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Divide and Conquer strategy
parallelizing Divide and Conguer subtasks
computational results
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Problem formulation |
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SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISV
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRS

Figure O: in fact this is its real (3D) shape
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SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISV
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRS

_ 2D model (core)
Figure O: this is our two dimensional model
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Problem formulation |1

m = 3 segments of lengths {; = 2,1, = 4,15 = 3;
A query of length N = 14 ;

N

2D core (model) 1D query
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Figure O: two possible alignments.
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Figure O: this is not allowed
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Problem formulation |1

m = 3 segments of lengths {; = 2,1, = 4,15 = 3;
A query of length N = 14 ;

N

2D core (model) 1D query

Figure O: two possible alignments.

n=N+1-") Iis the degree of freedom
1=1
n = 6 for the considered example
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Complexity

Proven to be NP-complete by R. Lathrop (Protein Eng. 94)

(n—1+m)!
m!(n—1)! °

Number of possible alignments=(7"1*") =

m
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Proven to be NP-complete by R. Lathrop (Protein Eng. 94)

i i —(n—1+ _ (n=14m)!
Number of possible alignments=(;;""*™") = 5= —5r. Few
Instances :

query core size Space

name name segm. | pos. size

2cyp 0 | 2cyp O 15 08 | 1.5e+18
lcoy 0 | 1gal O 36 81 | 1.3e+30
3mina0 | 4kbpa0 23 189 | 3.2e+30
3minb0 | 1gpl O 23 215 | 5.3e+31
lgal 0 | 1lad3a0 31 212 | 1.3e+39
lcoy O | 1fcba0 34 190 | 1.7e+40
1kit 0 | 1regaO 41 194 | 9.9e+45
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Lathrop_Smith’s branch&bound,(J.Mol.Biol., 1996);
Xu_Xu_Uberbacher’s divide&conguer (J. Comp. Biol., 1998).

T. Akutsu and S. Miyano, On the approximation of protein
threading, TCS, (1999)

J. Xu, M. LI, G. Lin, D. Kim and Y. Xu, Protein threading by
linear programming, PSB, January, 2003

N. Yanev, R. Andonov, Parallel Divide&Conguer Approach for
Protein Threading Problem, HICOMB’03, April, 2003, Nice
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FROST : huge computations !

1175 classes are know today. We need to classify the query in one of
these classes.

1D query
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Which is the shortest path fromSto T ?

Figure 1: Five segments and their local interactions. The
deg ree Of freedom iS th ree_ Protein Threading Problem : — p.8/3:



Which is the shortest path fromSto T ?

NON-LOCAL COSTS

(11) 32
(11) (33)
(12) 32
(12) (33) (32) (53)

(13) (33) (33) (563)

Figure 1: Here are all interactions. The non-local interac-
tions make the problem NP-complete.
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Which is the shortest path fromSto T ?

NON-LOCAL COSTS

(12) 33)

(13) 33

Figure 1. Impact of the non-local interactions
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Which is the shortest path fromSto T ?

NON-LOCAL COSTS

(11) B2
(11) 33)
(12) 32

(12) 33) |8 32) G3)
(13) 33) |5/ (33) (53)

OPT=F((1,1) (2.1) (3.2) (4,2) (5,2))=14.0

Figure 1: Shortest path from Sto T
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Network flow formulation: notations

Interactions: L C {(4,5) |1 <i<j<m}:all

A={(i,j) € L|j—1i=1}: adjacent;
R= L\ A:remote

G(V, E)—digraph with

V={(G,k)|i=1m; k=1,n}; F = EL U E,, where

B ={((3,k),(5,0) | (4,5) € L, 1 <k <1 <nj

E,={((G,k),i+1,0))]i=1,...,m—1}, 1<k<I<n

Ez — EL \ E:c

Variables: z.,e € F,, z.,e € E,,and y,, v € V.
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Network flow formulation: space X

Finding an S-T' path in G equals sending unit flow from S to T°

Z T, = 1 (0)

ecl'(S)
> ze=1 )
ec'—1(T)
er— Z z, =0 veV (0)
ecl'(v) ecl'—1(v)
T, > 0 e € E, (0)

The space of x variabales: network-flow polytope X
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Network flow formulation: space Y

Set of feasible threadings expressed in Y

Y oy =1 i=1m ©
k=1

k k
Zyil—zyiﬂ,zzo r=1m-—-1, k=1,n—-1

=1 =1
(0)
yir € {0,1} i=1m, k=1n (0)
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Y;g are

: the corresponding z;;; are

Ys2 -+ Y33
21233 T 21333
21132 T+ 21232
<1131
Y33
Y32

Y31

as defined inY

+ 23151
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using vertices and z-arcs : MYZ

> > cilir + Y Ceze = min (0)
1=1 k=1 eck
yzkzzzzk]l (717]) €L7 k= 17” (O)
[=k
[
yjlzzzikjl (7’7]) EL: Zzlan (O)
k=1
yeyY (0)

2. >0 e€ F, ()

Protein Threading Problem : — p.13/3:



guery core problem size space LS M*

name name segm. | pos. Size score | time(s) score | time(s.)
2CYP 0 | 1THEAO (K 138 | 1.8e+18 -11.4 e 1200 -11.6 606
3MINAO | 3MINBO 33 62 | 2.5e+25 398.4 e 6074 390.1 361
1COY 0 | 1GAL O 36 81 | 1.3e+30 100.0 e 1800 98.7 460
3SMINAO | 4KBPAO 23 189 | 3.2e+30 57.42 e 6469 57.42 3211
3MINBO | 1GPL O 23 215 | 5.3e+31 120.4 e 3000 63.5 2794
1GAL 0 | 1YVEIO 31 140 | 9.2e+33 66.19 | e 42425 52.76 3827
1GAL 0 | 1COY_ 0 27 225 | 1.3e+36 | -295.60 | e 42600 | -296.60 12061

Table 1: The sign e indicates that LS’s B&B has finished because
of time limit — the solution obtained in this case iIs not proven to be

optimal.
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query query | core space score MXYZ RAPTOR \Y 4

name length | name Size iter | time iter | time iter | time
3MINAO | 491 |3MINBO |2.47e+25| 390.15| 22878 | 83| 25747 | 11810566 | 29
3MINBO | 522 |2MPRAOQO|1.75e+26| 8454 | 20627 | 111 | 15723| 94| 7920| 22
3MINAO | 491 |1AOZAO |1.10e+27 | 405.66 | 41234 | 276| 47082 | 34716094 | 58
2BMH 0| 455 |1CEM 0 |1.53e+29| -65.22| 30828 | 390 | 36150 | 596 25046 | 241
SMINBO | 522 |5EAS O |1.78e+29| 149.77| 18949 | 161 | 18598 | 169 |12307| 77
3SMINAO | 491 |1BIF O |1.09e+30| 81.79| 28968 | 365| 40616 | 604 (13870| 68
3MINAO | 491 |1INP O |1.44e+30 7.51| 58602 (1303 | 66816 |2083|29221 | 401
3MINAO | 491 |4KBPAO |3.20e+30| 57.42| 34074 | 572 | 41646| 659 |22516| 186
SMINBO | 522 |1GPL 0O [5.34e+31| 63.55| 26778 | 334 | 33395 | 468 |13752| 64
2CYP O | 294 |3GRS 0 |4.13e+38|-230.44| 43694 | 619 | 52312 | 74936539 | 314
1GAL O | 583 |1AD3AO0 |1.29e+39| 76.29 | 124321 |6084 | 147828 | 8019 | 57912 | 1120
IKIT O | 757 |1REQAO |9.89e+45| 292.40 | 121048 | 4761 | 166067 | 7902 | 92834 | 3117

Table 2: MY Z is significantly faster.
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query
name

query
length

core

name

space

size

LP

Score

MIP

Score

MXYZ

RAPTOR

MY Z

LP

time

MIP

time

LP

time

MIP

time

LP

time

MIP

time

1COY_0O

508

1GAL 0

1.27e+30

316.23

317.53

195

281

339

447

12

126

3MINAO

491

2GPL_0

1.79e+30

97.43

98.07

245

262

427

945

70

87

1FCBAO

511

1GTMAOQ

1.88e+31

415.74

420.05

1908

3893

3129

4053

1012

1773

1COY_0O

508

3LADAO

3.87e+32

180.32

181.85

841

1008

1389

1666

293

422

1COY_0O

508

1GOWAO

1.67e+33

370.19

370.24

1292

1356

1706

2117

908

1182

3MINAO

491

1PBGAO

1.19e+33

90.23

90.79

542

927

737

827

202

218

3MINBO

522

2YHX_0

6.57/e+34

-12.42

-11.82

1678

1723

1928

PANES

258

293

1GAL_0

583

1COY_0O

1.33e+36

-297.48

-296.60

1900

2533

4372

4648

773

910

1COY_0O

508

1AGS8AO

1.23e+38

347.81

354.49

4711

9349

6346

17903

1657

3949

1COY_0

508

1FCBAO

1.66e+40

201.08

210.35

8031

13449

10588

27055

2504

9631

Table 3: LP_optimal value gap is small!!! MY Z Is faster.
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protein threading in P?



IS the protein threading in P?

Observation : 3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
Statistics: 1x11 nodes, 2x10 nodes, 1x9 nodes,

5% 8 nodes, 3x7 nodes, 3x6 nodes,

Majority: 2 nodes - in which cases the value of the
solution 1s 0.5
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3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
1x 11 nodes, 2x10 nodes, 1x9 nodes,
5% 8 nodes, 3x 7 nodes, 3x6 nodes,
2 nodes - 1n which cases the value of the
solution 1s 0.5

Validated when using the FROST score function.
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3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
1x 11 nodes, 2x10 nodes, 1x9 nodes,
5% 8 nodes, 3x 7 nodes, 3x6 nodes,
2 nodes - 1n which cases the value of the
solution 1s 0.5

Validated when using the FROST score function.
This is not true when using randomly generated score
function.
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Can we do better?

Yes, using divide and conquer startegy!
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Instance with 5 segments and 6 free positions. (a) The problem is split on segment
3 In 3 subproblems. The feasible set of the second subproblem is defined by
L?=(1,1,3,3,3)and U? = (4,4,4,6,6).

(b) The problem is split on segments 2 and 4 in 6 subproblems. The feasible set of
the second subproblem is defined by

L?=(1,1,1,3,3)and U? = (2,2,4,4,6).
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WWhat Is the best D&C strategy

= how to chose the best segment/segments to split?
= what Is the optimal number of subproblems?
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A splitting Is defined for a fixed segment ; and a fixed
number of subproblems q. For fixed ¢ a good strategy Is
to choose the segment ¢ in a way which makes the most
difficult of the resulting subproblems easiest.
We admit the

of a subproblem and we choose

1 = argmin { max Vjs} :

1<j<m (1=s=¢q

where v;, IS the number of variables of the sth subproblem
when we split on the 5th segment.
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EEHRICIDICS Ul DAL surdlegy alilu Or-
der of solving the subproblems

m a better record v*
allows earlier cut in the next subproblems. All
subproblems with lower bound weaker than this cut
are canceled by the LP solver;

= the for the
efficiency of this procedure;

= the chance to find the global optimum in a
subproblem is of Its search
space,

= we solve the subproblems in a
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number of subproblems 1 3 6 10 15 21 28 36
query core space split

SMINBO 5EAS 0 1.78e+29 1| 364 192 291 390 528 677 818
2| 364 175 195 243 312 381 478
SMINAO 1BIF 0 1.09e+30 1| 292 181 216 303 3838 501 612
2 | 292 167 225 276 273 342 419
SMINAO 1INP O 1.44e+30 1| 1117 482 512 676 840 1094 1314
2 | 1117 511 464 534 660 768 800
SMINAO 4KBPAO 3.20e+30 1| 802 405 515 719 903 1216 1484
2 | 802 322 366 396 525 665 763
SMINBO 1GPL 0 5.34e+31 1| 524 352 531 728 908 1020 1308
2 | 524 409 405 475 496 561 701
instances where SPLIT1 is better 11 3 1 0 0 0 0

Instances where SPLIT2 is better 0 5 9
average speedup SPLIT1 23 20 15 11 09 0.7 0.6
average speedup SPLIT2 20 19 19 16 13 1.1 1.0
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Splitting allows to reduce the running time
when choosing appropriate number of subproblems.

The running time decreases up to certain number of
subproblems and then starts increasing. The best number of

subproblems is (no more than 15 for all solved

Instances).

Itis to determine the optimal number of subproblems.

SPLITZ2 is more , In sense that the running time increases

slower with the number of subproblems. While for 3
subproblems SPLIT1 is clear winner, for 10 or more
subproblems one has to choose SPLIT2. This makes the use of
SPLIT?2 preferable.
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e do even better?



e do even better?

Yes, using parallelism!



Can we do even better?

Yes, using parallelism!
Multiprocessing : source of for the split and
conquer strategy
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centralized dynamic load balancing: tasks (very
Irregular) are handed out from a centralized location
(pool) In a dynamic way;

the work pool is managed by a “master”, giving
work on demand to idle “slaves” and also passing
them the best objective value found from the
previous tasks.

each slave applies the (MY Z) model to solve the
corresponding subproblem.
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First parallelization : tasks are atomic (without
communication during task execution). Very poor
performance (slower than the sequential D&C!!).
No learning effect.

Second parallelization : tasks are non-atomic, by
using the CPLEX call-back-function technique
which permits the user to perform some user defined
operations during the optimization process.

The LP callback is used to probe for a new record
coming from outside and to stop the optimization if
the LP objective value becomes greater than the
record. The local record is relatively rarely updated
— about once for thousand of simplex iterations.
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query 1CQOY _0, core 1AG8AO, m = 33, n = 172 | NL| = 84, space 1.23e+38
1 3 §) 10 15 21 28 36| avg stddev s up eff
SPLIT1| 1| 17673 2656 2309 2756 2809 | 4531 2910 1.0 10
2 2972 1664 239 27 14
4 839 1020 116 44 11
6 810 712 151 64 11
8 482 685 37 6.6 038
10 481 o7 7 49 7.8 0.8
12 523 556 36 81 07
SPLIT2 | 1| 17673 2656 2309 2756 2809 | 4531 2910 1.0 10
2 3878 1105 1562 1467 | 1330 111 34 17
4 703 700 719 | 655 58 69 17
6 657 510 515| 501 85 9.0 15
8 614 431 | 398 19 114 14
10 374 394 | 328 15 138 14
12 243 311 46 146 1.2
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SPLIT1 versus SPLITZ2 in parallel ||

query 1GAL_O, core 1AD3A0, m = 31,n = 212 |NL| = 81, space 1.29e+39
1 3 6 10 15 21 28 36| avg stddev s up eff
SPLIT1 | 1| 3036 868 1137 1381 1257 | 1698 555 10 10
2 824 786 294 22 11
4 277 440 64 39 10
6 276 321 29 53 09
8 279 289 40 59 07
10 278 265 45 64 0.6
12 311 204 22 83 0.7
SPLIT2 | 1| 3036 868 1137 1381 1257 | 1698 555 1.0 1.0
2 983 592 663 656 | 643 129 26 1.3
4 342 354 329 | 379 89 45 11
6 343 185 222 | 272 32 62 10
8 259 179 | 203 37 84 10
10 258 154 | 170 24 100 10
12 185 157 24 108 09
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SPLIT?2 in parallel : huge instance

query 1KIT_O, core IREQAO, m = 41, n = 194 |[NL| = 112, space 9.89e+45

3 6 10 15 21 28 36 45 55 66| avg stddev s up eff

1 2903 3638 3595 3931 3958 4174 572 1.0 1.0
2 | 3039 1838 1870 2017 1980 1679 171 25 12
4 990 943 1019 1010 1035 156 4.0 10
6 955 673 680 692 774 163 54 09
8 686 519 535 559 28 75 09
10 681 425 440 456 28 91 09
12 415 387 418 36 10.0 038
16 464 352 358 22 116 0.7
18 383 313 359 | 349 18 119 0.7
24 343 307 | 294 10 142 0.6
26 373 296 | 317 14 131 05

Table 3: Running times for query 1KIT_0 core 1IREQAOQ
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Conclusions and perspectives

m LP formulation is very convenient for PTP;

m complete integration in FROST and its on the GRID;

m can we avoid the commercial package CPLEX of ILOG?
® a dedicated software for PTP is coming;

m computational results and comparisons between exact and
approximated methods;

® can we use the observation that the gap between the LP and
optimal solution is small?

= Impact of the coefficients on the problem’s behavior as
NP-hard?
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