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Abstract

We give conditions under which the worst-case size of the
silhouette of a polytope is sub-linear.

1 Introduction

Given a viewpoint, the apparent boundary of a polyhedron,
or silhouette, is the set of edges incident to a visible face
and an invisible one; a face whose supporting plane contains
the viewpoint is considered invisible. The worst-case up-
per bound on the complexity of a silhouette is O(n). With
this definition, the silhouette of a polytope (i.e., a convex
bounded polyhedron) is a simple closed curve on its surface
that separates visible and invisible faces.

Silhouettes arise in various problems in computer graph-
ics, such as hidden surface removal [4] or shadow computa-
tions [1, 2], so a better understanding of the size of the sil-
houette of polyhedra directly improves the theoretical com-
plexity of algorithms in computer graphics.

Practical observations, supported by an experimental
study by Kettner and Welzl [5], suggest that the number of
silhouette edges of a polyhedron is often much smaller than
the total number of edges. In the same paper, they proved
that a polyhedral approximation of a sphere with Hausdorff
distance ε has Θ(1/ε) edges, and a random orthographic
silhouette of such a polyhedron has size Θ(1/

√
ε).

In this paper, we investigate the worst-case size of the sil-
houette of a polytope observed under orthographic projec-
tion. We prove that some classes of polytopes have ortho-
graphic silhouettes with sub-linear complexity in the worst-
case. We also give examples with linear-size silhouette when
some of our conditions are not satisfied.

Our approach is to consider the orthogonal projection of
the polytope on a plane, since the boundary of the projected
polygon is the projection of the silhouette. We measure the
length of the boundary of this polygon, which we call the ap-

parent length of the polytope. First we show that all silhou-
ettes of a triangulated fat object with n edges of length Θ(1)
have apparent length O(

√
n). Secondly we derive bounds on

the number of silhouette edges, using an additional condition
on the repartition of the directions of the edges.

This paper is organized as follows. In Section 2, we review
some examples of ill-shaped polytopes with silhouettes of lin-
ear complexity. Next, Section 3 studies the apparent length
of the silhouette, and Section 4 relates it to the number of
silhouette edges. Finally, Section 5 discusses extensions and
applications of our results.
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2 Examples

The goal of this paper is to find conditions under which
polytopes have sub-linear sized silhouettes in the worst-case.
This section examines three examples of ill-shaped polytopes
with silhouette of linear complexity, and identifies the rea-
sons for this behavior.

Figure 1: A non-fat triangulated polytope with bounded-
length edges.

The example of Fig. 1 is characteristic of polytopes that
are much longer along one dimension than along the others.
This kind of behavior can be ruled out by considering fat

polytopes, i.e., polytopes such that the ratio of the radius of
the smallest enclosing to the largest enclosed sphere is O(1).

Figure 2: A fat triangulated polytope with uneven edges.

Our second example (see Fig. 2) illustrates the impact of
the length of the edges on the silhouette. The ratio of the
length of the longest edge to the length of the smallest is
Ω(n), where n is the total number of edges. To avoid such
behavior, we require that our polytopes have bounded-length

edges, i.e., that all edges are of length Θ(1).

Our last example, in Fig. 3, exhibits a linear-size silhou-
ette due to faces with order n edges. We therefore consider
polytopes with faces of bounded complexity. Without loss of
generality, we assume that our polytopes are triangulated.

This set of conditions is minimal in the sense that each of
the previous examples satisfies all but one condition.
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Figure 3: A fat polytope with bounded-length edges but
with a face of large complexity.

In summary, in the rest of this paper we consider triangu-

lated fat polytopes with bounded-length edges.

3 Apparent length

Recall that the apparent length of a silhouette is defined as
the length of the orthogonal projection of the silhouette on
a plane. In this section, we give bounds on the apparent
length of the silhouette of a polytope.

We first recall a classical result on measures of convex sets.
A proof can be found in [6]1.

Lemma 1 Let O and O′ be two convex objects in R
2 (resp.

R
3) such that O contains O′. Then the length (resp. area)

of ∂O is larger than that of ∂O′.

For a polytope P , let A(P) denote its surface area, and
L(P) be the maximum apparent length of its silhouettes.
The following lemma relates those two quantities.

Lemma 2 If P is a fat polytope, then L(P) = Θ(
p

A(P)).

Proof. Let r be the radius of the largest enclosed sphere
of P , and λr be the radius of the smallest enclosing sphere.
Since P is fat, λ is Θ(1).

First, we apply Lemma 1 to P and its biggest enclosed
sphere, and to P and its smallest enclosing sphere. This
yields that A(P) = Θ(r2). Next, consider an orthogonal
projection of P . Each of the two spheres projects onto a
circle whose radius is the same as the radius of the corre-
sponding sphere. Since the projection of P is convex, we
can apply Lemma 1 to these circles and the boundary of
that projection, and obtain that the length of that boundary
is Θ(r). Taking the maximum over all possible orthogonal
projections, we obtain that L(P) = Θ(r). It follows that
L = Θ(

p

A(P)).

The next lemma bounds the area of a polytope with
bounded-length edges.

Lemma 3 If P is a triangulated polytope with bounded-
length edges, then A(P) = O(n).

1In fact, the proof in [6] is much more general than our statement,
and applies to any Minkowski measure, in any dimension.

Proof. Since the polytope has bounded-length edges, the
area of any of its triangles is O(1). By Euler’s formula, a
triangulated polytope with n edges has O(n) triangles, and
the result follows.

We can conclude with the following corollary, directly de-
duced from Lemmas 2 and 3.

Corollary 4 If P is a triangulated fat polytope with n
bounded-length edges, then the apparent length of any of
its silhouettes is O(

√
n).

4 Complexity of the silhouette

This section uses Corollary 4 to measure the complexity of
the silhouette. To exploit the upper bound on the apparent
length of the silhouette, we bound from below the contri-
bution of silhouette edges to the apparent length. However,
the contribution of an edge can be arbitrarily small, as it can
be parallel to the direction of projection, and a triangulated
fat polytope with bounded-length edges can have a linear
number of such silhouette edges, as shown2 in Fig. 4. Thus,
we need to bound from above the number of silhouette edges
that can be close to the direction of projection.

We give two distinct additional conditions that ensure a
sub-linear size for the silhouette. The first one is local.

Lemma 5 Let ε be a positive real number and P be a poly-
tope with n bounded-length edges such that any two inci-
dent edges make an angle in the interval [ε, π − ε]. Then,
any silhouette of P has O(L(P)) edges.

Proof. Let ~δ be a viewing direction . As any two incident
edges make an angle in the interval [ε, π−ε], two consecutive
silhouette edges contribute Ω(ε) to the apparent length of
the silhouette. It follows that the number of silhouette edges
is O(L(P)). Note that the constant in the O depends on ε.

Notice that if O(L(P)) edges do not satisfy the angle hy-
pothesis, the same reasoning can be applied to the remaining
edges on the silhouette, and the result of Lemma 5 still holds.

Combining Corollary 4 with Lemma 5 yields:

Theorem 6 Let ε be a positive real number and P be a
triangulated fat polytope with n bounded-length edges such
that any two incident edges make an angle in the interval
[ε, π − ε]. Then, any silhouette of P has O(

√
n) edges. This

still holds if O(
√

n) edges do not satisfy the angle hypothesis.

The second condition corresponds to a regular repartition
of the directions of the edges of the polytope and is thus
global. The idea is that if the directions of the edges do
not accumulate along a few directions, the number of edges
almost collinear with any direction is bounded, and so is the
complexity of the silhouette. The meaning of this accumu-
lation hypothesis is explained in the next Lemma.

Lemma 7 Let P be a polytope with n bounded-length
edges and apparent length O(

√
n) such that for any direc-

tion ~δ, the number of edges of P making an angle smaller

2See Appendix A for details.
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Figure 4: A triangulated fat polytope with bounded-length edges and a linear-size silhouette. The front and back faces, of
complexity O(

√
n), were not triangulated for clarity.

than Θ(n−1/6) with ~δ is O(n2/3). Then any silhouette of P
has O(n2/3) edges.

Proof. Let us fix a direction ~δ, and let α be a real number.
We count separately the silhouette edges that make an angle
greater than α with ~δ, and the others, and find the value of
α yielding the best trade-off.

If we represent the set of directions by a unit sphere, the
directions that make an angle smaller than α with ~δ form
a spherical cap of area Θ(α2). The sphere can be covered
by Θ(1/α2) such spherical caps and the directions of the
n edges are distributed over the sphere, so one of the caps
has to contain Ω(α2n) edge directions. This means that, for
some viewing direction, there are Ω(α2n) edges that make
an angle less than α. Thus, the best we can ask is that the
number of silhouette edges having a negligible contribution
to the apparent length is O(α2n).

Let k denote the number of silhouette edges that make
an angle greater than α with ~δ. The contribution of these
k edges to the apparent length of the silhouette is Ω(kα).
Thus, k = O(L/α) = O(

√
n/α).

If we ask that at most O(α2n) edges of the polytope make
an angle less than α with any given direction, then the com-
plexity of the silhouette is bounded from above by

O
`√

n/α + α2n
´

.

The best trade-off one can achieve is to choose√
n/α = Θ(α2n), which means α = Θ(n−1/6). In

that case, the number of silhouette edges is O(n2/3), and
the regular distribution assumption is the one mentioned in
the statement of the lemma.

Note that the proof of Lemma 7 establishes a more general
result: a weaker condition on the repartition of the directions
of the edges still yields a sub-linear bound on the complex-
ity of the silhouette, which is in between O(n2/3) and O(n).
Besides, if the repartition condition is satisfied for a given
direction ~δ, then the orthographic silhouette along this di-
rection has a complexity O(n2/3).

Combining Corollary 4 with Lemma 7 yields:

Theorem 8 Let P be a triangulated fat polytope with n
bounded-length edges such that for any direction ~δ, the num-
ber of edges of P making an angle smaller than Θ(n−1/6)

with ~δ is O(n2/3). Then any silhouette of P has O(n2/3)
edges.

The requirements on the polytopes in Lemmas 5 and 7
are strong, and may describe empty classes of polytopes.
For the case of Theorem 6, Appendix B describes a class
of polytopes that satisfy the requirements of the theorem
when we allow O(

√
n) edges to miss the angular condition.

However, to the best of our knowledge, whether there exists
or not a polytope meeting the conditions of Lemma 7 is an
open question.

5 Discussion

This section discusses our results, giving extensions as well
as possible applications.

To begin with, notice that, in the results of Sections 3
and 4, the fatness assumption can be weakened: Lemma 2
holds for any polytope P with bounded-length edges that
satisfies d(P)2 = O(A(P)), where d(P) is its diameter. This
means having a fat orthogonal projection with the same di-
ameter, i.e., to be fat along at least two dimensions.

Next, to extend our approach to the perspective case, the
distance from the object to the viewpoint has to be taken
into account. When the viewpoint is far from the polytope,
the perspective case should behave as the orthographic case.
But when the viewpoint is close to the polytope, the per-
spective projection introduces distortion: the length of the
projection of a silhouette edge depends on its distance to
the center of the view. Also, the global hypothesis on the
distribution of the directions of the edges has to be adjusted
accordingly.

The results of this paper are only a first step toward the
understanding of the complexity of silhouettes, but they still
have promising applications.

A first application is the computation of shadow bound-
aries. Drettakis and Duguet [1, 2] propose a solution based
on a visibility skeleton restricted to the visual events gen-
erated by a punctual light source. In their detailed re-
port [2], they show that their algorithm has complexity
O(nsn), where n is the size of the polyhedron that casts
a shadow, and sn the size of its silhouette. Even the or-
thographic case is of interest, since it corresponds to a light
source at infinity, a simple sun model for instance.

A second application is hidden surface removal, which has
a long history as a problem difficult to address practically [3].
A solution proposed by Efrat et al. [4] is to render first the
silhouettes of the objects, and then optimize the rendering
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in the single-object regions. They estimate the number of
combinatorial changes to the rendered silhouettes of poly-
topes when the viewpoint moves along a line or an algebraic
curve. Depending on the motion, this number depends ei-
ther linearly or quadratically on the silhouette complexity,
which they bound from above by the complexity of the poly-
tope. Extension of our work to the perspective case would
thus yield a direct improvement of their bounds.
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[2] F. Duguet. Implémentation robuste du squelette de vis-
ibilité. Masters Thesis (in French), 2001.

[3] S. E. Dorward. A survey of object-space hidden surface
removal. Internat. J. Comput. Geom. Appl., volume 4,
1994, pp. 325–362.

[4] A. Efrat, L. J. Guibas, O. A. Hall-Holt, and L. Zhang. On
incremental rendering of silhouette maps of a polyhedral
scene. SODA 2000, pp. 910-917.

[5] L. Kettner and E. Welzl. Contour edge analysis for poly-
hedron projections. Geometric Modeling: Theory and

Practice, Springer, 1997, pp. 379-394.
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A The cylinder example

This appendix details the (not necessarily intuitive) con-
struction of the polyhedron of Fig. 4.

First, start with two almost regular polygons of diameter
Θ(

√
n) facing each other at distance Θ(

√
n). These polygons

both have Θ(
√

n) edges of alternating length 1 ± ε. Note
that corresponding edges on the two polygons have different
length. Next, connect each pair of corresponding edges by a
strip of length Θ(

√
n) and width Θ(1). Thus, each strip is

an almost rectangular trapezöıd.
We then triangulate the extremal polygons and the strips,

inserting points on the edges and inside the faces, so that the
triangles have edges of length Θ(1). A triangulation of the
Θ(

√
n)-gons can be made with Θ(n) triangles. There are

Θ(
√

n) strips, each triangulated with Θ(
√

n) triangles. So
the total size of the polyhedron is Θ(n).

Now, when looking along the axis of this cylinder-like
polytope, the silhouette is made of Θ(

√
n) polygon edges

and all the sides of the strips, that is Θ(
√

n) collections of

(a)

(b)

Figure 5: a face of a polytope for Theorem 6.

Θ(
√

n) edges. This is thus an example of a polytope with a
linear-size silhouette. Yet, this polytope is fat with an aspect
ratio close to

√
2, with triangular faces, and bounded-length

edges.

B A polytope for Theorem 6

This appendix describes a class of polytopes that satisfy the
requirements of Theorem 6 when we allow O(

√
n) edges to

miss the angular condition.
Start with a regular tetrahedron, and triangulate each of

its faces regularly as shown in Figure 5(a). Then, for each
face, perturb the interior points as shown in Figure 5(b).
The vertices on every second horizontal line are moved alter-
natively upward and to the left, and the remaining vertices
are moved in the direction opposite to that of their top-left
neighbour. The scale of the perturbation is chosen to be
proportional to the size of the triangles, so that the angles
between edges do not depend on the size of the triangula-
tion. Notice that this perturbation is 2-periodic along each
of the 3 main directions of the triangulation

Now, we slightly inflate the faces of the perturbed poly-
tope so that no two triangles are coplanar. The resulting
polytope is fat, triangulated, has bounded-length edges and
only the O(

√
n) edges included in the edges of the initial

tetrahedron are aligned with some of their neighbours.
Notice that a similar perturbation scheme applied to the

triangulation of the lateral surface of the cylinder in Figure 4,
brings the size of its silhouette from Θ(n) down to Θ(

√
n).
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