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Abstract. We define an Epistemic Separation Logic, called ESL, that allows us

to consider epistemic possible worlds as resources that can be shared or sep-

arated, in the spirit of separation logics. After studying the semantics and the

expressiveness of this logic, we provide a tableau calculus with labels and re-

source contraints that is sound and complete and then also study countermodel

extraction.

1 Introduction

The Epistemic Logic is the logic of knowledge and belief, which models and expresses

properties on knowledge that have different agents [13,15,19]. The models of this logic

are based on possible worlds, which encode all possible states/configurations of a con-

sidered system. For instance, in the case of a card game or in the muddy children prob-

lem [19], the possible worlds correspond to all card or all muddy forehead distributions.

Moreover the possible worlds are very often distributions of elements (cards, muddy

foreheads, lightbulb, ...) that can be considered as resources, which are entities that can

be composed or decomposed into sub-entities. Then, two main questions arise: is it

possible to enrich the Epistemic Logic models, by considering these possible worlds as

such resources ? What kind of properties will we then be able to express ?

In order to model and express properties on resources, various resource logics have been

proposed, such as Linear Logic (LL) [10] that focuses on resource consumption, and

the logic of Bunched Implications (BI) and its variants, like Boolean BI (BBI) [18], that

mainly focus on resource sharing and separation with two specific conjunctions ∧ and

∗ and the corresponding implications. These logics are logical kernels of so-called sep-

aration logics with resources being memory areas [12,20], or resources being located

on trees [4] and of logics modeling dynamic systems that manipulate resources [5,7].

Possible worlds being implicitly related to resources, it seems natural to extend the

Epistemic Logic with separation connectives. In this paper we define such an exten-

sion, called Epistemic Separation Logic (ESL), that is a conservative extension of Epis-

temic Logic and also of BBI in which possible worlds are seen as resources. Let us note

that we consider BBI logic in which the conjunction is distributive over the disjunc-

tion, property that does not hold in LL. Concerning the links between Epistemic Logic

and resource management we can mention some works based on Linear Logic, in or-

der to capture agent knowledge evolutions due to epistemic actions [3,16], but these
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works consider the epistemic actions as resources (not the worlds). Compared with

such works, our epistemic separation logic considers the possible (epistemic) worlds as

resources, including sharing and separation connectives that allow us to express prop-

erties, like for instance (A∧ (B∨C))−∗KaD that means that ”the addition of a resource

that satisfies the property A and also the property B or C, gives to the agent a the knowl-

edge that D holds”. Future work will be devoted to the study of other epistemic separa-

tion logics with epistemic actions [3], or updates [11].

2 An Epistemic Separation Logic

In this section we present first an Epistemic Separation Logic, called ESL, that can be

seen as an extension of Boolean BI with a knowledge modality and then complete the

logic with operators for knowledge change to the logic (public announcements).

We assume a finite set of agents A, and a countable set of propositional symbols Prop.

The language L of the Epistemic Separation Logic, denoted ESL, is defined as follows:

ϕ ::= p | ⊥ | I | ϕ → ϕ | ϕ∗ϕ | ϕ−∗ϕ | Kaϕ

where a ranges over A and p over Prop. We can also define the other connectives :

¬ϕ ≡ ϕ →⊥, ⊤≡ ¬⊥, ϕ∨ψ ≡ ¬ϕ → ψ, ϕ∧ψ ≡ ¬(ϕ →¬ψ) and K̃aϕ ≡ ¬Ka¬ϕ.

Here we consider possible worlds as resources and then we use indifferently the words

possible world and resource. The epistemic modality Kaϕ means that the agent a knows

that ϕ holds, and the epistemic modality K̃aϕ, defined by K̃aϕ ≡¬Ka¬ϕ, means that the

agent a considers that ϕ is possible. Finally the multiplicative connectives are the mul-

tiplicative conjunction ϕ∗ψ, meaning that the possible world can be decomposed into

two possible sub-worlds such that the first one satisfies ϕ and the second one satisfies

ψ, and the multiplicative implication ϕ−∗ψ meaning that by adding any possible world

that satisfies ϕ we obtain a possible world that satisfies ψ. We also notice that I is the

unit of ∗. A key point is the mixing of the epistemic modalities and the multiplicative

connectives. For example, we can write the formula ϕ−∗Kaψ that expresses that any

addition of a resource that satisfies ϕ allows the agent a to obtain the knowledge of ψ,

which is an interesting property.

Definition 1 (Partial resource monoid). A partial resource monoid (PRM) is a struc-

ture R = (R,•,e) such that:

– R is a set of resources or possible worlds with e ∈ R;

– • : R×R⇀ R such that, for all r1,r2,r3 ∈ R, r1 • e ↓ and r1 • e = r1 (neutral element),

if r1 • r2 ↓ then r2 • r1 ↓ and r1 • r2 = r2 • r1 (commutativity) and if r1 • (r2 • r3) ↓ then

(r1 • r2)• r3 ↓ and r1 • (r2 • r3) = (r1 • r2)• r3 (associativity).

where r1 • r2 ↓ means ”r1 • r2 is defined” and r1 • r2 ↑ means ”r1 • r2 is undefined”. We

denote ℘(E) the powerset of the set E , namely the set of sets built from E . We call e

the unit resource and • the resource composition.

Definition 2 (Model). A model is a triple M = (R ,{∼a}a∈A,V ) such that:

– R = (R,•,e) is a PRM;

– For all a ∈ A, ∼a⊆ R× R is an equivalence relation that is, for all r1,r2,r3 ∈ R,



r1 ∼a r1 (reflexivity), if r1 ∼a r2 then r2 ∼a r1 (symmetry), if r1 ∼a r2 and r2 ∼a r3 then

r1 ∼a r3 (transitivity);.

– V : Prop→℘(R) is a valuation.

If we compare these models to the Epistemic Logic models, we observe that the pos-

sible worlds are considered as resources, and they can be composed or decomposed by

the function •. Compared to the BBI models, the partial resource monoids are extended

by equivalence relations on resources parametrized by agents.

Definition 3 (Forcing relation, validity). Let M = (R ,{∼a}a∈A,V ) be a model. The

forcing relation �M ⊆ R×L is defined by structural induction, for all r ∈ R, as follows:

r �M p iff r ∈V (p)
r �M ⊤ always

r �M ⊥ never

r �M I iff r = e

r �M ¬ϕ iff r 6�M ϕ

r �M ϕ∧ψ iff r �M ϕ and r �M ψ

r �M ϕ∨ψ iff r �M ϕ or r �M ψ

r �M ϕ → ψ iff r �M ϕ implies r �M ψ

r �M ϕ∗ψ iff ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M ϕ and r2 �M ψ

r �M ϕ−∗ψ iff ∀r′ ∈ R · (r • r′ ↓ and r′ �M ϕ)⇒ r • r′ �M ψ

r �M Kaϕ iff ∀r′ ∈ R · r ∼a r′ ⇒ r′ �M ϕ

r �M K̃aϕ iff ∃r′ ∈ R · r ∼a r′ and r′ �M ϕ

We say that a formula ϕ is valid, denoted � ϕ, if and only if r �M ϕ for all resources

r of all models M .

Moreover we can show that Epistemic Separation Logic (ESL) is a conservative exten-

sion of Epistemic Logic and also a conservative extension of BBI.

Now we aim at extending the language definition of ESL with the connectives [ϕ]ψ
and 〈ϕ〉ψ ≡ ¬[ϕ]¬ψ that are dynamic epistemic modalities of Public Announcement

Logic (PAL) [17,22], [ϕ]ψ meaning that ”after the truthful public announcement ϕ, ψ

is true”, and 〈ϕ〉ψ meaning that ”ϕ can be truthfully announced and ψ is true after it”.

The peculiarity of PAL, and of other dynamic epistemic logics, is that this modality is

standardly interpreted by a model transformation and not by an internal step in a given

model, corresponding to an arrow in a given accessibility relation. The formula [ϕ]ψ is

true in a state of a given model, if and only if on condition that ϕ is true in that state,

in the model restriction to the states where ϕ is true, the postcondition ψ is true in that

state. In PAL terminology, where R is a set of words, r |=M [ϕ]ψ iff if r |=M ϕ then

r |=M |ϕ ψ where M |ϕ = (R′,{∼′
a}a∈A,V

′) such that R′ = {r ∈ R | r |=M ϕ}, for each

a ∈ A, ∼′
a =∼a ∩(R′×R′), and for each p ∈ P, V ′(p) =V (p)∩R′.

This standard semantics for public announcement logic is unsuitable in our setting,

because it does not preserve monoids. For example, given a unit e ∈ R, a public an-

nouncement ¬I will restrict the resource set R of the monoid R to R \ {e} that is no

longer a monoid. Such restrictions on R cannot preserve the associativity of •.



Two alternative semantics for public announcement logic are as follows. In a first ap-

proach [9] we do not restrict the domain to worlds where the announcement formula

ϕ is true, but we restrict the accessibility relation (for all agents) to those pairs ending

in worlds where ϕ is true. In a second approach [21] we do not restrict the domain but

only refine the accessibility relation, i.e., we separate the submodel consisting of the ϕ

worlds from the submodel consisting of the ¬ϕ worlds. All semantics are equivalent in

the sense that in a world satisfying the announcement, the same formulae in the logic

are true (they are bisimilar), but the two alternatives have the advantage that the entire

domain of the original model is preserved and therefore they preserve monoids. The re-

finement approach seems most suitable in our setting, as we focus on the incorporation

of reliable information, i.e., truthful announcements.

Definition 4 (Extension of forcing relation). Let M = (R ,{∼a}a∈A,V ) be a model.

The forcing relation �M ⊆ R×L is extended, for public annoucements, as follows:

r �M [ϕ]ψ iff if r �M ϕ then r �M |ϕ ψ and r �M 〈ϕ〉ψ iff r �M ϕ and r �M |ϕ ψ where

M |ϕ = (R ′,{∼′
a}a∈A,V

′), called the update of M by the public announcement ϕ, is

defined by: R ′ = R , ∼′
a = ∼a ∩{(r,s) | r �M ϕ iff s �M ϕ} and V ′ =V.

The reader may note the difference with the more standard public announcement seman-

tics given above. Moreover we observe that in the forcing relation there is no interaction

between the epistemic aspects and resource aspects: the clauses for ∗ and −∗ do not re-

fer to the equivalence relation that encodes the epistemic modality, and the clauses for

knowledge Ka and its dual do not refer to resource composition or decomposition that

encode the resource modalities. We think that ESL is equally expressive as ESL with

public announcements but this point will be fixed in future work.

3 Modelling with Epistemic Separation Logic

First we develop an example that emphasizes some key points about modelling with

ESL. We consider two agents that enter in a library to borrow books. We suppose that

they are not allowed to take out more than two books (only zero, one or two books) and

they must tell the book references to the librarian who will fetch their. We also suppose

that the books asked by the agents are always available and that each agent does not

know which books and how many books are asked by the other. The librarian says to

the agents: ”Before telling me the book references I would like to say that I cannot carry

more than two books. Could you tell me, at first, if I will be able to carry all the books

that you want or if I need to use a book trolley ?”.

As a first step, we build a model of this situation with ESL. We define the set of agents

A = {A1,A2}, where Ai is the ith agent and a PRM that deals with the possible worlds

R = (R,•,e). Then we define the set of resources R = {(i, j) | i, j ∈ {0,1,2}}, where

(i, j) encodes “the agent A1 wants i books and the agent A2 wants j books”, and we

recall that an agent cannot borrow more than two books. Thereby, for instance, (2,0)
represents A1 that wants two books and A2 that wants no book.



(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

is the relation ∼A1

is the relation ∼A2

(reflexivity and transitivity are not represented)

Fig. 1. Knowledge of the agents before the

discussion. Grey means “cannot be carried”.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Fig. 2. Update of the model after the first

public announcement: KA1
¬I

The resource composition • is defined by:

(i1, j1)• (i2, j2) =

{
↑ if i1 + i2 > 2 or j1 + j2 > 2

(i1 + i2, j1 + j2) otherwise

We remind that ↑ means ”is not defined” and we note that (0,0) is the unit of re-

source composition and then e = (0,0).
Let us now illustrate the resource composition. We assume that A1 wants to borrow one

book and the other agent wants no book, then we represent the global borrow request by

the resource, or possible world, (1,0). Now, if A2 wants two more books, then we have

the final borrow request (1,0) • (0,2) = (1,2). Moreover, if A2 wants one more book

then it is not allowed: we have (1,2) • (0,1) ↑, that expresses that A2 cannot borrow

more than two books.

Now, we have to build a model M = (R ,{∼a}a∈A,V ) and then we define two equiva-

lence relations, that are ∼A1
and ∼A2

. For instance, we expect (1,0)∼A2
(2, 0) because

if A2 wants no book then, as A2 has no information about how many books are wanted

by A1 and as he has only information about how many books he wants, then he must

consider, from his point of view, that A1 might want one book or A1 might want two

books. In the other hand, we also expect to have, for instance, (1,0) 6∼A2
(1,1), because

it is not consistent, from the point of view of A2, that he wants no book and one book.

Therefore, we give the following definitions, for all i1, i2, j1, j2 ∈ {0,1,2}:

(i1, j1)∼A1
(i2, j2) iff i1 = i2

(i1, j1)∼A2
(i2, j2) iff j1 = j2

Finally, we consider the set of propositional symbols Prop = {P1,P2,C} and the valu-

ation V , such that V (P1) = {(1,0)}, V (P2) = {(0,1)} and V (C) = {(i, j) | i+ j 6 2}.

Thus we have r ∈ V (Pi) if and only if r is the borrow such that the agent Ai wants one

and only one book and the other agent wants no book and r ∈ V (C) means that the

librarian can carry the books of r (the agents want at maximum two books).

A graphical representation of our model is given in Fig. 1, where grey vertices corre-

spond to requests which do not satisfy C.

After the construction of the model of Fig. 1, we illustrate the use of ESL connectives

in our model. Concerning propositional symbols, we have for instance (0,1) �M P2,



because (0,1) ∈ V (P2), which expresses that only one book is wanted and this book

is wanted by A2. But, we have (0,2) 6�M P2 and (1,1) 6�M P2. Concerning the proposi-

tional symbol C, we have for instance (1,1)�M C which expresses that the librarian can

carry the two books asked by the agents, but (1,2) 6�M C that means that the librarian

cannot carry the books (because the agents want more than two books).

Being a conservative extension of the Epistemic Logic, ESL can express properties on

the agent knowledge. For instance, we have (0,1) �M KA1
C, because for all r ∈ R such

that (0,1) ∼A1
r, we have r �M C. It means that if we consider that A1 wants no book

and A2 wants one book, then the agent A1 knows that the librarian can carry the books.

Concerning the modality K̃a we have (1,2) �M K̃A1
C, because (1,2) ∼A1

(1,1) and

(1,1) �M C. It means that if A1 wants one book and A2 wants two books then A1 con-

siders that it is possible that the librarian can carry the books.

Being also a conservative extension of BBI, ESL can express sharing and separation

properties. Concerning the formula I, we have r �M I iff r = e = (0,0). In other words

the formula I expresses that the agents want no book. About sharing and separation

expressed in ESL, as (0,0) �M KA1
C and (0,0) �M KA2

C then we have (0,0) �M

KA1
C∧KA2

C. The conjunction ∧ expresses sharing such that KA1
C and KA2

C share the

resource (0,0). The other conjunction ∗ expresses separation. As (2,0) = (1,0)• (1,0)
and (1,0) �M P1 and (1,0) �M P1 then (2,0) �M P1 ∗P1. This is a separation property

because (2,0) is separated (or decomposed) into two sub-resources. We remark that

P1 ∗P1 means that A1 wants two books (and the other agent wants no book) and the

connective ∗ allows us to count resources. For instance, P1∗P2∗P2 means that A1 wants

one book and A2 wants two books.

The multiplicative implication −∗ allows us to express a property on the resource ob-

tained after the addition of another resource. For instance (1,1) �M P1 −∗¬C, because

if we add a resource that satisfies P1 to the resource (1,1) then we obtain a resource

that satisfies ¬C. Indeed we only have (1,0) �M P1 and then (1,1)• (1,0) = (2,1) and

(2,1) �M ¬C. Therefore, (1,1) �M P1 −∗¬C, that means that if A1 and A2 want one

book then if A1 wants one more book then the librarian cannot carry the books.

After the librarian asks to the agents if he will be able to carry the wanted books, we

suppose that the agents have the following discussion:

1. A1: ”I know that I do not want no book.”

2. A2: ”I know that I want at least one book, and A1 wants also at least one book.”

3. A1: ”I know that I am allowed to borrow one more book.”

4. A2: ”I know that you can carry our books. Moreover, I also know that we want one

book each other.”

The previous sentences numbered by i are public announcements, which will be de-

noted ϒi. We now show the evolution of the model of Fig. 1 after each announcement.

Firstly, A1 says (announces) that he knows that the agents do not want no book, which

is expressed by the formula ϒ1 = KA1
¬I. We observe that we have, (i, j) �M KA1

¬I if

and only if (i, j) 6∼A1
(0,0). Then the update of our model by the public announcement

KA1
¬I is the model M |KA1

¬I which is given in Fig. 2.

Starting from the model M |KA1
¬I which is given in Fig. 2 and assuming that the agents



(1,0) (2,0)

(1,1) (2,1)

(1,2) (2,2)

Fig. 3.

(1,1) (2,1)

(1,2) (2,2)

Fig. 4.

(1,1)

(1,2)

Fig. 5.

(1,1)

Fig. 6.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Fig. 7. The model updated after all public announcements (M |ϒ1|ϒ2|ϒ3)

never lie, the worlds (0, j), where j ∈ {0,1,2}, cannot be the solution of our prob-

lem because these words do not force the public announcement. We call ”solution of

our problem” any world that allows the agents to do the announcements without lying.

Thus, the solution is one of the possible worlds of Fig. 3.

Then, A2 announces that he knows that A1 wants at less one book, and also himself

wants at less one book. Such property is expressed by the formula ϒ2 = KA2
((P1 ∗

⊤) ∧ (P2 ∗ ⊤)). We have (i, j) �M |ϒ1
KA2

((P1 ∗ ⊤)∧ (P2 ∗ ⊤)) iff i ≥ 1 and j ≥ 1.

Then, focusing on the possible worlds satisfying the formula, the solution is one of

the resources of Fig. 4. A1 announces that he knows that he is allowed to borrow one

more book, which is captured by the formula ϒ3 = KA1
¬(P1 −∗⊥). Indeed, we have

(i, j) �M |ϒ1|ϒ2
P1 −∗⊥ if and only if for all r ∈ R such that (i, j)• r ↓ and r �M |ϒ1|ϒ2

P1,

we have (i, j)• r �M |ϒ1|ϒ2
⊥. As r can only be (1,0) (because r �M |ϒ1|ϒ2

P1) and no re-

source satisfies ⊥, we necessarily have (i, j)•(1,0) ↑, that means that A1 cannot borrow

one more book. Then the negation (¬) of the formula (P1 −∗⊥) means A1 can borrow

one more book. Finally, ignoring all possible worlds that do not satisfy the formula

KA1
¬(P1 −∗⊥), we obtain the worlds of the Fig. 5.

Finally, A2 says that he knows that the librarian can carry the books. The only possible

world which satisfies the formula KA2
C is (1,1), which is the solution of our problem:

A1 wants one book and A2 wants also one book. Moreover, A2 knows it, that is expressed

by KA2
(C∧ (P1 ∗P2)). Considering this last sentence as a public announcement (ϒ4 =

KA2
(C∧ (P1 ∗P2))), and ignoring the worlds that do not satisfy it, we obtain the world

of Fig. 6. The model updated by the public announcements with all worlds represented

(M |ϒ1|ϒ2|ϒ3) is given in Fig. 7. We also can write (1,1) �M 〈ϒ1〉〈ϒ2〉〈ϒ3〉KA2
(C∧ (P1 ∗

P2)), that expresses that after all announcements, A2 knows that the librarian can carry

the books and also knows the quantity of books wanted being each agent. We remark

that (1,1) is the only world satisfying the formula and the public announcements are

expressed using 〈ϒi〉 rather than [ϒi] because we assume that the agents are in a true and

fair view.



Let us now reason once more about the entire model and not about the situation (1,1).
We show how to combine epistemic and separating connectives and then to provide new

modalities. For instance we have

– Ka(ϕ ∗ψ), that means that the agent a knows that the resource (the possible world)

can be decomposed into two sub-resources that respectively satisfy ϕ and ψ. Back to

the example, KA1
(P1 ∗P1 ∗P2) expresses that A1 knows that he wants two books and A2

wants one book.

– Ka(ϕ −∗ψ), that means that the agent a knows that by the addition of a resource

satisfying ϕ one obtains a resource satisfying ψ. Back to the example, KA1
((P1 ∨P2)−∗

¬C) expresses that A1 knows that if an agent orders one more book then the librarian

cannot carry the books.

– ϕ ∗Kaψ, that means that without a resource satisfying ϕ, the agent a could have the

knowledge that ψ holds. Back to the example, P2 ∗KA2
C expresses that wanting one

book less, the agent A2 gets the knowledge that the librarian can carry the books.

– ϕ−∗Kaψ, that means that the addition of a resource satisfying ϕ allows the agent a

to obtain the knowledge that ψ holds. Back to the example, P1 −∗KA1
¬C expresses that

choosing to borrow one more book gives to A1 the knowledge that the librarian cannot

carry the books.

We remark that the two last expressions allow us to express a property that involves a

kind of change of mind, namely ”if the agent wants one book less” and “if the agent

chooses to borrow one more book”. The use of such formulae that can be seen as new

epistemic modalities will be studied in futur work.

4 A Tableaux Calculus for Epistemic Separation Logic

In this section, we present a tableaux calculus for ESL, in the spirit of the tableaux

calculus for BI and BBI [8,14], with extraction of countermodels in case of non validity

of a formula. Its extension to deal with public annoucements will be studied in next

works and compared to related works [1].

We first introduce labels and constraints that respectively correspond to resources and

the equality and the equivalence relations on resources and agents.

Definition 5 (Resource labels). Lr is a set of resource labels built from a constant 1,

an infinite countable set of constants γr = {c1,c2, . . .} and a function denoted ◦:

X ::= 1 | ci | X ◦X, where ci ∈ γr.

Moreover ◦ is a function on Lr that is associative, commutative and 1 is its unit.

We denote xy the resource label x◦ y. A resource label can be viewed as a word where

the letter order is not taken into account. We say that x is a resource sublabel of y if and

only if there exists z such that x ◦ z = y. The set of resource sublabels of x is denoted

E(x).

Definition 6 (Constraints). A resource constraint is an expression of the form x ≃ y

where x and y are resource labels. A agent constraint is an expression of the form x ≖u y

where x and y are resource labels and u belongs to the set of agents A.



Rules for resource constraints

〈1〉
1 ≃ 1

x ≃ y
〈sr〉y ≃ x

xy ≃ xy
〈dr〉x ≃ x

x ≃ y y ≃ z
〈tr〉x ≃ z

x ≃ y yk ≃ yk
〈cr〉

xk ≃ yk

x ≖u y
〈kr〉x ≃ x

Rules for agent constraints

x ≃ x 〈ra〉
x ≖u x

x ≖u y
〈sa〉

y ≖u x

x ≖u y y ≖u z
〈ta〉

x ≖u z

x ≖u y x ≃ k
〈ka〉

k ≖u y

Fig. 8. Rules for constraint closure, for all u ∈ A

We call set of constraints any set C that contains resource constraints and agent con-

straints. For instance, C = {c1 ≃ c2,c2 ≃ c3,c4 ≖b c1} is a set of constraints.

Definition 7 (Domain). Let C be a constraint set. The (resource) domain of C is the

set of all resource sublabels that appear in C , that is:

Dr(C ) =
⋃

x≃y∈C

(E(x)∪E(y))∪
⋃

x≖uy∈C

(E(x)∪E(y))

Definition 8 (Alphabet). Let C be a constraint set. The (resource) alphabet of C is the

set of resource constants that appear in C . In particular, Ar(C ) = γr ∩Dr(C ).

We remark that 1 is not a label constant (1 6∈ γr) and then 1 6∈ Ar(C ). But 1 ∈ Dr(C ),
for any set of constraints C 6= /0, because 1 ∈ E(x) holds for all resource labels x.

Now we introduce rules for constraint closure that allow us to capture the properties of

the models into the calculus.

Definition 9 (Closure of constraints). Let C be a set of constraints. The closure of C ,

denoted C , is the least relation closed under the rules of Fig. 8 such that C ⊆ C .

There are six rules (〈1〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉 and 〈kr〉) that produce resource con-

straints and four rules (〈ra〉, 〈sa〉, 〈ta〉 and 〈ka〉) that produce agent constraints. We note

that u, introduced in the rule 〈ra〉, must belong to the set of agents A (else x ≖u x would

not be an agent constraint). For instance, if C = {c1 ≃ c2,c2 ≃ c3,c1 ≖b c4}, we have

c3 ≖b c4 ∈ C because of the following proof:

c1 ≖b c4

c1 ≃ c2 c2 ≃ c3 〈tr〉c1 ≃ c3 〈ka〉
c3 ≖b c4

Proposition 1. The following rules can be derived from the rules of constraint closure:

xk ≃ y
〈pl〉x ≃ x

x ≃ yk
〈pr〉y ≃ y

xk ≖u y
〈ql〉x ≃ x

x ≖u yk
〈qr〉

y ≖u y



x ≖u y x ≃ x′ y ≃ y′
〈wa〉

x′ ≖u y′

Corollary 1. Let C be a set of constraints and u an agent of A. We have x ∈ Dr(C ) if

and only if x ≃ x ∈ C iff x ≖u x ∈ C .

Proposition 2. Let C a set of constraints. We have Ar(C ) = Ar(C ).

Now, we can define a labelled tableaux calculus for ESL in the spirit of previous works

for BI [8] and BBI [14].

Definition 10. A labelled formula is a 3-uplet (S,ϕ,x)∈ {T,F}×L×Lr written Sϕ : x.

A constrained set of statements (CSS) is a pair 〈F ,C 〉, where F is a set of labelled

formulae and C is a set of constraints, satisfying the property:

if Sϕ : x ∈ F then x ≃ x ∈ C (Pcss)

A CSS 〈F ,C 〉 is finite if F and C are finite.

The relation 4 is defined by 〈F ,C 〉 4 〈F ′,C ′〉 iff F ⊆ F ′ and C ⊆ C ′. We denote

〈F f ,C f 〉 4 f 〈F ,C 〉 when 〈F f ,C f 〉 4 〈F ,C 〉 holds and 〈F f ,C f 〉 is finite, meaning that

F f and C f are both finite.

Fig. 9 presents the rules of tableaux calculus for ESL. Let us note that ”ci and c j are

new label constants” means ci 6= c j ∈ γr \Ar(C ). In this tableaux calculus we encode

tableaux as lists of CSS and denote ⊕ the concatenation of lists. Then we have [e3;e1]⊕
[e1;e2;e5] = [e3;e1;e1;e2;e5].

Definition 11 (Tableau). Let 〈F0,C0〉 be a finite CSS. A tableau for 〈F0,C0〉 is a list of

CSS, called branches, inductively built according the following rules:

1. The one branch list [〈F0,C0〉] is a tableau for 〈F0,C0〉
2. If the list Tm ⊕ [〈F ,C 〉]⊕Tn is a tableau for 〈F0,C0〉 and

cond〈F ,C 〉
〈F1,C1〉 | . . . | 〈Fk,Ck〉

is an instance of a rule of Fig. 9 for which cond〈F ,C 〉 is fulfilled, then the list

Tm ⊕ [〈F ∪F1,C ∪C1〉; . . . ;〈F ∪Fk,C ∪Ck〉]⊕Tn is a tableau for 〈F0,C0〉.

A tableau for the formula ϕ is a tableau for 〈{Fϕ : c1},{c1 ≃ c1}〉.

From the rules of Fig. 9, we remark that a new CSS obtained after an application of a

rule verifies the property (Pcss) of Definition 10 (in particular by Corollary 1).

In this tableaux calculus, we have two particular set of rules. The first set is composed

by the rules 〈TI〉, 〈T∗〉, 〈F−∗〉, 〈FK〉 and 〈TK̃〉. They introduce new label constants (ci

and c j) and new constraints, except for 〈TI〉 that only introduces a new constraint. For

instance when we apply the rule 〈FK〉 on the labelled formula FKaϕ : c3 that belongs

to a CSS 〈F ,C 〉, we have to choose a new resource label which does not appear in



TI : x ∈ F 〈TI〉
〈 /0,{x ≃ 1}〉

T¬ϕ : x ∈ F
〈T¬〉

〈{Fϕ : x}, /0〉
F¬ϕ : x ∈ F

〈F¬〉
〈{Tϕ : x}, /0〉

Tϕ∧ψ : x ∈ F
〈T∧〉

〈{Tϕ : x,Tψ : x}, /0〉
Fϕ∧ψ : x ∈ F

〈F∧〉
〈{Fϕ : x}, /0〉 | 〈{Fψ : x}, /0〉

Tϕ∨ψ : x ∈ F
〈T∨〉

〈{Tϕ : x}, /0〉 | 〈{Tψ : x}, /0〉
Fϕ∨ψ : x ∈ F

〈F∨〉
〈{Fϕ : x,Fψ : x}, /0〉

Tϕ → ψ : x ∈ F
〈T→〉

〈{Fϕ : x}, /0〉 | 〈{Tψ : x}, /0〉
Fϕ → ψ : x ∈ F

〈F→〉
〈{Tϕ : x,Fψ : x}, /0〉

Tϕ∗ψ : x ∈ F
〈T∗〉

〈{Tϕ : ci,Tψ : c j},{x ≃ cic j}〉
Fϕ∗ψ : x ∈ F and x ≃ yz ∈ C

〈F∗〉
〈{Fϕ : y}, /0〉 | 〈{Fψ : z}, /0〉

Tϕ−∗ψ : x ∈ F and xy ≃ xy ∈ C
〈T−∗〉

〈{Fϕ : y}, /0〉 | 〈{Tψ : xy}, /0〉
Fϕ−∗ψ : x ∈ F

〈F−∗〉
〈{Tϕ : ci,Fψ : xci},{xci ≃ xci}〉

TKuϕ : x ∈ F and x ≖u y ∈ C
〈TK〉

〈{Tϕ : y}, /0〉
FKuϕ : x ∈ F

〈FK〉
〈{Fϕ : ci},{x ≖u ci}〉

TK̃uϕ : x ∈ F
〈TK̃〉〈{Tϕ : ci},{x ≖u ci}〉

FK̃uϕ : x ∈ F and x ≖u y ∈ C
〈FK̃〉〈{Fϕ : y}, /0〉

Note: ci and c j are new label constants.

Fig. 9. Rules of tableaux calculus for ESL

C . If we assume that c5 ∈ γr \Ar(C ) then we can apply the rule, getting the new CSS

〈F ∪{Fϕ : c5},C ∪{c3 ≖a c5}〉. We remark the new agent constraint c3 ≖a c5 added

to the set of constraints. The second set is composed by the rules 〈F∗〉, 〈T−∗〉, 〈TK〉,
〈FK̃〉. They have a condition on the closure of constraints. In order to apply one of

these rules we have to choose a label which satisfies the condition and then apply the

rule using it. Otherwise, we cannot apply the rule. For instance if 〈F ,C 〉 is a CSS such

that TKbϕ : c2 ∈ F then the application of the rule 〈TK〉 depends of the choice of a

resource label x such that c2 ≖b x ∈ C . If we assume that c2 ≖b c3 ∈ C then we can

apply the rule getting the CSS 〈F ∪{Tϕ : c3},C 〉.

Definition 12 (Closure condition). A CSS 〈F ,C 〉 is closed if one of the following con-

ditions holds: 1. Tϕ : x ∈ F , Fϕ : y ∈ F and x ≃ y ∈ C , 2. FI : x ∈ F and x ≃ 1 ∈ C , 3.

F⊤ : x ∈ F and 4. T⊥ : x ∈ F . A CSS is open if it is not closed.

A tableau for ϕ is closed if all its branches are closed and a tableau proof for ϕ is a

closed tableau for ϕ.



Theorem 1 (Soundness). Let ϕ be a ESL formula. If there exists a tableau proof for ϕ

then ϕ is valid.

Proof. The proof is based on similar techniques than the ones used for the soundness

proof of BI tableaux method [8]. The key point consists in considering the notion of

realizability of a CSS 〈F ,C 〉, meaning that there exist a model M and an embedding

(|.|) from the resource labels to the resource set of M such that if Tϕ : x ∈ F then

|x| �M ϕ and if Fϕ : x ∈ F then |x| 6�M ϕ.

Let us consider the formula ϕ≡Ka((P−∗Q)∗Kb(P∧R))→ KaK̃bQ. We first initialize a

tableau for ϕ with [〈{Fϕ : c1},{c1 ≃ c1}〉]. and introduce the following representation:

[F ]

FKa((P−∗Q)∗Kb(P∧R))→ KaK̃bQ : c1

[C ]

c1 ≃ c1

The column on left-hand side represents the labelled formula sets of the CSS of the

tableau ([F ]) and the column on right-hand side represents the constraint sets of the

CSS of ([C ]). By applying rules on this tableau, we obtain the tableau for ϕ that is given

in Fig. 10. We decorate a labelled formula with
√

i to show that we apply a rule on this

formula at step i. Let us give more details about rule applications at steps 2 and 6.

The step 2 consists in applying the rule 〈FKa〉 on the labelled formula FKaK̃bQ : c1.

Then in order to apply this rule we have to choose a new resource constant (c2). Then

we can apply the rule introducing, in the branch, the labelled formula FK̃bQ : c2 and the

agent constraint c1 ≖a c2. The step 6 consists in applying the rule 〈TKb〉 on the labelled

formula TKb(P∧R) : c4. Then we have to choose y such that c4 ≖b y ∈ C . We have

c4 ≖b c4 ∈ C , indeed

c2 ≃ c3c4 〈sr〉c3c4 ≃ c2 c2 ≃ c3c4 〈tr〉c3c4 ≃ c3c4 〈dr〉c4 ≃ c4 〈ra〉
c4 ≖b c4

Therefore we can choose y= c4 and apply the rule, adding to the branch the labelled for-

mula TP∧R : c4. Finally, we observe that the tableau branches are closed (denoted ×).

In particular, the branch on the right-hand side is closed because TQ : c3c4, FQ : c2

and c3c4 ≃ c2 ∈ C . In conclusion, we have a closed tableau proof for the formula

Ka((P−∗Q)∗Kb(P∧R))→ KaK̃bQ and then by Theorem 1 this formula is valid.

Moreover we propose a countermodel extraction method, adapted from [14], that con-

sists in transforming the sets of resource and agent constraint of a branch 〈F ,C 〉 into a

model M such that if Tϕ : x ∈ F then [x] �M ϕ and if Fϕ : x ∈ F then [x] 6�M ϕ, where

[x] is the equivalence class of x,

First we have to define when a CSS 〈F ,C 〉 is a Hintikka CSS.

Definition 13 (Hintikka CSS). A CSS 〈F ,C 〉 is a Hintikka CSS iff for any formula

ϕ,ψ ∈ L and any resource label x,y ∈ Lr and any agent u ∈ A:

1. Tϕ : x 6∈ F or Fϕ : y 6∈ F or x ≃ y 6∈ C



[F ]
√

1 FKa((P−∗Q)∗Kb(P∧R))→ KaK̃bQ : c1

√
4 TKa((P−∗Q)∗Kb(P∧R)) : c1

√
2 FKaK̃bQ : c1

√
3 FK̃bQ : c2

FQ : c2

√
5 T(P−∗Q)∗Kb(P∧R) : c2

√
8 TP−∗Q : c3√

6 TKb(P∧R) : c4

√
7 TP∧R : c4

TP : c4

TR : c4

FP : c4

×

TQ : c3c4

×

[C ]

c1 ≃ c1

c1 ≖a c2

c2 ≃ c3c4

Fig. 10. Tableau for Ka((P−∗Q)∗Kb(P∧R))→ KaK̃bQ

2. FI : x 6∈ F or x ≃ 1 6∈ C

3. F⊤ : x 6∈ F

4. T⊥ : x 6∈ F

5. If TI : x ∈ F then x ≃ 1 ∈ C

6. If T¬ϕ : x ∈ F then Fϕ : x ∈ F

7. If F¬ϕ : x ∈ F then Tϕ : x ∈ F

8. If Tϕ∧ψ : x ∈ F then Tϕ : x ∈ F and Tψ : x ∈ F

9. If Fϕ∧ψ : x ∈ F then Fϕ : x ∈ F or Fψ : x ∈ F

10. If Tϕ∨ψ : x ∈ F then Tϕ : x ∈ F or Tψ : x ∈ F

11. If Fϕ∨ψ : x ∈ F then Fϕ : x ∈ F and Fψ : x ∈ F

12. If Tϕ → ψ : x ∈ F then Fϕ : x ∈ F or Tψ : x ∈ F

13. If Fϕ → ψ : x ∈ F then Tϕ : x ∈ F and Fψ : x ∈ F

14. If Tϕ∗ψ : x ∈ F then ∃y,z ∈ Lr, x ≃ yz ∈ C and Tϕ : y ∈ F and Tψ : z ∈ F

15. If Fϕ∗ψ : x ∈ F then ∀y,z ∈ Lr, x ≃ yz ∈ C ⇒ Fϕ : y ∈ F or Fψ : z ∈ F

16. If Tϕ−∗ψ : x ∈ F then ∀y ∈ Lr, xy ∈ Dr(C )⇒ Fϕ : y ∈ F or Tψ : xy ∈ F

17. If Fϕ−∗ψ : x ∈ F then ∃y ∈ Lr, xy ∈ Dr(C ) and Tϕ : y ∈ F and Fψ : xy ∈ F

18. If TKuϕ : x ∈ F then ∀y ∈ Lr, x ≖u y ∈ C ⇒ Tϕ : y ∈ F

19. If FKuϕ : x ∈ F then ∃y ∈ Lr, x ≖u y ∈ C and Fϕ : y ∈ F

20. If TK̃uϕ : x ∈ F then ∃y ∈ Lr, x ≖u y ∈ C and Tϕ : y ∈ F



21. If FK̃uϕ : x ∈ F then ∀y ∈ Lr, x ≖u y ∈ C ⇒ Fϕ : y ∈ F

In this definition, the four first conditions certify that a Hintikka CSS is not closed

and the other that all labelled formulae of a Hintikka CSS are fulfilled [14].

In order to extract a countermodel from a Hintikka CSS, we manipulate equivalence

classes. The equivalence class of x ∈ Dr(C ), denoted [x], is the set [x] = {y ∈ Lr | x ≃
y ∈ C}. We also denote Dr(C )/≃= {[x] | x ∈ Dr(C )} the set of all equivalence classes

of Dr(C ). We observe that ≃ is an equivalence relation, because it is is reflexive (by

Corollary 1), symmetric (by rule 〈sr〉) and transitive (by rule 〈tr〉). Then we define a

function Ω that allows us to extract a countermodel from a Hintikka CSS.

Definition 14 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The function Ω associates

to 〈F ,C 〉 a 3-uplet Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where R = (R,•,e), such that:

– R = Dr(C )/≃
– e = [1]

– [x]• [y] =
{
↑ if xy 6∈ Dr(C )
[xy] otherwise

– For all a ∈ A, [x]∼a [y] iff x ≖a y ∈ C

– [x] ∈V (p) iff ∃y ∈ Lr such that y ≃ x ∈ C and Tp : y ∈ F

Lemma 1. Let 〈F ,C 〉 be a Hintikka CSS such that Fϕ : x ∈ F . The formula ϕ is not

valid and Ω(〈F ,C 〉) is a countermodel of ϕ.

If we consider A = {a,b} and the formula (KaP∗KaQ)→ Ka(P∗Q). By application of

the tableau rules, we obtain a tableau (see Fig. below) that contains a branch (denoted

B) which is a Hintikka CSS. By Lemma 1, (KaP∗KaQ)→ Ka(P ∗Q) is not valid and

Ω(B) allows us to extract a countermodel using Definition 14.

We have M = Ω(B) = (R ,{∼a}a∈A,V ), where R = (R,•,e), such that:

– R = Dr(C )/≃ = {e, [c1], [c2], [c3], [c4]}, where e = [1] and [c1] = [c2c3].
– The resource composition:

• e [c1] [c2] [c3] [c4]

e e [c1] [c2] [c3] [c4]
[c1] [c1] ↑ ↑ ↑ ↑
[c2] [c2] ↑ ↑ [c1] ↑
[c3] [c3] ↑ [c1] ↑ ↑
[c4] [c4] ↑ ↑ ↑ ↑

– The equivalence relation, where the reflexivity is not represented:

e c2 c3

c1 c4
a

– V (P) = {[c2]} and V (Q) = {[c3]}



[F ]
√

1 F(KaP∗KaQ)→ Ka(P∗Q) : c1

√
2 TKaP∗KaQ : c1√
3 FKa(P∗Q) : c1

√
4 TKaP : c2√
5 TKaQ : c3

√
6

√
7 FP∗Q : c4

TP : c2

TQ : c3

FP : 1 FQ : c4

.

..

FP : c4 FQ : 1

.

..

B

[C ]

c1 ≃ c1

c1 ≃ c2c3

c1 ≖a c4

.

..

.

..

Fig. 11. Tableau (KaP∗KaQ)→ Ka(P∗Q)

Theorem 2 (Completeness). Let ϕ be a ESL formula. If ϕ is valid then there exists a

tableau proof for ϕ.

Proof. The proof is an extension of the proof for BBI [14] to the epistemic connectives.

It consists in building a Hintikka CSS from a formula for which there is no tableau

proof, by using a fair strategy, that is a sequence of labelled formulae in which all

labelled formulae occur infinitely many times, and an oracle, that is a set of non closed

CSS with some specific properties. Then assuming there is no tableau proof for ϕ, we

build a special CSS, that is a Hintikka CSS, and deduce from it that ϕ is not valid.

5 Conclusion

We have defined a new logic, called Epistemic Separation Logic (ESL), with possi-

ble worlds considered as resources, introducing the sharing and the separation on these

worlds, and then we have extended it with public announcements. Moreover we pro-

pose a tableau calculus with labels and resource graphs and we show its soundness and

the completeness. A countermodel extraction method is also given.

Future work will be devoted to the study of a calculus for ESL with public announce-

ments and also of another ESL extensions that deal with epistemic actions [2,3]. Exten-

sions with other modalities dealing with dynamic resources [6,7] will also be studied.
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