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Abstract

Stochastic dependency parsers can achieve very goodsresult
when they are trained on large corpora that have been mgnuall
annotated. Active learning is a procedure that aims at iaguc
this annotation cost by selecting as few sentences as pwssib
that will produce the best possible parser. We propose a new
selective sampling function for Active Learning that exfso
two memory-based distances to find a good compromise be-
tween parser uncertainty and sentence representativefiees
reduced dependency between both parsing and selection mod-
els opens interesting perspectives for future models coanbi
tion. The approach is validated on a French broadcast news
corpus creation task dedicated to dependency parsing.t-It ou
performs the baseline uncertainty entropy-based setestim-
pling on this task. We plan to extend this work with self- and
co-training methods in order to enlarge this corpus andyred

the first French broadcast news Tree Bank.

1. Introduction

Syntactic parsing is a key component of most natural languag
processing applications, which commonly exploit nowadays
stochastic dependency parsers trained on large Tree BAgks.
spite the importance of dependency parsing, no such corpora
exist to the best of our knowledge for French broadcast news
parsing. Most efforts on French parsing are based on thekren
Tree Bank (FTB) [1] that contains newspaper texts. Yet, it is
well-known that cross-domain parsing is a difficult chagjen
and our preliminary experiments show that porting a parser
trained on the FTB to a broadcast news corpus dramatically re
duces the parsing accuracy from 88% to 55%. Our main ob-
jective is thus to build a new Tree Bank on top of the broad-
cast news ESTER corpus [2], which we call Ester Tree Bank
(ETB) [3]. The first steps towards this objective involves an
notating a small initial bootstrapping corpus, and entagghis
corpus with semi-supervised approaches. We investigatesn
work the use of active learning for this purpose, and propgose
memory-based selective sampling method for dependensy par
ing that combines sample knowledge with density.

Our baseline corpus is the ESTER corpus [2], which con-
tains manual transcriptions of French broadcast news-utter
ances. This corpus is originally designed for speech réeogn
tion evaluation, and the transcription guidelines are tathfp
match the capabilities of speech recognizers. In particdis-
fluencies are annotated as follows:

e Every acoustic realization that corresponds to a lexicon
entry is transcribed. This includes repetitions and hesita
tions (“uh... ).

e Conversely, false starts and incomplete words are not
transcribed

e For the same reason, punctuation is not transcribed, and
every word is in lower-case, except for acronyms and
proper nouns.

In this work, we use for part-of-speech tagging the Tree®agg
software [4] and for parsing the state-of-the-art Malt pafs].
Semi-supervised training algorithms exploit both a small
annotated and a large unannotated corpus to train a classifi-
cation or parsing model. Active Learning is such an itemtiv
training approach that chooses at each iteration a few eeamp
to annotate manually, in order to maximize the performances
of the resulting parsing model, hence minimizing the work of
annotators. The most famous Active Learning approaches are
first reviewed in section 2. Then, an original selectionetiin
is proposed in section 3. The proposed approach is evalirated
section 4 and section 5 concludes the paper.

2. Review of Active Learning for syntactic
parsing

We focus in this section on pool-based active learning, also
known as selective sampling, which selects the next exatople
manually annotate from some unlabeled corpus [6]. Although
the literature about active learning for classificationugé, it

is much smaller for the application of active learning tospar
ing. We thus briefly review next in priority the active leargi
works dedicated to parsing, although we may also cite other
active learning works when discussing general active iegrn
concepts.

One of the most common Active Learning frameworks is
uncertainty sampling [7], which selects examples for whiwh
classifier is the least confident, where confidence is tyical
derived from the entropy or other margin metrics [8]. Vasou
simple criteria (sentence length, infrequent words, . re)adso
studied in [9], amongst them sentence length has been faund t
be the best one. Conversely, it is shown in [10] that sentence
length-based selection criteria performs poorly for theliap-
tion of Active Learning to statistical parsers. The authas h
also compared uncertainty and likelihood-based selectiwh
concluded in favor of the former. Uncertainty is there dlass
cally represented by the entropy computed on the set of possi
ble parses returned by the parser. Furthermore, a “lexmal n
elty” measure that computes the number of unseen co-ongurri
word-pairs is also proposed but is not developed furtheresn b
cause of its weak performances. We propose in this paper to
investigate a related but more complex lexical measure.

An alternative to these approaches is to combine several
models, for instance in the framework of co-learning. Hence
Dredzeet al. [11] introduce confidence estimation in margin-
based Active Learning approaches, and Teinagl.[12] propose
to first cluster unlabeled data using kmeans, and then gbery t



most uncertain sentences of each cluster.

Finally, some works study the Active Learning protocol it-
self. In particular, the missed-cluster effect is an unddde
side-effect of Active Learning [13]: when a given clustes in&
initial examples, this cluster is far from the boundariegtef
learning and its examples are thus considered as reliabhken w
they are not. This effect is largely reduced when annotating
complete sentences instead of just single words, as unkeen ¢
ters’ examples might co-occur with known class boundaries.

The baseline Active Learning method that we have used in
this work is uncertainty sampling based on the entropy of the
class posterior distribution, which is a common choice imyna
related works [14, 15, 16]. However, a classical issue iretnc
tainty sampling is the selection of outlier examples. Th&ie
is addressed in [17] and [18] by optimizing an estimatiorhef t
classification error instead of uncertainty, in [15] by conitg
uncertainty with prototypicality or in [14] through the prased
sampling by uncertainty and density (SUR§radigm. We fol-
low the same approach than the latter work on SUD, except that
we compute the density over the whole unlabeled corpus, that
we propose a memory-based distance instead of a more tradi-
tional uncertainty measure, and that we apply this combined
criterion on dependency structures parsing.

Please refer to [19] and [20] for further recent surveys on
Active Learning.

3. Active Learning approaches

We compare in this section four selection criteria: the lhase
random selection, an approximation of the upper-boundi@rac
selection, the baseline uncertainty-based selective lgzgrgnd

a memory-based selection. We show that the best results are
obtained with the proposed memory-based selection system.

3.1. Training procedure

Our implementation of the Active Learning training procesiu
exploits three independent data sets, respectively fonileg
(L), development{) and testing ). L contains all training
instances that have been labeled manuéllgnly contains un-
labeled instances ardis the gold standard used for evaluation.
At each iteration, a new parsing model is trainedlomand is
evaluated ori". Then, a single unlabeled sentence is chosen
from U based on a given selection criterion, is manually anno-
tated, and moved intd.: the pseudo-code for this process is
given in Alg. 1.

Algorithm 1: Pseudo-code
Input: Two setsL andU of labeled and unlabeled
examples, a testing s&t, aselectfunction
1 repeat

/'l Learn a nodel using L
2 A« train(L);
3 testQ\, 7);

/1 Query sone unl abel ed data
4 x «selecfU);

/1 Annotate and nove the data
5 U—U\A{z}

6 L — LU{z};

until some stopping criterign

~

Active Learning is especially useful for very small valués o
L, i.e. at the very beginning of any corpus creation process, b

cause it is an efficient approach for building a first set of eied
that reach a minimum level of accuracy. This nicely fits our co
pus bootstrapping objective, and our experimental coorukti
match these expectations, as shown in section 4. Once good
enough models are available, increasing the size of theusorp
shall be realized with different approaches, such as haptst
ping, self- and co-training, corpus mixing, etc.

3.2. Approximated oracle selection

The optimal selection function in Alg.1 is the one for whitie t
learning curve has the steepest ascent, i.e., the highasitie
value at the initial iterations first. As proposed in [17 ffirst-
order Markov assumption allows to approximate this oracle o
dering by a deterministic process that iteratively seldwssin-
gle unlabeled sentence that maximizes parsing perfornrsance

select qcie(U) = arg max (Score (Lus) (T))

whereA(L U s) represents the parameters of the parsing model
trained onL U s, and Scorgus)(T) is the Labeled Attach-
ment Scorel(AS), as defined in the CoNLL evaluations, which
measures the ratio of words with correct predicted govesndr
dependency type on the test §et

This approximated oracle learning curve gives the upper
limit, or best reachable performances, of all the seleaidaria
evaluated next. Conversely, we also build the baselinailegr
curve by randomly choosing the next sentence:

seleCtasciine (U) = Randongs € U)

3.3. Uncertainty-based sampling

Our uncertainty baseline is the log-loss approach proposed
in [17], which presents the advantage of combining bothisstat
tical and pragmatic active learning strategies [18] andis-c
monly used as a standard baseline for uncertainty-based sam
pling. With this approach, the error is estimated by theapytr

of the class posterior distribution. Although this entraayn be
easily computed for a Bayesian classifier, it is much morfe dif
cult to estimate for a stochastic parsing process, whichipnan
lates structured data. In this case, an approach propo$&d]in
consists in estimating the entropy from the set of all pdesib
parses. However, this is not possible in our case, because ou
parser only produces a single parse for each sentence.

Our chosen parser is the Malt parser, which is a state-of-
the-art stochastic dependency parser [5] that incremgrap}
plies a sequence of actions on two word stacks in order td buil
the final dependency structurk on the sequence of words
s = (w1, ,wn). Initially, the words(w;) are all pushed into
the first stack, and subsequeatttions (a;) manipulate these
stacks by shifting the top word from the first to the secondista
deleting the top word of the second stack, or adding a depen-
dency relation between both top words. The process tergsnat
when the first stack is empty. This stochastic process amsf
the final tree posterior into the probability of a sequencamf
tions

P(ds|s, A\(L)) P(a1, - ,ar|s,A\(L))

R

H P(ai|s, A\(L)) (1)

when assuming independence of the actions. In the Malt parse
a Support Vector Machine (SVM) classifier is trained to asso-
ciate a set of features, which encode the current parsiteg sta



the best action that leads to the reference parse. SVMs do not
directly return class posterior probabilities, but severathods
exist to estimate such probabilities in the multi-classecadle
have chosen the approach described in [21] and implememted i
Libsvm [22]. Then, the entropy of the posterior distributis
computed for each individual posteriét(a;|s, A(L)) and av-
eraged over alla;) in the parse:

H(s)

*r} Z Z P(ai = j|s, \(L))log (P(ai = j|s, A(L)))

The sentence chosen by this uncertainty-based baseline is
the one that maximizes this entropy:

Seleancertainty(U) = arg I;’leal}( H(S)

3.4. Memory-based sentence selection

We propose next a new selection criterion that looks for a-com
promise between model uncertainty and representativesfess
the next sentence to label.

As discussed in section 2, this involves selecting the next
sentence to label based on two criteria: the uncertaintytatso
estimated parse - we want to choose sentences that are not al-
ready well-modeled, and the representativeness of thisises
- we want to avoid selecting outliers that are not represierta
of the rest of the corpus.

Uncertainty is classically estimated from the trained nhode
itself (see section 3.3). However, such a self-estimatfaecs-
sification confidence suffers from the same limitations aiad b
than the model itself: a totally erroneous posterior disttion
might lead to a high confidence in its result. We argue that
confidence measures may benefit from being estimated using
radically different classification models than the one thas
been trained in the first place. We thus propose to estimate th
classification uncertainty of our SVM model using a memory-
based distance. Our hypothesis is that the parser will tend t
be more confident for utterances that are close to the ones in
the training corpus, while the resulting parse is more Yikel
be wrong when the test utterance is very different from every
known training sentence. The model is thus the least certain
for the utterance that maximizes this distance to the training

corpus:

whered(s, s’) is the Levenshtein distance between the se-
guence of part-of-speech (POS) tags of respectivelyds’.

Another related approach might be to further compare the
estimated parse trees, in addition to POS-tags. Howeveh, su
a distance would increase the dependency between both mod-
els, which may increase the correlation between their resge
uncertainty estimation errors.

Representativeness is modeled in previous work by data
density in a neighborhood efin U [14, 12, 23]. We rather pro-
pose to measure the representativenesshyfits average Lev-
enshtein distance to the whole corgiis This global measure
shall thus select in priority the sentences that have thgetar
impact on the average performances of the parser. The com-

bined criterion is finally:

§ = max
seU

. /
(31;1% d(s,s)

| =
select,,; (U) = arg I,?ea[}(

1 /
il Zd(s,s)

=

. /
(31611% d(s,s") —

The relative importance of both distances has not been tined
this linear combination.

4. Experimental validation

The corpus used is the Ester corpus [2], which contains 3i&hou
of manually transcribed French broadcast news. The fofigwi
experiments are based on a small part of this corpus, comdpose
of 19591 words manually annotated with syntactic dependen-
cies. This corpus is randomly split into three sets: a le@rni
setL (5% of sentences), a developing $£185%), and a test-

ing setT' (10%). Evaluations are realized with 10-fold cross-
validation, leading to a confidence interval-56.6%.

We compare next the four systems defined previously: ora-
cle and random (section 3.2), uncertainty (section 3.3)\4Bd
(section 3.4). The chosen evaluation metric is the Labeled A
tachment Scord AS). Itis a standard measure from the CoNLL
evaluations [24]. Fig. 1 shows the learning curve, i.e.,lthe
beled Attachment Score as a function of the number of words
added in the training corpus.
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Figure 1: Comparison of the training curves for the four cele
tion approaches.

The top horizontal line represents the performances ob-
tained when training on the whole corpus. Because of its very
high computational complexity, we have not been able tozeal
as much iterations with the oracle system than with the sther
which explains the relatively shorter curve. Yet, the czaxirve
gives a good idea of the potential of selective sampling,vaed
can also observe that the proposed approach gives comparabl
performances than the oracle system at the very initiakstég
Active Learning, up to a training size of 1500 words, which is
very good result. The proposed system is also the best one for
all iterations.

The deficiencymeasure has been proposed to quantify Ac-
tive Learning performances (see for instance [25]) by irgteg
ing and computing the ratio of the areas above the learning
curves: the smaller it is, the better is the systérmprresponds
to similar areas between the proposed algorithm and thenand
baseline. Itis here df.53 for the MBL selective sampling and
0.73 for uncertainty sampling: this compares relatively well to
the gains reported in [25].

The main Active Learning objective is to reach the best per-
formances with as few training examples as possible. The pro
posed approach is indeed especially interesting on thefirdt
of our corpora, and we expect this behavior to scale up wih th



size of the unlabeled corpus considered. However, oncemeas
ably good accuracy is reached, we plan to consider altgmati
approaches to Active Learning, such as self- and co-trginin

in order to further speed up enlarging the ETB corpus. Also,
the edit distance used so far is based on part-of-speech tags
which may be adequate with a small initial corpus size, but  [°]
which might also tend towards zero with an increasing size of
the training corpus, leading to a reduced discriminativegro
between correct and incorrect sentences. It might thus be be
ter for larger corpora to compute edit distances based oe mor
precise POS-tags, lemmas or inflected forms.

(8]

[20]
[11]

5. Conclusions

We have proposed in this work a new memory-based selective
sampling criterion for Active Learning of a stochastic depe
dency parser. The proposed selection function combines-an u
certainty with a representativeness measures, in ordectme-

vent the classical issue of outliers selection in uncetyaiased
sampling. Contrary to classical Active Learning approachiee
uncertainty measure is estimated from a totally differeatiet

than the parser, which reduces the issue of self-estimafion
the confidence of a classifier. It further facilitates futomedels
combination for uncertainty estimation. The proposedeegn- [14]
tativeness measure is a global measure on the unlabeledscorp
derived from the Levenshtein distance between part-oéape
sequences. This Active Learning algorithm has been cordpare
favorably with the classical uncertainty baseline comgditem

the entropy of the class posterior distribution, averagest all
local decisions taken by the stochastic parser. We haveomet ¢
sidered so far the human cost required to annotate sentences [16]
even though such a cost is often taken into account in Active
Learning. But on initial conditions such as the ones used,her
annotation costs do not play a critical role, and we have thus
preferred to focus first on the decrease of parsing errors.

This work is the first one in the process of building a French
tree bank dedicated to broadcast news. The next steps shall
involve enlarging this bootstrapping corpus with self- or ¢
training approaches, with the objective of reaching 150 000
words and 84% of LAS score at a low cost.

[12]

(23]

[15]

[17]

(28]

[19]

[20]
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