
Labelled Calculi for Łukasiewicz Logics

D. Galmiche and Y. Salhi

LORIA – UHP Nancy 1
Campus Scientifique, BP 239

54 506 Vandœuvre-lès-Nancy, France

Abstract. In this paper, we define new decision procedures for Łukasiewicz log-
ics. They are based on particular integer-labelled hypersequents and of logical
proof rules for such hypersequents. These rules being proved strongly invertible
our procedures naturally allow one to generate countermodels. From these re-
sults we define a “merge”-free calculus for the infinite version of Łukasiewicz
logic and prove that it satisfies the sub-formula property. Finally we also propose
for this logic a new terminating calculus by using a focusing technique.

1 Introduction

Łukasiewicz logics, including finite and infinite versions, are among the most stud-
ied many-valued logics [10] and the infinite version Ł is, like Gödel-Dummett logic
(LC) and Product logic (Π), one of the fundamental t-norm based fuzzy logics [8].
There exist various calculi and methods dedicated to proof-search in these logics that
are based on sequents [1,12], hypersequents [4,12] or relational hypersequents [3] and
on tableaux [13] or goal-directed approach [11]. In this paper, we consider proof-search
in propositional Łukasiewicz logics through a particular approach that consists firstly in
reducing (by a proof-search process) a hypersequent into a set of so-called irreducible
hypersequents and then secondly in deciding these specific hypersequents by a partic-
ular procedure. Such an approach has been studied for Gödel-Dummett logic [2] and
also the infinite version Ł of Łukasiewicz logics [3] but not for the finite versions. In
this context we are interested in deciding irreducible hypersequents through a coun-
termodel search process and thus in providing new decision procedures that generate
countermodels.
Therefore we define labelled hypersequents, called Z-hypersequents, in which compo-
nents are labelled with integers, such labels introducing semantic information in the
search process. Then we define proof rules that deal with labels by using the addition
and subtraction and then prove that they are strongly invertible. It is important to notice
that we define a same set of simple proof rules for both finite and infinite versions of
Łukasiewicz logic. By application of these rules we show how we can reduce the de-
cision problem of every Z-hypersequent to the decision problem of a set of so-called
atomic Z-hypersequents that only contain atomic formulae. To solve the later problem
we associate a set of particular inequalities to these hypersequents and then strongly
relate the existence of a countermodel to the existence of a solution for this set of in-
equalities. Thus, by using results from linear and integer programming [16], we can



decide any atomic Z-hypersequent and also generate a countermodel in case of non-
validity. Thus, from the same set of rules, we provide a new decision procedure for the
infinite version but also one for the finite versions of Łukasiewicz logic, both including
countermodel generation. After this first contribution we focus, in the rest of the pa-
per, on the infinite version denoted Ł. The next contribution is the definition of a new
calculus for this logic that is characterized by a single form of axioms and the absence
of the “merge” rule that is not appropriate for proof-search. In addition our labelling of
components by integers can be seen as a kind of merge-elimination technique that could
be applied to hypersequent calculi given in [4,12]. From a refinement of the notion Z-
hypersequent, by using a focusing technique defined in [12], the last contribution is a
terminating calculus for Ł, that is proved sound and complete, in which only one rule is
not (strongly) invertible. We complete these results by showing, in the appendix, how
to obtain a labelled calculus for Bounded Łukasiewicz logics ŁBn with n > 2 [4].

2 Łukasiewicz Logics

We consider here the family of Łukasiewicz logics denoted Łn with n∈ N
1 = {2, . . .}∪

{∞}, set of natural numbers with its natural order 6, augmented with a greatest element
∞. In the case n = ∞, Ł∞, also denoted by Ł, is one of the most interesting multi-valued
logics and one of the fundamental t-norms based fuzzy logics (see [8] for more details).
In the case n 6= ∞, Łn denotes the finite versions of Łukasiewicz logics.
The set of propositional formulae, denoted Form, is inductively defined from a set of
propositional variables with a bottom constant ⊥ (absurdity) by using the connectives
∧,∨, � (strong conjunction) and ⊕ (strong disjunction). All the connectives can be
expressed by using the ⊃ connective: ¬A =def A⊃⊥, A⊕B =def ¬A⊃B, A�B =def

¬(A⊃¬B), A∨B =def (A⊃B)⊃B and A∧B =def ¬(¬A∨¬B).
In the case of Ł, the logic has a following Hilbert axiomatic system:
Ł1 A⊃ (B⊃A)
Ł2 (A⊃B)⊃ ((B⊃C)⊃ (A⊃C))
Ł3 ((A⊃B)⊃B)⊃ ((B⊃A)⊃A)
Ł4 ((A⊃⊥)⊃ (B⊃⊥))⊃ (B⊃A)

with the rule A⊃B A
B

[mp]

Another Hilbert axiomatic system can be obtained by adding axioms Ł1 and Ł3 to
any axiomatization of the multiplicative additive fragment of Linear Logic [14].
For the finite versions Łn with n 6= ∞, a Hilbert axiomatic system is obtained by adding
to the previous axioms of Ł the following axioms : (n−1)A⊃nA�nA⊃(n−1)A and
(pAp−1)n ⊃mAp �mAp⊃ (pAp−1)n for every integer p = 2, . . . ,n−2 that does not di-
vide n−1, with kA = A⊕ . . . ⊕A (k times) and Ak = A� . . . �A (k times).
A valuation for Łn is a function [[·]] from the set of propositional variables Var to [0,1]
if n = ∞ and to [0,1/(n−1), . . . ,(n−2)/(n−1),1] if n 6= ∞. It is inductively extended
to formulae as follows:
[[A⊃B]] = min(1,1− [[A]]+ [[B]])
[[⊥]] = 0
[[¬A]] = 1− [[A]]
[[A�B]] = max(0, [[A]]+ [[B]]−1)

[[A⊕B]] = min(1, [[A]]+ [[B]])
[[A∧B]] = min([[A]], [[B]])
[[A∨B]] = max([[A]], [[B]])

A formula A is valid in Łn, written |=Łn

A, iff [[A]] = 1 for all valuations [[·]] for Łn.



In this paper we study proof-search in the finite and infinite versions of Łukasiewicz
logics. Our approach based on labelled calculi is an alternative to existing works based
on sequents [1,12], on multisets of sequents, called hypersequents [4,12] and relational
hypersequents [3] but also on tableaux [13] or goal-directed approach [11]. It consists
first in reducing (by a proof-search process) a hypersequent into a set of so-called irre-
ducible hypersequents and then in deciding these hypersequents. It has been studied for
LC [2] and also the infinite version Ł [3] but not for the finite versions. Like for recent
works in Gödel-Dummett Logics [7,9] we aim at deciding irreducible hypersequents
through a countermodel search process and then at providing new calculi and decision
procedures that allow us to generate countermodels.

3 Labelled Proof Rules for Łn

In this section, we present for Łn the definition of integer-labelled hypersequents, la-
bels introducing semantic information in the search process, and of labelled proof rules
that are strongly invertible in order to generate countermodels. Let us remind that the
hypersequent structure Γ1 `∆1 | . . . | Γk `∆k has been introduced as a natural general-
ization of Gentzen’s sequents [2]. It is a multiset of sequents, called components, with
”|” denoting a disjunction at the meta-level.

Definition 1. A Z-hypersequent is a hypersequent of the form: Γ1`n1 ∆1 | . . . | Γk`nk ∆k

where for i = 1, . . . ,k, ni ∈ Z, and Γi and ∆i are multisets of formulae.

Definition 2. A Z-hypersequent G = Γ1 `n1 ∆1 | . . . | Γk `nk ∆k is valid in Łn iff for
any valution [[·]] for Łn, there exists i ∈ {1, . . . ,n} such that: bbΓicc 6 dd∆iee− ni where
bb /0cc = 1, dd /0ee = 0, bbΓicc = 1+ ∑

A∈Γi

([[A]]−1) and dd∆iee = ∑
B∈∆i

[[B]].

A formula A is valid in Łnif and only if the Z-hypersequent`0A is valid in Łn. Moreover
the Z-hypersequent A1

1, . . . ,A
1
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1⊕ . . . ⊕
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) is valid in Łn.
In comparison with hypersequents in [4,12] where the interpretation of components is
such that one has disjunctions (⊕) on the both sides, our aim here is to recover the
standard interpretation with conjunctions (�) on the left-hand side and disjunctions (⊕)
on the right-hand side.
Now we define a set of proof rules, presented in Figure 1, dealing with these structures.
They mainly decompose the principal formula and simply modify the labels by addition
or substraction of 1.
Considering a proof rule as composed of premises Hi with a conclusion C, it is sound if,
for any instance of the rule, the validity of the premises Hi entails the validity of C. It is
strongly sound if, for any instance of the rule and any valuation [[·]], if [[·]] is a model of
all the Hi then it is a model of C. Moreover a proof rule is invertible if, for any instance
of the rule, the non-validity of at least one Hi entails the non-validity of C. It is strongly
invertible if, for any instance of the rule and any valuation [[·]], if [[·]] is a countermodel
of at least one Hi then it is a countermodel of C. We can observe that strong invertibility
(resp. soundness) implies invertibility (resp. soundness).



G | Γ,A,B`n ∆ G | Γ`n−1 ∆

G | Γ,A�B`n ∆
[�L]

G | Γ`n ∆ | Γ`n+1 A,B,∆

G | Γ`n A�B,∆
[�R]

G | Γ`n ∆ | Γ,A,B`n+1 ∆

G | Γ,A⊕B`n ∆
[⊕L]

G | Γ`n A,B,∆ G | Γ`n−1 ∆

G | Γ`n A⊕B,∆
[⊕R]

G | Γ`n ∆ | Γ,B`n+1 A,∆

G | Γ,A⊃B`n ∆
[⊃L]

G | Γ,A`n B,∆ G | Γ`n−1 ∆

G | Γ`n A⊃B,∆
[⊃R]

G | Γ,A`n ∆ | Γ,B`n ∆

G | Γ,(A∧B)`n ∆
[∧L]

G | Γ`n A,∆ G | Γ`n B,∆

G | Γ`n A∧B,∆
[∧R]

G | Γ,A`n ∆ G | Γ,B`n ∆

G | Γ,A∨B`n ∆
[∨L]

G | Γ`n A,∆ | Γ`n B,∆

G | Γ`n A∨B,∆
[∨R]

Fig. 1. Proof rules for Z-hypersequents in Łn

Theorem 1 (Soundness). The rules of Figure 1 are strongly sound for Łn.

Proof. We only develop the cases of [⊃L] and [⊕R] rules, the other cases being similar.
Case [⊃L]. Let [[·]] be a model of G | Γ`k ∆ | Γ,B`k+1 A,∆ in Łn. Then we have [[·]] is a
model of G, bbΓcc6 dd∆ee−k or bbΓcc+([[B]]−1) 6 dd∆ee+[[A]]−(k+1). Thus, we obtain
[[·]] is a model of G, bbΓcc+(1−1) 6 dd∆ee−k or bbΓcc+((1− [[A]]+[[B]])−1) 6 dd∆ee−k.
We deduce that [[·]] is a model of G or bbΓcc+(min(1,1− [[A]]+ [[B]])− 1) 6 dd∆ee− k.
Therefore [[·]] is a model of G | Γ,A⊃B`n ∆.
Case [⊕R]. Let [[·]] be a model of G | Γ`k A,B,∆ and of G | Γ`k−1 ∆ in Łn. Thus, [[·]] is
a model of G, or bbΓcc 6 dd∆ee+[[A]]+ [[B]]− k and bbΓcc 6 dd∆ee− (k−1) hold. Then [[·]]
is a model of G or the inequality bbΓcc 6 dd∆ee+ min(1, [[A]]+ [[B]])− k holds. Thus, [[·]]
is a model of G | Γ`n A⊕B,∆.

Theorem 2. The rules of Figure 1 are strongly invertible for Łn.

Proof. We only develop the cases of [⊃L] and [⊕R] rules, the other cases being similar.
Case [⊃L]. Let [[·]] be a countermodel of G | Γ`k ∆ | Γ,B`k+1 A,∆ in Łn. Then [[·]] is a
countermodel of G and the inequalities bbΓcc > dd∆ee− k or bbΓcc+([[B]]− 1) > dd∆ee+
[[A]]− (k + 1) hold. Therefore, [[·]] is a countermodel of G and the inequality bbΓcc+
(min(1,1− [[A]]+ [[B]])−1) > dd∆ee− k holds. We deduce that [[·]] is a countermodel of
G | Γ,A⊃B`n ∆.
Case [⊕R]. Let [[·]] be a countermodel of G | Γ`k A,B,∆ in Łn. Then we have [[·]] is a
countermodel of G and bbΓcc> dd∆ee+[[A]]+[[B]]−k. Thus, the inequality bbΓcc> dd∆ee+
min(1, [[A]]+[[B]])−k holds. Therefore, [[·]] is a countermodel of G |Γ`n A⊕B,∆. Let [[·]]
be a countermodel of G | Γ`k−1 ∆. Then [[·]] is a countermodel of G and bbΓcc > dd∆ee−
(k−1) holds. Thus, [[·]] is a countermodel of G and bbΓcc> dd∆ee+min(1, [[A]]+[[B]])−k
holds. Then we deduce that [[·]] is a countermodel of G | Γ`n A⊕B,∆.

Having proved these properties we now define what an atomic Z-hypersequent is and
show that we can reduce any Z-hypersequent H into a set S of atomic Z-hypersequents,
such that H is valid iff the elements of S are valid.



Definition 3. An atomic Z-hypersequent is a Z-hypersequent which only contains atom-
ic formulae.

Theorem 3. The application of the rules of Figure 1 to a given Z-hypersequent termi-
nates with atomic Z-hypersequents.

Proof. To prove the termination, we show that for every rule, its conclusion is more
complex than its premises by using a measures of complexity over the formulae [6].
This measure, called α, is defined by: α(A) = 1 where (A ∈ Var∪{>,⊥}); α(A�B) =
α(A)+α(B)+1 where �∈ {∧,∨,⊃,⊕,�}; and α(¬A) = α(A)+1. We can see that the
order relation < on formulae, defined by A < B iff α(A) < α(B), is well-founded. Let
Γ1 and Γ2 two multisets of formulae, we have Γ1 >m Γ2 iff Γ2 is obtained form Γ1 by
replacing a formula by a finite number of formulae, each in which is of lower measure
than the replaced formula. Since the relation order on pure formulae and sentences is
well-founded, the order relation >m is well-founded, for more details [5]. Similarly, we
define a well-founded relation >>m on Z-hypersequents, induced by the order relation
>m, by: G1 >>m G2 iff G2 is obtained form G1 by replacing a component of G1 by a
smaller finite set of components, where a component Γ2`n2 ∆2 is smaller than Γ1`n1 ∆1
iff Γ1∪∆1 >m Γ2∪∆2. By using this order relation, it is easy to prove for every rule, its
premises are smaller than its conclusion. Finally, there is always a rule for any sequent
which is not atomic. Therefore, we deduce that the application of our rules to a given
Z-hypersequent terminates with atomic Z-hypersequents.

4 New Decision Procedures for Łn

By using Theorem 3 we can generate, from a given Z-hypersequent, to a set of atomic
Z-hypersequents by application of our logical rules. After this step of bottom-up proof-
search we now consider the resulting set of atomic Z-hypersequents in the perspective
of countermodel generation. For respectively Ł and Łn with n 6= ∞, we associate to each
atomic Z-hypersequent a set of particular inequalities and then relate the existence of a
countermodel to the existence of solution for this set.

Definition 4 (SIH ). Let H = Γ1 `n1 ∆1 | . . . | Γk `nk ∆k be an atomic Z-hypersequent
and xp be a real variable associated to every propositional variable p. We define the set
of inequalities SIH associated to H by: SIH = {(

J

Γ1) > (
L

∆1)− n1, . . . ,(
J

Γk) >
(
L

∆k)−nk} where
J

/0 = 1,
L

/0 = 0,
J

(Γi) = 1+ ∑
A∈Γi

(xA −1) and
L

(∆i) = ∑
A∈∆i

xA

with x⊥ = 0.

Theorem 4. An atomic Z-hypersequent H has a countermodel in Ł iff SIH has a solu-
tion over [0,1].

Definition 5 (SIn
H ). Let H = Γ1 `m1 ∆1 | . . . | Γk `mk ∆k be an atomic Z-hypersequent

and xp be a real variable associated to every propositional variable p. We define the
set of inequalities SIn

H associated to H by: SIn
H = {(

J

n Γ1)− 1 ≥ (
L

n ∆1)− ((n−
1)∗m1), . . . ,(

J

n Γk)−1 ≥ (
L

n ∆k)− ((n−1)∗mk)}, where
J

n /0 = n−1,
L

n /0 = 0,
J

n(Γi) = (n−1)+ ∑
A∈Γi

(xA − (n−1)) and
L

n(∆i) = ∑
A∈∆i

xA where x⊥ = 0.



Theorem 5. An atomic Z-hypersequent H has a countermodel in Łn with n 6= ∞ iff SIn
H

has a solution over the set of integers {0, . . . ,n−1}.

The proofs of the above theorems are given in appendix B.

By using linear and integer programming [16], we can decide a Łn atomic Z-hyper-
sequent in polynomial time. If (xA1 = r1, . . . ,xAk = rk) is a solution of the set SIn

H (resp.
SIH ), where {xA1 , . . . ,xAk} is the set of all its variables, then the valuation [[·]] such that
∀i ∈ {1, . . . ,k}, [[Ai]] = ri/(n−1) (resp. [[Ai]] = ri) is a countermodel of H in Łn (resp. in
Ł). For a given Z-hypersequent, by Theorem 3 we can generate a set of atomic Z-hyper-
sequents by application of rules of Figure 1. Then we can build the set SIH (resp. SIn

H )
associated to each atomic Z-hypersequent H and decide by using linear (resp. integer)
programming if it has a countermodel or not and thus decide its validity in Ł (resp. Łn

with n 6= ∞).
These two main steps, namely proof search followed by countermodel search (based
on the above theorems) provide new decision procedures for Łukasiewicz logics. A
key point here is the generation of countermodels because of the strong invertibility of
rules: any countermodel of an atomic Z-hypersequent on the leaf of the derivation tree
is a countermodel of the initial Z-hypersequent on the root of this tree.
We illustrate our new procedure through examples. If we consider H1 = `0A⊃ (B⊃A)
and H2 = `0A∨ (A⊃⊥), by application of proof rules we obtain the derivations:

A,B`0 A A`−1
[⊃R]

A`0 B⊃A `−1
[⊃R]

`0A⊃ (B⊃A)

`0A | A`0 ⊥ `0A | `−1
[⊃R]

`0A | `0A⊃⊥
[∨R]

`0A∨ (A⊃⊥)

Thus, H1 has a countermodel in Ł if one of the inequalities 1 > 1 (`−1), xA > 1 (A`−1)
and xB > 1 (A,B`0 A) has a solution over [0,1]. Since 1 > 1, xA > 1 and xB > 1 have
no solution over [0,1], we deduce that H1 is valid in Ł. For H2, since xA = 1 is an in-
teger solution of the system {2 > xA,xA > 0}, the valuation [[·]] defined by [[A]] = 1

2 is a
countermodel of `0A | A`0 ⊥ in Ł3. Then it is a countermodel of H2 in Ł3.

5 The ZŁ Calculus

In this section we propose a new calculus for Ł called ZŁ, that is defined by the rules
in Figure 1 and the following axiom, special rules and structural rules:

`n
[Ax](n < 0)

G | Γ`n−1 ∆

G | Γ,⊥`n ∆
[⊥L]

G | Γ`n−1 ∆

G | Γ,A`n ∆,A
[SR]

G

G | Γ`n ∆
[EW ]

G | Γ`n ∆

G | Γ,A`n ∆
[IWL]

G | Γ`n ∆

G | Γ`n ∆,A
[IWR]

G | Γ`n ∆ | Γ`n ∆

G | Γ`n ∆
[EC]

G | Γ1,Γ2 `n1+n2+1 ∆1,∆2

G | Γ1 `n1 ∆1 | Γ2 `n2 ∆2
[SP]



Theorem 6 (Soundness). The rules of the ZŁ calculus are sound.

Proof. From Theorem 1 the logical rules of ZŁ are sound. Similar arguments are used
for the other rules.

Theorem 7 (Completeness). If a Z-hypersequent is valid in Ł then it is derivable in
the ZŁ calculus.

Proof. See appendix B.

We illustrate our calculus by considering our example H1 = `0A⊃ (B⊃A). By appli-
cation of proof rules we obtain the following derivation:

`−1
[IWL]

B`−1
[SR]

A,B`0 A

`−1
[IWL]

A`−1
[⊃R]

A`0 B⊃A `−1
[⊃R]

`0A⊃ (B⊃A)

From the ZŁ calculus we can show that the weakening rules ([EW ], [IWL] and [IWR])
can be “absorbed” in the axiom by using an approach similar to the one of [17]. Thus
we obtain a new simplified calculus ZŁ′ without these rules and with the following
axiom:

G | Γ`n ∆
[Ax](n < 0) .

Proposition 1. The ZŁ calculus satisfies the subformula property, namely any formula
appearing in a proof of H in ZŁ is a subformula of a formula in H .

An important point of these calculi is that they
are “merge”-free. It means that the following rule,
called merge, is not needed.

G | Γ1 `∆1 G | Γ2 `∆2

G | Γ1,Γ2 `∆1,∆2
[M]

In hypersequent calculi for Ł in [4,3] a challenge, in the perspective of proof-search,
consists in eliminating this rule that is not appropriate because it is not invertible and
context splittings on the left and right sides could be very expensive. The rule has
been eliminated in [15] by replacing the existing axioms by the following axiom G |

Γ,

n
︷ ︸︸ ︷

⊥, . . . ,⊥`A1, . . . ,An,∆, where n > 0. But our approach based on the labelling of
components by integers allows us to eliminate the merge rule without having to com-
plicate the form of axioms.

6 A Terminating Calculus for Ł

Now, we consider an approach based on a focusing technique in [12] in order to provide
a terminating calculus for Ł. Thus we consider now so-called focused hypersequents.

Definition 6. A focused Z-hypersequent is a structure of the form [p]H where H is a
Z-hypersequent, p a propositional variable, and [p]H is valid in Ł iff H is valid in Ł.



Let H = Γ1 `n1 ∆1 | Γ2 `n2 ∆2 | . . . | Γk `nk ∆k be a Z-hypersequent. We denote by
le f t(H ) the multiset Γ1∪Γ2∪ . . . ∪Γk and by right(H ) the multiset ∆1∪∆2∪ . . . ∪∆k.
We define a new calculus, called ZŁT, that consists of the logical rules in Figure 1 with
the same focus for premises and conclusion, and of these following rules:

[p]G | Γ`n ∆
[Ax](n < 0)

[p]G | Γ`n−1 ∆

[p]G | Γ,⊥`n ∆
[⊥L]

[p]G | Γ`n−1 ∆

[p]G | Γ,A`n ∆,A
[SR]

[q]H
[p]H

[F] where q ∈ le f t(H )∩ right(H ) and p /∈ le f t(G)∩ right(G)

[p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | S

[p]G | Γ1,k1 p`n1 ∆1 | Γ2 `n2 ∆2,k2 p
[R]

where G,Γ1,Γ2,∆1 and ∆2 are atomic and k1 > 0,k2 > 0, p /∈ Γ1 ∪Γ2 ∪∆1 ∪∆2.
S is Γ1,k1 p`n1 ∆1 or Γ2 `n2 ∆2,k2 p and n′ = k2 ∗n1 + k1 ∗n2 + k1 + k2− (k1 ∗ k2 +1).

Theorem 8. All the rules of ZŁT except [R] are strongly invertible.

Proof. From Theorem 2, the logical rules of ZŁT are strongly invertible. For the other
rules we use similar arguments.

Definition 7. An irreducible focused Z-hypersequent [p]H is an atomic focused Z-
hypersequent where le f t(H )∩ right(H ) = /0, ⊥ 6∈ le f t(H ) and for every component
Γ`n ∆ of H , we have n > 0.

Definition 8. An inv-irreducible focused Z-hypersequent [p]H is an atomic Z-hyper-
sequent where p ∈ le f t(H )∩ right(H ), and for every component Γ`n ∆ of H , we have
⊥ 6∈ Γ, Γ∩∆ = /0 and n > 0.

Proposition 2. Any irreducible focused Z-hypersequent has a countermodel.

Proof. Let [p]H be an irreducible focused Z-hypersequent. Let [[·]] a valuation defined
by: for every A ∈ le f t(H ) we have [[A]] = 1, and for every B ∈ right(H ) we have
[[B]] = 0. It is easy to prove that [[·]] is a countermodel of [p]H .

Theorem 9. The application of ZŁT calculus to every focused Z-hypersequent termi-
nates with axioms or irreducible focused Z-hypersequents.

Proof. From Theorem 3, we see that the application of the logical rules of ZŁT to
a given focused Z-hypersequent terminates with atomic focused Z-hypersequents. By
using the order >>m defined in the proof of Theorem 3, G | Γ,⊥`n ∆ >>m G | Γ`n−1 ∆
and G | Γ,A`n ∆,A >>m G | Γ`n−1 ∆ hold. Now considering the rule [R], we can see
that its application with the focus p decreases strictly the number of p’s. Therefore,
in any derivation in ZŁT, the number of applications of the rules [R] and [F ] is finite.
Thus, the application of ZŁT calculus to every focused Z-hypersequent terminates.
Since there is always a rule for any Z-hypersequent which is not an axiom or an irre-
ducible Z-hypersequent, we deduce that The application of ZŁT calculus to every fo-
cused Z-hypersequent terminates with axioms or irreducible focused Z-hypersequents.



Theorem 10 (Soundness). The rules of ZŁT are sound.

Proof. The soundness of the logical rules and the rules [Ax], [⊥L] and [SR] comes from
Theorem 6. The soundness of [F ] is trivial. For the rule [R] we consider arguments
similar to those of proof of Theorem 1.

Proposition 3. If the atomic Z-hypersequent G | Γ1 `n1 ∆1 | Γ2 `n2 ∆2 is valid in Ł then
either G | Γ1,Γ2 `n1+n2+1 ∆1,∆2 | Γ1 `n1 ∆1 is valid in Ł or G | Γ1,Γ2 `n1+n2+1 ∆1,∆2 |
Γ2 `n2 ∆2 is valid in Ł.

Proposition 4. Let [p]G | Γ1,k1 p`n1 ∆1 | Γ2`n2 ∆2,k2 p be an atomic focused Z-hyper-
sequent. If it is valid in Ł then either [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ1,k1 p`n1 ∆1
is valid in Ł or [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ2 `n2 ∆2,k2 p is valid in Ł, with k1 >
0,k2 > 0, p /∈ Γ1 ∪Γ2 ∪∆1 ∪∆2 and n′ = k2 ∗n1 + k1 ∗n2 + k1 + k2− (k1 ∗ k2 +1).

Proofs of these propositions are given in appendix A.

Definition 9 (Proof-refutation tree). A proof-refutation tree is a tree where the nodes
are labelled by a focused Z-hypersequents and satisfying the following properties:

– Every internal node n labelled by H which is not an inv-irreducible Z-hypersequent
has a maximum of two children: if n has two children (resp. a single child) labelled

by H1 and H2 (resp. H ′) then H1 H2

H
[r] (resp. H ′

H
[r] ) is an instance

of a strongly invertible rule.
– Every internal node n labelled by H which is an inv-irreducible Z-hypersequent,

namely [p]G | Γ1,k1 p`n1 ∆1 | Γ2 `n2 ∆2,k2 p, has two children labelled by [p]G |
k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ1,k1 p`n1 ∆1 and by [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 |
Γ2 `n2 ∆2,k2 p where n′ = k2 ∗n1 + k1 ∗n2 + k1 + k2 − (k1 ∗ k2 +1).

From Theorem 9, we can see that a proof-refutation tree is finite and its leaf nodes are
indexed by axioms and irreducible Z-hypersequents.

Theorem 11 (Completeness). If [p]H is valid in Ł then [p]H is provable in ZŁT.

Proof. Let [p]H be a focus Z-hypersequent and P its proof-refutation tree. We show
how to decide if an index of a given node in P is valid or not. We start by the leaf
nodes. From Theorem 9, we know that such leaf nodes are labelled by axioms or ir-
reducible focused Z-hypersequents. Thus, by using Proposition 2, we can decide all
the leaf nodes. Now we see how, from the children of a given internal node, we can
propagate validity or invalidity. Let H be an index of internal node. If H is not an
inv-irreducible focused Z-hypersequent then, from Definition 9, this node has a max-
imum of two children where if these children are labelled by H1 and H2 (resp. H ′)

then H1 H2

H [r] (resp. H ′

H [r] ) is an instance of a strongly invertible rule.

Thus, if H1 and H2 (resp. H ′) are valid then H is valid because [r] is sound. Else, from
the strong invertibility of [r], H has the same countermodels of its non-valid premises.



We now deal with the nodes labelled by inv-irreducible focused Z-hypersequent. Let
n be an internal node labelled by an inv-irreducible Z-hypersequent H . Thus H is of
the form [p]G | Γ1,k1 p`n1 ∆1 | Γ2 `n2 ∆2,k2 p. and the children of n are labelled by
[p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ1,k1 p`n1 ∆1 and [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 |
Γ2 `n2 ∆2,k2 p where n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2 − (k1 ∗ k2 + 1). By using Proposi-
tion 4, if one of the indexes of the children of n is valid then H is valid else H is not
valid. Therefore, if a focused Z-hypersequent is valid then it is derivable in ZŁT.

In the completeness proof (Theorem 11) we give a decision procedure for Ł based on
the concept of proof-refutation tree. Let H = `0A⊃B∨B⊃A. A proof-refutation tree
of H is given by:

[A]`−1 | A`0 B
[SR]

[A]B`0 B | B`0 A

[A]`−1 | A`0 B
[SR]

[A]B`0 B | A`0 B
[R]

[A]A`0 B | B`0 A [A]`−1 | B`0 A
[⊃R]

[A]`0 A⊃B | B`0 A [A]`0 A⊃B | `−1
[⊃R]

[A]`0 A⊃B | `0B⊃A
[∨R]

[A]`0 A⊃B∨B⊃A

From this proof refutation tree, we then deduce that H is valid.

Our method based on proof-refutation trees cannot be applied to the terminating cal-
culus in [12] because the merge and weakening rules are not invertible. Our terminating
calculus that does not contain these rules is then more efficient because all its rules
except one are (strongly) invertible: the conclusion of an invertible rule is valid iff its
premises are valid.

7 Conclusion and Perspectives

In this work, we provide new decision procedures with countermodel generation for
Łukasiewicz logics, using the approach proposed in [2]. A key point is the use of
strongly invertible rules and consequently the ability to generate countermodels. An im-
portant contribution is the definition of a new terminating calculi for the infinite version
Ł. In comparison with the calculi based on hypersequents [3,4] our calculus improves
proof-search because it has a single form of axiom and moreover does not contain the
merge rule. In further works we will define such labelled terminating calculi for the
finite versions of Łukasiewicz logics and also for Bounded Łukasiewicz logics (see
preliminary results in appendix C) for which cut-elimination will be studied. We will
also study the possible design of labelled systems for other fuzzy logics.
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A Proofs of Propositions 3 and 4

Proposition 3. If the atomic Z-hypersequent G | Γ1 `n1 ∆1 | Γ2 `n2 ∆2 is valid in Ł then
either G | Γ1,Γ2 `n1+n2+1 ∆1,∆2 | Γ1 `n1 ∆1 is valid in Ł or G | Γ1,Γ2 `n1+n2+1 ∆1,∆2 |
Γ2 `n2 ∆2 is valid in Ł.

Proof. Let H = G | Γ1 `n1 ∆1 | Γ2 `n2 ∆2 be an atomic Z-hypersequent where G being
Γ′

1 `n′1
∆′

1 | . . . | Γ′
k `n′k

∆′
k. By using linear programming [16] H is valid iff there exist

α′
1, . . . ,α

′
k,α1,α2 ∈ N where α′

i > 0 or α j > 0 for some 1 6 i 6 k and 1 6 j 6 2, such



that for every valuation [[·]],
k

∑
i=1

(α′
i ∗ bbΓ

′
icc)+

2

∑
i=1

(αi ∗ bbΓicc) 6

k

∑
i=1

(α′
i ∗ dd∆′

iee)+
2

∑
i=1

(αi ∗

dd∆iee)−(
k

∑
i=1

(α′
i ∗n′i)+

2

∑
i=1

αi ∗ni). We suppose that α1 > α2. Then for every valuation [[·]]

we have
k

∑
i=1

(α′
i ∗bbΓ′

icc)+(α1−α2)∗bbΓ1cc+α2 ∗(bbΓ1 +Γ2cc) 6

k

∑
i=1

(α′
i ∗dd∆′

iee)+(α1−

α2)∗dd∆1ee+α2∗(ddΓ1 +Γ2ee)−(
k

∑
i=1

(α′
i∗n′i)+(α1−α2)∗n1 +α2∗(n1 +n2+1)). Then

G | Γ1,Γ2 `n1+n2+1 ∆1,∆2 | Γ1 `n1 ∆1 is valid in Ł. The case of α2 > α1 is symmetrical.

Proposition 4. Let [p]G | Γ1,k1 p`n1 ∆1 | Γ2 `n2 ∆2,k2 p be an atomic focused Z-hyper-
sequent. If it is valid then one of the following focused Z-hypersequents is valid:

– [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ1,k1 p`n1 ∆1
– [p]G | k2Γ1,k1Γ2 `n′ k2∆1,k1∆2 | Γ2 `n2 ∆2,k2 p

where k1 > 0,k2 > 0, p /∈ Γ1 ∪Γ2 ∪∆1 ∪∆2 and n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2 − (k1 ∗
k2 +1).

Proof. We first prove by induction on k that [p]G | Γ`m ∆ is valid iff G | kΓ`n k∆ where
n = k ∗m +(k− 1). Then, by Proposition 3, if [p]G | Γ1,k1 p`n1 ∆1 | Γ2 `n2 ∆2,k2 p is
valid then one of the following focused Z-hypersequents is valid:

– [p]G | k2Γ1,k1Γ2,(k1 ∗ k2)p`n′′ k2∆1,k1∆2,(k1 ∗ k2)p | Γ1,k1 p`n1 ∆1
– [p]G | k2Γ1,k1Γ2,(k1 ∗ k2)p`n′′ k2∆1,k1∆2,(k1 ∗ k2)p | Γ2 `n2 ∆2,k2 p

where n′ = k2 ∗ n1 + k1 ∗ n2 + k1 + k2 − 1. Finally we prove the following result by
induction: [p]G | Γ,kp`n ∆,kp is valid in Ł iff [p]G | Γ`n−k ∆ is valid in Ł. Therefore
we deduce the result.

B Proofs of Theorems 4, 5 and 7

Theorem 4. An atomic Z-hypersequent H has a countermodel in Ł iff SIH has a solu-
tion over [0,1].

Proof. Let H = Γ1`n1 ∆1 | . . . | Γk`nk ∆k be an atomic Z-hypersequent. [[·]] is a counter-
model of H in Ł iff for all i ∈ {1, . . . ,k}, the inequality bbΓicc > dd∆iee−ni holds. Thus,
[[·]] is a countermodel of H iff for all i ∈ {1, . . . ,k}, (xp = [[p]] | p ∈ Γi ∪∆i) is a solution
of

J

Γ1 >
L

∆1 − n1. Therefore, H has a countermodel in Ł iff SIH has a solution.
This solution is over [0,1] because the valuations in Ł are from Var to [0,1].

Theorem 5. An atomic Z-hypersequent H has a countermodel in Łn for n 6= ∞ iff SIn
H

has a solution over the set of integers {0, . . . ,n−1}.

Proof. Let H = Γ1 `m1 ∆1 | . . . | Γk `mk ∆k be an atomic Z-hypersequent. By using
arguments used in the proof of Theorem 4, we show that H has a countermodel in Łn



iff the inequality 1 + ∑
A∈Γi

(xA − 1) > ∑
A∈∆i

xA has a solution over [0,1/(n− 1), . . . ,(n−

2)/(n−1),1]. Thus H has a countermodel in Łn iff (n−1)+ ∑
A∈Γi

(xA−(n−1)) > ∑
A∈∆i

xA

has a solution over {0, . . . ,n−1}.

Theorem 7. If a Z-hypersequent is valid in Ł then it is derivable in ZŁ.

Proof. From Theorem 3, by applying the logical rules of ZŁ to every Z-hypersequent
H we obtain a set S of atomic Z-hypersequents such that H is valid iff all elements of S
are valid. Let H = Γ1`m1 ∆1 | . . . | Γk `mk ∆k be an atomic Z-hypersequent. We assume
that H is valid. Hence, the set SIH of inequalities is not feasible over [0,1]. Then,
by using linear programming [16], there exists a positive nonnegative combination of
the inequalities in SIH inconsistent over [0,1]. Formally, ∃α1, . . . ,αk ∈ N such that for
some i ∈ 1, . . . ,K we have αi > 0 and the inequality α1 ∗ (

J

Γ1)+ . . . +αk ∗ (
J

Γk) >
α1 ∗ (

L

∆1)−α1 ∗m1 + . . . +αk ∗ (
L

∆k)−αk ∗mk is inconsistent over [0,1]. We can
easily show, by using Definition 4, that the last inequality is inconsistent over [0,1]
iff the Z-hypersequent α1Γ1, . . . ,αkΓk `n α1∆1, . . . ,αk∆k is valid in Ł, where n = α1 ∗
(m1 + 1) + . . . + αk ∗ (mk + 1)− 1 and for all i ∈ 1, . . . ,K, αiΓi (resp. α1∆i) denotes
the multiset obtained by the union of αi copies of the multiset Γi (resp. ∆i). This Z-
hypersequent can be obtained from H by using the external weakening ([EW ]) and the
external contraction rules ([EC]).
Let Γ`n ∆ be an atomic Z-hypersequent. We can easily prove that if there is a multiset of
formulae Γ1, subset of Γ and ∆, then Γ`n ∆ is valid iff Γ−Γ1`n−n′ ∆−Γ1 is valid, where
n′ =| Γ1 | such that | S | denotes the number of elements in the multiset S. Moreover, if
l⊥⊆Γ such that l⊥ denotes the multiset containing l copies of ⊥, then Γ`n ∆ is valid iff
Γ− l⊥`n−l ∆ is valid. From these results we obtain Γ`n ∆ is valid iff Γ = Γ1 ∪Γ2 ∪ l⊥
such that ⊥ /∈ Γ2; ∆ = ∆1 ∪∆2; Γ1 = ∆1; Γ2 ∩∆2 = /0; and | Γ2 |6| Γ | −n− 1.Then,
α1Γ1, . . . ,αkΓk `n α1∆1, . . . ,αk∆k such that n = α1 ∗ (m1 +1)+ . . . +αk ∗ (mk +1)−1
is derivable in ZŁ by using [Ax], [SR], [IWL], [IWR] and [⊥L]. If a Z-hypersequent is
valid in Ł then it is derivable in ZŁ.

C Bounded Łukasiewicz Logic

Bounded Łukasiewicz logic ŁBn for n > 2 is defined as the intersection of Łk for k =
2, . . . ,n. A Hilbert axiomatic system for this logic consists of the same axioms and rules
than Ł with nA⊃(n−1)A. Calculi for ŁBn, called GŁBn [4], are obtained by adding to
the hypersequent calculus GŁ given in [12] the following rule:

G |

n−1
︷ ︸︸ ︷

Γ, . . .Γ,Γ′,⊥`

n−1
︷ ︸︸ ︷

∆, . . . ,∆,∆′

G | Γ`∆ | Γ′`∆′
[nC]

It appears that this rule makes proof-search expensive because it duplicates the contexts
Γ and ∆ n-1 times. Here we introduce new calculi for Bounded Łukasiewicz logics that
are simpler than GŁBn. We call ZŁBn the calculus obtained from ZŁ′ by adding:



G | Γ1 `m1 ∆1 G | Γ2 `m1 ∆2

G | Γ1,Γ2 `m1+m2+1 ∆1,∆2
[M]

G | Γ,A`m+1 ∆,A

G | Γ`m ∆
[GCUT ]

G | Γ`0 ∆,

n−1
︷ ︸︸ ︷

A, . . . ,A | Γ′,A`0 ∆′

[Axn]

Theorem 12 (Soundness). The rules of ZŁBn are sound.

Proof. By Theorem 1 the logical rules are sound. The rules [M], [GCUT ], [SR], [S] and
[⊥L] are proved sound by similar arguments. Let us consider [AXn]. We suppose that

H = G | Γ`0 ∆,

n−1
︷ ︸︸ ︷

A, . . . ,A | Γ′,A`0 ∆′ has a countermodel. Thus, for k ∈ {2, . . . ,n} there
is a valuation [[·]] countermodel of H in Łk. Thus, there exists i ∈ {0, . . . ,k− 1} such
that [[A]] = i

k−1 . If [[A]] = 0 then bbΓ′,Acc 6 0 6 dd∆′ee and we get a contradiction. Now,
if [[A]] = i

k−1 with i 6= 0 then bbΓcc 6 1 6 (n− 1) ∗ i
k−1 + dd∆ee because n > k. This is a

contradiction.

Theorem 13 (Completeness). If A is valid in ŁBn then `0A is derivable in ZŁBn.

Proof. We have only to prove that (1) the axiom nA⊃ (n− 1)A is derivable in ZŁBn

and (2) the modus ponens rule is admissible in ZŁBn. Then we have:

`0(n−1)A | A`0
[SR]

`0(n−1)A | (n−1)A,A`1 (n−1)A
[⊕L]

A⊕ ((n−1)A)`0 (n−1)A

and by using [⊕R] n-1 times, we obtain the axiom `0

n−1
︷ ︸︸ ︷

A, . . . ,A | A`0. A proof of (2) is
given by the following derivation:

A`0 B `0A
[M]

A`1 B,A
[GCUT ]

`0B

In next works we will study the cut-elimination problem.


