimal solution when the machine is trained on dm \ {(xp, yp)}.
Accordingly, let us denote by (wp,bp) the couple characterizing the optimal hyperplanes and by

αp = (αp
ik) ∈ RQm

+ the corresponding vector of the dual variables, with
(
αp

pk

)
16k6Q

= 0Q. This

representation is used in order to simplify the simultaneous handling of both M-SVMs. Indeed,
αp is an optimal solution of Problem 4 under the additional constraint (αpk)16k6Q = 0Q. Let

us de�ne two more vectors in RQm
+ : λp = (λp

ik)
16i6m,16k6Q

and µp = (µp
ik)

16i6m,16k6Q
. λp

exhibits additional properties so that the vector α∗ − λp is a feasible solution of Problem 4 under

the additional constraint that
(
α∗pk − λp

pk

)
16k6Q

= 0Q, i.e., α∗ − λp satis�es the same constraints

as αp. We have thus

∀i ∈ [[ 1,m ]] \ {p} , ∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik − λp
ik > 0 ⇐⇒ λp

ik 6 α∗ik.

We deduce from the equality constraints of Problem 4 that:

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
(α∗il − λp

il) = 0 ⇐⇒
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

il = 0.
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To sum up, vector λp satis�es the following constraints:
∀k ∈ [[ 1, Q ]] , λp

pk = α∗pk

∀i ∈ [[ 1,m ]] \ {p} , ∀k ∈ [[ 1, Q ]] \ {yi} , 0 6 λp
ik 6 α∗ik

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
λp

il = 0
. (21)

Note that the domain de�ned by these constraints is a subset of the feasible set of Problem 4
(vector λp is a feasible solution of Problem 4). The properties of vector µp are such that αp +K1µ

p

satis�es the same constraints as α∗, where K1 is a positive scalar the value of which will be speci�ed
in the sequel. We have thus:

∀i ∈ [[ 1,m ]] , αp
iyi

+ K1µ
p
iyi

= 0 ⇐⇒ µp
iyi

= 0.

Moreover, we have

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , µp
ik > 0 =⇒ αp

ik + K1µ
p
ik > 0.

Finally,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
(αp

il + K1µ
p
il) = 0 ⇐⇒

m∑
i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

il = 0.

To sum up, vector µp is a feasible solution of Problem 4. In the sequel, for the sake of simplicity,
we write J in place of JLLW,d. By construction of vectors λp and µp, we have J(α∗ − λp) 6 J(αp)
and J (αp + K1µ

p) 6 J(α∗). Hence,

J(α∗)− J(α∗ − λp) > J(α∗)− J(αp) > J (αp + K1µ
p)− J(αp). (22)

The expression of the �rst term is

J(α∗)− J(α∗ − λp) =
1
2
λpT Hλp +∇J(α∗)T λp.

Since α∗ and λp are respectively an optimal and a feasible solution of Problem 4, then necessarily,

∇J(α∗)T λp 6 0.

This becomes obvious when one thinks about the principle of the Frank-Wolfe algorithm. As a
consequence,

J(α∗)− J(α∗ − λp) 6
1
2
λpT Hλp

and equivalently, in view of Equations 6 and 10 (where α∗ has been replaced with λp), as well as
the de�nition of H,

J(α∗)− J(α∗ − λp) 6
1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

. (23)

We now turn to the right-hand side of (22). The line of reasoning already used for the left-hand
side gives:

J (αp + K1µ
p)− J(αp) = K1∇J(αp)T µp − K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (24)

By hypothesis, the M-SVM trained on dm \ {(xp, yp)} does not classify xp correctly. This means
that there exists n ∈ [[ 1, Q ]]\{yp} such that hp

n (xp) > 0. Furthermore, αp is not an optimal solution
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of Problem 4. Since µp is a feasible solution of the same problem, it can be built in such a way
that ∇J(αp)T µp > 0 (it de�nes a direction of ascent). These observations being made, neglecting
the case αp = 0 as a degenerate one, we apply Proposition 3 to build a vector µp with adequate
properties. Thus, let I be a mapping from [[ 1, Q ]] to [[ 1,m ]] \ {p} such that

∀k ∈ [[ 1, Q ]] , hp
k

(
xI(k)

)
= − 1

Q− 1
.

For K2 ∈ R∗+, let µp be the vector of RQm
+ that only di�ers from the null vector in the following

way: {
µp

pn = K2

∀k ∈ [[ 1, Q ]] \ {n} , µp
I(k)k = K2

.

Obviously, this solution satis�es the constraints of Problem 4. With this de�nition of vector µp,
the inner product ∇J(αp)T µp simpli�es as follows:

∇J(αp)T µp =
m∑

i=1

Q∑
k=1

µp
ik

(
〈wp

k,Φ(xi)〉+
1

Q− 1

)

= K2

〈wp
n,Φ(xp)〉+

1
Q− 1

+
∑
k 6=n

(
〈wp

k,Φ
(
xI(k)

)
〉+

1
Q− 1

)
= K2

{
hp

n(xp) +
1

Q− 1
−

Q∑
k=1

bp
k

}
.

As a consequence,

∇J(αp)T µp >
K2

Q− 1
.

By substitution into Equation 24, we get

J (αp + K1µ
p)− J(αp) >

K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (25)

Combining (22), (23) and (25) �nally gives

1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

>

K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (26)

Let νp = (νp
ik)16i6m,16k6Q be the vector of RQm

+ such that µp = K2ν
p. The value of the scalar

K = K1K2 maximizing the right-hand side of (26) is:

K∗ =
1

Q−1∑Q
k=1

∥∥∥∑m
i=1

∑Q
l=1

(
1
Q − δk,l

)
νp

ilΦ(xi)
∥∥∥2 .

By substitution in (26), this implies that

(Q− 1)2
Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2 Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
νp

ilΦ(xi)

∥∥∥∥∥
2

> 1.
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The quadratic form λpT Hλp can be rewritten as

Q∑
k=1

∥∥∥∥∥ 1
Q

m∑
i=1

Q∑
l=1

λp
ilΦ(xi)−

m∑
i=1

λp
ikΦ(xi)

∥∥∥∥∥
2

=

1
Q2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

λp
ilΦ(xi)−Q

m∑
i=1

λp
ikΦ(xi)

∥∥∥∥∥
2

=

1
Q2

Q∑
k=1

∥∥∥∥∥∥
m∑

i=1

Q∑
l=1,l 6=k

(λp
il − λp

ik) Φ(xi)

∥∥∥∥∥∥
2

=

1
Q2

Q∑
k=1

∥∥∥∥∥∥
Q∑

l=1,l 6=k

(
m∑

i=1

λp
ilΦ(xi)−

m∑
i=1

λp
ikΦ(xi)

)∥∥∥∥∥∥
2

.

For η = (ηik)16i6m,16k6Q ∈ RQm, let S(η) = 1
Q

∑m
i=1

∑Q
k=1 ηp

ik. Due to the equality constraints
satis�ed by λp,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik = S (λp) .

Since λp ∈ RQm
+ , by construction,

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

=

S (λp)2

Q2

Q∑
k=1

∥∥∥∥∥∥
Q∑

l=1,l 6=k

(convl {Φ(xi) : 1 6 i 6 m} − convk {Φ(xi) : 1 6 i 6 m})

∥∥∥∥∥∥
2

where the convl {Φ(xi) : 1 6 i 6 m} are convex combinations of the Φ(xi). As a consequence,

∀(k, l) ∈ [[ 1, Q ]]2 , ‖convl {Φ(xi) : 1 6 i 6 m} − convk {Φ(xi) : 1 6 i 6 m}‖2 6 D2
m

and
Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

6
(Q− 1)2

Q
S (λp)2D2

m.

Since the same reasoning applies to νp, we get:

(Q− 1)6

Q2
S (λp)2 S (νp)2D4

m > 1. (27)

By construction, S (νp) = 1. We now construct a vector λp minimizing the objective function S.
Since ∀k ∈ [[ 1, Q ]] , λp

pk = α∗pk,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik > α∗pk.

But since

∀(k, l) ∈ [[ 1, Q ]]2 ,

m∑
i=1

λp
ik =

m∑
i=1

λp
il = S (λp) ,

we have further
min
λp

S (λp) > max
16l6Q

α∗pl.
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Obviously, the nature of the function S calls for the choice of minimal values for the components
λp

ik, which is coherent with the box constraints in (21). Thus, there exists a vector λp∗ which is a
minimizer of S subject to the set of constraints (21) such that

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp∗

ik = max
16l6Q

α∗pl,

i.e., S
(
λp∗
)

= max16l6Q α∗pl. The substitution of the values of S (νp) and S
(
λp∗
)
in (27) provides

us with (
max

16k6Q
α∗pk

)2

>
Q2

(Q− 1)6D4
m

.

Taking the square root of both sides concludes the proof of the lemma.

5.2 Multi-class radius-margin bound

The multi-class radius-margin bound is a direct consequence of Lemma 1.

Theorem 2 (Multi-class radius-margin bound) Let us consider a hard margin Q-category
LLW-M-SVM on a domain X . Let dm = {(xi, yi) : 1 6 i 6 m} be its training set, Lm the number
of errors resulting from applying a leave-one-out cross-validation procedure to this machine, and
Dm the diameter of the smallest sphere of the feature space enclosing the set {Φ(xi) : 1 6 i 6 m}.
Then, using the notations of De�nition 5, the following upper bound holds true:

Lm 6
(Q− 1)4

Q2
D2

md (h∗)2
∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

. (28)

Proof Let M (dm) be the subset of dm made up of the examples misclassi�ed by the cross-
validation procedure (|M (dm)| = Lm). Lemma 1 exhibits a non-trivial lower bound on max16k6Q α∗pk

when (xp, yp) belongs to M (dm). As a consequence,∑
i:(xi,yi)∈M(dm)

max
16k6Q

α∗ik >
QLm

(Q− 1)3D2
m

and thus

1T
Qmα∗ =

m∑
i=1

Q∑
k=1

α∗ik >
m∑

i=1

max
16k6Q

α∗ik >
QLm

(Q− 1)3D2
m

. (29)

According to Proposition 4,

1T
Qmα∗ =

Q− 1
Q

d (h∗)2
∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

.

A substitution in (29) thus provides us with the announced result.

5.3 Discussion

When Q = 2, Equation 2 implies that d (h∗) = 1 + 1
Q−1 = Q

Q−1 = 2. Thus, (Q−1)4

Q2 d (h∗)2 = 1.

Furthermore, since d12 (h∗) = 0, the sum
∑

k<l

(
1+dkl(h

∗)
γkl(h∗)

)2

simpli�es into 1
γ2 . This means that the

expression of the multi-class radius-margin bound simpli�es into the one of the standard bi-class
radius-margin bound:

Lm 6

(
Dm

γ

)2

.
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The formulation of Theorem 2 is the one involving the radius (diameter) and the geometrical mar-
gins, so that it appears clearly as a multi-class generalization of the bi-class radius-margin bound.
However, in the multi-class case, upper bounding

∑
i:(xi,yi)∈M(dm) max16k6Q α∗ik by

∑m
i=1

∑Q
k=1 α∗ik

is useless. A sharper bound is available:

∑
i:(xi,yi)∈M(dm)

max
16k6Q

α∗ik 6
m∑

i=1

max
16k6Q

α∗ik

and there is no need to make use of Proposition 4. Consequently, we can get a tighter bound on
the leave-one-out cross-validation error:

Lm 6
(Q− 1)3

Q
D2

m

m∑
i=1

max
16k6Q

α∗ik. (30)

If (30) is a tighter bound, the bound of the lemma is the one to be used for model selection, since
it is the one that can be derived with respect to the hyperparameters, in the same way as in the
bi-class case [5].

The comparison with the radius-margin bound introduced in [33] is also enlightening. This
bound is dedicated to the one-versus-one decomposition strategy under the rule of max wins.
[20, 19]. More precisely, it appears as a direct consequence of the application of the bi-class radius-
margin bound in this framework. However, it applies to all the multi-class discriminant models
based on SVMs and for which the bi-class radii and margins can be computed.

Theorem 3 (Model selection criterion I in [33]) Let us consider a Q-category one-versus-
one decomposition method involving

(
Q
2

)
hard margin bi-class SVMs on a domain X . For 1 6

k < l 6 Q, let (w∗
kl, b

∗
kl) be the couple characterizing the machine discriminating categories k and l

and γ∗kl its geometrical margin (γ∗kl = 1

‖w∗
kl‖

). Let Dkl be the diameter of the smallest sphere of the

feature space enclosing the set {Φ(xi) : yi ∈ {k, l}}. Then, the following upper bound holds true:

Lm 6
∑
k<l

(
Dkl

γ∗kl

)2

. (31)

If we concentrate on the terms corresponding to a radius or a margin, then (28) and (31) share the
same structure. Two arguments favour the second bound. First, by de�nition, we have

∀(k, l) : 1 6 k < l 6 Q, Dkl 6 Dm.

Furthermore, since the one-versus-one strategy maximizes each bi-class margin independently of
the others, one can expect that ∀(k, l) : 1 6 k < l 6 Q, γ∗kl > γkl (h∗). However, the comparison
becomes far more complicated if (30) is used in place of (28). An argument in favour of (30)
is that if we do not take into account the numbers of support vectors, its computation involves
fewer dual variables than the computation of (28). All in all, the most useful bound could simply
correspond to the most e�cient strategy, either the single-machine one or the one resulting from
the one-versus-one decomposition, as a function of the problem at hand. In that respect, it is
currently admitted that no multi-class discriminant model based on SVMs is uniformly superior
to the others [19, 12, 25].

6 Conclusions and Ongoing Research

In this article, we have introduced a new multi-class SVM: the M-SVM2. This quadratic loss
extension of the M-SVM of Lee, Lin and Wahba is the �rst M-SVM exhibiting the main property
of the 2-norm SVM: its training algorithm can be expressed, after an appropriate change of kernel,
as the training algorithm of a hard margin machine (LLW-M-SVM). As in the bi-class case, one
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can take advantage of this property by making use of a radius-margin bound as objective function
for the model selection procedure. The derivation of the corresponding bound is the second main
contribution of the article. This study has highlighted di�erent features of the M-SVMs which
make their study intrinsically more di�cult than the one of bi-class pattern recognition SVMs. For
instance, the formula expressing the geometrical margins as a function of the vector of dual variables
α∗ (Proposition 4) is far more complicated than its bi-class counterpart. Coming after our Vapnik-
Chervonenkis theory of the large margin multi-category classi�ers [14] and our characterization of
the Rademacher complexity of the M-SVMs [15], it provides us with new arguments backing our
thesis that the study of multi-category classi�cation should be tackled independently of the one of
dichotomy computation.

The evaluation of the M-SVM2 and its bound must be carried out in a systematic way. This
represents a signi�cant amount of work considering the number of M-SVMs (or even decomposition
methods) and model selection methods that can be used for the comparative experiments. Obvi-
ously, a tuning criterion of particular interest for the comparison is the generalized approximate
cross-validation (GACV) [22]. The computational complexity of those experiments should be kept
reasonable thanks to the use of algorithms devised to �t the entire regularization path at a cost
exceeding only slightly the one of one training of the corresponding machine. The �rst of those
algorithms, dedicated to the standard bi-class SVM, was proposed in [17]. Its extension dedicated
to the LLW-M-SVM is described in [21]. The extension to the M-SVM2 is the subject of an ongoing
research.
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