
Large scale semantic construction for Tree

Adjoining Grammars ?

Claire Gardent1 and Yannick Parmentier2

1 CNRS, LORIA, Campus Scientifique BP 239, 54 Nancy
Claire.Gardent@loria.fr,

http://www.loria.fr/~gardent
2 INRIA, LORIA, Campus Scientifique BP 239, 54 Nancy

Yannick.Parmentier@loria.fr

Résumé Although Tree Adjoining Grammars (TAG) are widely used
for syntactic processing, there is to date no large scale TAG available
which also supports semantic construction. In this paper, we present a
highly factorised way of implementing a syntax/semantic interface in
TAG. We then show how the resulting resource can be used to perform
semantic construction either during or after derivation.

1 Introduction

Developing a Tree Adjoining Grammar which contains the information ne-
cessary for building the basic compositional semantics of sentences is a highly
complex engineering task. To ensure consistency, ease of writing, of maintainance
and of debugging, it is therefore important that this information be described at
the appropriate level of abstraction. In the first part of this paper (sections 2 and
3), we show how to achieve a highly factorised integration of semantic informa-
tion into a Tree Adjoining Grammar (TAG, [1]) using a particularly expressive
grammar formalism recently developed by [2].

The second part of the paper shows how the resulting TAG can be used
to support semantic construction that is, to associate the sentences generated
by the grammar with a semantic representation. Contrary to other linguistic
frameworks such as Lexical Functional Grammar, Head Driven Phrase Structure
Grammar or Categorial Grammar, there is no clear consensus in TAG on how
to perform semantic construction. This is because Tree Adjoining Grammar
associates a derivation not with one, but with two structures namely, a derivation
tree and a derived tree; and because it is unclear which of these two structures
best supports semantic construction. As TAG elementary trees localise predicate-
argument dependencies so that derivation trees resemble semantic dependency
trees, the TAG derivation tree has long been taken to provide an appropriate
basis for semantic construction. Nevertheless, it has repeatedly been shown that
the derivation tree alone does not provide all the information needed to perform

? We would like to thank Benoit Crabbé, Denys Duchier, Djamé Seddah and Eric Vil-
lemonte de la Clergerie for many useful discussions on the themes discussed in this
paper.

semantic construction in all possible cases [3,4,5]; and that information from the
derived tree also has to be taken into account.

In the second part of this paper, we show how the semantic TAG described in
the first part can be used to support two types of semantic construction processes
both of them being based on the information contained in the derived tree. The
first method follows traditional unification based grammar practice and performs
semantic construction during parsing (section 4) while in the second, semantic
construction is done after parsing on the basis of a derivation forest thereby
benefiting from the structure sharing supported by such packed representations
(section 5). The resulting framework lays the basis for a systematic exploration
of the relative efficiency of these two semantic construction methods for TAGs .

2 A TAG with a unification-based syntax/semantics
interface

In this section, we present the semantic TAG we use for semantic construc-
tion. Section 3 shows how to produce such a TAG on a large scale for a core
fragment of French. Sections 4 and 5 show how to use it to perform semantic
construction in two different ways.

2.1 Feature-based TAG

In the approach we present here, semantic representations are combined
using unification. To this end, we use a unification based version of LTAG na-
mely, Feature-based TAG. A Feature-based TAG (FTAG, [6]) consists of a set
of (auxiliary or initial) elementary trees and of two tree composition operations:
substitution and adjunction. Substitution inserts a tree onto the leaf node of
another tree 3 while adjunction (sketched in Fig. 1) inserts an auxiliary tree into
a derived tree (i.e., either an elementary tree or a tree resulting from the combi-
nation of a derived tree with an elementary tree by means either of adjunction
or of substitution).

In an FTAG, each tree node is associated with two feature structures called
top and bottom. The top feature structure encodes information that needs to
be percolated up the tree should an adjunction take place whilst the bottom one
encodes information that remains local to the node at which adjunction takes
place. During derivation, the unifications listed in Figure 2 take place.

2.2 Semantic representation language and glue mechanism

When doing semantic construction, two main questions arise: the choice of
the semantic representation language and that of the “glueing” mechanism used
for putting semantic representations together. Mainly, semantic representations

3. These leaf nodes must be marked for substitution and are graphically distinguished
by a downarrow.

Xt
b

�
�

�
�

@
@

@
@

�
��

@
@@

β

Xf
∗�

��

@
@@

Xr →

Xb∪f
�

��

@
@@

Xt∪r

�
�

�
�

@
@

@
@

�
��

@
@@

Fig. 1 –. Adjunction in FTAG

– The adjunction at some node X with top features tX and bottom features bX , of
an auxiliary tree with root top features r and foot bottom features f entails the
unification of tX with r and of bX with f .

– The substitution at some node X with top features tX and bottom features bX , of
a tree with root top features t and root bottom features b entails the unification
of tX with t and of bX with b.

– At the end of a derivation, the top and bottom features of all nodes in the derived
tree are unified.

Fig. 2 –. Unifications in FTAG

can be feature structures, lambda terms or terms of some underspecified logic
whereas the available glueing mechanisms include unification, beta-reduction
and linear logic.

The approach described here assumes a unification-based semantic construc-
tion process where semantic representations are flat semantic representations al-
lowing for scope underspecification [7]. Importantly, the semantic parameters

(that is, the semantic indices representing the missing arguments of the semantic
functors) are represented by unification variables. As we shall see in the follo-
wing section, the syntax/semantics interface is specified by the grammar in such
a way that, as functors and arguments combine, semantic parameters are unified
by the semantic construction process with the appropriate semantic indices.

For instance, the semantic representation for the semantic functor every and
for its potential argument cat are as given in Example 1 and Example 2 where
atoms starting with a capital letter are unification variables.

Example 1. l0 : ∀(X,h1,h2),h1 ≥ Lrestr,h2 ≥ Lscope

Example 2. lc : cat(Y)

Combining these two representations using the grammar described in the
sequel will yield the representation for every cat given in Example 3 where in
particular, the restriction handle Lrestr in the representation of every is unified
with the label lc in the representation for cat and the individual variable X in
the representation of every with the variable Y in that of cat.

Example 3. l0 : ∀(X,h1,h2),h1 ≥ lc,h2 ≥ Lscope,lc : cat(X)

For details about the semantic representation language used, we refer the rea-
der to [5]. Note however that the choice of a particular semantic representation
language and of a particular glueing mechanism is not particularly important
here. Indeed the proposed approach could be applied to other semantic repre-
sentation languages using some other glueing mechanism.

2.3 Modelling the relation between syntax and semantics

Syntax specifies which syntactic constituent provides the semantic argument
for which semantic functor. To specify this mapping between syntax and se-
mantics, (i) each elementary tree in the grammar is associated with a semantic
representation of the type sketched above and (ii) the appropriate nodes of the
elementary trees are decorated with semantic indices or parameters.

More precisely, the substitution nodes of the tree associated with a seman-
tic functor will be associated with semantic parameters whilst root nodes and
certain adjunction nodes will be labelled with semantic indices. As trees are
combined, semantic parameters and semantic indices are unified by the FTAG
unification mechanism thus specifying which semantic index provides the value
for which semantic parameter. So for instance, the trees for John, loves and Mary
will be as given in Figure 3. The tree for loves is associated with a semantic re-
presentation including the two semantic parameters x and y. These parameters
also label the subject and the object substitution nodes of this tree. Conversely,
the root node of the tree for John is labelled with the semantic index j. If the
string parsed is John loves Mary, this tree will be substituted at the subject
substitution node of the loves tree thus instantiating the semantic parameter x

to j. And similarly, for the Mary tree.

S

NP↓x VP

NPj V NP↓y NPm

John loves Mary

name(j,john) love(x,y) name(m,mary)

⇒ love(j,m),name(j,john),name(m,mary)

Fig. 3 –. John loves Mary

As we shall see in sections 4 and 5, a TAG equipped with the syntax/semantic
interface just described can be used to construct semantic representations either
during or after derivation. In the first case, the unification variables present both

on the tree nodes and in the semantic representations become instantiated as
substitution and adjunction take place and the overall semantics of a sentence
is the union of the semantic representations of the elementary trees entering
in its derivation modulo unification. In the second case, a semantic lexicon is
extracted from the grammar and used to do semantic construction on the basis
of the derivation forest.

3 Grammar and Metagrammar: factorising the
information

We now show how the metagrammar framework presented in [2] allows for
a highly factorised specification of the mapping between syntax and semantics
described in the preceding section. We start by presenting the grammar forma-
lism used. We then show how it can be exploited to specify the syntax/semantics
interface.

3.1 The metagrammar formalism

The metagrammar formalism presented in [2] can be seen as a generalisation
of Shieber’s PATR 2 language [8] which is expressive enough to encode (among
others) Tree Adjoining Grammars. The goal of such languages is to provide a
formalism that will allow a linguist to express her grammatical knowledge both
directly and economically: the language must be expressive; it must also allow
for the factorisation of redundant information.

As space restrictions do not allow for a complete specification of this for-
malism, we restrict ourselves here to an informal presentation of the concepts
needed for the rest of this paper. The interested reader is invited to refer to
[2,9,10] for more details.

The metagrammar formalism (called XMG for eXtensible MetaGrammar)
used supports both syntactic and semantic information.

In the syntactic dimension, tree fragments can be described that will be
combined with other fragments to produce complete trees. These tree fragments
can be referred to by means of abstractions (also called classes). Similarly, in the
semantic dimension partial flat semantic formulae can be defined and referred
to by means of abstraction thus also allowing for the factorisation of semantic
information.

Syntactic and semantic abstractions can be combined using one of three ope-
rations namely, conjunction (to accumulate information), disjunction (to intro-
duce non-determinism, used for instance to express diathesis) and inheritance.
This last operation is used to specialise a class by incrementally adding pieces of
information to a parent class. In our concrete syntax, conjunction, disjunction
and inheritance are represented by ;, |, and import respectively.

Finally, variables can be shared between classes in two main distinct ways.
In the first case, the shared variables belong to classes linked by an inheritance

relation and the scope of these variables can be explicitely managed using im-
port and export declarations. In the second case, the shared variables belong
to distinct inheritance chunks and sharing is made possible by a naming me-
chanism called interfaces which allow the global naming of a given value. For
instance, in the class Subj below, the node X is named sujNode in the interface
*= [sujNode=X] .

class Subj

declare ?X

{ <syn> { node [cat=s]

node X [cat=n]

} *= [sujNode=X]

}

The scope of an interface feature is global to its parent branch(es) in the
hierarchy. As the next section will illustrate, the value of an interface feature
can be shared by any other class by means of explicit variable sharing.

3.2 Specifying the syntax/semantics interface

The main issue when developping a large scale semantic TAG is the correct
specification of the mapping between syntax and semantics (cf. section 2.3).
in [5], we define this mapping for a serie of syntactico-semantic constructions
which are known to be problematic for TAG. Here however, we are concerned
with the problem of how to design a large scale semantic TAG efficiently and
economically. In this respect, verbs or more generally, semantic functors are
of particular interest as they represent the bulk of the possible variations. We
therefore concentrate on verbs and show how to specify the syntax/semantic
interface for their various basic subcategorisation frames (transitive, intransitive,
etc.), their various possible argument realisations (e.g., cliticisation, extraction,
ommission) and their argument redistributions (active, passive, middle voice,
impersonnal passive, etc.). Due to space restrictions, other types of syntactico-
semantic constructions, although they can be handled by the grammar formalism
used, will not be discussed here.

As was illustrated in section 2.3, the specification of the syntax/semantics
interface consists in appropriately defining the mapping between grammatical
functions (subject, object, etc.) and thematic roles (e.g., agent, patient or more
neutrally, arg1, arg2). For instance, in an active mood sentence with two nominal
arguments, the subject NP is mapped to the first semantic argument (arg1) and
the object to the second (arg2) whereas in a passive mood sentence, the inverse
occurs so that the subject NP maps to arg2 and the object to arg1.

In a TAG, a word is associated with the set of trees reflecting the range of
syntactic configurations this word can occur in. For a verb (and more generally,
for any type of syntactic functor), this set can be quite big. For instance, in
the grammar for French developed by B. Crabbé [9], a transitive verb with
nominal arguments is associated with 153 trees each describing a distinct possible

syntactic environment for such a verb. More generally, Crabbé’s core grammar
for French totals roughly 3 500 trees for the verb fragment thereby covering 35
basic subcategorisation frames.

Clearly, the specification of the syntax/semantics interface needs to be facto-
rised. We do not want to specify and maintain it for each of the 3 500 trees. To
extend Crabbé’s grammar with the syntax/semantics interface sketched in the
preceding section, we proceed as follows:

1. While the semantic indices labelling the tree nodes are all values of an idx

feature, they are also assigned a global name reflecting the grammatical
function fulfilled by the node they label. For instance, the index x on the
subject node of the active tree for loves in Figure 3 will be assigned the
global name subjectI.

2. Similarly, the semantic indices occuring in the semantic representations are
assigned a global name reflecting their thematic role. For instance, the first
semantic argument of a binary relation is named arg1.

3. Finally, the mapping between grammatical functions and thematic roles is
specified by coindexing the values of grammatical and thematic indices. For
instance, in an active mode sentence tree, the value of subjectI will be
coindexed with that of arg1.

We now show how this works in more detail. We start by showing how the
syntactic information is factorised in Crabbé’s grammar. We then go on to show
how it can be extended with the syntax/semantics interface described in the
previous section.

The syntax In Crabbé’s metagrammar [9,10], the syntactic information as-
sociated with a TAG elementary tree is factorised along the following three
dimensions.

First, grammatical function classes are defined which describe their structu-
ral properties. For instance, the Subject class is defined by the disjunction:

class Subject{

CanonicalSubject | RelativeSubject | whSubject | ...

}

where each subclass (CanonicalSubject, etc.) is associated with the appropriate
structural description 4 e.g.,

CanonicalSubject RelativeSubject

S

N↓ V

N

N? S

N↓[wh=rel] V

4. To improve readibility, we represent tree descriptions using graphics rather than logical
formula. The precise tree language supported by XMG is described in [2].

Next, alternations are defined in terms of grammatical functions and verbal
morphology. For instance, the active and passive alternations for transitive verbs
are defined by the following conjunctions of classes:

class n0Vn1Active{

Subject ; Object ; activeVerbMorphology

}

class n0Vn1Passive{

Subject ; CAgent; passiveVerbMorphology

}

where passiveVerbMorphology, activeVerbMorphology, Object and CAgent

are abstractions over the TAG structural objects associated with these linguistic
notions.

Finally, the set of elementary trees associated with a given subcategorisation
frame (e.g., n0Vn1) is defined by the disjunction of its alternations e.g.,

class n0Vn1{

noVn1Active | noVn1Passive | n0Vn1dePassive | n0Vn1ShortPassive |

n0Vn1ImpersonalPassive | n0Vn1middle

}

Augmenting the metagrammar with semantic information. As mentio-
ned above, augmenting the metagrammar with semantic information involves
three steps.

First, the semantic indices labelling the tree nodes are named according to
their grammatical function. For instance, the index labelling the subject node
of the active tree for a transitive verb will be named subjectI. As shown be-
low, this is done using an interface constraint: for each possible realisation of
a subject, the value of the semantic index labelling the subject node is named
subjectI by means of the interface constraint. In practice, the naming is done
for a total of 12 grammatical functions (Subject, Object, SententialSubject, Sen-
tentialCObject, SententialDeObject,SententialAObject, SententialInterrogative,
Iobject, CAgent, Oblique, Locative, Genitive) and 56 realisations.

Class Name CanonicalSubject RelativeSubject

Structural description

S

N↓[idx=I] V

N

N?[idx=I] S

N↓[wh=rel] V
Interface constraint subjectI = I subjectI = I

Second, the semantic indices occuring in the semantic representations are
named according to their thematic role. For instance, the first semantic argument
of a binary relation is named arg1. This naming is again enforced by an interface
constraint making the value globally accessible under that name .

class binaryRel

declare !L0 ?Rel ?E ?I1 !L1 ?I2 !L2

{

<sem>{

L0:Rel(E) ; L1:arg1(E,I1) ; L2:arg2(E,I2)

}

*=[rel=Rel,evt=E,arg1=I1,arg2=I2]

}

Third, the mapping between grammatical functions and thematic roles is
specified by coindexing the relevant values.

Consider the class n0Vn1 for instance, which describes the set of syntactico-
semantic configurations associated in a TAG (for French) with verbs taking two
nominal arguments. This set covers the configurations possible for the active
mode, the long passive mode, the passive in de, the short passive, the impersonal
passive and the middle form. For each of these modes, there are several possible
configurations depending on how the arguments are realised (i.e., whether the
subject/object/agent/etc. is canonical, cliticised, extracted, etc.) so that in total
the class n0Vn1 includes 153 trees. The mapping between syntax and semantics
for these 153 trees is realised in the metagrammar by the labelling described
above and by the following class definition:

class n0Vn1{

binaryRel*=[evt=E,arg1=X,arg2=Y] ;

{ n0Vn1Active*=[subjectI=X,objectI=Y,vbI=E]

| n0Vn1Passive*=[subjectI=Y,cagentI=X,vbI=E]

| n0Vn1dePassive*=[subjectI=Y,genitiveI=X,vbI=E]

| n0Vn1ShortPassive*=[subjectI=Y,vbI=E]

| n0Vn1ImpersonalPassive*=[objectI=X,vbI=E]

| n0Vn1middle*=[objectI=Y,vbI=E]

}

}

That is, the set of syntactico-semantic configurations associated with the
n0Vn1 verbs is defined as consisting of (i) a binary semantic relation, (ii) trees
realising the different possible verbal modes and grammatical functions realisa-
tions and (iii) a mapping between the semantic parameters of the binary rela-
tions and the semantic indices labelling the nodes of the trees. Typically, the first
semantic parameter is identified with the subject semantic index in the active
mode and with the object in the passive mode. If the verb is impersonnal passive
(il est arrivé trois femmes), this first parameter is identified with the semantic
index of the object, etc.

In sum, the XMG formalism allows for a direct encoding of the linguistic
notions necessary to specify the syntax/semantics interface: naming of the se-
mantic indices labelling the tree nodes realising a given grammatical function,
naming of the semantic parameters according to their thematic role and coin-
dexing of the two types of indices. This expressivity in turn permits a clear and
economical encoding: the factorisation is high in that the relevant notions need

only be encoded once but are used by many distinct classes. For instance, the
labelling of the subject index is done once but is used by all of the 35 verb classes
defined in our current TAG for French (since all verb classes make use of the
subject class for their definition).

Using this encoding, a core TAG for French can be developped which encodes
the semantic information necessary to support semantic construction. We now
show how this information can be used in two different ways to compute the
compositional semantics of a sentence during (or after) parsing.

4 Derived tree and semantic construction

A first, simple way to construct semantic representations based on the seman-
tic TAG described in the preceding section is to build these during derivation.
Such an approach can be integrated in a TAG parser by simply associating the
semantic representation of an elementary tree with the anchor node of that tree
(cf. Figure 4). Since an anchor node never merges with any other node, there
can be no conflict and the semantic representation remains untouched modulo
the unification its indices can undergo via the coindexing with the tree nodes in-
dices. The semantics of a derived tree is then the union of the values of the semf
features present in this tree after unifications have taken place. For instance, if
the trees of Figure 4 are combined to parse the string Jean aime beaucoup Marie,
the resulting derived tree will be as given in Figure 5.

As mentioned above, the semantics associated with this tree is the union of
the semf values after the TAG imposed unifications (cf. section 2) have taken
place namely 5

{!e:aime(e,j,m), jean(j), marie(m), beaucoup(e)}

5 Derivation forest, semantic lexicon and semantic
construction

As [5] shows, the semantic construction process described in the previous
section accounts for data which an approach based on the derivation tree does
not. However, the approach is open to two potential problems. First as mentioned
in [11], the semantic representations included in the elementary and derived tree
imply an infinite number of labels and individual variables so that in contrast
to standard FTAG, the formalism is theoretically no longer equivalent to TAG.
In practice of course, real sentences have finite lengths and so an upper bound
could be specified which makes the set of feature values finite. Another difficulty
however, is that the semantic information labelling the trees might decrease the
amount of sharing in a tabular parsing approach and thereby decrease parsing
efficiency.

5. The ! stands for the existential quantifier.

P

N↓
[

idx:X
]

V
[

idx:e
semf:{!e:aime(e,X,Y)}

]

aime

N↓
[

idx:Y
]

N
[

idx:j
semf:{jean(j)}

]

jean

N
[

idx:m
semf:{marie(m)}

]

marie

V
[

idx:E
]

V?
[

idx:E
]

Adv
[

semf:{beaucoup(E)}
]

beaucoup

Fig. 4 –. TAG elementary trees with semantics included

P

N
[

idx:j
semf:{ jean(j)}

]

jean

V
[

idx:e
]

V
[

idx:e
semf:{!e:aime(e,j,m)}

]

aime

Adv
[

semf:{beaucoup(e)}
]

beaucoup

N
[

idx:m
semf:{marie(m)}

]

marie

Fig. 5 –. TAG derived tree with semantics included

To explore whether the second of these two objections is a real problem,
we thus investigate a second way to do semantic construction where in essence,
the semantic information is extracted from the TAG and used after parsing to
reconstruct on the basis of the derivation tree the semantic representation of the
sentence under consideration. This second way of doing semantic construction
was first presented in [11]. We show here how it can be implemented on the
basis of a standard TAG parser and of the semantic TAG produced by the XMG
(cf. section 2). We start by giving a simplified example illustrating the workings
of the approach. We then indicate first, how the required semantic lexicon can
be automatically extracted from the semantic TAG described in section 2 and
second, how semantic construction proceeds.

5.1 A simple example

A TAG derivation tree records how the elementary trees used to build a
derived tree are put together using the two combining operations permitted by
TAG namely, adjunction and substitution. Formally, the nodes of such a tree are
labelled with tree names and its edges with a pair 〈 Op, Id 〉 where Op denotes
the combining operation used to combine the trees labelling the vertices of the
edge and Id identifies the node at which this operation takes place.

Now suppose that parsing the sentence Jean court yields the unique deriva-
tion tree pictured in Figure 6.

τn0V court

τproperN jean

↓1

Fig. 6 –. Derivation tree for Jean court

And suppose further that the semantic lexicon extracted from the semantic
TAG for Jean and court is as follows:

TreeName n0V TreeName properN
Lemma court Lemma Jean
SemRepr !e:court(e,X) SemRepr jean(j)
ANodes 2.bot = [idx=e] ANodes
SNodes 1.top = [idx=X] SNodes
Root 0.bot = [idx=e] Root 0.bot = [idx=j]

That is, the semantic information extracted from each elementary tree and
stored in the semantic lexicon consists of the name of that tree, a record of the
lemma anchoring that tree, the semantic representation associated with that tree
and a record of the semantic information associated with the nodes (substitution
nodes, nodes where adjunction can take place, root and foot nodes) of that tree.

Semantic construction then proceeds by traversing the derivation tree, col-
lecting the lexical semantics associated in the semantic lexicon with each tree
present in the derivation tree and performing the unifications imposed by a TAG
derivation (cf. Figure 2). In this case, collecting the lexical semantics associated
with the two trees occurring in the derivation tree yields:

{!e:court(e,X), jean(j)}

Two unification steps are furthermore involved. The first follows from the
substitution of τproperN jean at node 1 of τn0V court which entails the unification
of the feature structures of the root node of τproperN jean with those of node 1
in τn0V court:

1.top = 0.top = [idx=X]
1.bot = 0.bot = [idx=j]

The second unification step follows from the requirement that at the end of a
TAG derivation the top and bottom feature structures of all nodes in the derived
tree be unified. This requirement entails in particular the following unification:

1.top = 1.bot
0.top = 0.bot

As a result [idx=X] unifies with [idx=j] and the overall semantics of Jean
court becomes:

{!e:court(e,j), jean(j)}

5.2 Extracting a semantic lexicon from the semantic TAG

As the above example illustrates, the information required to perform se-
mantic construction on the basis of a derivation forest consists of: a treename,
a lemma, a semantic representation and four sets of path equations relating de-
rived tree nodes with the semantic information labelling these nodes. One set
of equations pertains to substitution nodes, another to nodes where adjunction
can take place, the third to the root node and the fourth to the foot node if any.

That is, for each elementary tree present in the grammar, an entry is added
to the semantic lexicon which contains the above information. Note further that
the TAG used for parsing does not need to include any semantic information:
all the semantic processing is done after parsing has taken place and relies only
on the information contained in a (purely syntactic) derivation forest and in the
semantic lexicon.

To automatically extract the required semantic lexicon from the semantic
TAG G described in section 2, we proceed as follows:

1. For each tree T in G, all the nodes of T are numbered with their gorn
addresses so that the nodes of the resulting grammar GG are then labelled
both with semantic indices and with a gorn address.

2. For each tree T in GG:

(a) create a tree ST by erasing on all nodes of T the semantic information
(if any) labelling that node. Call the resulting purely syntactic grammar
SG

(b) create an entry in the semantic lexicon which contains: the tree name,
the semantic representation associated by the metagrammar with this
tree, the gorn addresses and the semantic information labelling the tree
nodes

5.3 Computing semantic representations

As [12] shows, computing semantic representations from a parse forest is a
natural way to deal with the combinatorial explosion that can result from enu-
merating all the readings of a given sentence: by doing semantic construction
on the basis of the parse forest rather than the derivation trees, these shared
syntactic constituents that have a single reading can also be shared during se-
mantic construction. When combined with the use of an underspecified semantic
representation language, such an approach allows for a large amount of structure
sharing thereby increasing efficiency.

We now show how the semantic lexicon which, as shown in section 5.2 can
be automatically extracted from the semantic TAG described in section 2, can
be used in conjunction with a derivation forest to construct semantic represen-
tations.

A derivation forest is a compact representation of the derivation trees resul-
ting from a sentence parse. It can be represented either by an and-or graph or
by a context free grammar and its precise format may vary depending on the
degree of sharing required [13]. Here we assume a CFG format where rules are
of the form:

DTNodeId :: ElTreeId ← (DTNode/Op.Node)+

ElTreeId :: Lemma.TreeName

with DTNodeId, DTNode identifying nodes in the derivation tree, ElTreeId iden-
tifying the elementary tree labelling a derivation tree node, Op being either s for
substitution or a for adjunction and Node specifying the node in the elementary
tree at which Op takes place.

To perform semantic construction, we simply traverse the derivation forest
top-down, tabulating the constituents found and checking before constructing an
item that it is not already included in the table built so far. For a given derivation
tree in the parse forest, semantic construction is performed by a recursive descent
through the tree as follows.

To construct the semantics Sem of a derivation tree with root DTNodeId
given the parse forest rule DTNodeId :: ElTreeId ← Dtrs do

Lemma.TreeName← terminal(DTNodeId)
HeadSem ← lexSem(Lemma.TreeName)
SemDtrs ← dtrsSem(HeadSem,Dtrs)
Sem ← HeadSem + SemDtrs

where terminal is a procedure mapping each derivation tree node to the ter-
minal node it directly or indirectly rewrites as within the parse forest; lexSem is a
function retrieving from the semantic lexicon described in the preceding section,
the lexical semantics associated with a given 〈 Lemma, TreeName 〉 pair ; dtrs-
Sem is a procedure (described below) constructing the semantic representation
of the daughters of a rule given the head semantics of its lhs ; and + denotes the
operation accumulating the semantic representations being built. The dtrsSem
procedure is defined as follows.

To construct the semantic representation Sem of the daughters DTNodeId/Op.NodeId
| ODtrs of a rule given the head semantics HeadSem of its lhs, do

Lemma.TreeName ← terminal(DTNodeId)
HeadSemD1 ← lexSem(Lemma.TreeName)
tagUnify(HeadSem,HeadSemD1)
semODtrs ← dtrsSem(HeadSem,ODtrs)
Sem ← HeadSemD1 + semODtrs

where tagUnify performs the unification operations imposed on TAG deriva-
tions (cf. Figure 2) on the node labels provided by the semantic lexicon described
in the previous section.

6 Conclusion

The proposal described in this paper is partially implemented. A core TAG for
French is available which extends the syntactic TAG described in [9,10] to include
semantic information as described in sections 3 and 2. Semantic construction
during derivation is currently being implemented whilst semantic construction
after derivation has been implemented using the above grammar, an XSLT style
sheet to extract the semantic lexicon and a prolog module to perform semantic
construction on the basis of this semantic lexicon and of the derivation forest
produced by Eric de la Clergerie’s Dyalog TAG parser.

The resulting framework thus supports the comparative evaluation of the two
semantic construction procedures for TAG as well as the development and testing
of large scale semantic TAGs for French. Future work will focus on comparing
the relative efficiency of these two semantic construction procedures; extending
the grammar to include further types of alternations and in particular those
described in [14] and the LADL tables; and experimenting with different semantic
representation languages and glueing mechanisms.

Références

1. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Springer (1997) 69–123

2. Duchier, D., Le Roux, J., Parmentier, Y.: The metagrammar compiler : An nlp ap-
plication with a multi-paradigm architecture. In: Second International Mozart/Oz
Conference - MOZ 2004, Charleroi, Belgique. (2004)

3. Frank, A., van Genabith, J.: GlueTag. Linear Logic based Semantics for LTAG.
In Butt, M., King, T.H., eds.: Proceedings of the LFG01 Conference, Hong Kong
(2001)

4. Kallmeyer, L.: Using an Enriched TAG Derivation Structure as Basis for Seman-
tics. In: Proceedings of TAG+6 Workshop, Venice (2002) 127 – 136

5. Gardent, C., Kallmeyer, L.: Semantic construction in ftag. In: Proceedings of
the 10th meeting of the European Chapter of the Association for Computational
Linguistics, Budapest, Hungary (2003)

6. Vijay-Shanker, K., Joshi, A.: Feature structures based tree adjoining grammars.
In: Proceedings of COLING, Budapest, Hungary (1988) 714–719

7. Copestake, A., Lascarides, A., Flickinger, D.: An algebra for semantic construction
in constraint-based grammars. In: Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, Toulouse, France (2001)

8. Shieber, S.: An Introduction to Unification-based Approaches to Grammar. CSLI
Lecture Notes (1986)

9. Crabbé, B., Duchier, D.: Metagrammar redux. In: International Workshop on
Constraint Solving and Language Processing - CSLP 2004, Copenhagen. (2004)

10. Crabbé, B.: Grammatical development with XMG. Submitted to LACL05 (2005)

11. Kallmeyer, L., Romero, M.: Ltag semantics with semantic unification. In: Procee-
dings of the 7th International Workshop on Tree Adjoining Grammar and Related
Formalisms, Vancouver, BC, Canada (2004) 155–162

12. Schiehlen, M.: Semantic construction from parse forests. In: Proceedings of the
16th International Conference on Computational Linguistics, Copenhagen (1996)

13. Alonso, M.A., Villemonte de la Clergerie, E., Diaz, V.J., Vilares, M.: 1. In: Relating
Tabular Parsing Algorithms for LIG and TAG. Kluwer Academic Publishers (2002)
to appear, revised notes of a paper for IWPT2000.

14. Saint-Dizier, P.: Alternation and verb semantic classes for french: Analysis and
class formation. In: Predicative forms in natural language and in lexical knowledge
bases. Kluwer Academic Publishers (1999)

