
Protein Threading Problem :
From Mathematical Models to Parallel

Implementations

Rumen Andonov

�

Stefan Balev

�

Nikola Yanev

�

�

University of Valenciennes
�

University of Havre

�

Sofia University

Valenciennes le Havre Sofia

France France Bulgaria

Protein Threading Problem : – p.1/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;

Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);

J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Outline

problem formulation ;

related works: most important steps

FROST + Lathrop_Smith’s B&B (96) ;
Yanev_Andonov’s network flow formulation
(RR INRIA-09.2002, HiCOMB-04.2003);
J. Xu, M. Li, G. Lin, D. Kim and Y. Xu,
RAPTOR: Optimal Protein Threading by Linear
Programming, (PSB-01.2003, JBCB-03.2003);

Divide and Conquer strategy

parallelizing Divide and Conquer subtasks

computational results

Protein Threading Problem : – p.2/31

Problem formulation I

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISVLVIE

SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRSGNGL

Protein Threading Problem : – p.3/31

Problem formulation I

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISVLVIE

SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRSGNGL

A sequence in a protein data bank

Protein Threading Problem : – p.3/31

Problem formulation I

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISVLVIE

SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRSGNGL

Figure 0: in fact this is its real (3D) shape

Protein Threading Problem : – p.3/31

Problem formulation I

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNISVLVIE

SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIRSGNGL

2D model (core)

Figure 0: this is our two dimensional model

Protein Threading Problem : – p.3/31

Problem formulation II

� � �

segments of lengths

��� � ��
�

��	 �

�

��� � �

;

A query of length

� �

;

1D query2D core (model)

Protein Threading Problem : – p.4/31

Problem formulation II

� � �

segments of lengths

��� � ��
�

��	 �

�

��� � �

;

A query of length

� �

;

1D query2D core (model)

Figure 0: two possible alignments.

Protein Threading Problem : – p.4/31

Problem formulation II

� � �

segments of lengths

��� � ��
�

��	 �

�

��� � �

;

A query of length

� �

;

1D query2D core (model)

Figure 0: two possible alignments.

Figure 0: this is not allowed
Protein Threading Problem : – p.4/31

Problem formulation II

� � �

segments of lengths

��� � ��
�

��	 �

�

��� � �

;

A query of length

� �

;

1D query2D core (model)

Figure 0: two possible alignments.

� � � �
 �
�

����
� �is the degree of freedom

� � �

for the considered example

Protein Threading Problem : – p.4/31

Complexity

Proven to be NP-complete by R. Lathrop (Protein Eng. 94)

Number of possible alignments=

� � �
� � ��

� �
� � �
� � � ��

�� � � �
� �� .

Protein Threading Problem : – p.5/31

Complexity

Proven to be NP-complete by R. Lathrop (Protein Eng. 94)

Number of possible alignments=

� � �
� � ��

� �
� � �
� � � ��

�� � � �
� �� . Few

instances :
query core size space

name name segm. pos. size

2cyp_0 2cyp_0 15 98 1.5e+18

1coy_0 1gal_0 36 81 1.3e+30

3mina0 4kbpa0 23 189 3.2e+30

3minb0 1gpl_0 23 215 5.3e+31

1gal_0 1ad3a0 31 212 1.3e+39

1coy_0 1fcba0 34 190 1.7e+40

1kit_0 1reqa0 41 194 9.9e+45

Protein Threading Problem : – p.5/31

Related work

Lathrop_Smith’s branch&bound,(J.Mol.Biol., 1996);

Xu_Xu_Uberbacher’s divide&conquer (J. Comp. Biol., 1998).

T. Akutsu and S. Miyano, On the approximation of protein

threading, TCS, (1999)

J. Xu, M. Li, G. Lin, D. Kim and Y. Xu, Protein threading by

linear programming, PSB, January, 2003

N. Yanev, R. Andonov, Parallel Divide&Conquer Approach for

Protein Threading Problem, HiCOMB’03, April, 2003, Nice

A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat, FROST: A

Filter Based Recognition Method, Proteins: Struct. Funct.

Genet. 2002

Protein Threading Problem : – p.6/31

FROST : huge computations !

1175 classes are know today. We need to classify the query in one of

these classes.

2D model 2D model

2D model

2

11751

1D query

Protein Threading Problem : – p.7/31

Our approach : network flow model

Which is the shortest path from S to T ?

S T

 7 3 1

3
4

4

2

7
8

5

1

4

3
2

8

1

3

2

10

8

2

1

2

1

1 1

1

Figure 1: Five segments and their local interactions. The

degree of freedom is three. Protein Threading Problem : – p.8/31

Our approach : network flow model

Which is the shortest path from S to T ?

S T

 7 3 1

3
4

4

2

7
8

5

1

4

3
2

2

10

8

2

2

1 2 3 4 5

1

1 1

1

(1 1) (3 3) 7 (3 1) (5 3) 2

(1 2) (3 2) 3 (3 2) (5 2) 7

(1 2) (3 3) 8 (3 2) (5 3) 5

(1 3) (3 3) 5 (3 3) (5 3) 2

 (1 3) (3 5)

NON−LOCAL COSTS

(1 1) (3 1) 4 (3 1) (5 1) 1

(1 1) (3 2) 2 (3 1) (5 2) 43

1
8

1

Figure 1: Here are all interactions. The non-local interac-

tions make the problem NP-complete.
Protein Threading Problem : – p.8/31

Our approach : network flow model

Which is the shortest path from S to T ?

S T

 7 3 1

3
4

4

2

7
8

5

1

4

3
2

2

8

2

2

1 2 3 4 5

1

1
1

(1 1) (3 3) 7 (3 1) (5 3) 2

(1 2) (3 3) 8 (3 2) (5 3) 5

(1 3) (3 3) 5 (3 3) (5 3) 2

 (1 3) (3 5)

NON−LOCAL COSTS

(1 1) (3 1) 4 (3 1) (5 1) 1

(1 1) (3 2) 2 (3 1) (5 2) 43

1 (1 2) (3 2) 3 (3 2) (5 2) 7

1

2

10

7

8

1

Figure 1: Impact of the non-local interactions

Protein Threading Problem : – p.8/31

Our approach : network flow model

Which is the shortest path from S to T ?

S T

 7 3 1

3
4

4

2

7
8

5

1

4

3
2

2

8

2

2

1 2 3 4 5

1

1
1

(1 1) (3 3) 7 (3 1) (5 3) 2

(1 2) (3 3) 8 (3 2) (5 3) 5

(1 3) (3 3) 5 (3 3) (5 3) 2

 (1 3) (3 5)

NON−LOCAL COSTS

(1 1) (3 2) 2 (3 1) (5 2) 43

1 (1 2) (3 2) 3 (3 2) (5 2) 7

1

2

10

7

8

1

(1 1) (3 1) 4 (3 1) (5 1) 1

OPT= F((1,1) (2,1) (3,2) (4,2) (5,2))=14.0

Figure 1: Shortest path from S to T

Protein Threading Problem : – p.8/31

Network flow formulation: notations

Interactions :

� �� �� � �� � � 	 �
 �
: all

� �� �� � ��
 �� ��� � � � �
: adjacent �

� � �

: remote

� � �

–digraph with

� �� �� � �� � � � �
 � � � � � � � � � � � �, where

� � �� � �� � � � � �� � � � � � �� � ��
 �� � � � � �

� � �� � �� � � � � � � � � � � � � � � �� � � �
� � � � � � � �

� � � � �
Variables: ��� , �
 �, �� , �
 �, and �! , "
 .

Protein Threading Problem : – p.9/31

Network flow formulation: space

Finding an

�

-

�

path in

�

equals sending unit flow from
�

to

�

� � � �� �

� � �

(0)

� � �	� � �
 �

� � �

(0)

� � � ��� �

� � �
� � �	� � � � �

� � �
 � � �

(0)

� � �
 � � ��
� (0)

The space of � variabales: network-flow polytope

�

Protein Threading Problem : – p.10/31

Network flow formulation: space

Set of feasible threadings expressed in

�
� � �

 �� � � � � � � �
 (0)

�
� � �

 �� ��

�
� � �

 �� � �	� �
 � � � �
� � � � � � � �� �

(0)

 �� �
 �
� � � � � � �
� � � � � � (0)

Protein Threading Problem : – p.11/31

Introducing variables to

1 2 3 4 5

33
y

32
y

31
y

��� � are binary : the corresponding � � � � � are relaxed.

� � �

� � � �

� � � � � �
as defined in

�

� � � � �

� � � � � �

� � � � � � � � � �

�	� �
 � � �
�

� � � � �

� � � � � � � � � �

��� �
 � � �
�

� � � � � � � � �

�	� �
 � � �
�

� � � � � � �� �

�
 � � �
�

� � � � � � � � �

� � � � � �

�
 � � �
�

� � � � � � � � �

� � � � � �

� � � � � �

�
 � � �
�

Protein Threading Problem : – p.12/31

Using vertices and -arcs : MYZ

�

� � �

�
� � �

� � � �� �
� � ��
�

�� �� min (0)

 � � �
�

� � �
� � �� � � �� � ��
 �� � � � � � (0)

 � � �
�

� � �
� � �� � � �� � ��
 �� � � � � � (0)

 (0)

��
 �
 � (0)

Protein Threading Problem : – p.13/31

MXYZ(M*) versus B&B (LS)

query core problem size space LS M*

name name segm. pos. size score time (s.) score time (s.)

2CYP_0 1THEA0 13 138 1.8e+18 -11.4 � 1200 -11.6 606

3MINA0 3MINB0 33 62 2.5e+25 398.4 � 6074 390.1 361

1COY_0 1GAL_0 36 81 1.3e+30 100.0 � 1800 98.7 460

3MINA0 4KBPA0 23 189 3.2e+30 57.42 � 6469 57.42 3211

3MINB0 1GPL_0 23 215 5.3e+31 120.4 � 3000 63.5 2794

1GAL_0 1YVEI0 31 140 9.2e+33 66.19 � 42425 52.76 3827

1GAL_0 1COY_0 27 225 1.3e+36 -295.60 � 42600 -296.60 12061

Table 1: The sign � indicates that LS’s B&B has finished because

of time limit – the solution obtained in this case is not proven to be

optimal.

Protein Threading Problem : – p.14/31

When the LP solution is integer

query query core space score MXYZ RAPTOR MYZ

name length name size iter time iter time iter time

3MINA0 491 3MINB0 2.47e+25 390.15 22878 83 25747 118 10566 29

3MINB0 522 2MPRA0 1.75e+26 84.54 20627 111 15723 94 7920 22

3MINA0 491 1AOZA0 1.10e+27 405.66 41234 276 47082 347 16094 58

2BMH_0 455 1CEM_0 1.53e+29 -65.22 30828 390 36150 596 25046 241

3MINBO 522 5EAS_0 1.78e+29 149.77 18949 161 18598 169 12307 77

3MINA0 491 1BIF_0 1.09e+30 81.79 28968 365 40616 604 13870 68

3MINA0 491 1INP_0 1.44e+30 7.51 58602 1303 66816 2083 29221 401

3MINA0 491 4KBPA0 3.20e+30 57.42 34074 572 41646 659 22516 186

3MINBO 522 1GPL_0 5.34e+31 63.55 26778 334 33395 468 13752 64

2CYP_0 294 3GRS_0 4.13e+38 -230.44 43694 619 52312 749 36539 314

1GAL_0 583 1AD3A0 1.29e+39 76.29 124321 6084 147828 8019 57912 1120

1KIT_0 757 1REQA0 9.89e+45 292.40 121048 4761 166067 7902 92834 3117

Table 2: MYZ is significantly faster.
Protein Threading Problem : – p.15/31

When the LP solution is not integer

MXYZ RAPTOR MYZ

query query core space LP MIP LP MIP LP MIP LP MIP

name length name size score score time time time time time time

1COY_0 508 1GAL_0 1.27e+30 316.23 317.53 195 281 339 447 72 126

3MINA0 491 2GPL_0 1.79e+30 97.43 98.07 245 262 427 545 70 87

1FCBA0 511 1GTMA0 1.88e+31 415.74 420.05 1908 3893 3129 4053 1012 1773

1COY_0 508 3LADA0 3.87e+32 180.32 181.85 841 1008 1389 1666 293 422

1COY_0 508 1GOWA0 1.67e+33 370.19 370.24 1292 1356 1706 2117 908 1182

3MINA0 491 1PBGA0 1.19e+33 90.23 90.79 542 927 737 827 202 218

3MINB0 522 2YHX_0 6.57e+34 -12.42 -11.82 1678 1723 1928 2119 258 293

1GAL_0 583 1COY_0 1.33e+36 -297.48 -296.60 1900 2533 4372 4648 773 910

1COY_0 508 1AG8A0 1.23e+38 347.81 354.49 4711 9349 6346 17903 1657 3949

1COY_0 508 1FCBA0 1.66e+40 201.08 210.35 8031 13449 10588 27055 2504 9631

Table 3: LP_optimal value gap is small!!! MYZ is faster.
Protein Threading Problem : – p.16/31

Is the protein threading in P?

Protein Threading Problem : – p.17/31

Is the protein threading in P?

Observation : 3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
Statistics: 1 � 11 nodes, 2 � 10 nodes, 1 � 9 nodes,
5 � 8 nodes, 3 � 7 nodes, 3 � 6 nodes,
Majority: 2 nodes - in which cases the value of the
solution is 0.5

The subset of real-life PTP is polynomially solvable!

Protein Threading Problem : – p.17/31

Is the protein threading in P?

Observation : 3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
Statistics: 1 � 11 nodes, 2 � 10 nodes, 1 � 9 nodes,
5 � 8 nodes, 3 � 7 nodes, 3 � 6 nodes,
Majority: 2 nodes - in which cases the value of the
solution is 0.5

The subset of real-life PTP is polynomially solvable!

Validated when using the FROST score function.

Protein Threading Problem : – p.17/31

Is the protein threading in P?

Observation : 3600 alignemenst computed till now;
only 5% of the instances the LP relaxation is not integer;
Statistics: 1 � 11 nodes, 2 � 10 nodes, 1 � 9 nodes,
5 � 8 nodes, 3 � 7 nodes, 3 � 6 nodes,
Majority: 2 nodes - in which cases the value of the
solution is 0.5

The subset of real-life PTP is polynomially solvable!

Validated when using the FROST score function.

This is not true when using randomly generated score

function.

Protein Threading Problem : – p.17/31

Can we do better?

Protein Threading Problem : – p.18/31

Can we do better?

Yes, using divide and conquer startegy!

Protein Threading Problem : – p.18/31

Split and conquer strategy

i

k

a b

Instance with 5 segments and 6 free positions. (a) The problem is split on segment

3 in 3 subproblems. The feasible set of the second subproblem is defined by� � �
 �	� �	� �� �� � �

and

� � �
 �� �� �� �� � �

.

(b) The problem is split on segments 2 and 4 in 6 subproblems. The feasible set of

the second subproblem is defined by� � �
 �	� �	� �	� �� � �

and

� � �
 �� �� �� �� � �

.
Protein Threading Problem : – p.19/31

What is the best D&C strategy

how to chose the best segment/segments to split?

what is the optimal number of subproblems?

Protein Threading Problem : – p.20/31

Choosing a good segment to split

A splitting is defined for a fixed segment

�

and a fixed
number of subproblems �. For fixed � a good strategy is
to choose the segment

�

in a way which makes the most
difficult of the resulting subproblems easiest.
We admit the number of variables as approximate
measure of difficulty of a subproblem and we choose

� � �� � � ���

�� � � �

� �	
���
 ���

�
 �

where
�
 is the number of variables of the �th subproblem

when we split on the

�

th segment.

Protein Threading Problem : – p.21/31

Principles of D&C strategy and or-
der of solving the subproblems

subproblems are not independent: a better record " �

allows earlier cut in the next subproblems. All
subproblems with lower bound weaker than this cut
are canceled by the LP solver;

the order of solving is very important for the
efficiency of this procedure;

the chance to find the global optimum in a
subproblem is proportional to the size of its search
space;

we solve the subproblems in a decreasing search
space size order.

Protein Threading Problem : – p.22/31

SPLIT1 versus SPLIT2 |
number of subproblems 1 3 6 10 15 21 28 36

query core space split

3MINBO 5EAS_0 1.78e+29 1 364 144 192 291 390 528 677 818

2 364 163 175 195 243 312 381 478

3MINA0 1BIF_0 1.09e+30 1 292 134 181 216 303 388 501 612

2 292 167 158 225 276 273 342 419

3MINA0 1INP_0 1.44e+30 1 1117 482 463 512 676 840 1094 1314

2 1117 511 457 464 534 660 768 800

3MINA0 4KBPA0 3.20e+30 1 802 314 405 515 719 903 1216 1484

2 802 322 366 318 396 525 665 763

3MINBO 1GPL_0 5.34e+31 1 524 277 352 531 728 908 1020 1308

2 524 329 409 405 475 496 561 701

instances where SPLIT1 is better 11 3 1 0 0 0 0

instances where SPLIT2 is better 0 5 9 11 11 11 11

average speedup SPLIT1 2.3 2.0 1.5 1.1 0.9 0.7 0.6

average speedup SPLIT2 2.0 1.9 1.9 1.6 1.3 1.1 1.0

Table 3: Running times in seconds for SPLIT1 and

SPLIT2 with different number of subproblems. The best

running time in each row is in red.

Protein Threading Problem : – p.23/31

SPLIT1 versus SPLIT2 ||
Splitting allows to reduce the running time more than twice

when choosing appropriate number of subproblems.

The running time decreases up to certain number of

subproblems and then starts increasing. The best number of

subproblems is relatively small (no more than 15 for all solved

instances).

It is difficult to determine the optimal number of subproblems.

SPLIT2 is more robust, in sense that the running time increases

slower with the number of subproblems. While for 3

subproblems SPLIT1 is clear winner, for 10 or more

subproblems one has to choose SPLIT2. This makes the use of

SPLIT2 preferable.

Protein Threading Problem : – p.24/31

Can we do even better?

Protein Threading Problem : – p.25/31

Can we do even better?

Yes, using parallelism!

Protein Threading Problem : – p.25/31

Can we do even better?

Yes, using parallelism!
Multiprocessing : source of robustnesses for the split and

conquer strategy

Protein Threading Problem : – p.25/31

Principles of the parallelization

centralized dynamic load balancing: tasks (very
irregular) are handed out from a centralized location
(pool) in a dynamic way;

the work pool is managed by a “master”, giving
work on demand to idle “slaves” and also passing
them the best objective value found from the
previous tasks.

each slave applies the (MYZ) model to solve the
corresponding subproblem.

Protein Threading Problem : – p.26/31

Communications frequency?

First parallelization : tasks are atomic (without
communication during task execution). Very poor
performance (slower than the sequential D&C!!).
No learning effect.

Second parallelization : tasks are non-atomic, by
using the CPLEX call-back-function technique
which permits the user to perform some user defined
operations during the optimization process.

The LP callback is used to probe for a new record
coming from outside and to stop the optimization if
the LP objective value becomes greater than the
record. The local record is relatively rarely updated
– about once for thousand of simplex iterations.

Protein Threading Problem : – p.27/31

SPLIT1 versus SPLIT2 in parallel |
query 1COY_0, core 1AG8A0, � � � � , � � � �	 � �� � � � �

, space 1.23e+38

1 3 6 10 15 21 28 36 avg stddev s_up eff

SPLIT1 1 17673 8647 2517 2431 2656 2309 2756 2809 4531 2910 1.0 1.0

2 2972 1915 1341 1736 1664 239 2.7 1.4

4 839 864 1051 1145 1020 116 4.4 1.1

6 810 503 778 857 712 151 6.4 1.1

8 482 632 708 716 685 37 6.6 0.8

10 481 525 644 564 577 49 7.8 0.8

12 523 595 507 567 556 36 8.1 0.7

SPLIT2 1 17673 8647 2517 2431 2656 2309 2756 2809 4531 2910 1.0 1.0

2 3878 1173 1400 1419 1105 1562 1467 1330 111 3.4 1.7

4 703 714 677 576 700 719 655 58 6.9 1.7

6 657 606 500 397 510 515 501 85 9.0 1.5

8 614 421 374 401 431 398 19 11.4 1.4

10 374 324 313 349 394 328 15 13.8 1.4

12 243 246 336 351 311 46 14.6 1.2

Protein Threading Problem : – p.28/31

SPLIT1 versus SPLIT2 in parallel ||
query 1GAL_0, core 1AD3A0, � � � � , � � 	 � 	 � �� � � ��

, space 1.29e+39

1 3 6 10 15 21 28 36 avg stddev s_up eff

SPLIT1 1 3036 2450 1126 1520 868 1137 1381 1257 1698 555 1.0 1.0

2 824 421 796 1141 786 294 2.2 1.1

4 277 351 500 469 440 64 3.9 1.0

6 276 279 338 346 321 29 5.3 0.9

8 279 310 232 325 289 40 5.9 0.7

10 278 309 203 285 265 45 6.4 0.6

12 311 189 188 237 204 22 8.3 0.7

SPLIT2 1 3036 2450 1126 1520 868 1137 1381 1257 1698 555 1.0 1.0

2 983 693 771 466 592 663 656 643 129 2.6 1.3

4 342 504 298 336 354 329 379 89 4.5 1.1

6 343 309 230 277 185 222 272 32 6.2 1.0

8 259 228 232 150 179 203 37 8.4 1.0

10 258 185 189 136 154 170 24 10.0 1.0

12 185 190 130 152 157 24 10.8 0.9

Protein Threading Problem : – p.29/31

SPLIT2 in parallel : huge instance

query 1KIT_0, core 1REQA0, � � ��

, � � �� � � �� � � � � 	 , space 9.89e+45

3 6 10 15 21 28 36 45 55 66 avg stddev s_up eff

1 4412 4726 3385 2903 3638 3595 3931 3958 4174 572 1.0 1.0

2 3039 1841 1755 1441 1838 1870 2017 1980 1679 171 2.5 1.2

4 990 1239 858 1010 943 1019 1010 1035 156 4.0 1.0

6 955 998 614 710 673 680 692 774 163 5.4 0.9

8 686 543 599 536 519 535 559 28 7.5 0.9

10 681 416 478 476 425 440 456 28 9.1 0.9

12 415 449 440 367 387 418 36 10.0 0.8

16 464 387 356 333 352 358 22 11.6 0.7

18 383 351 372 326 313 359 349 18 11.9 0.7

24 343 308 294 282 307 294 10 14.2 0.6

26 373 320 334 299 296 317 14 13.1 0.5

Table 3: Running times for query 1KIT_0 core 1REQA0
Protein Threading Problem : – p.30/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

Conclusions and perspectives

LP formulation is very convenient for PTP;

complete integration in FROST and its on the GRID;

can we avoid the commercial package CPLEX of ILOG?

a dedicated software for PTP is coming;

computational results and comparisons between exact and

approximated methods;

can we use the observation that the gap between the LP and

optimal solution is small?

impact of the coefficients on the problem’s behavior as

NP-hard?

Protein Threading Problem : – p.31/31

	Outline
	Problem formulation I
	Problem formulation II
	Complexity
	Related work
	 FROST : huge computations !
	Our approach : network flow model
	Network flow formulation: notations
	Network flow formulation: space X
	Network flow formulation: space Y
	Introducing z variables to Y
	Using vertices and z-arcs : 	extbf {MYZ}
	MXYZ(M*)
versus B&B (LS)
	When the LP solution is integer
	When the LP solution is not integer
	Is the protein threading in P?
	Can we do better?
	Split and conquer strategy
	What is the best D&C strategy
	Choosing a good segment to split
	Principles of D&C strategy and order of solving the subproblems
	SPLIT1 versus SPLIT2 |
	SPLIT1 versus SPLIT2 ||
	Can we do even better?
	Principles of the parallelization
	Communications frequency?
	SPLIT1 versus SPLIT2 in parallel |
	SPLIT1 versus SPLIT2 in parallel ||
	SPLIT2 in parallel : huge instance
	Conclusions and perspectives

