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Abstract. We propose a separation logic where resources are histories
(sequences) of epistemic actions so that resource update means concate-
nation of histories and resource decomposition means splitting of histo-
ries. This separation logic, called AMHSL, allows us to reason about the
past: does what is true now depend on what was true in the past, before
certain actions were executed? We show that the multiplicative connec-
tives can be eliminated from a logical language with also epistemic and
action model modalities, if the horizon of epistemic actions is bounded.

1 Introduction

In an action that is an informative update, what the agents know about facts
and about each other may change (I learn that it rains in Spain), and these facts
themselves may also change (it stopped raining). We present a logic wherein
the amount of change, as measured by sequences of actions that are informative
updates, is considered as a resource. In an epistemic context such updates often
depend on each other (after it stopped raining, I cannot learn that it rains in
Spain), so it is relevant when, as resources, they can be separated and combined
with the multiplicative connectives of the Bunched Implications logic (BI) [15].
Let us survey the relevant areas dynamic epistemic logic and bunched separation
logic, and describe prior proposals to combine both.

Knowledge and change of knowledge, and in particular for multiple agents,
are the abode of epistemic logic [19], a modal logic interpreted on relational
models consisting of possible worlds. The analysis of multiple agents publicly
informing each other of their ignorance and knowledge culminated in Public
Announcement Logic [14], and a further generalization non-public information
change such as private or secret announcements resulted in Action Model Logic
[3], further extended with factual change in [17]. Another source of our ideas is
the logic of Bunched Implications (BI) and its variants, like Boolean BI (BBI)
[15], that mainly focus on resource sharing and separation. These logics combine
additive (∧, →, ∨) and multiplicative (∗, −∗) connectives. The multiplicative
conjunction ∗ expresses separation of resources and the multiplicative implication
−∗ expresses resource update [15]. Here the term “separation logics” denotes the
class of logics based on BI or BBI and their modal extensions, even if so-called
Separation Logic is such a logic with resources being memory areas [10].



How can we combine knowledge and resources? It is a two-way traffic. One
can go in the direction of modelling uncertainty about resources [8,7]. But one
can also go in the direction of modelling information as a resource. We very
clearly go in that, novel, direction. We notice that this is a dangerous road:
incoming information is highly dependent on context and may have side effects,
so it is difficult to separate/decompose, which goes against the grain of separation
logics. But it is therefore a challenge we propose to meet. Both directions, inasfar
as discussed here, have in common that we add modalities to separation logics
(either epistemic or dynamic) [8]. Epistemic extensions of separation logic include
Public Announcement Separation Logic [7], and the further generalization called
Action Model Separation Logic [18]. In these logics the states or worlds of an
epistemic model represent resources, resource decomposition and update relate
different states in the domain of the model, and the members of the domain of a
Kripke model should therefore represent a resource monoid. In [18] the valuation
of a state is a resource, instead of the state, so that different states with the same
valuation can represent the same resource.

In this work we consider histories of epistemic actions as resources. It is both
according to the philosophy of separation, as in many epistemic contexts one can
run of out resources, such as exceeding the permitted number of calls in a gossip
protocol or the number of manipulations in epistemic planning [5]; but also
somewhat against the philosophy of separation, as the knowledge consequences
of epistemic actions highly depend on their order and may also lack certain
monotonicity of knowledge consequences. However, in the special case where
factual change is absent, ignorance can only be lost, whereas positive knowledge
(the universal fragment) continues to grow.

We propose a new separation logic with sequences of actions (informative
updates) as resources, called Action Model History Separation Logic (AMHSL).
Instead of states we consider sequences of actions (histories) to be resources,
and consequently we define resource composition as the concatenation of histo-
ries. This requires another interpretation of the multiplicative connectives. As
the order of actions is non-trivial, the multiplicative conjunction interpreting
resource composition is non-commutative, and there are two ways of resource
update: appending a history to the end of a given history, or before its beginning.
We therefore need two multiplicative implications in the logical language. After
defining this logical semantics of separation and composition of actions histories
we illustrate the interest of AMHSL with an example about gossip protocols.
Finally we show that, given a maximum length of action histories, any AMHSL
formula with multiplicative connectives is equivalent to a formula without them:
a so-called reduction. As the latter is a formula in action model logic, we have
thus also axiomatized AMSHL.

2 Semantics with informative actions as resources

We first present the syntax of the logical language and the semantical structures.



Let a finite set of agents A and a (disjoint) countable set of atoms (or propo-
sitional variables) P be given.

Definition 1 (Language). The logical language LK∗⊗(A,P ) is defined by a
BNF, where p ∈ P , a ∈ A, and Ee is a pointed action model, defined below.

ψ ::= p | I | ⊥ | ¬ψ | (ψ ∧ ψ) | (ψ ∗ ψ) | (ψ −∗ ψ) | (ψ ∗− ψ) | Kaψ | [Ee]ψ

The parameters A and P are often omitted from LK∗⊗(A,P ). We also con-
sider the sublanguage LK⊗ without the constructs containing ∗, −∗ and ∗− and
without the constant I (the language of action model logic), the sublanguage
LK∗ without the construct [Ee]ψ (the language of epistemic separation logic),
and the sublanguage LK without either (the language of epistemic logic). It is
implicit in the definition that the pre- and postcondition formulas of E are in
LK⊗ (Def. 4). For the sublanguage of LK∗⊗ only allowing the unique action
model E we write LK∗E and similarly for other fragments. Other propositional
connectives are defined by notational abbreviation and also the dual modality
⟨Ec⟩φ := ¬[Ee]¬φ.

Definition 2 (Resource monoid). A partial resource monoid (or resource
monoid) is a structure R = (R, ◦, n) where R is a set of resources (denoted
r, r′, r1, r2, . . . ) containing a neutral element n, and where ◦ : R × R → R is a
resource composition operator that is associative, that may be partial and such
for all r ∈ R, r ◦ n = n ◦ r = r. If r ◦ r′ is defined we write r ◦ r′↓ and if r ◦ r′ is
undefined we write r ◦ r′↑. When writing r ◦ r′ = r′′ we assume that r ◦ r′↓.

Definition 3 (Epistemic model). An epistemic model is a structure M =
(S,∼, V ) such that S is a non-empty domain of states (or worlds), ∼ : A →
P(S × S) is a function that maps each agent a to an equivalence relation ∼a,
and V : P → P(S) is a valuation function, where V (p) denotes where variable p
is true. Given s ∈ S, the pair (M, s) is a pointed epistemic model, denoted Ms.

Definition 4 (Action model). An action model is a structure E = (E,≈,
pre, post), where E is a non-empty finite domain of actions (denoted e, f, g, . . . ),
≈a an equivalence relation on E for all a ∈ A, pre : E → LK⊗ is a precondition
function, and post : E → P → LK⊗ is a postcondition function such that every
post(e) is only finitely different from the identity: we can see its domain as a
finite set of variables Q ⊆ P . Given e ∈ E, a pointed action model (or epistemic
action) is a pair (E , e), denoted Ee.

2.1 Knowledge and informative actions

We distinguish the semantics of knowledge and action model execution on epis-
temic models, from the more involved semantics of the full language on epistemic
history models. The distinction is made to keep the exposition transparant, be-
cause we wish to focus on information change as separation and composition,
and because it allows us to use a simpler, abbreviated, notation for the latter.



For the satisfaction relation of the former we write |=0 and for that of the latter
we write |=. The |=0 update semantics is standard fare (although less so with
the variation involving factual change) and can be found in, for example [17,13].
Definitions. 5 and 6 are assumed to be given by simultaneous recursion.

Definition 5 (Satisfaction relation for the restricted language). The
satisfaction relation |=0 between pointed epistemic models Ms and formulas in
LK⊗(A,P ), where M = (S,∼, V ) and s ∈ S, is defined by induction on formula
structure.

Ms |=0 p iff s ∈ V (p)
Ms |=0 ⊥ iff false
Ms |=0 ¬φ iff Ms ̸|=0 φ
Ms |=0 φ ∧ ψ iff Ms |=0 φ and Ms |=0 ψ
Ms |=0 Kaφ iff Ms′ |=0 φ for all s′ ∈ S such that s ∼a s

′

Ms |=0 [Ee]φ iff Ms |=0 pre(e) implies (M ⊗ E)(s,e) |=0 φ

Definition 6 (Action model execution). Given are epistemic model M =
(S,∼, V ) and action model E = (E,≈, pre, post). The updated epistemic model
M ⊗ E = (S′,∼′, V ′) is such that — where s, t ∈ S, a ∈ A, e, f ∈ E, p ∈ P :

S′ = {(s, e) | Ms |=0 pre(e)}
(s, e) ∼a (t, f) iff s ∼a t and e ≈a f
(s, e) ∈ V ′(p) iff Ms |=0 post(e)(p)

2.2 Semantics for separation and composition of action histories

We now present the |= semantics, that is defined on the full language. The
semantics interprets formulas with respect to states in an initial model and
sequences of informative actions (or events). This is known as a history-based
semantics, where the sequence of actions is the history of past actions [16].
The corresponding semantic objects are often known as ‘history-based models’
and called here history models. Updates of models with action models construct
such history models. However, as constructing history models requires evaluating
formulas and as formulas are interpreted in history models, the semantics are
given by simultaneous induction involving both.

Definition 7 (Epistemic history model). Given are epistemic model M =
(S,∼, V ) and action model E = (E,≈, pre, post). First, we define M ⊗ En by
induction on n ∈ N as: M ⊗ E0 := M, and M ⊗ En+1 := (M ⊗ En) ⊗ E. The
epistemic history model MEω is now defined as ⊕n∈N(M ⊗ En), where ⊕ is the
direct sum. We also distinguish the bounded epistemic history model MEmax

defined as ⊕n≤max(M ⊗ En), where we assume that max ≥ 1.

Histories of actions. The elements of the domain of MEω have the shape
(s, e1, . . . , en) where e1, . . . , en ∈ E for n ∈ N, and where for n = 0 the domain
element is s. The tuple of actions (e1, . . . , en) is called a history, denoted h,



where ϵ is the empty history. Given (s, e1, . . . , en), we also say that the history
(e1, . . . , en) can be executed in the state s. For (s, e1, . . . , en) we write se1 . . . en

or sh, where h = e1 . . . en. In other words, we consider a history h to be a
member of E∗. Given history h, |h| denotes its length, and for concatenation
of histories h, h′ we write hh′. We let ⊑ be the prefix relation on histories,
(ϵ ⊑ h, and if h ⊑ h′, then h ⊑ h′e ), and if h′ ⊑ h, then h\h′ is the ‘postfix’
following h′, that is, h = h′(h\h′). Indistinguishability of histories is defined as:
ϵ ∼a ϵ, and if h ∼a h′ for histories h, h′ and also e ∼a e′, then he ∼a h′e′.
Finally, given sh, s′h′ ∈ D(MEω), sh ∼a s

′h′ means that s ∼a s
′ and h ∼a h

′.
Note that indistinguishable histories are of the same length (in this synchronous
semantics).

Alternative history models. Another way to define history-based models seems
more common in the literature [16,20]. We then enrich the model MEω with
relations →e for all e ∈ E defined as: sh →e she for all sh, she ∈ D(MEω).
Note that this assumes MEω

sh |= pre(e). In other words, the model transforming
updates induced by action models E are internalized as transitions between the
(state,history) pairs of the domain of the epistemic history model. This modelling
facilitates the comparison with temporal epistemic logics.

Histories as resources. Inspired by the action monoids of [6], we now take
histories as resources, such that the set of histories of actions is a resource monoid
with concatenation of histories as resource composition and the empty history
ϵ as neutral element. For h ◦ h′ we write hh′, as above. Evidently this ‘resource
composition’ (concatenation) is associative, and also ϵ ◦ h = h ◦ ϵ = h. As
histories can always be concatenated, resource composition is always defined.
However, for some applications there is a maximum length max of histories,
such that hh′↑ then means that |hh′| > max. Seeing histories as resources, it
seems to make sense that you run out of actions if you execute too many. As
the order of actions, and histories, matters, the multiplicative conjunction (∗) is
not commutative, and to maintain duality we need two different multiplicative
implications: one for what is true after appending an arbitrary history to a given
history (−∗), and another one for what is true after appending a given history
to an arbitrary history (∗−).

We now define the semantics. Instead of interpreting a formula in a state
of an epistemic model, we interpret it in a (state,history) pair of an epistemic
history model.

Below, ‘there is sh’ means ‘there is h such that sh ∈ D(MEω)’, in other
words, there is a history h such that h can be executed in state s; and similarly for
‘for all sh’. Note that both imply that h↓, that is, |h| ≤ max. For example, “for
all sh, shh′” in the clause for −∗ means “for all h′ ∈ E∗ such that |hh′| ≤ max
and shh′ ∈ D(M)”. We recall that h = h′h′′ means that h′h′′↓ and h = h′h′′.

Definition 8 (Satisfaction relation). The satisfaction relation |= between a
pointed epistemic history model MEω

sh and formulas in LK∗E(A,P ), where M =
(S,∼, V ), E = (E,≈, pre, post), s ∈ S, and h ∈ E∗, is defined by induction
on formula structure. Model MEω is left implicit in the notation, and E is left



implicit in [Ee]φ.

sh |= p iff s |= post(h)(p)
sh |= I iff h = ϵ
sh |= ⊥ iff false
sh |= ¬φ iff sh ̸|= φ
sh |= φ ∧ ψ iff sh |= φ and sh |= ψ
sh |= φ ∗ ψ iff there are sh′, sh′′ with h = h′h′′ such that sh′ |= φ and sh′′ |= ψ
sh |= φ −∗ ψ iff for all sh′, shh′ : sh′ |= φ implies shh′ |= ψ
sh |= φ ∗− ψ iff for all sh′, sh′h : sh′ |= φ implies sh′h |= ψ
sh |= Kaφ iff s′h′ |= φ for all s′h′ such that sh ∼a s

′h′

sh |= [e]φ iff sh |= pre(e) implies she |= φ

On MEmax all clauses are the same except the last one, that then becomes:

sh |= [e]φ iff |h| < max and sh |= pre(e) imply she |= φ

For sϵ |= φ we write s |= φ. The simplified notation is justified because all
formulas are interpreted in the one and only model MEω, unlike in the |=0
semantics. We emphasize that the language of interpretation is LK∗E (with action
modalities only for E) and not LK∗⊗ (for arbitrary action model modalities).

There are two notions of validity. A formula φ is valid, notation |= φ, iff for
all M = (S,∼, V ) and s ∈ S, s |= φ. A formula φ is ∗-valid, or always-valid,
notation |=∗ φ,3 iff for all M = (S,∼, V ) and E = (E,≈, pre, post) and for all
sh ∈ D(MEω), sh |= φ. Validity is similarly defined on MEmax.

In fact we defined two semantics, one without a bound on action histories and
one with the bound max, but we write |= for both satisfaction relations (and
|=∗). The validities in Section 4 are restricted to the semantics with bound max.

Lemma 1.

1. For all φ ∈ LK∗E : |= φ iff |=∗ I → φ.
2. For all φ ∈ LK∗E : |=∗ φ implies |= φ.
3. For all φ ∈ LKE : |=0 φ iff |= φ.

Proof.

1. Observe that I is only true for the empty history.
2. If a formula is true for arbitrary histories, then also for the empty history.
3. Let M = (S,∼, V ), and s ∈ S be given. Then Ms |=0 φ, iff s |= φ, where

the latter is in model MEω. The proof by induction on φ is obvious except
for the case [e]φ that directly follows from the semantics.

3 The ∗ of multiplicative conjunction φ ∗ ψ is as the ∗ in ∗-valid, but the latter is
motivated by the Kleene-∗ of arbitrary iteration.



Histories in the language. A fair number of properties of our history semantics
are more elegantly presented if we allow histories in the language. For example it
is convenient to think of the precondition or the postcondition of a history, not
only of an action. We recursively define by notational abbreviation: (i) [ϵ]φ := φ
and [he]φ := [h][e]φ; (ii) pre(ϵ) := ⊤ and pre(he) := ⟨h⟩pre(e); (iii) post(ϵ)(p) :=
p and post(he)(p) := ⟨h⟩post(e)(p).

Given modalities for histories, the usual reduction axioms for action model
logic can generalized in an obvious way. That is, all except the reduction axiom
[e][f ]φ ↔ [e ◦ f ]φ, where ◦ is action model composition, as E ◦ E is typically
another action model than E , that is not in the language LKE for the unique
action model E . As we reduce history modalities instead of action modalities we
do not need that axiom.

Proposition 1. All valid in the |=0 semantics are

[e]p ↔ pre(e) → post(e)(p) [h]p ↔ pre(h) → post(h)(p)
[e]¬φ ↔ pre(e) → ¬[e]φ [h]¬φ ↔ pre(h) → ¬[h]φ
[e](φ ∧ ψ) ↔ [e]φ ∧ [e]ψ [h](φ ∧ ψ) ↔ [h]φ ∧ [h]ψ
[e]Kaφ ↔ pre(e) →

∧
e∼af Ka[f ]φ [h]Kaφ ↔ pre(h) →

∧
h∼ah′ Ka[h′]φ

Proof. All the left are standard [21]. All the right follow from the left. The
proof is by induction on the length of history h. The inductive clauses are all
elementary (omitted, however for inductive case [he]Kaφ observe that he ∼a h

′e′

if h ∼a h
′ and e ∼a e

′), and only the basic clause h = ϵ may need some attention.

– [ϵ]p = p which is equivalent to pre(ϵ) → post(ϵ)(p) = ⊤ → p.
– [ϵ]¬φ = ¬φ, which is equivalent to pre(ϵ) → ¬[ϵ]φ = ⊤ → ¬φ.
– [ϵ](φ ∧ ψ) = φ ∧ ψ, which is equivalent to [ϵ]φ ∧ [ϵ]ψ = φ ∧ ψ.
– [ϵ]Kaφ = Kaφ, which is equivalent to pre(ϵ) →

∧
ϵ∼ah′ Ka[h′]φ = ⊤ →

Ka[ϵ]φ = ⊤ → Kaφ, which is equivalent to Kaφ.

A corollary of Lemma 1 and Prop. 1 is that these history reduction axioms
are also valid for the |= semantics, where the formulas φ,ψ ocurring in them are
from LKE , and it is also straightforward to observe that they remain |= valid if
φ,ψ ∈ LK∗E . This is what we need in Section 4.4

3 Gossip protocols with AMHSL

In gossip protocols we investigate dissemination of information through a net-
work by way of peer-to-peer calls. Each agent holds a ‘secret’, that is, some piece
of information private to that agent only. The goal of the information exchanges
is that all agents know all secrets. In a call the callers exchange all the secrets
they know. In an epistemic gossip protocol [22] only calls are permitted that
4 They are all even ∗-valid in the |= semantics, on models MEω, but not on models

MEmax as that would need relativization of each axiom to ¬[h]⊥ →. However we
will not use (nor claim) that.



satisfy a certain logical condition. In the protocol LNS [1] you may only call
another agent if you do not know that agent’s secret. In the protocol CMO [22]
you may only call another agent if you have not been involved in a call with that
agent. Note that a LNS-permitted call is also CMO-permitted.

In our setting, a permitted call sequence is a resource, and a call is represented
as an action model [1]. We provide (novel) action models for synchronous CMO-
and LNS-calls.

Given a set A of n agents, and a, b ∈ A, propositional variables ab represent
that the secret of agent a is known by agent b, a call is a pair (a, b) denoted
ab, a call sequence σ is a finite sequence ab.cd. . . . of calls, and variables ab+

represent that call ab took place. A secret distribution is an n-tuple of subsets of
A. We execute gossip protocols in the model I with the initial secret distribution
wherein all agents only know their own secret (ab is only true when a = b, and all
ab+ are false). An agent who knows all secrets is an expert. We let Exp represent
that all agents know all secrets, that is,

∧
a,b∈A ab. In protocol LNS the condition

for making a call ab is ¬ba and in CMO the condition is ¬ab+ ∧ ¬ba+.
The action model representing a synchronous call in CMO is defined as G =

(E,≈, pre, post) where E = {ab | a, b ∈ A, a ̸= b}, ab ≈c de iff (c ̸= a, b, c, d, or
c = a = d and b = e, or c = b = e and a = d), pre(ab) = ¬ab+ ∧ ¬ba+, and
post(ab)(ca) = post(ab)(cb) = ca ∨ cb (a secret c is known by a after the call ab if
before the call it was known by a or by b, and similarly for b), post(ab)(ab+) = ⊤,
and otherwise facts do not change value (i.e., post(ab)(p) = p). The action model
for a synchronous LNS call is the same except that pre(ab) = ¬ba.

Given n agents, we now investigate IGmax for synchronous CMO so that
max =

(
n
2
)
. Given three agents, a call sequence after which all agents are experts

is ab.ac.bc. We now represent some scenarios involving K, ∗, −∗, and ∗−.
– ab.ac |= cb ∗− Exp:

Given three agents a, b, c and call sequence ab.ac, after which a and c but not b
are experts (in the second call ac, a informs c of a, b and c informs a of c, so that
both are now experts), any subsequent call resulting in b knowing the secret of c
makes all agents experts. For example, bc |= cb and indeed ab.ac.bcbcbc |= Exp. But
also ac.ac.ab |= cb and ab.ac.ac.ac.abac.ac.abac.ac.ab |= Exp.

– |= φab ∗− KaKb(bc → ac): (where φab := ab ∧ ba ∧
∧

c̸=a ¬cb ∧
∧

c̸=b ¬ca)
Formula φab holds after any call sequence σ wherein the only call(s) involving
a and b was (were) to each other. Any extension στ of a σ satisfying φab will
pass along the secrets of a and b jointly. Therefore, |= ab+ ∗− (bc → ac) and also
|= φab ∗− KaKb(bc → ac). On the other hand, ̸|= φab −∗ KaKb(bc → ac): when
appending σ to a τ containing a call between b and another agent c, bc → ac is
false, and a subsequent call ab also fails to guarantee that it holds. For example,
cd.ab |= φab, and therefore cd.abcd.abcd.ab.bc |= bc → ac, whereas bc.cd.abcd.abcd.ab ̸|= bc → ac. So
this example showed that there are φ and ψ for which |= φ ∗− ψ but ̸|= φ −∗ ψ.

– ̸|= ac ∧ bc → ac ∗ bc:
Agent c may know the secrets of a and b now but not necessarily after fewer calls,
although agent c may still know the secret of a or the secret of b. For example,
ab.ac |= ac ∧ bc but ab.ac ̸|= ac ∗ bc.



4 Reduction from LK∗E to LKE given a bound max

In this section we show that every formula in LK∗E (we recall that LK∗E is the
language LK∗⊗ where only action model E is allowed) is equivalent to a formula
in LKE , without ∗, −∗, and −∗ modalities, and without I. We show this by the
time-honoured technique of a reduction system: a number of validities that are
equivalences [11]. As every formula in LKE is equivalent to a formula in LK

[3,17], we then have shown that AMHSL is as expressive as the base multi-agent
epistemic logic S5.

Our result is restricted in two ways. First, it is with respect to truth in the
empty history models. Without that restriction already the language LK∗ is
more expressive than the language LK , as it is easy to see: a model wherein a
knows that p and p is announced, is different from a model wherein a is uncertain
about p and p is announced. However, after the announcement they satisfy the
same epistemic formulas. However, to restrict validities to those for models with
empty histories is usual in history-based semantics. The first restriction therefore
keeps our result still relevant. Second, we can only show this if there is a bound
max ∈ N on the number of actions that can be executed. Without that we
do not have a reduction, and we conjecture that one may not exist, given the
well-known theoretical issues with arbitrary iteration of updates (undecidable
logics, etc.) [12], and given that the semantics of −∗ and ∗− involve arbitrarily
large histories of actions. The second restriction makes our result less relevant.

A dual question is whether every formula in LK∗E is equivalent to a formula
in LK∗: can we also get rid of the action model modalities and stick with the
epistemic separation language only? We are uncertain about the answer to this
question. However, the language LK∗ wherein we can only indirectly refer to
actions by way of ∗ and −∗, already permits some ∗-validities of interest. It is
succinctly discussed in Section 5.

4.1 Validities for empty histories and a bound max

We assume bound max throughout Section 4, and also that E = (E,≈, pre, post).
The crucial validities in the reduction are as follows. They will be successively
shown in subsequent lemmas and propositions. Recall that |= is validity with
respect to empty history models. The obvious proof of Lemma 2 is omitted.

|= I ↔ ⊤
|= [h]φ ↔ ⊤ where |h| > max
|= [h](φ ∗ ψ) ↔ pre(h) →

∨
h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ) where |h| ≤ max

|= [h](φ −∗ ψ) ↔ pre(h) →
∧

|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ) where |h| ≤ max
|= [h](φ ∗− ψ) ↔ pre(h) →

∧
|h′|≤max−|h|(⟨h′⟩φ → [h′h]ψ) where |h| ≤ max

Lemma 2. |= I ↔ ⊤

Lemma 3. |= [h]φ ↔ ⊤, where |h| > max.



Proof. We show that |= [h]φ, which is equivalent to |= [h]φ ↔ ⊤. Given MEmax

with s ∈ D(MEmax). Let h′ ⊏ h be the prefix of h with |h′| = max, and
assume s |= pre(h′). We need to show that sh′ |= [h\h′]φ. Let h\h′ = eh′′.
According to the semantics of dynamic modalities, sh′ |= [e][h′′]φ is equivalent
to (|h′| < max and sh′ |= pre(e) imply sh′e |= [h′′]φ). As |h′| < max is false,
the whole implication is true.

Proposition 2. |= [h](φ ∗ ψ) ↔ (pre(h) →
∨

h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ)), where
|h| ≤ max.

Proof. Given MEmax and s ∈ D(MEmax), assume s |= [h](φ ∗ ψ). In order
to prove that s |= pre(h) →

∨
h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ), let us further assume

that s |= pre(h). From that and the initial assumption we obtain that sh |=
φ ∗ ψ. Then, there are h′, h′′ such that h = h′h′′, sh′ |= φ, and sh′′ |= ψ
(note that h′′ = h\h′). From that we obtain s |= ⟨h′⟩φ respectively s |= ⟨h′′⟩ψ,
and therefore sh′ |= ⟨h′⟩φ ∧ ⟨h′′⟩ψ, and therefore (using that h′′ = h\h′) s |=∨

h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ), as required. For the other direction, now assume s |=
pre(h) →

∨
h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ), and towards showing that s |= [h](φ ∗ ψ), let

us again further assume that s |= pre(h). Thus s |=
∨

h′⊑h(⟨h′⟩φ∧ ⟨h\h′⟩ψ). Let
h′ be such that s |= ⟨h′⟩φ ∧ ⟨h\h′⟩ψ. Then, as before, sh′ |= φ and s(h\h′) |= ψ
so that sh |= φ ∗ ψ.

Proposition 3. |= [h](φ −∗ ψ) ↔ (pre(h) →
∧

|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ)),
where |h| ≤ max.

Proof. Given MEmax and s ∈ D(MEmax), assume s |= [h](φ −∗ ψ). Towards
showing that s |= pre(h) →

∧
|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ), further assume

s |= pre(h), let h′ be such that |h′| ≤ max − |h| and let s |= ⟨h′⟩φ. It then
remains to show that s |= [hh′]ψ. In order to obtain that we make one final
assumption namely s |= pre(hh′), so that shh′ ∈ D(MEmax). It then remains to
show that shh′ |= ψ. From s |= ⟨h′⟩φ we obtain that s |= pre(h′) and sh′ |= φ.
From s |= [h](φ −∗ ψ) and s |= pre(h) we deduce sh |= φ −∗ ψ. From that,
sh′ |= φ, and shh′ ∈ D(MEmax) we then get shh′ |= ψ, as required.

For the other direction, we now assume s |= (pre(h) →
∧

|h′|≤max −|h|(⟨h′⟩φ →
[hh′]ψ)), and towards showing that s |= [h](φ −∗ ψ) we further assume that
s |= pre(h), so that it remains to show that sh |= φ −∗ ψ. Let now h′ be such
that |h′| ≤ max − |h|, s |= pre(h′), s |= pre(hh′), and sh′ |= φ. We need to
show that shh′ |= ψ. From sh′ |= φ we get s |= ⟨h′⟩φ. Now using the initial
assumption, s |= pre(h), s |= ⟨h′⟩φ, and s |= pre(hh′), we obtain that shh′ |= ψ,
as required.

Proposition 4. |= [h](φ ∗− ψ) ↔ (pre(h) →
∧

|h′|≤max−|h|(⟨h′⟩φ → [h′h]ψ)),
where |h| ≤ max.

Proof. The proof is obtained from the proof of Prop. 3 by replacing hh′ by h′h
everywhere in that proof. The order of h and h′ does not play a role in the proof.



From Props. 2 and 3 it follows in particular, as the empty history can only
be decomposed into empty and empty, and as pre(ϵ) = ⊤, that:

Corollary 1.
|= φ ∗ ψ ↔ φ ∧ ψ
|= φ −∗ ψ ↔

∧
|h|≤max(⟨h⟩φ → [h]ψ)

|= φ ∗− ψ ↔
∧

|h|≤max(⟨h⟩φ → [h]ψ)

4.2 Termination of reduction from LK∗E to LKE

We now show termination of the reduction. We define a translation t from LK∗E

to LKE , and a complexity/weight measure c from LK∗E to N and we then show
that the translation is correct (is truth –value– preserving) and terminates.

For the translation it is of tantamount importance that we use an outside-in
reduction strategy. This is because the reductions are |= validities, they are not
|=∗ validities: they are validities with respect to models with empty histories. In
other words, the translation t to be defined is only correct when all modalities
[h] occurring in formulas are interpreted in models with empty histories only.
For example, given [h](Kap → [h′]q), we can only rewrite [h] and we cannot (at
this stage) rewrite [h′]. This can only happen at a later stage in the rewriting
procedure after the formula has been massaged into a shape wherein [h′] (or
some modality derived from it in the process of rewriting) can be interpreted in
an empty history model. It is for this reason that the translation below does not
contain a clause for [h][h′]φ: in such a case we are compelled to reduce [hh′]φ,
or more precisely (as the formulas are identical by notational abbreviation), to
find a clause in the translation function for the main logical connective of φ.

If an inside-out reduction had been possible, a proof by natural induction
on the number of ∗, −∗, and ∗− occurrences would have been possible (in a
slightly refined lexicographic way comparing triples of natural numbers). As the
reduction is outside-in, applying an equivalence such as [h](φ ∗ ψ) ↔ (pre(h) →∨

h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ) does not necessarily reduce the number of separation
connectives on the righthand side of the equation. Any further ∗ occurring
in φ on the left, will now occur as many times on the right as there as pre-
fixes h′ of h. Therefore we have to resort to the standard method of defining a
weight/complexity measure on formulas.

Definition 9 (Complexity).

c(p) = c(⊥) = c(I) = 1
c(¬φ) = 1 + c(φ)
c(φ ∧ ψ) = 1 + max{c(φ), c(ψ)}
c(φ ∗ ψ) = max + 1 + max{c(φ), c(ψ)}
c(φ −∗ ψ) = c(φ ∗− φ) = 3 +Σmax

i=0 |E|i + c(E)max · max{c(φ), c(ψ)}
c(Kaφ) = 1 + c(φ)
c([e]φ) = c(E) · c(φ)
c(E) = 3 + |E| + max{pre(e), post(e)(p) | e ∈ E, p ∈ P}



From c([e]φ) = c(E) · c(φ) we obtain that c([h]φ) = c(E)|h| · c(φ) for arbitrary
histories h. We may abuse the language and write c(h) for c(E)|h|. In c(φ −∗ ψ)
and c(φ −∗ ψ), the conjunction

∧
h≤max is over all histories of length at most

max, where each action e in that history can be one of |E|. The total number
of histories therefore involves a geometric series Σmax

i=0 |E|i.

Definition 10 (Translation). Where 1 ≤ |h| ≤ max except in clause t([h]φ).

t(p) = p
t(⊥) = ⊥
t(I) = ⊤
t(¬φ) = ¬t(φ)
t(φ ∧ ψ) = t(φ) ∧ t(ψ)
t(Kaφ) = Kat(φ)
t(φ ∗ ψ) = t(φ ∧ ψ)
t(φ −∗ ψ) = t(

∧
|h|≤max(⟨h⟩φ → [h]ψ))

t(φ ∗− ψ) = t(
∧

|h|≤max(⟨h⟩φ → [h]ψ))
t([h]φ) = ⊤ where |h| > max
t([h]p) = pre(h) → post(h)(p)
t([h]⊥) = ¬pre(h)
t([h]I) = ¬pre(h)
t([h]¬φ) = pre(h) → t(¬[h]φ)
t([h](φ ∧ ψ)) = t([h]φ ∧ [h]ψ)
t([h]Kaφ) = pre(h) → t(

∧
h∼ah′ Ka[h′]φ)

t([h](φ ∗ ψ)) = pre(h) → t(
∨

h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ))
t([h](φ −∗ ψ)) = pre(h) → t(

∧
|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ))

t([h](φ ∗− ψ)) = pre(h) → t(
∧

|h′|≤max−|h|(⟨h′⟩φ → [h′h]ψ))

As action model pre- and postconditions are in LKE (contain no I, ∗, −∗, and
∗−), we need not to translate (i.e., eliminate those operators from) those parts.

Lemma 4. All the following hold:

1. c(E) ≥ 5
2. c(φ ∨ ψ) ≤ 3 + max{c(φ), c(ψ)}
3. c(φ → ψ) ≤ 3 + max{c(φ), c(ψ)}
4. c(pre(h)) ≤ c(h)

Proof. We prove the successive items.

1. c(E) = 3 + |E| + max{pre(e), post(e)(p) | e ∈ E, p ∈ P} ≥ 3 + 1 + 1 = 5.
2. c(φ ∨ ψ) = c(¬(¬φ ∧ ¬ψ)) = 1 + c(¬φ ∧ ¬ψ)) ≤ 3 + max{c(φ), c(ψ)}
3. c(φ → ψ) = c(¬(φ ∧ ¬ψ) = 1 + c(φ ∧ ¬ψ) = 2 + max{c(φ), c(ψ) + 1} ≤

3 + max{c(φ), c(ψ)}
4. This follows from: c(h) = c(E)|h|, c(pre(e)) ≤ max{c(pre(e)), c(post(e)(p)) |
e ∈ E, p ∈ P}, and (as |h| > 1 so that h = h′e′) pre(h) = ⟨h′⟩pre(e′).



Lemma 5. The following inequalities hold for arbitrary formulas, where 1 ≤
|h| ≤ max except in the clause for c([h]φ).

c(φ ∗ ψ) > c(φ ∧ ψ)
c(φ −∗ ψ) > c(

∧
|h|≤max(⟨h⟩φ → [h]ψ))

c(φ ∗− ψ) > c(
∧

|h|≤max(⟨h⟩φ → [h]ψ))
c([h]φ) > c(⊤) where |h| > max
c([h]p) > c(pre(h) → post(h)(p))
c([h]⊥) > c(¬pre(h))
c([h]I) > c(¬pre(h))
c([h]¬φ) > c(pre(h) → ¬[h]φ)
c([h](φ ∧ ψ)) > c([h]φ ∧ [h]ψ)
c([h]Kaφ) > c(pre(h) →

∧
h′∼ah Ka[h′]φ)

c([h](φ ∗ ψ)) > c(pre(h) →
∨

h′.h′′=h(⟨h′⟩φ ∧ ⟨h′′⟩ψ))
c([h](φ −∗ ψ)) > c(pre(h) →

∧
|h′|≤max−|h|(⟨h′⟩φ → [h.h′]ψ))

c([h](φ ∗− ψ)) > c(pre(h) →
∧

|h′|≤max−|h|(⟨h′⟩φ → [h′.h]ψ))

Proof. We prove the separate items one by one.

c(φ ∗ ψ) = max + 1 + max{c(φ), c(ψ)}
> 1 + max{c(φ), c(ψ)} this bound is sharp
= c(φ ∧ ψ)

c(φ −∗ ψ) = 3 +Σmax
i=0 |E|i + c(E)max · max{c(φ), c(ψ)}

> Σmax
i=0 |E|i − 1 + 3 + c(E)max · max{c(φ), c(ψ)} (@)

≥ c(
∧

|h|≤max(⟨h⟩φ → [h]ψ))

(@): The number of h with |h| ≤ max is bounded by Σmax
i=0 |E|i, so one less for

the number of ∧-symbols. Then, c(E)max is the weight of the largest such h.
The case c(φ ∗− ψ) is treated just as the case c(φ −∗ ψ).

c([h]φ) = c(h) · c(φ) ≥ 5c(φ) ≥ 5 > 2 = c(¬⊥) = c(⊤) when |h| ≥ max

Note that c(h) = c(E)|h| ≥ c(E) ≥ 5. We do not use |h| ≥ max but only |h| ≥ 1.

c([h]p) = c(E)|h| · c(p)
= c(E)|h| · 1
= c(E)|h|

≥ c(E)
= 3 + |E| + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
> 3 + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
≥ c(pre(e) → post(e)(p))

c([h]⊥) = c(E)|h| · c(⊥)
= c(E)|h|

≥ c(E)
= 3 + |E| + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
> 1 + c(pre(h))
= c(¬pre(h))



c([h]I) > c(¬pre(h))

The case c([h]I) is treated as the case c([h]⊥), as c(I) = c(⊥) = 1.

c([h]¬φ) = c(E)|h| · c(¬φ)
= c(E)|h| · (1 + c(φ))
= c(E)|h| + c(E)|h| · c(φ) c(E) ≥ 5, |h| ≥ 1
≥ 5 + c(E)|h| · c(φ) note that this bound is sharp
> 4 + c(E)|h| · c(φ) use that c(pre(h)) ≤ c(h)
= 3 + max{c(pre(h)), 1 + c(E)|h| · c(φ)}
= 3 + max{c(pre(h)), 1 + c([h]φ)}
= 3 + max{c(pre(h)), c(¬[h]φ)}
≥ c(pre(h) → ¬[h]φ)

c([h](φ ∧ ψ)) = c(E)|h| · c(φ ∧ ψ)
= c(E)|h| · (1 + max{c(φ), c(ψ)})
= c(E)|h| + c(E)|h| · max{c(φ), c(ψ)}
> 1 + c(E)|h| · max{c(φ), c(ψ)}
= 1 + max{c(E)|h| · c(φ), c(E)|h| · c(ψ)}
= 1 + max{c([h]φ), c([h]ψ)}
= c([h]φ ∧ [h]ψ)

c([h]Kaφ) = c(E)|h| · c(Kaφ)
= c(E)|h| · (1 + c(φ))
= c(E)|h| + c(E)|h| · c(φ)
≥ c(E)|h| + c(E)|h| · c(φ)
≥ 3 + |E||h| + max{c(pre(e)), c(post(e)(p)) | . . . } + c(E)|h| · c(φ)
≥ 4 + |E||h| + c(E)|h| · c(φ) this bound is sharp when h = 1
> 3 + |E||h| + c(E)|h| · c(φ)
= 3 + |E||h| − 1 + c(Ka[h]φ) (∗)
≥ 3 + c(

∧
h′∼ah Ka[h′]φ) as c(pre(h)) ≤ c(h)

≥ 3 + max{c(pre(h)), c(
∧

h′∼ah Ka[h′]φ)}
≥ c(pre(h) →

∧
h′∼ah Ka[h′]φ)

(∗): There are at most |E| indistinguishable f from a given e, therefore there are
at most |E||h| indistinguishable h′ from a given h. Minus 1 when counting the
number of ∧-symbols in a conjunction of that length.

c([h](φ ∗ ψ)) = c(E)|h| · c(φ ∗ ψ)
= c(E)|h| · (max + 1 + max{c(φ), c(ψ)})
= max · c(E)|h| + c(E)|h| + c(E)|h| · max{c(φ), c(ψ)}
≥ 5 + 3max + c(E)|h| · max{c(φ), c(ψ)} max ≥ |h|
> 3 + 3|h| + 1 + c(E)|h| · max{c(φ), c(ψ)} (∗∗)
≥ 3 + c(

∨
h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ))

= 3 + max{c(pre(e)), c(
∨

h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ))}
≥ c(pre(h) →

∨
h′⊑h(⟨h′⟩φ ∧ ⟨h\h′⟩ψ))



(∗∗): Each of |h| disjunctions adds 3, plus 1 for the conjunction.

c([h](φ −∗ ψ)) = c(E)|h| · c(φ −∗ ψ)
= c(E)|h| · (3 +Σmax

i=0 |E|i + c(E)max · max{c(φ), c(ψ)})
> 2 · (3 +Σmax

i=0 |E|i + c(E)max · max{c(φ), c(ψ)})
> 3 + 3 +Σmax−1

i=0 |E|i − 1 + c(E)max · max{c(φ), c(ψ)}
≥ 3 + c(

∧
|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ))

= 3 + max{c(pre(h), c(
∧

|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ))}
≥ c(pre(h) →

∧
|h′|≤max−|h|(⟨h′⟩φ → [hh′]ψ))

The case c([h](φ −∗ ψ)) is serious overkill, as in c(φ −∗ ψ) weight c(h) is already
factored in. But in case c(φ −∗ φ) this was indispensable. We also use that the
h′ we quantify over must have length at most max − 1 (as |h| ≥ 1), one less
therefore than in the case c(φ −∗ ψ).

The case of [h](φ ∗− ψ) is similar to the case [h](φ ∗− ψ).

Theorem 1. Every formula in LK∗E is equivalent to a formula in LKE

Proof. We recall that the reduction is outside-in. Consider a formula φ ∈ LK∗E ,
and apply a clause of translation t (Def. 10) on φ. Consider c(φ). If φ is one of p,
⊥, or ⊤, termination is trivial (such as t(p) = p). If the main logical connective
of φ commutes with t (such as in t(ψ ∧χ) = t(ψ) ∧ t(χ)), then it is obvious that
the complexities of subformulas of φ are strictly lower than the complexities of
φ (such as c(ψ) < c(ψ ∧ χ) above, since the complexity of a conjunction is that
of its conjuncts plus one). If the main logical connective of φ does not commute
with t, we have one of the cases spelled out in Lemma 5 and use that for all
those cases c(φ) > c(t(φ)). Therefore, in every step of translation t that we
apply, the weight c is strictly less. As c(φ) is a natural number, this is bounded
by 0. Therefore the reduction terminates.

Corollary 2. Every formula in LK∗E is equivalent to a formula in LK .

As a consequence, the logic AMHSL (for empty history models, and given
bound max) is therefore completely axiomatized by the reduction axioms of
Section 4.1 and the axiomatization of action model logic with factual change
[17] (where we recall Prop. 1) that extends S5.

5 Remarks and Perspectives

Considering the history-based logical semantics with the bound max of the epis-
temic history model, it appears that model checking is decidable. Satisfiability
may be a different matter as the −∗ and ∗− connectives quantify over histories
of arbitrary finite length, even if we know that quantifying over action models
results in a decidable logic [9]. If histories are unbounded, we are uncertain if
∗, ∗− and −∗ can be eliminated by reduction from the language LK∗E . It is also
highly uncertain if action model modalities can be eliminated by reduction from
the language LK∗E , so that we get a LK∗ formula.



The logical semantics for the language LK∗ is interesting in its own right.
Dynamic epistemic logics allowing reasoning about the past are very rare [2,4]. In
LK∗ we can refer to the past in novel and unexpected ways. For example, sh |=
ψ ∗ ⊤ formalizes that ψ was true in the past (there must be h′, h′′ with h′h′′ = h
such that sh′ |= ψ and sh′′ |= ⊤, where the latter is trivially true). A formula like
¬I∗¬I∗¬I is only true after at least three actions have been executed (etcetera).
Would such a logic be axiomatizable? We can see that (Kaφ∗Kaψ) → Ka(φ∗ψ)
is valid. However, Ka(φ ∗ ψ) → (Kaφ ∗Kaψ) is invalid.

Finally, instead of decomposing action histories into prefixes and postfixes,
such that resource update required distinct −∗ (append postfix) and ∗− (append
prefix) connectives, and where φ∗ψ may not be equivalent to ψ∗φ, we could also
contemplate decomposing an action history into a subsequence and its comple-
ment (such as when decomposing a.b.c.d into a.c and b.d). Now, one −∗ connective
suffices that can be interpreting as ‘enriching’ a given history with bits and pieces
of action sequences where it pleases us, and ∗ has become commutative. This
comes closer to the philosophy of separation.

Acknowledgements We very much wish to thank the reviewers for their com-
ments. A reviewer pointed out an error in the proof of the case c([h](φ ∗ ψ))
of Lemma 5, that needed repair by strengthening the weight of case c(φ ∗ ψ)
in Def. 9. Another reviewer mentioned that AMHSL allows to reason about the
length of histories. We added an example.
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