
A Logic of Separating Modalities

Jean-René Courtaulta, Didier Galmichea, David Pymb,∗

aLORIA, Université de Lorraine
Campus Scientifique, BP 239

54506 Vandoeuvre-les-Nancy Cedex, France
bUniversity College London

Gower Street
London WC1E 6BT, UK

Abstract

We present a logic of separating modalities, LSM, that is based on Boolean BI.
LSM’s modalities, which generalize those of S4, combine, within a quite general
relational semantics, BI’s resource semantics with modal accessibility. We pro-
vide a range of examples illustrating their use for modelling. We give a proof
system based on a labelled tableaux calculus with countermodel extraction, es-
tablishing its soundness and completeness with respect to the semantics.

Keywords: bunched logic, separation logic, modal logic, resource semantics,
tableaux, concurrency.

1. Introduction

The concept of resource is important in many fields of enquiry — includ-
ing, among others, computer science, economics, and security. In recent years,
mathematical work in logic has begun to analyse the concept of resource in quite
systematic and quite useful ways, with computer science providing a rich source
of motivations and examples.

One impetus for this work was provided by the so-called resource interpre-
tation of Girard’s Linear Logic [19], in which the number of occurrences of a
propositional formula in a sequent is counted and in which the exponentials are
used to provide countably infinitely many copies of propositional formulæ. An
alternative approach — inspired, on the one hand, by a long semantic history
in relevant logic (e.g., [34, 11]) and, on the other, by work in the semantics of
type theories — is exemplified by O’Hearn and Pym’s Logic of Bunched Impli-
cations (BI) [30, 26, 33, 16, 17]. In BI, the concept of resource resides in an
interpretation of BI’s semantics: this approach, and its developments, is known
as resource semantics.

∗Corresponding author
Email addresses: jean-rene.courtault@loria.fr (Jean-René Courtault),

didier.galmiche@loria.fr (Didier Galmiche), d.pym@ucl.ac.uk (David Pym)

Preprint submitted to Theoretical Computer Science February 12, 2016

Conceptually, resource semantics begins with a simple axiomatization of
resource. Starting with a given homogeneous set of resource elements — for
example, bags of fruit, units of currency, or computer memory — we expect the
following properties:

- to be able to combine two units of the given type of resource to form a
new unit of that type of resource;

- to be able to compare (using either a simple equality or an ordering) two
units of a given type of resource;

- that combination and comparison should be appropriately compatible.

This basic axiomatization has proved remarkably robust, supporting, for exam-
ple, a good deal of work in Separation Logic and its precursors and develop-
ments, [11, 22, 28, 35, 27], and a vast subsequent literature.

Mathematically, this basic set-up is captured by a pre-ordered monoid of
resources, defined as follows: R = (R,v, •, e), where R is a set of resource
elements, v is a pre-order (writing = for v ∩ w) and • is a monoidal composition
with unit e, subject to the functoriality coherence condition that if r = s and
r′ = s′, then r • r′ = s • s′ [30, 26, 33, 17].

The semantics of (Boolean) BI is given using a satisfaction relation between
resources and propositional formulæ, with cases such as

r |= φ1 ∧ φ2 iff r |= φ1 and r |= φ2,

that give the usual (additive) classical connectives, and cases such as

r |= φ1 ∗ φ2 iff there exist r1 and r2 such that r1 • r2 = r and
r1 |= φ1 and r2 |= φ2

and
r |= φ−∗ ψ iff for all s such that s |= φ,

r • s |= ψ

that give the multiplicative, or separating, connectives.
In terms of resource semantics, the additive conjunction (∧) is simply in-

terpreted as specifying that the conjuncts must share the available resources
whereas in the case of multiplicative conjunction (∗) the available resources
must be divided between the two conjuncts. Similarly, in the multiplicative im-
plication (−∗), the resources required to support the implicational formula must
be combined with those required to support the ‘input’ formula in order to
obtain, by implication, the resources required to support the ‘output’ formula.

We can also work with intuitionistic BI, with its intuitionistic additives, as
in [30, 33, 16, 17], by considering a monoid of resources that carries not merely
an equality but a pre-order, allowing intuitionistic implication to be defined in
the usual way and leading to the multiplicative conjunction

r |= φ1 ∗ φ2 iff there exist r1 and r2 such that r1 • r2 v r and
r1 |= φ1 and r2 |= φ2

2

In this case, the functoriality condition is that if r v s and r′ v s′, then
r • r′ v s • s′.

The dynamics of systems is a central concern in computer science. Many
models and logics have been proposed in order to capture system behaviours and
reason about their properties. In particular, modal logics based on S4 or S5 and
their intuitionistic variants [2, 36] and temporal logics such as LTL [31] or CTL
[12]. The interest in such logics derives from their ability to express properties
such as invariance (is a property satisfied in all reachable states of the system?)
and reachability (is it possible to reach a state satisfying a property?).

Modal extensions of BI have been proposed in order to introduce dynamics
into resource semantics. One of them, called MBI [6, 4, 5], is a logic in which
resources and processes co-evolve according to an operational semantics based
on judgements of the form R,E

a→ R′, E′, meaning that the process E evolves
by performing an action a relative to available resources R so as to become the
process E′ with available resources R′. This logic captures the manipulation of
resources through the dynamic of a system, but is not able to express proper-
ties relative to quantified actions (e.g., properties deriving from performing any
action). MBI’s purely logical theory remains relatively undeveloped. Neverthe-
less, the use of these ideas as a basis for a rigorously resource-based modelling
tool has been described in [7, 5].

Another modal extension of BI, called DBI, introduces a simple notion of
dynamic resource in which properties of resources can change or be modified
during the iteration of the system [8]. The modalities of DBI (♦ and �) allow
the expression of properties of resources at any reachable state. Moreover, there
exists a sound and complete calculus with a countermodel extraction method
for this logic. DBI is not able to capture resource manipulations by a system:
its models capture systems that modify properties of resources, but not systems
that produce and consume resources.

In this paper, we present a modal logic of resources — LSM, for ‘Logic of
Separating Modalities’ — that is based on Boolean BI’s resource semantics.
The logic extends S4. The basic idea is to work with two-dimensional worlds
(w, r) that correspond to the purely modal and purely resource components
of the semantics. The key development derives from their combination to de-
fine resource-modalities ♦r and �r in which ‘modal truth’ is offset by ‘resource
truth’. These modalities generalize their counterparts in S4 (♦ and �). In
Section 2, we introduce the language and the semantics of LSM, using a quite
general relational formulation. In Section 3, we illustrate the expressiveness of
its modalities thorough a range of core examples from computer systems. Then,
in Section 4 , we develop an extended example, showing that LSM provides
useful tools for reasoning about a rich model of concurrent computation: in
particular, we show that LSM is able to express directly and conveniently prop-
erties of timed Petri nets [24, 1]. In Section 5, we place LSM in the broader
context of modal logic by establishing, using a straightforward method based on
countermodels, that LSM is a conservative extension of the classical modal logic
S4. Then, in Section 6, we provide a proof system for LSM as a labelled tableaux

3

calculus with countermodel extraction, in the spirit of similar approaches for BI
and Boolean BI [16, 17, 18]. We show its soundness and completeness. Finally,
in Section 7, we summarize our contribution and discuss a range of directions
for further work, including both purely logical aspects and applications to pro-
gram analysis and verification in the spirit of the work of Ishtiaq, O’Hearn, and
Reynolds on Separation Logic [22, 35].

2. A logic with separating modalities, LSM

We establish a development of BI’s resource semantics [30, 33, 16, 17, 6, 4, 5]
that is capable of defining a quite general notion of modality.

Let Prop be a countable set of propositional symbols and ΣR be a countable
set of resource symbols. The language LΣR

of LSM is defined as follows, where
p ∈ Prop and r ∈ ΣR:

φ ::= p | ¬φ | ⊥ | > | φ ∨ φ | φ ∧ φ | φ→ φ
| I | φ ∗ φ | φ−∗ φ
| ♦rφ | �rφ .

Let us note that I (resp. >, ⊥) is the unit of ∗ (resp. ∧, ∨). Moreover
r1 • r2 ↓ means r1 • r2 is defined and r1 • r2 ↑ means r1 • r2 is undefined.

Definition 1 (Partial resource monoid). A partial resource monoid (PRM)
is a structure M = (Res, •, e), where

1. Res is a set of resources

2. e ∈ Res
3. • : Res×Res ⇀ Res such that, for all r1, r2, r3 ∈ Res,

- Neutral element: r1 • e↓ and r1 • e = r1

- Commutativity: if r1 • r2 ↓, then r2 • r1 ↓ and r1 • r2 = r2 • r1

- Associativity: if r1 • (r2 • r3)↓, then (r1 • r2) • r3 ↓ and r1 • (r2 • r3) =
(r1 • r2) • r3.

We call • the resource composition and e the unit resource.

Definition 2 (Model). A LΣR
-model is a 4-tuple K = (W,M,R, V), where

1. W is a set of worlds,

2. M = (Res, •, e) is a PRM,

3. R ⊆ (W × Res) × (W × Res) such that, for all w1, w2, w3 ∈ W and all
r1, r2, r3 ∈ Res,

- Reflexivity: (w1, r1)R(w1, r1)

- Transitivity: if (w1, r1)R(w2, r2) and (w2, r2)R(w3, r3), then
(w1, r1)R(w3, r3),

4. Every r ∈ ΣR has a unique interpretation JrK ∈ Res, and

5. V : Prop→ ℘(W ×Res), with ℘(S) being the power set of S.

4

R is called a reachability relation and V is called a valuation.

Note that the interpretation J−K is a partial function such that JeK = e.
Henceforth, we abuse notation and write r for JrK, neglecting further mention
of J−K (this is the default approach in process logics, such as Hennessey–Milner
logic [21, 25, 37]). Moreover Definitions 1 and 2 ensure the necessary coherence
between modal accessibility and resources.

Definition 3 (Satisfaction relation, validity). Let K = (W,M,R, V) be a
LΣR

-model. The satisfaction relation �K ⊆W ×Res×LΣR
is defined by struc-

tural induction, for all w ∈W and all r ∈ Res, as follows:

w, r �K p iff (w, r) ∈ V (p)
w, r �K > always
w, r �K ⊥ never
w, r �K ¬φ iff w, r 6�K φ

w, r �K φ ∧ ψ iff w, r �K φ and w, r �K ψ
w, r �K φ ∨ ψ iff w, r �K φ or w, r �K ψ
w, r �K φ→ ψ iff if w, r �K φ then w, r �K ψ

w, r �K I iff r = e
w, r �K φ ∗ ψ iff there exist r1, r2 ∈ Res such that

r1 • r2 ↓, r = r1 • r2, and
w, r1 �K φ and w, r2 �K ψ

w, r �K φ−∗ ψ iff for all r′ ∈ Res if (r • r′ ↓ and w, r′ �K φ)
then w, r • r′ �K ψ

w, r �K ♦sφ iff there exist w′ ∈W and r′ ∈ Res such that r • s ↓,
(w, r • s)R(w′, r′) and w′, r′ �K φ

w, r �K �sφ iff for all w′ ∈W and all r′ ∈ Res, if (r • s ↓ and
(w, r • s)R(w′, r′)) then w′, r′ �K φ

We say that a formula φ is valid, denoted � φ, if and only if, for all worlds
w and all resources r in all models K, w, r �K φ. We write φ � ψ if and only if,
for all worlds w and all resources r in all models K, w, r �K φ implies w, r �K ψ.

We emphasize that, suppression of the distinction between s and JsK notwith-
standing, it is not supposed that ΣR ⊆ Res. The judgement w, r �K ♦sφ is
defined only if r • s ↓ and then only if JsK ∈ Res. In other words, we consider
that the meaning of w, r �K ♦sφ is: ‘s is a resource (such that JsK ∈ Res) which
can be composed with r (r • s ↓) and if we compose these resources, then the
system can reach a world w′ and a resource r′ ((w, r • s)R(w′, r′)) satisfying φ
(w′, r′ �K φ).

The language of LSM can be extended with the two modalities described in
Section 1.

5

Definition 4 (Additional modalities). For a given ΣR, the language LΣR

can be extended as follows:

φ ::= . . . | ♦φ | �φ
| ♦•φ | �•φ

The satisfaction relation given in Definition 3 can be extended to define these
additional modalities.

Definition 5 (Satisfaction for the additional modalities). The satisfaction
relation of the additional modalities of Definition 4 is defined by the following
extension of Definition 3:

w, r �K ♦φ iff there exist w′ ∈W and r′ ∈ Res such that (w, r)R(w′, r′)
and w′, r′ �K φ

w, r �K �φ iff for all w′ ∈W and all r′ ∈ Res, if (w, r)R(w′, r′) then
w′, r′ �K φ

w, r �K ♦•φ iff there exist w′ ∈W and s, r′ ∈ Res such that r • s ↓,
(w, r • s)R(w′, r′), and w′, r′ �K φ

w, r �K �•φ iff for all w′ ∈W and all s, r′ ∈ Res, if (r • s ↓ and
(w, r • s)R(w′, r′)) then w′, r′ �K φ

The pairs modalities ♦ and � (S4) and ♦• and �• can both be derived from
the modalities ♦s and �s. For any φ, ψ in some given LΣR

, we write φ ≡ ψ if
and only if φ � ψ and ψ � φ.

Lemma 6. The following equivalences hold:

1. ♦φ ≡ ♦eφ and �φ ≡ �eφ;

2. ♦•φ ≡ ¬(>−∗ ¬♦eφ) and �•φ ≡ >−∗�eφ.

Proof. Straightforward applications of the relevant cases of the satisfaction
relation.

3. The expressiveness of LSM

We consider, in this section, some examples that are intended to illustrate the
uses and expressiveness of LSM. First, we illustrate the interest and use of LSM’s
modalities, in the context of systems and security, by considering the mutual
exclusion and producer–consumer problems, revisiting examples considered in
[6, 4, 5, 9]. Then, we consider the relative expressiveness of the three modalities
and show that, for example, they allow us to eliminate ambiguities occurring in
the expression ‘to be able to’.

6

nc canc ac

ap

av

Figure 1: Example of processes in mutual exclusion

3.1. Mutual exclusion

We consider two processes (P1 and P2) that are in mutual exclusion. The
automaton that describes the behaviour of the processes is given in Figure 1.

The processes have two states: nc, meaning that the process is in the non-
critical section; and c, meaning that it is in the critical section. We denote by
S = {nc, c} the state set of the processes.

In order to enter into the critical section, a process must hold a token,
denoted J , and it releases the token when it leaves the critical section. The
processes can perform four actions: anc a non-critical action, ac a critical action,
ap the action that consists in taking a token and av the action that consists in
releasing a token. We denote by A = {anc, ac, ap, av} the action set that can be
performed by the processes.

We represent the resources (the token J) with M = ({Jn | n ∈ N},+, J0),
where Jm + Jn = Jm+n. In other words, Jn represents n tokens that are
available for the system (the processes P1 and P2). We remark that M is
obviously a PRM. Now, we need a function that captures resource consumption
and production when an action is performed. Following the approach taken in
[6, 4, 5], based on an idea first considered for MBI in [32], we define a partial
function µ : A× {Jn | n ∈ N}⇀ {Jn | n ∈ N} such that

µ(a, Jn) =

Jn if a ∈ {anc, ac}
Jn+1 if a = av
Jn−1 if a = ap and n > 1
↑ if a = ap and n = 0

where ↑ means ‘undefined’ and ↓ means ‘defined’. We remark that performing
a critical or a non-critical action (ac and anc) consumes and produces no token,
releasing a token (av) produces a token (Jn+1) and taking a token (ap) consumes
a token (Jn−1). Of course, µ(ap, J

n) is defined if and only if there is at least one
available token (n > 1). We introduce a relation that captures the transitions of

a process and their effects on the available resources: s, Jn
a−→ s′, Jm iff s

a−→ s′

is a transition of Figure 1, µ(a, Jn) ↓ and µ(a, Jn) = Jm. For instance, we

have nc, J1 ap−→ c, J0, but nc, J1 av−→ c, J0 does not hold (because there is no

transition nc
av−→ c in the automaton of Figure 1). This relation is really closed

to the spirit of the judgements introduced in the SCRP calculus [6, 4, 5], which

are of the form R,E
a→ R′, E′, meaning that a process E performs an action

7

a on a resource R and then provides the resource R′ and the process E′. In
order to deal with concurrent transitions, we need to define a set of concurrent
states W = {s1#s2 | s1, s2 ∈ S} (where si is the state of the process Pi), a
set of concurrent actions A# = {a1#a2 | a1, a2 ∈ A} (where ai is the action

performed by the process Pi) and the following relation: s1#s2, J
n1 +Jn2

a1#a2
=⇒

s′1#s′2, J
m1 + Jm2 if and only if s1, J

n1
a1−→ s′1, J

m1 and s2, J
n2

a2−→ s′2, J
m2 .

For example, the concurrent state nc#c is a state that captures P1 in state
nc and P2 in state c. Moreover, the concurrent action ac#ap represents P1

performing the action ac and P2 performing the action ap. Concerning the

relation =⇒, as nc, J1 ap−→ c, J0 and nc, J0 anc−−→ nc, J0 hold, then we have

nc#nc, J1 + J0 ap#anc
=⇒ c#nc, J0 + J0. Thus nc#nc, J1 ap#anc

=⇒ c#nc, J0.
We are able to model the behaviour of the processes P1 and P2 and the token

manipulation using the following LSM model K = (W,M,R, V), where

- W = {s1#s2 | s1, s2 ∈ S},

- M = ({Jn | n ∈ N},+, J0),

- R is the reflexive and transitive closure of =⇒, and

- V is defined by

p (w, r) ∈ V (p) iff

J r = J1

nc1 w = nc#nc or w = nc#c
nc2 w = nc#nc or w = c#nc
c1 w = c#nc or w = c#c
c2 w = nc#c or w = c#c

We illustrate R. As c#nc, J0 av#anc
=⇒ nc#nc, J1 and nc#nc, J1 anc#ap

=⇒
nc#c, J0 hold, then (c#nc, J0)R(nc#nc, J1) and (nc#nc, J1)R(nc#c, J0). By
transitive closure, we have (c#nc, J0)R(nc#c, J0). Concerning the valuation
V , J is the proposition meaning that there is one and only one available token,
ci is the proposition meaning that the process Pi is in critical section and nci
is the proposition meaning that the process Pi is not in critical section.

We consider that the initial state of the system is nc#nc (each process is in
non-critical section) and there is only one available token (J). We can obviously
express that, in this initial state, each process is in non-critical section and there
is only one available token as follows: nc#nc, J �K nc1 ∧ nc2 ∧ J .

The first important point is that LSM is a modal logic and it is possible to
express properties on reachable states and available tokens. For example, we
can express that it is impossible that the processes will be together in critical
section: nc#nc, J �K ¬♦(c1 ∧ c2) and also that it is always possible that each
process can enter in critical section: nc#nc, J �K �♦c1 ∧�♦c2.

The second important point is that LSM is a modal logic extended with
the resource composition (denoted •) that allows us to express properties of

8

resources on the tokens that are produced and consumed. In particular, we can
express that, in any reachable state, it is impossible that there can be more than
one available token: nc#nc, J �K �¬(J ∗ J ∗ >). It is also possible to express
that if one process is in a non-critical section, then there is no available token
nc#nc, J �K �((c1 ∨ c2)→ I). Indeed, only the unit resource satisfies I and, in
our example, this unit resource is J0 which encodes no available token.

Notice that the formula ¬♦(c1∧c2), with the S4-like modality, fails to capture
a vulnerability in the system. This security breach is highlighted by the new
modalities: nc#nc, J 6�K ¬♦•(c1 ∧ c2). Indeed, if we assume that an intruder
introduces one token in our system, then both processes can enter the critical

section, because of the presence of a second token: nc#nc, J1+J1 ap#ap
=⇒ c#c, J0.

It follows that we can identify a new solution for the mutual exclusion prob-
lem such that nc#nc, J �K ¬♦•(c1∧ c2); that is, such that the processes cannot
both enter into the critical section, whatever number of tokens is added.

3.2. Producer–consumer

We propose here another example based on the producer–consumer problem,
but with a different approach: one in which the set of worlds W encodes the
actions that the processes are performing and does not encode the current state
of the processes. In this example, we consider two processes: a producer Pp and
a consumer Pc that manipulate resources represented with M = ({Rn | n ∈
N},+, R0), just as in the previous example.

The producer can perform just two actions: p (it is producing a new resource)
and np (it is not producing). The consumer can also perform only two actions,
which are c (it is consuming a resource) and nc (it is not consuming). Thus
W = {p#c, np#c, p#nc, np#nc} is the set of all concurrent actions that can be
performed by the processes.

For instance, p#nc means that Pp is producing (p) and Pc is not consuming
(nc). Clearly, only the following transitions hold, for all w ∈W :

1. np#nc,Rn =⇒ w,Rn;

2. p#c,Rn =⇒ w,Rn;

3. np#c,Rn =⇒ w,Rn−1 only if n > 1; and

4. p#nc,Rn =⇒ w,Rn+1.

We remark that np#c,Rn =⇒ w,Rn−1 holds only if n > 1. Indeed, if there
is no resource (R0) and if Pp does not produce a new resource (np) then Pc
cannot consume a resource (c).

Concerning the relation R, we consider the reflexive and transitive closure
of =⇒. Like in the previous example, we are able to propose a model for this
system, that is K = (W,M,R, V) such that V is defined by

9

p (w, r) ∈ V (p) iff

R r = R1

np w = np#nc or w = np#c
p w = p#nc or w = p#c
nc w = np#nc or w = p#nc
c w = np#c or w = p#c

In this model, by definition of R and reflexivity, (np#c,R0)R(w,Rn) only if
w = np#c and n = 0, and we can express that if there is no resource (R0), if Pp is
not producing a new resource, and if Pc is consuming a resource, then the system
is blocked (it never changes its state). In LSM, we can express this property as
follows, for any w ∈W and any n ∈ N: w,Rn �K �((I∧np∧c)→ �(I∧np∧c)).
It means that, for all reachable states (pairs of world/resource) and starting from
any state, if there is no resource (I) and if Pp is not producing a new resource
(np) and if Pc is consuming a resource (c) then the system always remains
in this state (�(I ∧ np ∧ c)). Now, using multiplicative modalities, we can
express that it is possible to unblock the system adding a resource as follows:
w,Rn �K �((I ∧ np ∧ c)→ ♦•¬(I ∧ np ∧ c)).

3.3. Expressiveness of the modalities

We consider here the relative expressiveness of the three kinds of modal-
ities, and observe that these modalities eliminate ambiguities concerning the
assumptions require to support the expression ‘to be able to’.

In this example, we consider three agents that are A1, A2, and A3 and also
one action act. We suppose that A1 and A2 are able to perform the action act,
but A3 is not able to perform it. We consider the set of resources Res = {Rn |
n ∈ N}, where Rn means n occurrences of R, and the resource composition +
defined by Rm + Rn = Rm+n. In this example, the agents want to achieve the
goal G, which consists in performing the action act. In order to perform this
action, the agent A1 needs no resource and A2 needs two resources (we recall
that A3 cannot perform the action act). Then, we propose three LSM models,
one for each agent, that are, for i ∈ {1, 2, 3}, Ki = ({ai, Gi},M,Ri, Vi), where
ai is the agent Ai in his initial state and Gi is Ai that has achieved the goal G,
M = (Res,+, R0), Ri are the reflexive and transitive closure of

- (a1, R
n)R1(G1, R

n), for all n ∈ N

- (a2, R
n)R2(G2, R

n−2), for all n > 2

- (a3, R
n)R3(G3, R

m) never holds for all n,m ∈ N

and Vi is defined by (w, r) ∈ Vi(PG) iff w = Gi.

Now, we consider the agents being in their initial states and trying to achieve
the goal without resource. Then the question is: ‘which agent is able to achieve
G?’. As we observe that

10

- a1, R
0 �K1 ♦PG,

- a2, R
0 �K2

¬♦PG, and

- a3, R
0 �K3

¬♦PG,

we can see that only A1 is able to achieve the goal; the other agents are not.
We remark also, however, that the question is ambiguous. Indeed, A2 is also
able to achieve G, because it is able to perform the action act, but it needs more
resources to do it.

Then, the question of which agent is able to achieve G (whatever the re-
sources provided to the agent) can be viewed as a second meaning of the ques-
tion. LSM allows us to express this second meaning:

- a1, R
0 �K1

♦•PG;

- a2, R
0 �K2 ♦•PG;

- a3, R
0 �K3

¬♦•PG.

We observe that a3 is not able to achieve G, whatever the quantity of re-
sources provided. Finally, we can be more precise, expressing that A1 needs
no more resource to achieve G but A2 needs two more resources as follows:
a1, R

0 �K1
♦R0PG and a2, R

0 �K2
♦R2PG.

In this example, we give three models, one for each agent. An alternative,
that might be developed in future work, would be to internalize agents in the
syntax of LSM (as a modality parameter) in the spirit of epistemic logics [38, 10].
Moreover, we will study the relationships of our logic with some propositional
dynamic logics [20].

4. LSM and timed Petri nets

We complete our set of examples of the uses of LSM’s modalities by showing
that LSM can conveniently express properties of rich models of concurrent and
distributed computation; that is, timed Petri nets (TPN) [24, 1]. This example
builds on the spirit of Winskel’s work on Petri net semantics for intuitionistic
linear logic [13, 14] and O’Hearn and Yang’s Petri net semantics of BI [29].

Timed Petri nets are a model of computation that can describe distributed
systems, concurrency, production and consumption of resources. In these mod-
els, resources are represented by places and the consumption and production of
resources is captured by transitions. We describe the amount of resources using
multisets, a multiset over a finite set P being a function M : P → N. We say
that M is a finite multiset iff

∑
p∈P M(p) ∈ N. We denote by MP the set of

finite multisets over P .

Definition 7 (Petri net). A Petri net is a 4-tuple P = (P, T, pre, post) such
that P is a finite set of places, T is a finite set of transitions, and pre and post
are two functions T →MP .

11

The markings are denoted [p1, . . . , pn], where pi are places. For instance,
the marking M = [p1, p2, p2] is the function such that M(p1) = 1, M(p2) = 2
and M(pi) = 0 for all pi ∈ P \ {p1, p2}. In this example we can say that there
are two tokens in the place p2 and one token in p1. [] is the empty marking,
that is [](p) = 0, for all p ∈ P .

The marking addition M + N is defined by (M + N)(pi) = M(pi) + N(pi)
for all pi ∈ P . We say that M is a submarking of N , denoted M ≤ N , iff
M(pi) 6 N(pi) for all pi ∈ P . We also define the marking subtraction M −N
by (M −N)(pi) = M(pi)−N(pi) for all pi ∈ P , and we remark that M −N is
defined if and only if N ≤M .

When a transition ti is fired, resources are consumed, given by pre(ti), and

also produced, given by post(ti). We denote by M
ti−→ N when the marking (the

resources) M , after firing the transition ti, becomes the marking N . Thus, we

have M
ti−→ N iff pre(ti) ≤M and N = M − pre(ti) + post(ti). We say that the

transition ti is enabled for the marking M iff pre(ti) ≤M . Sometimes, when we
considered implicitly a marking M , we will say that ti is enabled, rather than
ti is enabled for M . Considering a marking M , we denote by T/M the set of all
transitions that are enabled for M .

Definition 8 (Timed Petri net). A timed Petri net is a 6-tuple
T = (P, T, pre, post, α, β) such that (P, T, pre, post) is a Petri net, α : T → R+

and β : T → R+ ∪ {∞}
Timed Petri nets, denoted TPN, are particular Petri nets in which each

transition ti has an associated time interval [α(ti), β(ti)]. These intervals capture
the delay and duration of transition firing. For instance, if the interval [2, 5] is
associated with the transition ti, then it means that if ti becomes enabled at
time θ and ti stays continuously enabled then ti may be fired after time θ + 2
and must be fired before time θ + 5. Thus, in order to capture time elapsing,
implicit clocks ν : T → R+ are considered. For example, if the current time is θ
and ν(ti) = 2, then it means that ti becomes enabled at time θ− 2 and remains
continuously enabled until now. Moreover, if a transition ti is not enabled, then
we have ν(ti) = 0 and the value of the implicit clock of ti remains equal to 0
until ti becomes enabled.

In other words, ν(ti) can be viewed as a chronometer which starts when
the transition ti becomes enabled and which is reset to 0 when the transition
becomes disabled or is fired. We define ν′ = ν + d the function such that, for
all ti ∈ T/M , we have ν′(ti) = ν(ti) + d.

Therefore, in TPN, there is a transition relation dealing with time elapsing
and another one dealing with transition firing:

- Time elapsing d: (ν,M)
d−→ (ν + d,M) iff ∀ti ∈ T/M · ν(ti) + d 6 β(ti)

- Transition firing ti: (ν,M)
ti−→ (ν′, N) iff M

ti−→ N , ν(ti) > α(ti), and

∀tj ∈ T · ν′(tj) =

 0 if tj 6∈ T/N or ti = tj or
tj 6∈ T/(M−pre(ti))

ν(tj) otherwise.

12

We remark that it is not allowed for time to elapse in such a way that an
implicit clock of an enabled transition ti becomes greater than β(ti) and then
∀ti ∈ T/M · ν(ti) + d 6 β(ti).

We also note that, when time elapses, only implicit clocks of enabled tran-
sitions are increased, by definition of ν + d. Concerning a transition firing

(ν,M)
ti−→ (ν′, N), we remark that, after firing a transition ti, the implicit

clocks are updated as follows:

- An implicit clock of a transition tj is reset to 0 if tj is not enabled for the
new marking N , that is tj 6∈ T/N ;

- An implicit clock of a transition tj is reset to 0 if tj was the fired transition,
that is ti = tj ;

- An implicit clock of a transition tj is reset to 0 if tj does not stayed
continuously enabled, especially during the step of token consumption
(tj 6∈ T/(M−pre(ti)));

- Otherwise, the implicit clock of a transition tj does not change its value.

The reachability relation is formally defined as follows: (ν,M) (ν′, N)

iff (ν,M)
a1−→ (ν1,M1)

a2−→ . . .
an−1−−−→ (νn−1,Mn−1)

an−−→ (ν′, N) for ai being a
delay or a transition. We remark that this relation is obviously transitive and,
considering n = 0, is reflexive, (ν,M) (ν,M).

p1 p2

p3

p4

t1

t2 t3
[3, 7]

[2,∞] [1, 4]

Figure 2: An example of a timed Petri net

Considering the TPN of Figure 2, we see that there are four places (P =
{p1, p2, p3, p4}) and three transitions (T = {t1, t2, t3}). Moreover, a time interval
is associated with each transition. We have α(t3) = 1 and β(t3) = 4, meaning
that if t3 becomes enabled at time θ and remains continuously enabled, then
this transition may fire after time θ+ 1 and must fire before time θ+ 4. We can
also observe that α(t2) = 2 and β(t2) =∞, meaning that the transition t2 may
just fire after time θ+ 2 (there is no other constraint concerning its firing time).

In this example, we consider that the initial marking is [p4, p4]. All implicit
clocks are initialized to 0, giving ν(t1) = ν(t2) = ν(t3) = 0. We use the
denotation 〈0, 0, 0〉 to represent the value of all implicit clocks. As 0 6> 2 and
0 6> 1, it is not possible to fire the transition t2 or t3. But, it is possible to let

13

time elapse. We have, for example, (〈0, 0, 0〉, [p4, p4])
1.5−−→ (〈0, 1.5, 1.5〉, [p4, p4]).

We remark that the implicit clock of t1 is not equal to 1.5, because this transition
is not enabled for [p4, p4].

Now, as ν(t3) > α(t3) (1.5 > 1), then it is possible to fire the transition

t3. But it is also possible to let time elapse again: (〈0, 1.5, 1.5〉, [p4, p4])
2−→

(〈0, 3.5, 3.5〉, [p4, p4]). Moreover (〈0, 1.5, 1.5〉, [p4, p4])
3−→ (〈0, 4.5, 4.5〉, [p4, p4])

does not hold, because we have ν(t3) + d 66 β(t3) (1.5 + 3 66 4). In the con-
text (〈0, 3.5, 3.5〉, [p4, p4]), the transitions t2 and t3 can fire. If the transition t2

fires, we have (〈0, 3.5, 3.5〉, [p4, p4])
t2−→ (〈0, 0, 3.5〉, [p2, p3, p4]). We observe that

t1 becomes enabled, the implicit clock of t2 is initialized to 0 (t2 is fired) and
the implicit clock of t3 does not change (t3 remains continuously enabled during
this transition).

Now, we suppose that (〈0, 0, 3.5〉, [p2, p3, p4])
0.2−−→ (〈0.2, 0.2, 3.7〉, [p2, p3, p4]).

If t3 fires, then we have (〈0.2, 0.2, 3.7〉, [p2, p3, p4])
t3−→ (〈0.2, 0, 0〉, [p2, p3, p4]) and

we remark that the implicit clock of t2 is initialized to 0 because t2 does not
remain continuously enabled: t2 was not enabled for the marking [p2, p3, p4] −
pre(t3) = [p2, p3]. Finally, we have (〈0, 0, 0〉, [p4, p4]) (〈0.2, 0, 0〉, [p2, p3, p4]).

Finally we show that LSM is able to express properties on TPN. Let E
be any set, we denote by card(E) the cardinality of E, that is the number of
elements of E.

Lemma 9. Let T = (P, T, pre, post, α, β) be a TPN and let

K = ((R+)card(T),M, , i())

such that M = (MP ,+, []) and i(p) = {(ν, [p]) | ν ∈ (R+)card(T)}.
Then K is a model.

Proof. It is sufficient to verify that K satisfies Definition 2.

We consider the following function:

M̂ =

{
I if M = []

p1 ∗ . . . ∗ pn if M = [p1, . . . , pn]

Proposition 10. Let T = (P, T, pre, post, α, β) be a TPN and let

K = ((R+)card(T),M, , i())

such that M = (MP ,+, []) and i(p) = {(ν, [p]) | ν ∈ (R+)card(T)}. For any

implicit clock ν ∈ (R+)card(T) and any marking M ∈MP , we have ν,M �K M̂ .

Proof. The proof is by induction on n.

- Base case (n = 0). By Lemma 9, K is a model. Then ν, [] �K I, and we

have ν, [] �K [̂].

14

- Inductive case. We suppose that the Proposition holds for all markings
that contain n tokens (induction hypothesis), and then prove it for all
markings that contain n+ 1 tokens.

Let M = [p1, . . . , pn+1]. By definition, (ν, [pn+1]) ∈ i(pn+1), then we have
ν, [pn+1] �K pn+1. By the induction hypothesis (IH), ν, [p1, . . . , pn] �K
p1∗. . .∗pn. As M = [p1, . . . , pn]+[pn+1], we have ν, [p1, . . . , pn]+[pn+1] �K
(p1 ∗ . . . ∗ pn) ∗ pn+1. Thus ν,M �K M̂ .

We now illustrate properties that can be expressed on TPN by LSM. We
consider the TPN of Figure 2. The initial marking is [p4, p4] and the values

of the implicit clock are 〈0, 0, 0〉. As ̂[p4, p4] = p4 ∗ p4, by Proposition 10, we
have 〈0, 0, 0〉, [p4, p4] �K p4 ∗ p4, which illustrates the use of separation. Indeed,
p4 ∗ p4 means that the marking [p4, p4] can be separated/decomposed into two
submarkings such that the first submarking satisfies p4 and the second one
satisfies p4 ([p4, p4] = [p4] + [p4] and 〈0, 0, 0〉, [p4] �K p4).

Moreover, (〈0, 0, 0〉, [p4, p4]) (〈0.2, 0, 0〉, [p2, p3, p4]) and we then have that
〈0, 0, 0〉, [p4, p4] �K ♦(p2 ∗p3 ∗p4), which illustrates the reachability relation: ♦φ
means that there is a reachable state from (〈0, 0, 0〉, [p4, p4]), where a state is a
pair composed by an implicit clock and a marking, that satisfies the property
φ. As we have 〈0, 0, 0〉, [p4, p4] �K p4 ∗ p4 and 〈0, 0, 0〉, [p4, p4] �K ♦(p2 ∗ p3 ∗ p4),
we can deduce that 〈0, 0, 0〉, [p4, p4] �K (p4 ∗ p4) ∧ ♦(p2 ∗ p3 ∗ p4). This formula
illustrates the use of sharing : the state (〈0, 0, 0〉, [p4, p4]) shares two properties
that are p4 ∗ p4 and ♦(p2 ∗ p3 ∗ p4).

Let us illustrate the modality ♦•. As (〈0, 0, 0〉, [p2])
4−→ (〈4, 0, 0〉, [p2])

t1−→
(〈0, 0, 0〉, [p1]), we have (〈0, 0, 0〉, [p2]) (〈0, 0, 0〉, [p1]) and 〈0, 0, 0〉, [] �K ♦•p1.
Here, ♦•φ expresses that the timed Petri net can reach a state that satisfies φ,
but additional resources (tokens) may be needed to achieve it. This modality
is also interesting if it is combined with negation. For example, 〈0, 0, 0〉, [p4] �K
¬♦•p1 expresses that it is not possible, whatever the resources/tokens that are
added to the timed Petri net, to reach the marking [p1]. Finally, the resource-
indexed modality ♦sφ, allows us to express that adding the marking s, the
timed Petri net can reach a marking that satisfies φ. For instance, we have
〈0, 0, 0〉, [] �K ♦[p2]p1, because (〈0, 0, 0〉, [p2]) (〈0, 0, 0〉, [p1]).

In conclusion, we have shown that the LSM models are really used to capture
reachability in timed Petri nets. This point comes from the multi-dimension of
the structures based on pairs (world, resource).

5. Conservativity of LSM over S4

In this section, we show that LSM is a conservative extension of the modal
logic S4 (e.g., [3]). More specifically, we show that a formula φ is valid in S4 if
and only if φ is valid in LSM. Then, with the equivalences of Lemma 6, we have
that the resource-indexed modalities properly generalize the S4 modalities.

15

5.1. The logic S4

Let Prop be a countable set of propositional symbols. The language LS4 of
S4 is defined as follows, where p ∈ Prop:

φ ::= p | ¬φ | ⊥ | > | φ ∨ φ | φ ∧ φ | φ→ φ | ♦φ | �φ .

Definition 11 (S4-model). An S4-model is a triple KS4 = (WS4,RS4, VS4),
where

1. WS4 is a set of worlds,

2. RS4 ⊆WS4 ×WS4 such that, for all w1, w2, w3 ∈WS4,

- reflexivity: w1RS4w1, and

- transitivity: if w1RS4w2 and w2RS4w3, then w1RS4w3, and

3. VS4 : Prop→ ℘(WS4).

Definition 12 (Satisfaction relation, validity). Let KS4 = (WS4,RS4, VS4)
be an S4-model. The satisfaction relation KS4

⊆WS4 ×LS4 is inductively de-
fined, for all w ∈WS4, as follows:

w KS4
p iff w ∈ VS4(p)

w KS4
> always

w KS4
⊥ never

w KS4
¬φ iff w 6KS4

φ
w KS4

φ ∧ ψ iff w KS4
φ and w KS4

ψ
w KS4

φ ∨ ψ iff w KS4
φ or w KS4

ψ
w KS4

φ→ ψ iff if w KS4
φ then w KS4

ψ
w KS4

♦φ iff there exists w′ ∈WS4 such that
wRS4w

′ and w′ KS4
φ

w KS4
�φ iff for all w′ ∈WS4 if wRS4w

′ then
w′ KS4

φ

We say that a formula φ is valid, denoted φ, if and only if, for all worlds
w in all models KS4, w KS4

φ.

Now we can establish that LSM is a conservative extension of S4 logic. That
is, we show that, for any formula φ ∈ LS4, we have φ if and only if � φ.

5.2. From LSM-countermodels to S4-countermodels

In this section, we show how to obtain an S4-countermodel from an LSM-
countermodel.

Definition 13 (The function TLSM→S4). Let K = (W,M,R, V), whereM =
(Res, •, e) is a PRM, be a LSM-model. The function TLSM→S4 associates to
K the triple TLSM→S4(K) = (WS4,RS4, VS4), such that WS4 = W × Res,
RS4 = R, and VS4 = V .

16

Proposition 14. Let K = (W,M,R, V), where M = (Res, •, e) is a PRM, be
an LSM-model. TLSM→S4(K) = (WS4,RS4, VS4) is an S4-model.

Proof. RS4 is reflexive and transitive because R is reflexive and transitive.

Proposition 15. Let K = (W,M,R, V), where M = (Res, •, e) is a PRM, be
a (LSM) model and TLSM→S4(K) = (WS4,RS4, VS4). For any formula φ ∈ LS4,
any w ∈W and any r ∈ Res, we have w, r �K φ iff (w, r) KS4

φ.

Proof. By induction on the structure of φ.

- Base cases.

– Case w, r �K p. By definition (w, r) ∈ V (p) and by definition of
TLSM→S4, (w, r) ∈ VS4(p). Then (w, r) KS4

p.

– Case (w, r) KS4
p. By definition (w, r) ∈ VS4(p) and by definition

of TLSM→S4, (w, r) ∈ V (p). Then w, r �K p.

– Case w, r �K >. We have (w, r) KS4
>, by definition of KS4

.

– Case (w, r) KS4
>. We have w, r �K >, by definition of �K.

– Case w, r �K ⊥. This case is absurd, by definition of �K.

– Case (w, r) KS4
⊥. This case is absurd, by definition of KS4

.

- Inductive cases. We suppose that the proposition holds for formulæ φ and
ψ (IH).

– Case w, r �K ¬φ. By definition, w, r 6�K φ and by the induction
hypothesis, (w, r) 6KS4

φ. Then (w, r) KS4
¬φ.

– Case (w, r) KS4
¬φ. By definition, (w, r) 6KS4

φ and by the induc-
tion hypothesis, w, r 6�K φ. Then w, r �K ¬φ.

– Case w, r �K φ ∧ ψ. By definition, w, r �K φ and w, r �K ψ. By
the induction hypothesis, (w, r) KS4

φ and (w, r) KS4
ψ. Then

(w, r) KS4
φ ∧ ψ.

– Case (w, r) KS4
φ∧ψ. By definition, (w, r) KS4

φ and (w, r) KS4

ψ. By the induction hypothesis, w, r �K φ and w, r �K ψ. Then
w, r �K φ ∧ ψ.

– Case w, r �K ♦φ. By definition, there are w′ ∈ W and r′ ∈ Res
such that (w, r)R(w′, r′) and w′, r′ �K φ. By definition of TLSM→S4

and by the induction hypothesis, there is (w′, r′) ∈ WS4 such that
(w, r)RS4(w′, r′) and (w′, r′) KS4

φ. Then (w, r) KS4
♦φ.

– Case (w, r) KS4
♦φ. By definition, there is (w′, r′) ∈ WS4 such

that (w, r)RS4(w′, r′) and (w′, r′) KS4
φ. By inductive hypothesis

and by construction, there are w′ ∈ W and r′ ∈ Res such that
(w, r)R(w′, r′) and w′, r′ �K φ. Then w, r �K ♦φ.

17

– Case w, r �K �φ. Let (w′, r′) ∈WS4 such that (w, r)RS4(w′, r′). By
definition of TLSM→S4, we have (w, r)R(w′, r′). Then, as w, r �K
�φ then we have w′, r′ �K φ. Then, by the induction hypothesis,
(w′, r′) KS4

φ and we have (w, r) KS4
�φ.

– Case (w, r) KS4
�φ. Let w′ ∈W and r′ ∈ Res such that (w, r)R(w′, r′).

By definition of TLSM→S4, (w, r)RS4(w′, r′). Then, as (w, r) KS4

�φ we have (w′, r′) KS4
φ. Then, by the induction hypothesis,

w′, r′ �K φ. and we have w, r �K �φ.

– The other cases are similar.

Lemma 16. Let φ be a formula of LS4. If φ then � φ.

Proof. We show that if 6� φ then 6 φ. We suppose that φ is not valid
in LSM logic. Then there exists a countermodel K = (W,M,R, V), where
M = (Res, •, e), w ∈ W and r ∈ Res such that w, r 6�K φ. Now, we consider
TLSM→S4(K) = (WS4,RS4, VS4). By Proposition 14, it is an S4-model. By
Proposition 15, (w, r) 6TLSM→S4(K) φ. Thus φ is not valid in S4 logic. There-
fore if 6� φ then 6 φ. Thus, if φ then � φ.

5.3. From S4-countermodels to LSM-countermodels

We show how to obtain an LSM-countermodel from an S4-countermodel.

Definition 17 (Function TS4→LSM). Let KS4 = (WS4,RS4, VS4) be a S4-
model. The function TS4→LSM associates to KS4 the 4-tuple TS4→LSM (KS4) =
(W,M,R, V), where M = (Res, •, e), such that

1. W = WS4,

2. Res = {e}, where e is any element,

3. • : Res×Res ⇀ Res is defined by e • e = e,

4. (w, e)R(w′, e) iff wRS4w
′, and

5. (w, e) ∈ V (p) iff w ∈ VS4(p).

Proposition 18. Let KS4 = (WS4,RS4, VS4) be a S4-model. TS4→LSM (KS4) =
(W,M,R, V), where M = (Res, •, e), is a (LSM) model.

Proof. M is a PRM and R is reflexive and transitive, because RS4 is reflexive
and transitive.

Proposition 19. Let KS4 = (WS4,RS4, VS4) be an S4-model and let

TS4→LSM (KS4) = (W,M,R, V),

where M = (Res, •, e). For any formula φ ∈ LS4 and any w ∈ WS4, we have
w KS4

φ iff w, e �K φ.

Proof. By induction on the structure of φ.

- Base cases.

18

– Case w KS4
p. By definition, w ∈ VS4(p) and by definition of

TS4→LSM , (w, e) ∈ V (p). Then w, e �K p.

– Case w, e �K p. By definition, (w, e) ∈ V (p) and by definition of
TS4→LSM , w ∈ VS4(p). Then w KS4

p.

– Case w KS4
>. We have w, e �K >, by definition of �K.

– Case w, e �K >. We have w KS4
>, by definition of KS4

.

– Case w KS4
⊥. This case is absurd, by definition of KS4

.

– Case w, e �K ⊥. This case is absurd, by definition of �K.

- Inductive cases. We suppose that this proposition holds for formulæ φ
and ψ (this is the induction hypothesis).

– Case w KS4
¬φ. By definition, w 6KS4

φ and by the induction
hypothesis, w, e 6�K φ. Then w, e �K ¬φ.

– Case w, e �K ¬φ. By definition, w, e 6�K φ and by the induction
hypothesis, w 6KS4

φ. Then w KS4
¬φ.

– Case w KS4
φ ∧ ψ. By definition, w KS4

φ and w KS4
ψ. By the

induction hypothesis, w, e �K φ and w, e �K ψ. Then w, e �K φ ∧ ψ.

– Case w, e �K φ ∧ ψ. By definition, w, e �K φ and w, e �K ψ. By the
induction hypothesis, w KS4

φ and w KS4
ψ. Then w KS4

φ ∧ ψ.

– Case w KS4
♦φ. By definition, there is w′ ∈WS4 such that wRS4w

′

and w′ KS4
φ. By the induction hypothesis and by construction,

there is w′ ∈ W such that (w, e)R(w′, e) and w′, e �K φ. Then
w, e �K ♦φ.

– Case w, e �K ♦φ. By definition, there are w′ ∈W and r′ ∈ Res such
that (w, e)R(w′, r′) and w′, r′ �K φ. As Res = {e}, by definition
of TS4→LSM , we have r′ = e. Then (w, e)R(w′, e) and w′, e �K φ.
By definition of TS4→LSM and by the induction hypothesis, there is
w′ ∈WS4 such that wRS4w

′ and w′ KS4
φ. Then w KS4

♦φ.

– Case w KS4
�φ. Let w′ ∈W and r′ ∈ Res such that (w, e)R(w′, r′).

As Res = {e}, by definition of TS4→LSM , we have r′ = e. Then
(w, e)R(w′, e). By definition of TS4→LSM , wRS4w

′. Thus, as w KS4

�φ we have w′ KS4
φ. Then, by the induction hypothesis, w′, e �K φ

and w′, r′ �K φ. Then we have w, e �K �φ.

– Case w, e �K �φ. Let w′ ∈WS4 such that wRS4w
′. By definition of

TS4→LSM , (w, e)R(w′, e). Then, as w, e �K �φ we have w′, e �K φ.
Then, by the induction hypothesis, w′ KS4

φ and we have w KS4

�φ.

– The other cases are similar.

Lemma 20. Let φ a formula of LS4 be a formula. If � φ then φ.

19

Proof. We show that if 6 φ, then 6� φ. We suppose that φ is not valid in S4.
Then there exist a countermodel KS4 = (WS4,RS4, VS4) and a world w ∈ WS4

such that w 6KS4
φ. Now, we consider TS4→LSM (KS4) = (W,M,R, V), where

M = (Res, •, e). By Proposition 18, it is a (LSM) model. By Proposition 19,
w, e 6�K φ. Then φ is not valid in LSM. Therefore if 6 φ then 6� φ. We conclude
that if � φ then φ.

Theorem 21. LSM is a conservative extension of S4 logic.

Proof. Let φ ∈ LS4 be a formula. By Lemmas 16 and 20, φ is valid in LSM
(� φ) if and only if φ is valid in S4 (φ).

6. A proof system for LSM

In this section, we develop a calculus for the logic LSM in the spirit of the
tableaux calculus for BI and BBI [16, 17, 23], using notions introduced in these
papers. Here, we introduce new rules to deal with modalities and also new label
constraints to capture the reachability relation R. One main difficulty is to deal
with the interaction between the resource constraints, which encode the equality
on the resources, and the reachability constraints, which encode the relation R.

6.1. Labels for worlds and resources

We first define world and resource labels that are related, respectively, to
the sets W and Res. Moreover, to capture the reachability relation (R) and
the equality on resources, we introduce two kinds of label constraints. Such
labels and constraints allow, in the case of the non validity of a formula, a
countermodel to be extracted.

Definition 22 (World labels). LW is an infinite countable set of world labels.
We let s and v, possibly subscripted, denote elements of LW .

Definition 23 (Resource labels). LR is a set of resource labels built from
the set of resource symbols ΣR \ {e}, an infinite countable set of constants γR =
{c1, c2, . . .}, a constant 1 6∈ ΣR ∪ γR, and a function denoted ◦:

X ::= 1 | ri | ci | X ◦X,

where ri ∈ ΣR \ {e}, ci ∈ γR and ΣR ∩ γR = ∅. Moreover, ◦ is a function on
LR that is associative, commutative, and has 1 as its unit.

We denote by xy the resource label x ◦ y. In other words, c1c2c3c3 is the
resource label c1 ◦ c2 ◦ c3 ◦ c3. Moreover, we say that x is a resource sub-label of
y if and only if there exists z such that x ◦ z = y. The set of resource sub-labels
of x is denoted E(x).

Definition 24 (Constraints). A resource constraint is an expression of the
form x ∼ y, where x and y are resource labels. A reachability constraint is an
expression of the form (u, x) (v, y), where u and v are world labels and x and
y are resource labels.

20

Rules for resource constraints

〈1〉
1 ∼ 1

x ∼ y
〈sr〉y ∼ x

xy ∼ xy
〈dr〉x ∼ x

x ∼ y y ∼ z
〈tr〉x ∼ z

x ∼ y yk ∼ yk
〈cr〉

xk ∼ yk
(u, x) (v, y)

〈kr1 〉x ∼ x
(u, x) (v, y)

〈kr2 〉y ∼ y

Rules for reachability constraints

(u, x) (v, y) z ∼ z
〈ra1
〉

(u, z) (u, z)

(u, x) (v, y) z ∼ z
〈ra2
〉

(v, z) (v, z)

(u, x) (v, y) (v, y) (w, z)
〈ta〉

(u, x) (w, z)
(u, x) (v, y) x ∼ x′ y ∼ y′

〈ka〉
(u, x′) (v, y′)

Figure 3: Rules for constraints

A set of constraints C is a set that contains resource constraints and relation
constraints. For example, C = {c1 ∼ c2, c2 ∼ c3, (s1, c1) (s2, c1c3)} is a set of
constraints.

Now, we define the domain and the alphabet of such sets. Let C be a
constraint set. The (resource) domain of C is the set of all resource sub-labels
appearing in C. In particular,

Dr(C) =

 ⋃
x∼y∈C

(E(x) ∪ E(y))

 ∪
 ⋃

(u,x) (v,y)∈C

(E(x) ∪ E(y))

 .
The world/resource alphabet of C is the set of world/resource constants

appearing in C. In particular, we have Aw(C) =
⋃

(u,x) (v,y)∈C{u, v} and

Ar(C) = (ΣR ∪ γR) ∩ Dr(C). We notice that, for any set of constraints C,
as 1 6∈ ΣR ∪ γR then 1 6∈ Ar(C). But 1 ∈ Dr(C), for any non-empty C 6= ∅,
because 1 ∈ E(x), for all resource labels x.

Definition 25 (Closure of constraints). Let C be a set of constraints. The
closure of C, denoted C, is the least relation closed under the rules of Figure 3
such that C ⊆ C.

Considering the rules of Figure 3, there are seven rules (〈1〉, 〈sr〉, 〈dr〉, 〈tr〉,
〈cr〉, 〈kr1〉 and 〈kr2〉) that produce resource constraints and there are four rules
(〈ra1〉, 〈ra2〉, 〈ta〉 and 〈ka〉) that produce reachability constraints.

As it is impossible to close separately a resource constraint set and a reacha-
bility constraint set, because of rules 〈kr1〉, 〈kr2〉, 〈ra1〉, 〈ra2〉 and 〈ka〉, we choose

21

to consider only one set of resource and reachability constraints (C) rather than
two sets (one resource constraint set and one reachability constraint set).

We give an example of rule application. With C = {c1 ∼ c2, c2 ∼ c3, (s1, c1)
(s2, c4)}, we can show that (s1, c3) (s2, c4) ∈ C as follows:

(s1, c1) (s2, c4)
c1 ∼ c2 c2 ∼ c3 〈tr〉c1 ∼ c3

(s1, c1) (s2, c4)
〈kr2 〉c4 ∼ c4

〈ka〉.
(s1, c3) (s2, c4)

It is important to note that the rules 〈ra1〉 and 〈ra2〉 (resp. 〈kr1〉 and 〈kr2〉
) are used in Proposition 26 to prove that the rules 〈1al〉 and 〈1al〉 (resp. 〈ql〉
and 〈qr〉) can be derived. These rules are used to respectively prove the first
and second part of Corollary 27.

Proposition 26. The following rules can be derived from rules of closure of
constraints:

xk ∼ y
〈pl〉x ∼ x

x ∼ yk
〈pr〉y ∼ y

(u, xk) (v, y)
〈ql〉x ∼ x

(u, x) (v, yk)
〈qr〉y ∼ y

(u, x) (v, y)
〈1al
〉

(u, 1) (u, 1)

(u, x) (v, y)
〈1ar 〉.

(v, 1) (v, 1)

Proof. We provide the following deduction trees:

xk ∼ y
xk ∼ y

〈sr〉
y ∼ xk

〈tr〉
xk ∼ xk 〈dr〉x ∼ x

x ∼ yk
〈sr〉

yk ∼ x
〈pl〉y ∼ y

(u, xk) (v, y)
〈kr1 〉

xk ∼ xk 〈dr〉x ∼ x
1

(u, x) (v, yk)
〈kr2 〉

yk ∼ yk
〈dr〉y ∼ y

(u, x) (v, y)
〈1〉

1 ∼ 1
〈ra1
〉

(u, 1) (u, 1)

(u, x) (v, y)
〈1〉

1 ∼ 1
〈ra2
〉.

(v, 1) (v, 1)

Corollary 27. Let C be a set of constraints.
1. u ∈ Aw(C) iff (u, 1) (u, 1) ∈ C.
2. x ∈ Dr(C) iff x ∼ x ∈ C.

Proof. 1. We suppose that u ∈ Aw(C). By definition u ∈
⋃

(v,x) (w,y)∈C{v, w}.
Then there exists (v, x) (w, y) ∈ C such that u = v or u = w. Thus, by Propo-
sition 26, (u, 1) (u, 1) ∈ C. Now, we suppose that (u, 1) (u, 1) ∈ C. Then,
by definition, u ∈ Aw(C). In conclusion, we have u ∈ Aw(C) if and only if
(u, 1) (u, 1) ∈ C.
2. We suppose that x ∈ Dr(C). By definition we have x ∈

⋃
y∼z∈C(E(y) ∪ E(z))

or x ∈
⋃

(u,y) (v,z)∈C(E(y) ∪ E(z)). There are two cases:

22

- there exists y ∼ z ∈ C such that x ∈ E(y) ∪ E(z). Then there exists a
resource label k such that xk ∼ z ∈ C or y ∼ xk ∈ C. Thus, by Proposition
26, x ∼ x ∈ C;

- there exists (u, y) (v, z) ∈ C such that x ∈ E(y)∪E(z). Then there exists
a resource label k such that (u, xk) (v, z) ∈ C or (u, y) (v, xk) ∈ C.
Then, by Proposition 26, x ∼ x ∈ C.

If we suppose that x ∼ x ∈ C, then, by definition, x ∈ Dr(C) and we have
x ∈ Dr(C) if and only if x ∼ x ∈ C.

We can deduce by using the rules 〈sr〉 and 〈tr〉 with Corollary 27 that ∼
is an equivalence relation and then ∼ is reflexive. Moreover the first part of
Corollary 27 allows us to show that is reflexive.

Corollary 28. Let C be a set of constraints. If xy ∈ Dr(C), x′ ∼ x ∈ C, and
y′ ∼ y ∈ C, then xy ∼ x′y′ ∈ C.

Proof. By Corollary 27, xy ∼ xy ∈ C. We give the following deduction tree:

...
y′ ∼ y

...
x′ ∼ x

...
xy ∼ xy

〈cr〉
x′y ∼ xy

〈pl〉
x′y ∼ x′y

〈cr〉
x′y′ ∼ x′y

...
x′ ∼ x

...
xy ∼ xy

〈cr〉
x′y ∼ xy

〈tr〉
x′y′ ∼ xy

〈sr〉.
xy ∼ x′y′

Proposition 29. Let C a set of constraints. We have Aw(C) = Aw(C) and
Ar(C) = Ar(C).

Proof. As C ⊆ C, we have Aw(C) ⊆ Aw(C) and Ar(C) ⊆ Ar(C). For the con-
verse, we observe that the rules of Figure 3 do not introduce new world/resource
constants. Then Aw(C) ⊆ Aw(C) and Ar(C) ⊆ Ar(C). Therefore Aw(C) =
Aw(C) and Ar(C) = Ar(C).

Lemma 30 (Compactness). Let C be a (possibly countably infinite) set of
constraints.

1. If (u, x) (v, y) ∈ C then there is a finite set Cf such that Cf ⊆ C and
(u, x) (v, y) ∈ Cf .

2. If x ∼ y ∈ C, then there is a finite set Cf such that Cf ⊆ C and x ∼ y ∈ Cf .

Proof. Let C be a set of constraints and c ∈ C be a constraint. If c ∈ C because
c ∈ C then by considering Cf = {c}, we have Cf ⊆ C and c ∈ Cf . In the other
cases, the constraint c is obtained by rules of Figure 3. We prove the lemma by
induction on the size n of the deduction tree of c.

23

- Base case (n = 0). Case rule 〈1〉: the deduction tree is of the form

〈1〉
1 ∼ 1

then c is the constraint 1 ∼ 1. If Cf = ∅ then we have Cf ⊆ C and c ∈ Cf .

- Inductive step. We suppose that the properties (1) and (2) hold for de-
duction trees whose sizes are less or equal to n (IH). We prove the lemma
for deduction trees such that their sizes are equal to n+ 1.

– Case 〈sr〉: the deduction tree is of the form

...
x ∼ y

〈sr〉y ∼ x
In this case, c is the constraint y ∼ x. This deduction tree is finite,
and the deduction tree of x ∼ y has size equal to n. Then, by the
induction hypothesis, there is a finite set Cf ⊆ C such that x ∼ y ∈ Cf .
Thus, by the rule 〈sr〉, y ∼ x ∈ Cf .

– Case 〈cr〉: the deduction tree is of the form

...
x ∼ y

...
yk ∼ yk

〈cr〉
xk ∼ yk

In this case, c is the constraint xk ∼ yk. This deduction tree is finite,
and the deduction trees of x ∼ y and yk ∼ yk have size less than or
equal to n. Then, by the induction hypothesis, there are Cf1 ⊆ C and
Cf2 ⊆ C that are finite and such that x ∼ y ∈ Cf1 and yk ∼ yk ∈ Cf2 .
Let Cf = Cf1 ∪ Cf2 . Then x ∼ y ∈ Cf and yk ∼ yk ∈ Cf . Thus, using
the rule 〈cr〉, xk ∼ yk ∈ Cf . Moreover, Cf is finite as the union of
two finite sets and Cf ⊆ C as the union of two sets included in C.

– The other cases are similar.

6.2. A tableaux calculus for LSM

In this section, we define a labelled tableaux calculus for LSM in the spirit
of previous works for BI and BBI[16, 17, 23].

Definition 31. The function ‖.‖ : ΣR → Lr is defined as follows:

‖r‖ =

{
1 if r = e
r otherwise

24

TI : (u, x) ∈ F
〈TI〉

〈∅, {x ∼ 1}〉

T¬φ : (u, x) ∈ F
〈T¬〉

〈{Fφ : (u, x)}, ∅〉
F¬φ : (u, x) ∈ F

〈F¬〉
〈{Tφ : (u, x)}, ∅〉

Tφ ∧ ψ : (u, x) ∈ F
〈T∧〉

〈{Tφ : (u, x),Tψ : (u, x)}, ∅〉
Fφ ∧ ψ : (u, x) ∈ F

〈F∧〉
〈{Fφ : (u, x)}, ∅〉 | 〈{Fψ : (u, x)}, ∅〉

Tφ ∨ ψ : (u, x) ∈ F
〈T∨〉

〈{Tφ : (u, x)}, ∅〉 | 〈{Tψ : (u, x)}, ∅〉
Fφ ∨ ψ : (u, x) ∈ F

〈F∨〉
〈{Fφ : (u, x),Fψ : (u, x)}, ∅〉

Tφ→ ψ : (u, x) ∈ F
〈T→〉

〈{Fφ : (u, x)}, ∅〉 | 〈{Tψ : (u, x)}, ∅〉
Fφ→ ψ : (u, x) ∈ F

〈F→〉
〈{Tφ : (u, x),Fψ : (u, x)}, ∅〉

Tφ ∗ ψ : (u, x) ∈ F
〈T∗〉

〈{Tφ : (u, ci),Tψ : (u, cj)}, {x ∼ cicj}〉
Fφ ∗ ψ : (u, x) ∈ F and x ∼ yz ∈ C

〈F∗〉
〈{Fφ : (u, y)}, ∅〉 | 〈{Fψ : (u, z)}, ∅〉

Tφ−∗ ψ : (u, x) ∈ F and xy ∼ xy ∈ C
〈T−∗〉

〈{Fφ : (u, y)}, ∅〉 | 〈{Tψ : (u, xy)}, ∅〉
Fφ−∗ ψ : (u, x) ∈ F

〈F−∗〉
〈{Tφ : (u, ci),Fψ : (u, xci)}, {xci ∼ xci}〉

with si, ci and cj being new label constants and ‖r‖ = 1 if r = e, otherwise r.

Figure 4: Tableaux non-modal rules for LSM

Definition 32. A labelled formula is a 4-tuple (S, φ, u, x) ∈ {T,F}×L×Lw×Lr
written Sφ : (u, x). A constrained set of statements (CSS) is a pair 〈F , C〉,
where F is a set of labelled formulæ and C is a set of constraints, satisfying the
following (Pcss) property:

(Pcss) : if Sφ : (u, x) ∈ F then (u, 1) (u, 1) ∈ C and x ∼ x ∈ C.

A CSS 〈F , C〉 is finite if F and C are finite. The relation 4 is defined by:

〈F , C〉 4 〈F ′, C′〉 iff F ⊆ F ′ and C ⊆ C′.

We denote by 〈Ff , Cf 〉 4f 〈F , C〉 when 〈Ff , Cf 〉 4 〈F , C〉 holds and 〈Ff , Cf 〉 is
finite, meaning that Ff and Cf are both finite.

Proposition 33. For any CSS 〈Ff , C〉 in which Ff is finite, there exists Cf ⊆ C
such that Cf is finite and 〈Ff , Cf 〉 is a CSS.

Proof. By induction on the number of labelled formulæ that belong to Ff and
using Lemma 30.

Figures 4 and 5 present the rules of tableaux calculus for LSM, the later
including the rules on modalities. Let us note that ‘si is a new label constant’
means si ∈ Lw \ Aw(C) and that ‘ci and cj are new label constants’ means
ci 6= cj ∈ γR \ Ar(C). We denote by ⊕ the concatenation of lists.

25

T♦yφ : (u, x) ∈ F
〈T♦y〉

〈{Tφ : (si, ci)}, {(u, x ◦ ‖y‖) (si, ci)}〉
F♦yφ : (u, x) ∈ F and (u, x ◦ ‖y‖) (v, z) ∈ C

〈F♦y〉
〈{Fφ : (v, z)}, ∅〉

T�yφ : (u, x) ∈ F and (u, x ◦ ‖y‖) (v, z) ∈ C
〈T�y〉

〈{Tφ : (v, z)}, ∅〉
F�yφ : (u, x) ∈ F

〈F�y〉
〈{Fφ : (si, ci)}, {(u, x ◦ ‖y‖) (si, ci)}〉

T♦φ : (u, x) ∈ F
〈T♦〉

〈{Tφ : (si, ci)}, {(u, x) (si, ci)}〉
F♦φ : (u, x) ∈ F and (u, x) (v, y) ∈ C

〈F♦〉
〈{Fφ : (v, y)}, ∅〉

T�φ : (u, x) ∈ F and (u, x) (v, y) ∈ C
〈T�〉

〈{Tφ : (v, y)}, ∅〉
F�φ : (u, x) ∈ F

〈F�〉
〈{Fφ : (si, ci)}, {(u, x) (si, ci)}〉

T♦•φ : (u, x) ∈ F
〈T♦•〉

〈{Tφ : (si, cj)}, {(u, xci) (si, cj)}〉
F♦•φ : (u, x) ∈ F and (u, xy) (v, z) ∈ C

〈F♦•〉
〈{Fφ : (v, z)}, ∅〉

T�•φ : (u, x) ∈ F and (u, xy) (v, z) ∈ C
〈T�•〉

〈{Tφ : (v, z)}, ∅〉
F�•φ : (u, x) ∈ F

〈F�•〉
〈{Fφ : (si, cj)}, {(u, xci) (si, cj)}〉

with si, ci and cj being new label constants and ‖r‖ = 1 if r = e, otherwise r.

Figure 5: Tableaux modal rules for LSM

Definition 34 (Tableaux). Let 〈F0, C0〉 be a finite CSS. A tableau for this
CSS is a list of CSS, called branches, built inductively according the following
rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉
2. If the list Tm ⊕ [〈F , C〉]⊕ Tn is a tableau for 〈F0, C0〉 and

cond〈F , C〉
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is an instance of a rule of Figures 4 and 5 for which cond〈F , C〉 is fulfilled,
then the list

Tm ⊕ [〈F ∪ F1, C ∪ C1〉; . . . ; 〈F ∪ Fk, C ∪ Ck〉]⊕ Tn

is a tableau for 〈F0, C0〉.

A tableau for the formula φ is a tableau for 〈{Fφ : (s1, c1)}, {(s1, c1) (s1, c1)}〉.

We can show that that the rules of Figures 4 and 5 preserve the property
(Pcss) of Definition 32 (using Corollary 27).

Observing the rules we can say that there are two particular kinds of rules.
First there are the rules 〈TI〉, 〈T∗〉, 〈F−∗〉, 〈T♦y〉, 〈F�y〉 〈T♦〉, 〈F�〉, 〈T♦•〉,
and 〈F�•〉. They introduce new constraints and also new label constants (si,
ci and cj), except for 〈TI〉 that only introduces a new constraint. We illustrate

26

the 〈T♦〉 rule. When we apply this rule on a labelled formula T♦φ : (s2, c4) that
belongs to a CSS 〈F , C〉, we have to choose a new world label and a new resource
label which does not appear in C. For example, we suppose that s5 ∈ Lw\Aw(C)
and c6 ∈ γR \Ar(C). Thus, choosing these labels, we can apply the rule, getting
the new CSS 〈F ∪{Tφ : (s5, c6)}, C ∪{(s2, c4) (s5, c6)}〉. We remark that the
new reachability constraint (s2, c4) (s5, c6) added to the set of constraints.
There are rules 〈F∗〉, 〈T−∗〉, 〈F♦y〉, 〈T�y〉 〈F♦〉, 〈T�〉, 〈F♦•〉, and 〈T�•〉. They
have a condition on the closure of label constraints. In order to apply one of these
rules we have to choose labels which satisfy the condition and then apply the
rule using it. Otherwise, we cannot apply the rule. We illustrate the 〈T�〉 rule.
Consider a CSS 〈F , C〉 such that T�φ : (s1, c1) ∈ F . To apply this rule, we have
to choose a world label u and a resource label x such that (s1, c1) (u, x) ∈ C.
We also suppose that (s1, c1) (s2, c3) ∈ C. Then we can decide to apply
the rule using s2 and c3, getting the CSS 〈F ∪ {Tφ : (s2, c3)}, C〉. Finally, we
observe that the rules 〈T♦y〉, 〈F♦y〉, 〈T�y〉 and 〈F�y〉 use the function ‖.‖ that
converts the unit resource e into the unit resource label 1.

Definition 35 (Closure condition). A CSS 〈F , C〉 is closed if one of the fol-
lowing conditions holds:

1. Tφ : (u, x) ∈ F , Fφ : (u, y) ∈ F and x ∼ y ∈ C;

2. FI : (u, x) ∈ F and x ∼ 1 ∈ C;

3. F> : (u, x) ∈ F ;

4. T⊥ : (u, x) ∈ F .

A CSS is open iff it is not closed. A tableau is closed iff all its branches are
closed.
A proof for a formula φ is a closed tableau for φ.

In other words, a proof for the formula φ is a closed tableau for the CSS
〈{Fφ : (s1, c1)}, {(s1, c1) (s1, c1)}〉.

6.3. Soundness

The soundness proof uses similar techniques than the ones used in BI labelled
tableaux method [16, 17]. The key point is the notion of realizability of a
CSS 〈F , C〉, that means there exists a model K and embeddings from world
labels to the world set (b.cw) and resource labels to the resource set (b.cr) of
K such that if Tφ : (u, x) ∈ F then bucw, bxcr �K φ and if Fφ : (u, x) ∈ F
then bucw, bxcr 6�K φ. To obtain such embedding, we consider two functions
b.cw : Aw(C)→W and b.cr : Ar(C)→ Res.

We remark, by Proposition 29, that b.cw is defined onAw(C). Then, such b.cr
functions will be implicitly extended toDr(C) ⇀ Res, that is for all ci1◦. . .◦cin ∈
Dr(C), bci1 ◦ . . . ◦ cincr = bci1cr • . . . • bcincr and b1cr = e. Moreover bxcr can
be undefined, because resource composition is partial.

Definition 36 (Realization). Let 〈F , C〉 be a CSS. A realization of 〈F , C〉 is a
triplet R = (K, b.cw, b.cr) where K = (W,M,R, V) is a model, b.cw : Aw(C)→
W and b.cr : Dr(C)→ Res, such that

27

- b1cr = e,

- b.cr is total: ∀x ∈ Dr(C) · bxcr ↓,

- if r ∈ ΣR ∩ Ar(C), then brcr = r,

- if Tφ : (u, x) ∈ F , then bucw, bxcr �K φ,

- if Fφ : (u, x) ∈ F , then bucw, bxcr 6�K φ,

- if (u, x) (v, y) ∈ C, then (bucw, bxcr)R(bvcw, bycr), and

- if x ∼ y ∈ C, then bxcr = bycr.

A CSS is realizable if there exists a realization of this CSS and a tableau is
realizable if at least one of its branches is realizable.

Proposition 37. Let 〈F , C〉 be a CSS and R = (K, b.cw, b.cr) a realization of
it. The following properties hold:

1. For all x ∈ Dr(C), bxcr is defined;

2. If (u, x) (v, y) ∈ C, then (bucw, bxcr)R(bvcw, bycr);

3. If x ∼ y ∈ C, then bxcr = bycr.

Proof. This proof is a direct extension of the proof of the same proposition
developed in previous works [9, 23].

Lemma 38. The rules of the tableaux method for LSM preserve realizability.

Proof. Let T a realizable tableau. By definition, T contains a realizable
branch B = 〈F , C〉. Let R = (K, b.cw, b.cr) be a realization of the branch
B, where K = (W,M,R, V), b.cw : Aw(C)→ W and b.cr : Dr(C)→ Res. If we
apply a rule on a labelled formula of another branch than B, then this B is not
modified, then T stays realizable. Else, we proceed by cases on the formula to
which the rule is applied. We only present the cases related to modalities, the
other being already checked in previous works on BBI.

- T♦yφ : (u, x) ∈ F .

We have bucw, bxcr �K ♦yφ. Then, there are w ∈ W and r ∈ Res such
that bxcr • y ↓ and (bucw, bxcr • y)R(w, r) and w, r �K φ. As si and ci
are a new label constants, bsicw and bcicr are not defined. Then we can
extend R such that bsicw = w and bcicr = r. We also remark that the
rule introduces the resource label ‖y‖. There are three cases.

– If y = e then ‖y‖ = 1 and we have b‖y‖cr = b1cr = e = y.

– If y 6= e and y ∈ Ar(C) then ‖y‖ = y and we have b‖y‖cr = bycr = y.

– If y 6= e and y 6∈ Ar(C) then we can extend the realization by setting
b‖y‖cr = y.

28

Thus, in all cases, we obtain a realization of 〈F , C∪{(u, x◦‖y‖) (si, ci)}〉,
which is a realization of the new branch 〈F ∪ {Tφ : (si, ci)}, C ∪ {(u, x ◦
‖y‖) (si, ci)}〉.

- F♦yφ : (u, x) ∈ F .

By realization, we have bucw, bxcr 6�K ♦•φ. Then, by definition, for all
w ∈ W and r ∈ Res such that bxcr • y ↓ and (bucw, bxcr • y)R(w, r), we
have w, r 6�K φ. By rule condition, (u, x ◦ ‖y‖) (v, z) ∈ C. Thus, by
Proposition 37, (bucw, bx ◦ ‖y‖cr)R(bvcw, bzcr). There are two cases.

– If y = e then ‖y‖ = 1 and we have b‖y‖cr = b1cr = e = y.

– If y 6= e then ‖y‖ = y and we have b‖y‖cr = bycr = y.

Thus, we have b‖y‖cr = y. Remarking that bx ◦ ‖y‖cr ↓ and bx ◦ ‖y‖cr =
bxcr • b‖y‖cr, we have bvcw, bzcr 6�K φ and we can conclude that R is a
realization of the new branch 〈F ∪ {Fφ : (v, z)}, C〉.

- T♦φ : (u, x) ∈ F .

We have bucw, bxcr �K ♦φ. Then, there are w ∈ W and r ∈ Res such
that (bucw, bxcr)R(w, r) and w, r �K φ. As si and ci are a new label
constants, then bsicw and bcicr are not defined. Then we can extend
R such that bsicw = w and bcicr = r. Then we obtain a realization
of 〈F , C ∪ {(u, x) (si, ci)}〉, which is a realization of the new branch
〈F ∪ {Tφ : (si, ci)}, C ∪ {(u, x) (si, ci)}〉.

- F♦φ : (u, x) ∈ F .

By realization, we have bucw, bxcr 6�K ♦φ. Then, by definition, for all
w ∈ W and r ∈ Res such that (bucw, bxcr)R(w, r), we have w, r 6�K
φ. By rule condition, (u, x) (v, y) ∈ C. Thus, by Proposition 37,
(bucw, bxcr)R(bvcw, bycr). Therefore bvcw, bycr 6�K φ and we can con-
clude that R is a realization of the new branch 〈F ∪ {Fφ : (v, y)}, C〉.

- T♦•φ : (u, x) ∈ F .

We have bucw, bxcr �K ♦•φ. Then, there are w ∈ W and s, r ∈ Res such
that bxcr • s ↓ and (bucw, bxcr • s)R(w, r) and w, r �K φ. As si, ci and cj
are a new label constants, bsicw, bcicr and bcjcr are not defined. More-
over, as ci 6= cj then we can extend R such that bsicw = w and bcicr = s
and bcjcr = r. Remarking that bxcr • bcicr ↓ and, by implicit extension,
bxcicr = bxcr • bcicr and (bucw, bxcicr)R(bsicw, bcjcr), we obtain a real-
ization of 〈F , C ∪ {(u, xci) (si, cj)}〉, which is a realization of the new
branch 〈F ∪ {Tφ : (si, cj)}, C ∪ {(u, xci) (si, cj)}〉.

- F♦•φ : (u, x) ∈ F .

By realization, we have bucw, bxcr 6�K ♦•φ. Then, by definition, for all
w ∈ W and s, r ∈ Res such that bxcr • s ↓ and (bucw, bxcr • s)R(w, r),
we have w, r 6�K φ. By rule condition, (u, xy) (v, z) ∈ C. Thus, by

29

Proposition 37, (bucw, bxycr)R(bvcw, bzcr). Remarking that bxycr ↓ and
bxycr = bxcr•bycr (by the definition of realization), we have bvcw, bzcr 6�K
φ and then R is a realization of the new branch 〈F ∪ {Fφ : (v, z)}, C〉.

- The other cases are similar.

Lemma 39. Closed branches are not realizable.

Proof. Let 〈F , C〉 a closed branch. We suppose that this branch is realizable.
Let R = (K, b.cw, b.cr) a realization of it. There are four cases.

- Tφ : (u, x) ∈ F , Fφ : (u, y) ∈ F and x ∼ y ∈ C.
By definition of realization and Proposition 37, we have bucw, bxcr �K φ,
bucw, bycr 6�K φ and bxcr = bycr. This case is absurd.

- FI : (u, x) ∈ F and x ∼ 1 ∈ C.
By definition of realization and Proposition 37, bucw, bxcr 6�K I and
bxcr = e. This case is absurd.

- F> : (u, x) ∈ F .

By definition of realization, bucw, bxcr 6�K >, which is absurd.

- T⊥ : (u, x) ∈ F .

By definition of realization, bucw, bxcr �K ⊥, which is absurd.

As all cases are absurd, we conclude that 〈F , C〉 is not realizable.

Theorem 40 (Soundness). If there exists a proof for a formula φ then φ is
valid.

Proof. Suppose that there exists a proof for φ. Then there is a closed tableau
Tφ for the CSS C = 〈{Fφ : (s1, c1)}, {(s1, c1) (s1, c1)}〉. Now suppose that φ
is not valid. Then there is a countermodel K = (W,M,R, V), a world w ∈ W ,
and a resource r ∈ Res such that w, r 6�K φ. Let R = (K, b.cw, b.cr) such that
bs1cw = w, bc1cr = r and b1cr = e. Note that R is a realization of C. By
Lemma 38, Tφ is realizable. By Lemma 39, Tφ cannot be closed. But, this is
absurd because Tφ is a proof and then a closed tableau. Therefore φ is valid.

6.4. Tableaux examples

We first build a tableau for formula φ ≡ ((�•Q ∗ P) ∧ ♦R)→ ♦(Q ∧�eR).
By Definition 34, [〈{Fφ : (s1, c1)}, {(s1, c1) (s1, c1)}〉] is a tableau for φ.

In order to represent tableaux, we use the following representation:

[F]

F((�•Q ∗ P) ∧ ♦R)→ ♦(Q ∧�eR) : (s1, c1)

[C]
(s1, c1) (s1, c1)

30

[F]
√

1 F((�•Q ∗ P) ∧ ♦R)→ ♦(Q ∧�eR) : (s1, c1)

√
2 T(�•Q ∗ P) ∧ ♦R : (s1, c1)
√

4 F♦(Q ∧�eR) : (s1, c1)

√
6 T�•Q ∗ P : (s1, c1)
√

3 T♦R : (s1, c1)

TR : (s2, c2)

√
5 FQ ∧�eR : (s2, c2)

FQ : (s2, c2)
√

8 F�eR : (s2, c2)

FR : (s2, c2)

×

√
7 T�•Q : (s1, c3)

TP : (s1, c4)

TQ : (s2, c2)

×

[C]
(s1, c1) (s1, c1)

(s1, c1) (s2, c2)

c1 ∼ c3c4 (s2, c2) (s2, c2)

Figure 6: Tableau for ((�•Q ∗ P) ∧ ♦R)→ ♦(Q ∧ �eR)

The column on left represents the sets of labelled formulæ of the CSS of the
tableau ([F]) and the column on the right represents the constraint sets of the
CSS of the tableau ([C]). Applying rules on this tableau, we obtain the tableau
of Figure 6 for φ. We decorate a labelled formula with

√
i to show that we apply

a rule on this formula at step i.
We give more details about the rule applications at steps 3, 7, and 8. At

step 3, we apply a rule on the labelled formula T♦R : (s1, c1). To apply the rule
〈T♦〉, we have to choose a new world label (s2) and a new resource label (c2).
Then, the rule introduces in the branch the labelled formula TR : (s2, c2) and
the constraint (s1, c1) (s2, c2).

Concerning step 7, we apply the rule 〈T�•〉 on the labelled formula T�•Q :
(s1, c3). Then we have to choose v, y and z such that (s1, c3y) (v, z) ∈ C. We
have (s1, c3c4) (s2, c2) ∈ C; indeed,

(s1, c1) (s2, c2) c1 ∼ c3c4
(s1, c1) (s2, c2)

〈kr2 〉c2 ∼ c2
〈ka〉

(s1, c3c4) (s2, c2)

Thus it is possible to apply this rule choosing v = s2, y = c4 and z = c2,
adding to the branch the labelled formula TQ : (s2, c2).

For step 8, we apply the rule 〈F�y〉 on the labelled formula F�eR : (s2, c2).
This rule introduces the labelled formula FR : (s2, c2) and the constraint (s2, c2◦

31

[F]
√

1 F♦r(P ∗Q)→ (♦P ∗ ♦Q) : (s1, c1)

√
2 T♦r(P ∗Q) : (s1, c1)

√
4

√
5 F♦P ∗ ♦Q : (s1, c1)

√
3 TP ∗Q : (s2, c2)

TP : (s2, c3)

TQ : (s2, c4)

√
6 F♦P : (s1, 1) F♦Q : (s1, c1)

...

√
7 F♦P : (s1, c1) F♦Q : (s1, 1)

...
FP : (s1, 1)

FP : (s1, c1)

B

[C]
(s1, c1) (s1, c1)

(s1, c1r) (s2, c2)

c2 ∼ c3c4

...

...

Figure 7: Tableau for ♦r(P ∗Q)→ (♦P ∗ ♦Q)

‖e‖) (s2, c2), which is equivalent to (s2, c2) (s2, c2) because ‖e‖ = 1 and
because 1 is the unit of ◦.

Finally, we observe that the tableau’s branches are closed (denoted ×), so
this tableau is a proof for the formula ((�•Q ∗P)∧♦R)→ ♦(Q∧�eR). There-
fore, by Theorem 40, the formula is valid.

We consider another example of tableau for the formula ♦r(P ∗Q)→ (♦P ∗♦Q).
By applying tableaux rules, we obtain the tableau of Figure 7 with branches
that are not closed.

6.5. Countermodel extraction

In this section, we present a countermodel extraction method that will be
used to show the completeness of the tableaux calculus with respect to the
model-theoretic semantics defined in Section 2. The method consists in trans-
forming the reachability constraint set and the resource constraint set of a
branch 〈F , C〉 into a model K such that if Tφ : (u, x) ∈ F , then u, [x] �K φ
and, if Fφ : (u, x) ∈ F , then u, [x] 6�K φ, where [x] is the equivalence class of x.

The first step is to saturate the labelled formula of the branch (also known
as ‘obtaining a Hintikka CSS’).

Definition 41 (Hintikka CSS). A CSS 〈F , C〉 is a Hintikka CSS iff, for any
formulæ φ, ψ ∈ L, any world label u ∈ Lw, any resource label x, y ∈ Lr, and
any resource symbol r ∈ ΣR, we have the following:

32

1. Tφ : (u, x) 6∈ F or Fφ : (u, y) 6∈ F or x ∼ y 6∈ C,

2. FI : (u, x) 6∈ F or x ∼ 1 6∈ C,

3. F> : (u, x) 6∈ F ,

4. T⊥ : (u, x) 6∈ F ,

5. if TI : (u, x) ∈ F , then x ∼ 1 ∈ C,

6. if T¬φ : (u, x) ∈ F , then Fφ : (u, x) ∈ F ,

7. if F¬φ : (u, x) ∈ F , then Tφ : (u, x) ∈ F ,

8. if Tφ ∧ ψ : (u, x) ∈ F , then Tφ : (u, x) ∈ F and Tψ : (u, x) ∈ F ,

9. if Fφ ∧ ψ : (u, x) ∈ F , then Fφ : (u, x) ∈ F or Fψ : (u, x) ∈ F ,

10. if Tφ ∨ ψ : (u, x) ∈ F , then Tφ : (u, x) ∈ F or Tψ : (u, x) ∈ F ,

11. if Fφ ∨ ψ : (u, x) ∈ F , then Fφ : (u, x) ∈ F and Fψ : (u, x) ∈ F ,

12. if Tφ→ ψ : (u, x) ∈ F , then Fφ : (u, x) ∈ F or Tψ : (u, x) ∈ F ,

13. if Fφ→ ψ : (u, x) ∈ F , then Tφ : (u, x) ∈ F and Fψ : (u, x) ∈ F ,

14. if Tφ ∗ ψ : (u, x) ∈ F , then there are y, z ∈ Lr such that x ∼ yz ∈ C and
Tφ : (u, y) ∈ F and Tψ : (u, z) ∈ F ,

15. if Fφ∗ψ : (u, x) ∈ F , then, for all y, z ∈ Lr, x ∼ yz ∈ C ⇒ Fφ : (u, y) ∈ F
or Fψ : (u, z) ∈ F ,

16. if Tφ−∗ ψ : (u, x) ∈ F , then, for all y ∈ Lr, xy ∈ Dr(C)⇒Fφ : (u, y)∈F
or Tψ : (u, xy)∈F ,

17. if Fφ −∗ ψ : (u, x) ∈ F , then there are y ∈ Lr such that xy ∈ Dr(C) and
Tφ : (u, y) ∈ F and Fψ : (u, xy) ∈ F ,

18. if T♦rφ : (u, x) ∈ F , then there are v ∈ Lw and z ∈ Lr such that (u, x ◦
‖r‖) (v, z) ∈ C and Tφ : (v, z) ∈ F ,

19. if F♦rφ : (u, x) ∈ F , then, for all v ∈ Lw and for all z ∈ Lr, (u, x◦‖r‖)
(v, z) ∈ C ⇒ Fφ : (v, z) ∈ F ,

20. if T�rφ : (u, x) ∈ F , then, for all v ∈ Lw and for all z ∈ Lr, (u, x◦‖r‖)
(v, z) ∈ C ⇒ Tφ : (v, z) ∈ F , and

21. if F�rφ : (u, x) ∈ F , then there are v ∈ Lw and z ∈ Lr such that (u, x ◦
‖r‖) (v, z) ∈ C and Fφ : (v, z) ∈ F .

22. if T♦φ : (u, x) ∈ F , then there are v ∈ Lw and y ∈ Lr such that (u, x)
(v, y) ∈ C and Tφ : (v, y) ∈ F ,

23. if F♦φ : (u, x) ∈ F then, for all v ∈ Lw and for all y ∈ Lr, (u, x)
(v, y) ∈ C ⇒ Fφ : (v, y) ∈ F

24. if T�φ : (u, x) ∈ F , then, for all v ∈ Lw and for all y ∈ Lr, (u, x)
(v, y) ∈ C ⇒ Tφ : (v, y) ∈ F ,

25. if F�φ : (u, x) ∈ F , then there are v ∈ Lw and y ∈ Lr such that (u, x)
(v, y) ∈ C and Fφ : (v, y) ∈ F ,

26. if T♦•φ : (u, x) ∈ F , then there are v ∈ Lw and y, z ∈ Lr, (u, xy)
(v, z) ∈ C and Tφ : (v, z) ∈ F ,

27. if F♦•φ : (u, x) ∈ F , then, for all v ∈ Lw and for all y, z ∈ Lr, (u, xy)
(v, z) ∈ C ⇒ Fφ : (v, z) ∈ F ,

28. if T�•φ : (u, x) ∈ F , then, for all v ∈ Lw and for all y, z ∈ Lr, (u, xy)
(v, z) ∈ C ⇒ Tφ : (v, z) ∈ F ,

33

29. if F�•φ : (u, x) ∈ F , then there are v ∈ Lw and y, z ∈ Lr such that
(u, xy) (v, z) ∈ C and Fφ : (v, z) ∈ F ,

This definition is an extension of the similar definition given in previous
works [9, 23] with the conditions from (18) to (29) that correspond to the
treatment of the modalities. Let us note that the conditions (1), (2), (3), and
(4) certify that a Hintikka CSS is not closed and the other conditions certify
that all labelled formulæ of a Hintikka CSS are saturated.

In order to extract a countermodel from a Hintikka CSS, we must build
equivalence classes. The equivalence class of x ∈ Dr(C), denoted [x], is the set
[x] = {y ∈ Lr | x ∼ y ∈ C}. We also denote by Dr(C)/ ∼ = {[x] | x ∈ Dr(C)}
the set of all equivalence classes of Dr(C). We highlight that ∼ is an equivalence
relation, because it is is reflexive (by Corollary 27), symmetric (by rule 〈sr〉)
and transitive (by rule 〈tr〉).

Now, we give the definition of a function Ω that extracts a countermodel
from a Hintikka CSS.

Definition 42 (Function Ω). Let 〈F , C〉 be a Hintikka CSS. The function Ω
associates to 〈F , C〉 a 4-tuple Ω(〈F , C〉) = (W,M,R, V), whereM = (Res, •, e),
such that

- W = Aw(C),

- Res = Dr(C)/ ∼,

- e = [1],

- [x] • [y] =

{
↑ if x ◦ y 6∈ Dr(C)
[x ◦ y] otherwise,

- (u, [x])R(v, [y]) iff (u, x) (v, y) ∈ C, and

- (u, [x]) ∈ V (p) iff ∃y ∈ Lr such that y ∼ x ∈ C and Tp : (u, y) ∈ F .

For all r ∈ ΣR such that ‖r‖ ∈ Dr(C), we have that JrK = [‖r‖]. Moreover,
we consider that, for all r ∈ ΣR such that ‖r‖ 6∈ Dr(C), we have JrK is not
defined (is not a resource). Note that our definition is well-formed for the case
in which r = e ∈ ΣR. Indeed, as ‖e‖ = 1 and 1 ∈ Dr(C) by the rule 〈1〉, then
JeK = [‖e‖] = [1] = e.

Lemma 43. Let 〈F , C〉 be a Hintikka CSS. Ω(〈F , C〉) is a model.

Proof. We must show that Ω(〈F , C〉) = (W,M,R, V), whereM = (Res, •, e),
is a model.

- We show that M = (Res, •, e) is a PRM.

– 1 ∈ Dr(C), by rule 〈1〉, so [1] ∈ Res. Moreover, as e = [1], then
e ∈ Res.

34

– • : Res×Res ⇀ Res is well-defined, associative, commutative and e
is its unit.

∗ We show that • is well-defined. Let x, x′, y, y′ ∈ Dr(C) such that
x ∼ x′ ∈ C and y ∼ y′ ∈ C. We show that [x] • [y] = [x′] • [y′].
There are two cases.

· [x] • [y] ↑. In this case, xy 6∈ Dr(C). We suppose that x′y′ ∈
Dr(C). By Corollary 28, we have x′y′ ∼ xy ∈ C. Then
xy ∈ Dr(C), which is absurd. Thus x′y′ 6∈ Dr(C). Therefore
[x′] • [y′] ↑.
· [x] • [y] ↓. In this case, xy ∈ Dr(C). Moreover, by definition

of Ω, [x]• [y] = [xy]. By Corollary 28, we have xy ∼ x′y′ ∈ C.
Then [x′] • [y′] ↓ (because x′y′ ∈ Dr(C)) and [xy] = [x′y′].
By definition of Ω, [x′] • [y′] = [x′y′]. Therefore [x] • [y] =
[xy] = [x′y′] = [x′] • [y′].

∗ Neutral element. Let r ∈ Res. Then there is x ∈ Dr(C) such
that r = [x]. Then, by definition of Ω and as 1 is the unit of ◦,
we have r • e = [x] • [1] = [x ◦ 1] = [x] = r.

∗ Commutativity. Let r1, r2 ∈ Res such that r1 • r2 ↓. Then
there are xy ∈ Dr(C) such that r1 = [x] and r2 = [y]. By
commutativity of ◦, we have r1 •r2 = [x]• [y] = [x◦y] = [y ◦x] =
[y] • [x] = r2 • r1.

∗ The proof of associativity is similar (◦ is associative).

- We show that R ⊆ (W ×Res)× (W ×Res) is reflexive and transitive.

– Reflexivity. Let w ∈ W and r ∈ Res. By definition of Ω, w ∈
Aw(C) and there is x ∈ Dr(C) such that r = [x]. By Proposition
29, w ∈ Aw(C). By Corollary 27, we have (w, 1) (w, 1) ∈ C and
x ∼ x ∈ C. Then, by rule 〈ra1〉, (w, x) (w, x) ∈ C. Thus, we have
(w, r)R(w, r).

– Transitivity. Let w1, w2, w3 ∈ W and r1, r2, r3 ∈ Res such that
(w1, r1)R(w2, r2) and (w2, r2)R(w3, r3). By definition of Ω, there
are x, y, z ∈ Dr(C) such that r1 = [x], r2 = [y], r3 = [z], (w1, x)
(w2, y) ∈ C and (w2, y) (w3, z) ∈ C. By rule 〈ta〉, (w1, x)
(w3, z) ∈ C. Thus (w1, r1)R(w3, r3).

Lemma 44. Let 〈F , C〉 be a Hintikka CSS and K = Ω(〈F , C〉) = (W,M,R, V),
where M = (Res, •, e). For all formulæ φ ∈ L, all u ∈ Aw(C), and all x ∈
Dr(C), we have

1. if Fφ : (u, x) ∈ F , then u, [x] 6�K φ, and

2. if Tφ : (u, x) ∈ F , then u, [x] �K φ.

Proof. The properties (1) and (2) are proved simultaneously by structural
induction on φ.

35

- Base cases.

– Case Fp : (u, x) ∈ F such that p ∈ Prop. We suppose that u, [x] �K p.
Then (u, [x]) ∈ V (p). By definition Ω, there is a resource label y such
that y ∼ x ∈ C and Tp : (u, y) ∈ F . By condition (1) of Definition
41, 〈F , C〉 is not a Hintikka CSS. This is absurd, so u, [x] 6�K p.

– Case Tp : (u, x) ∈ F such that p ∈ Prop. By property by (Pcss),
x ∼ x ∈ C. Then, by definition of Ω, (u, [x]) ∈ V (p). Thus u, [x] �K p.

– Case F⊥ : (u, x) ∈ F . We have u, [x] 6�K ⊥, by definition.

– Case T⊥ : (u, x) ∈ F . As 〈F , C〉 is a Hintikka CSS, by condition (4)
of Definition 41, this case is absurd.

– Case FI : (u, x) ∈ F . We suppose that u, [x] �K I. Then [x] = e,
and, by definition of Ω, we have [x] = [1]. Therefore x ∼ 1 ∈ C.
Then, by condition (2) of Definition 41, 〈F , C〉 is not a Hintikka CSS.
Being absurd, we can conclude that u, [x] 6�K I.

– Case TI : (u, x) ∈ F . By condition (5) of Definition 41, x ∼ 1 ∈ C.
Then, by definition of Ω, [x] = [1] = e. Therefore u, [x] �K I.

– The other base cases are similar.

- Inductive step. We suppose that properties (1) and (2) hold for formulæ
φ and ψ (IH). We only develop the cases about modalities.

– Case F♦rφ : (u, x) ∈ F . Let w ∈ W and s ∈ Res such that [x] •
r ↓ and (u, [x] • r)R(w, s). We recall that, because of our abuse of
notation, we are supposing that [x] • JrK ↓ and (u, [x] • JrK)R(w, s).
We remark that r ∈ ΣR. As [x] • JrK ↓ then JrK is defined and so
JrK = [‖r‖]. Then, by definition of Ω, there is a resource label y
such that y ∈ Dr(C), s = [y] and (u, x ◦ ‖r‖) (w, y) ∈ C. Thus,
by condition (19) of Definition 41, Fφ : (w, y) ∈ F . Then, by the
induction hypothesis, w, s 6�K φ. Therefore u, [x] 6�K ♦rφ.

– Case T♦rφ : (u, x) ∈ F . By condition (18) of Definition 41, there is a
world label v and one resource label z such that (u, x◦‖r‖) (v, z) ∈
C and Tφ : (v, z) ∈ F . Remarking that ‖r‖ ∈ Dr(C) then JrK = [‖r‖].
Then, by the induction hypothesis and the definition of Ω, [x]• JrK ↓,
(u, [x] • JrK)R(v, [z]) and v, [z] �K φ. Therefore u, [x] �K ♦rφ.

– Case F♦φ : (u, x) ∈ F . Let w ∈ W and r ∈ Res such that
(u, [x])R(w, r). By definition of Ω, there is resource label y such
that y ∈ Dr(C), r = [y] and (u, x) (w, y) ∈ C. Thus, by condi-
tion (23) of Definition 41, Fφ : (w, y) ∈ F . Then, by the induction
hypothesis, w, r 6�K φ. Therefore u, [x] 6�K ♦φ.

– Case T♦φ : (u, x) ∈ F . By condition (22) of Definition 41, there is a
world label v and a resource label y such that (u, x) (v, y) ∈ C and
Tφ : (v, y) ∈ F . Then, by the induction hypothesis and definition of
Ω, there is a world v and a resource [y] such that (u, [x])R(v, [y]) and
v, [y] �K φ. Therefore u, [x] �K ♦φ.

36

– Case F♦•φ : (u, x) ∈ F . Let w ∈W and r, r′ ∈ Res such that [x]•r ↓
and (u, [x] • r)R(w, r′). By definition of Ω, there are two resource
labels y and z such that xy ∈ Dr(C), z ∈ Dr(C), r = [y], r′ = [z]
and (u, xy) (w, z) ∈ C. Thus, by condition (27) of Definition 41,
Fφ : (w, z) ∈ F . Then, by the induction hypothesis, w, r′ 6�K φ.
Therefore u, [x] 6�K ♦•φ.

– Case T♦•φ : (u, x) ∈ F . By condition (26) of Definition 41, there is
a world label v and two resource labels y and z such that (u, xy)
(v, z) ∈ C and Tφ : (v, z) ∈ F . We remark that xy ∈ Dr(C). Then,
by the induction hypothesis and definition of Ω, [x] • [y] ↓, (u, [x] •
[y])R(v, [z]) and v, [z] �K φ. Therefore u, [x] �K ♦•φ.

– The other cases are similar.

Lemma 45. Let 〈F , C〉 be a Hintikka CSS such that Fφ : (u, x) ∈ F . The
formula φ is not valid and Ω(〈F , C〉) is a countermodel of φ.

Proof. Let 〈F , C〉 be a Hintikka CSS such that Fφ : (u, x) ∈ F . Let K =
Ω(〈F , C〉). By Lemma 43, K is a model. As 〈F , C〉 is a CSS, by (Pcss) and
Proposition 29, u ∈ Aw(C) and x ∈ Dr(C). Thus, by Lemma 44, we have
u, [x] 6�K φ. Therefore K is a countermodel of the formula φ and we can conclude
that φ is not valid.

If we consider the tableau for the formula ♦r(P ∗ Q) → (♦P ∗ ♦Q) in Fig-
ure 7, it contains a branch (denoted B) which is a Hintikka CSS. By Lemma 45,
♦r(P ∗Q)→ (♦P ∗♦Q) is not valid and Ω(B) is a countermodel for this formula.

We extract this countermodel, using Definition 42.
We have K = Ω(B) = (W,M,R, V), where M = (Res, •, e), such that

- W = Aw(C) = {s1, s2},

- Res = Dr(C)/ ∼ = {e, [c1], [c2], [c3], [c4], r, [c1r]}, where e = [1], [c2] =
[c3c4] and JrK = [‖r‖] = [r] (recall that we abuse notation and write r for
JrK),

- • is defined by

• e [c1] [c2] [c3] [c4] r [c1r]

e e [c1] [c2] [c3] [c4] r [c1r]
[c1] [c1] ↑ ↑ ↑ ↑ [c1r] ↑
[c2] [c2] ↑ ↑ ↑ ↑ ↑ ↑
[c3] [c3] ↑ ↑ ↑ [c2] ↑ ↑
[c4] [c4] ↑ ↑ [c2] ↑ ↑ ↑
r r [c1r] ↑ ↑ ↑ ↑ ↑

[c1r] [c1r] ↑ ↑ ↑ ↑ ↑ ↑

37

- Concerning the reachability relation, we have (s1, [c1r])R(s2, [c2]) and
(w, r)R(w, r), for all w ∈W and r ∈ Res, and

- V (P) = {(s2, [c3])} and V (Q) = {(s2, [c4])}.

It is easy to check that it is a countermodel of ♦r(P ∗Q)→ (♦P ∗♦Q). We
remark that it is also a countermodel of the formula ♦•(P ∗Q)→ (♦P ∗ ♦Q).

6.6. Completeness

The proof of completeness for LSM is an extension of the one developed for
BBI [23] and detailled for a modal extension in [9]. It consists in constructing a
Hintikka CSS from a CSS which can be closed. To construct this Hintikka CSS,
we use a fair strategy and a oracle and then we start by giving some definitions
of [9, 23] extended for dealing with our new modalities.

Definition 46 (Fair strategy). A fair strategy is a labelled sequence of for-
mulæ (Siχi : (ui, xi))i∈N in {T,F}×L×Lw ×Lr such that all labelled formulæ
occur infinitely many times in this sequence; that is, {i ∈ N | Siχi : (ui, xi) ≡
Sχ : (u, x)} is infinite for any Sχ : (u, x) ∈ {T,F} × L × Lw × Lr.

Proposition 47. There exists a fair strategy.

Proof. Let X = {T,F}×L×Lw×Lr the set of all labelled formulæ. As Prop is
countable, L is countable. Moreover, Lw and Lr are countable (remember that
γR is countable). Therefore, X is countable. Then N×X is countable and there
exists a surjective function ϕ : N −→ N ×X. Let p : N ×X −→ X defined by
p(i, x) = x and u = p ◦ϕ. We show that u is a fair strategy by showing that for
any x ∈ X, u−1({x}) is infinite. Let x ∈ X. u−1({x}) = ϕ−1(p−1({x})). But
p−1({x}) = {(i, x)|i ∈ N} so p−1(x) is infinite. As ϕ is surjective, ϕ−1(p−1({x}))
is also infinite.

Definition 48. Let P be a set of CSSs.

1. P is 4-closed if 〈F , C〉 ∈ P holds whenever 〈F , C〉 4 〈F ′, C′〉 and 〈F ′, C′〉 ∈
P holds.

2. P is of finite character if 〈F , C〉 ∈ P holds whenever 〈Ff , Cf 〉 ∈ P holds
for every 〈Ff , Cf 〉 4f 〈F , C〉.

3. P is saturated if for any 〈F , C〉 ∈ P and any instance

cond(F , C)
〈F1, C1〉 | . . . | 〈Fk, Ck〉

of a rule of Figures 4 and 5, if cond(F , C) is fulfilled then 〈F ∪Fi, C∪Ci〉 ∈
P for at least one i ∈ {1, . . . , k}.

Definition 49 (Oracle). An oracle is a set of non-closed CSSs which is 4-
closed, of finite character, and saturated.

38

Lemma 50. There exists an oracle which contains every finite CSS for which
there is no closed tableau.

Proof. The proof is an adaptation for our modalities of the similar proof pro-
posed in [9, 23] which is already an adaptation of proof of completeness of
tableaux for first-order logic [15]. The proof developed in [9] gives all the nec-
essary notions to derive this proof in detail.

In order to show the completeness of our tableau calculus, we consider a
formula ϕ for which there exists no proof and we show that there exists a
countermodel for this formula.

We denote by T0 the initial tableau for ϕ. Then, we have

1. T0 = [〈{Fϕ : (s1, c1)}, {(s1, c1) (s1, c1)}〉], and

2. T0 cannot be closed.

Now, we present a way to obtain a Hintikka CSS that will allow us to con-
clude to the completeness. By Lemma 50, there exists an oracle that contains
every finite CSS for which there exists no closed tableau. We denote by P this
oracle.

By Proposition 47, there exists a fair strategy. We denote by S this strat-
egy and Siχi : (ui, xi) the ith formula of S. As T0 cannot be closed, its unique
branch belongs to the oracle, that is 〈{Fϕ : (s1, c1)}, {(s1, c1) (s1, c1)}〉 ∈ P.

Now we build a sequence 〈Fi, Ci〉i>0 as follows:

- 〈F0, C0〉 = 〈{Fϕ : (s1, c1)}, {(s1, c1) (s1, c1)}〉;

- If 〈Fi ∪ {Siχi : (ui, xi)}, Ci〉 6∈ P, then we have 〈Fi+1, Ci+1〉 = 〈Fi, Ci〉;

- If 〈Fi∪{Siχi : (ui, xi)}, Ci〉 ∈ P, then we have 〈Fi+1, Ci+1〉 = 〈Fi∪{Siχi :
(ui, xi)} ∪ Fe, Ci ∪ Ce〉 such that Fe and Ce are determined by:

Si Fi Fe Ce
T I ∅ {xi ∼ 1}
T φ ∗ ψ {Tφ : (ui, b),Tψ : (ui, c)} {xi ∼ bc}
F φ−∗ ψ {Tφ : (ui, b),Fψ : (ui, xib)} {xib ∼ xib}
T ♦rφ {Tφ : (a, b)} {(si, xi ◦ ‖r‖) (a, b)}
F �rφ {Fφ : (a, b)} {(si, xi ◦ ‖r‖) (a, b)}
T ♦φ {Tφ : (a, b)} {(si, xi) (a, b)}
F �φ {Fφ : (a, b)} {(si, xi) (a, b)}
T ♦•φ {Tφ : (a, c)} {(si, xib) (a, c)}
F �•φ {Fφ : (a, c)} {(si, xib) (a, c)}
Otherwise ∅ ∅

with a = si+2, b = c2i+2 and c = c2i+3.

39

Proposition 51. For any i ∈ N, the following properties hold:

1. Fϕ : (s1, c1) ∈ Fi and (s1, c1) (s1, c1) ∈ Ci;
2. Fi ⊆ Fi+1 and Ci ⊆ Ci+1;

3. 〈Fi, Ci〉i>0 ∈ P;

4. Aw(Ci) ⊆ {s1, s2, . . . , si+1};
5. Ar(Ci) ⊆ {c1, c2, . . . , c2i+1} ∪ ΣR.

Proof. Given in AppendixA

The limit CSS 〈F∞, C∞〉 of the sequence 〈Fi, Ci〉i>0 is defined by

F∞ =
⋃
i>0

Fi and C∞ =
⋃
i>0

Ci.

Proposition 52. The following properties hold:

1. 〈F∞, C∞〉 ∈ P;

2. For all labelled formulæ Sφ : (u, x), if 〈F∞ ∪ {Sφ : (u, x)}, C∞〉 ∈ P, then
Sφ : (u, x) ∈ F∞.

Proof. Given in AppendixB

Lemma 53. The limit CSS is a Hintikka CSS.

Proof. By Property 1 of Proposition 52, 〈F∞, C∞〉 ∈ P. We verify that all
conditions of Definition 41 hold. Here we only give the conditions about modal-
ities.

- We suppose that T♦rφ : (u, x) ∈ F∞. By same arguments to that of
condition 5, there is k ∈ N such that

– the kth formula of our fair strategy is T♦rφ : (u, x),

– T♦rφ : (u, x) ∈ Fk, and

– 〈Fk, Ck〉 ∈ P.

Then, by construction of the limit CSS, 〈Fk+1, Ck+1〉 = 〈Fk ∪ {Tφ :
(a, b)}, Ck ∪ {(u, x ◦ ‖r‖) (a, b)}〉, where a = sk+2 and b = c2k+2. Then
(u, x ◦ ‖r‖) (a, b) ∈ C∞ and Tφ : (a, b) ∈ F∞. Therefore condition (18)
of Definition 41 holds.

- We suppose that F♦rφ : (u, x) ∈ F∞. Let v ∈ Lw and y ∈ Lr such
that (u, x ◦ ‖r‖) (v, y) ∈ C∞. As P is saturated then 〈F∞ ∪ {Fφ :
(v, y)}, C∞〉 ∈ P, by rule 〈F♦•〉. By Property 2 of Proposition 52, Fφ :
(v, y) ∈ F∞. Therefore the condition (19) of Definition 41 holds.

- Id. condition (20).

- Id. condition (21).

40

- Suppose that T♦φ : (u, x) ∈ F∞. By same arguments to that of condition
5, there is k ∈ N such that

– the kth formula of our fair strategy is T♦φ : (u, x),

– T♦φ : (u, x) ∈ Fk, and

– 〈Fk, Ck〉 ∈ P.

Then, by construction of the limit CSS, 〈Fk+1, Ck+1〉 = 〈Fk ∪ {Tφ :
(a, b)}, Ck ∪ {(u, x) (a, b)}〉, where a = sk+2 and b = c2k+2. Then
(u, x) (a, b) ∈ C∞ and Tφ : (a, b) ∈ F∞. Therefore condition (22) of
Definition 41 holds.

- Suppose that F♦φ : (u, x) ∈ F∞. Let v ∈ Lw and y ∈ Lr such that
(u, x) (v, y) ∈ C∞. As P is saturated then 〈F∞∪{Fφ : (v, y)}, C∞〉 ∈ P,
by rule 〈F♦〉. By Property 2 of Proposition 52, Fφ : (v, y) ∈ F∞. Therefore
condition (23) of Definition 41 holds.

- Id. condition (24).

- Id. condition (25).

- Suppose that T♦•φ : (u, x) ∈ F∞. By same arguments as for condition 5,
there is k ∈ N such that

– the kth formula of our fair strategy is T♦•φ : (u, x),

– T♦•φ : (u, x) ∈ Fk, and

– 〈Fk, Ck〉 ∈ P.

Then, by construction of the limit CSS, 〈Fk+1, Ck+1〉 = 〈Fk ∪ {Tφ :
(a, c)}, Ck ∪ {(u, xb) (a, c)}〉, where a = sk+2, b = c2k+2 and c = c2k+3.
Then (u, xb) (a, c) ∈ C∞ and Tφ : (a, c) ∈ F∞. Therefore condition
(26) of Definition 41 holds.

- Suppose that F♦•φ : (u, x) ∈ F∞. Let v ∈ Lw and y, z ∈ Lr such that
(u, xy) (v, z) ∈ C∞. As P is saturated then 〈F∞ ∪ {Fφ : (v, z)}, C∞〉 ∈
P, by rule 〈F♦•〉. By Property 2 of Proposition 52, Fφ : (v, z) ∈ F∞.
Therefore condition (27) of Definition 41 holds.

- Id. condition (28).

- Id. condition (29).

Theorem 54 (Completeness). Let ϕ be a formula. If ϕ is valid, then there
exits a proof for ϕ.

Proof. We suppose that there is no proof for the formula ϕ. We show that
ϕ is not valid. The method that we have presented here allows us to build a
limit CSS 〈F∞, C∞〉 that is, by Lemma 53, a Hintikka CSS. By Property 1 of
Proposition 51, Fϕ : (s1, c1) ∈ Fi, for any i > 0. By definition of limit CSS,
Fϕ : (s1, c1) ∈ F∞. Then, by Lemma 45, ϕ is not valid.

41

7. Conclusion

We have defined and studied an extension of the modal logic S4, called LSM,
that introduces the notion of resource, and corresponding separating modalities,
in its models. This logic directly and naturally supports reasoning about the
manipulation of resources by a system. The resource semantics upon which
LSM is based is that of BI [30, 33, 16, 17], further informed by the treatment
of modality considered in [6, 5, 8].

We have proposed a model-theoretic semantics for LSM and have given a
labelled tableaux calculus that is proved sound and complete. Moreover, we
provide a countermodel extraction method in case for non-valid formulæ.

We have considered a range of examples — essentially classic distributed
systems examples — that can be described naturally in LSM. Specifically, we
have considered mutual exclusion, producer–consumer systems, and timed Petri
nets. These examples illustrate the use and expressiveness of the separating
modalities. They serve to illustrate the relative natural expressiveness of the
modalities which, although all definable in terms of the basic resource-shifted
♦r and �r, are convenient for the illustrated modelling examples.

There are many promising directions for future work that we intend to pur-
sue. We summarize them here in order to support some of the initial choices
made here. We begin with the core theoretical topics.

- Formulation of the evident intuitionistic variants of LSM and exploration
of its logical theory (cf. [17],[36]).

- Formulation and exploration of first- (and, perhaps, higher-) order systems
based on LSM (cf. [6, 4, 5]).

- Systematic exploration of the structure of multi-dimensional models. Here
we have considered a two-dimensional set-up that employs a simple pairing
of worlds. More generally, one might consider, with or without the resource
interpretation, n-dimensional models in which worlds may combined using
the evident notion of bunching.

- Integration of the systems considered in this paper and in our proposed
further work into a general co-algebraic perspective.

Considering applications, in particular those in program analysis and ver-
ification, we can consider the relationship between our work and concurrent
separation logic [27]. Concurrent separation logic is built upon the resource se-
mantics of bunched logic and handles concurrent processes in the style of Hoare
logic. We conjecture that our treatment of resource semantics can be used to
support concurrent separation logic too.

We remark that, in general, there is a more-or-less straightforward relation-
ship between Hoare-style presentations of program logics and logically more
standard presentations based on a satisfaction relation between a model and a
propositional formula. Hoare-style systems are based on assertions of the form

42

{φ }C {ψ },

for logical formulæ φ and ψ and program commands C, with essentially
Hilbert-type proof-systems, whereas more standard semantic presentations are
formulated along the lines of

w |=M φ,

whereM is a model and w is a choice of world. In establishing the relationship
between this view and Hoare-style presentations, we take a model with worlds
given by program states (S, T , etc.) and consider how states evolve as programs

perform actions C by executing commands; that is, S
C→ T . To see how this

works we need to consider how such commands generate logical modalities.
Define

S |=M [C]φ iff for every evolution S
C→ T , T |=M φ,

which asserts that the program must have property φ after executing command
c provided that whenever C evolves S to T , the state T has property φ. Thus,
a Hoare-style assertion, {φ }C {ψ }, in which the command C evolves the pro-
gram state from S to T essentially corresponds to a semantic assertion

S |=M φ→ [C]ψ.

Reynolds’ Separation Logic [35], which employs a Hoare-style presentation,
and Ishtiaq and O’Hearn’s Pointer Logic [22], which employs a semantic pre-
sentation, enrich this view of reasoning about programs by introducing the BI’s
concept of resource semantics in order to reason about mutable data structures.

In concurrent separation logic, the rule for the concurrent product of n ≥ 2
commands has the form

{φ1 }C1 {ψ1 } . . . {φn }Cn {ψn }
{φ1 ∗ . . . ∗ φn }C1 × · · · × Cn {ψ1 ∗ . . . ∗ ψn }

,

where no variable free in φi or ψi is changed in Cj when j 6= i. In the resource–
process calculi considered in [6, 4, 5], the multiplicative conjunction is also
intimately connected to the concurrent product:

R,E � φ1 ∗ φ2 iff there exist R1, E1, R2, E2 such that
R,E ∼ R1 ⊗ R2, E1 × E2 and
R1, E1 � φ1 and R2, E2 � φ2.

Here we employ two-dimensional worlds in order to make assertions about
the states of systems in which resources and processes co-evolve according to an
operational semantics based on judgements of the form R,E

a→ R′, E′, under-
stood as asserting that the process E evolves by performing action a relative to
available resources R so as to become the process E′ with available resources
R′.

43

This example suggests that it would be interesting, and possibly of value for
program analysis and verification, to consider classes of models in which some
of the dimensions of the model are generated by the operational semantics of a
programming language. Such models will have associated action modalities (cf.
[6, 4, 5, 8]).

Acknowledgements

This work has been partially supported by the UK EPSRC research grant
EP/H008373/2.

References

References

[1] B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Transactions on Software Engineering,
17(3):259–273, 1991.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge Uni-
versity Press, New York, NY, USA, 2001.

[3] B.F. Chellas. Modal Logic: an introduction. Cambridge University Press,
1980.

[4] M. Collinson, B. Monahan, and D. Pym. A logical and computa-
tional theory of located resource. Journal of Logic and Computation,
19(b):1207–1244, 2009. Advance Access published on 22 July, 2009.
doi:10.1093/logcom/exp021.

[5] M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical
Systems Modelling. College Publications, 2012.

[6] M. Collinson and D. Pym. Algebra and logic for resource-based systems
modelling. Mathematical Structures in Computer Science, 19(5):959–1027,
2009.

[7] M. Collinson, B. Monahan, and D. Pym. Semantics for structured systems
modelling and simulation. In Simutools 2010. ACM Digital Library and
EU Digital Library, 2010.

[8] J.R. Courtault and D. Galmiche. A Modal BI Logic for Dynamic Re-
source Properties. In Logical Foundations of Computer Science, LFCS
2013, LNCS 7734, pages 134–148, 2013. San Diego, CA.

[9] J.R. Courtault and D. Galmiche. A Modal Separation Logic for Resource
Dynamics. Journal of Logic and Computation, Accepted for publication,
2015.

44

[10] J.-R. Courtault, H. van Ditmarsch, and D. Galmiche. An Epistemic Sepa-
ration Logic. In 22nd Int. Workshop on Logic, Language, Information, and
Computation, WoLLIC 2015, LNCS 9160, pages 156–173, Bloomington,
USA, 2015.

[11] M. Dunn and G. Restall. Relevance Logic. In Handbook of Philosophical
Logic, Kluwer, 2002.

[12] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266,
1982.

[13] U. Engberg and G. Winskel. Petri Nets as Models of Linear Logic. In
CAAP 90, LNCS 431, pages 144–161, Copenhagen, Denmark, May 1990.

[14] U. Engberg and G. Winskel. Completeness results for Linear Logic on Petri
nets. Annals of Pure and Applied Logic, 86:101–135, 1997.

[15] M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and
Monographs in Computer Science. Springer Verlag, 1990.

[16] D. Galmiche, D. Méry, and D. Pym. Resource Tableaux (extended ab-
stract). In 16th Int. Workshop on Computer Science Logic, CSL 2002,
LNCS 2471, pages 183–199, September 2002. Edinburgh, Scotland.

[17] D. Galmiche, D. Méry, and D. Pym. The semantics of BI and Resource
Tableaux. Math. Struct. in Comp. Science, 15(6):1033–1088, 2005.

[18] D. Galmiche and D. Méry. Tableaux and Resource Graphs for Separation
Logic. Journal of Logic and Computation, 20(1):189–231, 2010.

[19] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[20] A. Herzig. A Simple Separation Logic. In Int. Workshop on Logic, Lan-
guage, Information, and Computation, WoLLIC 2013, LNCS 8071, pages
168–178, 2013. Darmstadt, Germany.

[21] M. Hennessy and G. Plotkin. On observing nondeterminism and concur-
rency. In Proceedings of the 7th ICALP, volume 85 of Lecture Notes in
Computer Science, pages 299–309. Springer-Verlag, 1980.

[22] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In 28th ACM Symposium on Principles of Programming Lan-
guages, POPL 2001, pages 14–26, London, UK, 2001.

[23] D. Larchey-Wendling. The Formal Proof of the Strong Completeness of
Partial Monoidal Boolean BI. Journal of Logic and Computation, 2014.
doi:10.1093/logcom/exu031.

[24] P.M. Merlin. A study of the recoverability of computing systems. PhD
thesis, University of California, Irvine, 1974.

45

[25] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[26] P. O’Hearn. On Bunched Typing. Journal of Functional Programming,
13(4):747–796, 2003.

[27] P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Com-
puter Science, 375(1–3):271–307, May 2007.

[28] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In 15th Int. Workshop on Computer Science
Logic, CSL 2001, LNCS 2142, pages 1–19, Paris, France, 2001.

[29] P. O’Hearn and H. Yang. Petri Net Semantics of Bunched Implications.
Manuscript, 14 October 1999, at http://www0.cs.ucl.ac.uk/staff/p.

ohearn/papers/petri.ps, 1999.

[30] P. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

[31] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages
46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[32] D.J. Pym and C. Tofts. Systems modelling via resources and processes:
Philosophy, calculus, semantics, and logic. Electronic Notes in Theoretical
Computer Science, 172:545–587, 2007.

[33] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: The
semantics of BI. Theoretical Computer Science, 315(1):257–305, 2004. Er-
ratum: p. 285, l. -12: “, for some P ′, Q≡P ;P ′ ” should be “P `Q”.

[34] G. Restall. An Introduction to Substructural Logics. Routledge, 1999.

[35] J. Reynolds. Separation logic: A logic for shared mutable data structures.
In IEEE Symposium on Logic in Computer Science, pages 55–74, Copen-
hagen, Danemark, July 2002.

[36] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, University of Edinburgh, 1994.

[37] C. Stirling. Modal and Temporal Properties of Processes. Springer Verlag,
2001.

[38] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. Springer Publishing Company, 2007.

46

AppendixA. Proof of Proposition 51

Proposition 51 For any i ∈ N, the following properties hold:

1. Fϕ : (s1, c1) ∈ Fi and (s1, c1) (s1, c1) ∈ Ci;
2. Fi ⊆ Fi+1 and Ci ⊆ Ci+1;

3. 〈Fi, Ci〉i>0 ∈ P;

4. Aw(Ci) ⊆ {s1, s2, . . . , si+1};
5. Ar(Ci) ⊆ {c1, c2, . . . , c2i+1} ∪ ΣR.

Proof.

1. This property holds for i = 0. As 〈Fi+1, Ci+1〉 is an extension (∪) of
〈Fi, Ci〉, this property also holds for all i > 0.

2. This property holds because 〈Fi+1, Ci+1〉 is an extension (∪) of 〈Fi, Ci〉.
(3, 4, 5) We prove the Properties 3, 4, and 5 simultaneously by induction on i.v

The base case (i = 0) clearly holds, as 〈F0, C0〉 = 〈{Fϕ : (s1, c1)}, {(s1, c1)
(s1, c1)}〉, then we remark that Properties 4 and 5 hold and Property 3
holds by hypothesis.
Now we prove the inductive case. We suppose that the Properties 3, 4,
and 5 hold for i = n (IH). We show that they hold for i = n+ 1.

- If 〈Fn ∪ {Snχn : (un, xn)}, Cn〉 6∈ P, then 〈Fn+1, Cn+1〉 = 〈Fn, Cn〉.
Then Properties 3, 4, and 5 hold by the induction hypothesis.

- If 〈Fn∪{Snχn : (un, xn)}, Cn〉 ∈ P then it is a CSS (the elements of P
are CSS, by definition). Then, by (Pcss), (un, 1) (un, 1) ∈ Cn and
xn ∼ xn ∈ Cn. Thus, we have un ∈ Aw(Cn) and γR∩E(xn) ⊆ Ar(Cn).
Therefore, by Proposition 29, un ∈ Aw(Cn) and γR∩E(xn) ⊆ Ar(Cn)
(1). There are ten cases.

– If Sn = T and χn = I. In this case, 〈Fn+1, Cn+1〉 = 〈Fn∪{Snχn :
(un, xn)}, Cn ∪ {xn ∼ 1}〉. By saturation of P, applying the rule
〈TI〉, we have 〈Fn+1, Cn+1〉 ∈ P. Then Property 3 holds. By (1),
we remark that Aw(Cn+1) = Aw(Cn) and Ar(Cn+1) = Ar(Cn).
Then, by the induction hypothesis, Properties 4 and 5 hold.

– Case Sn = T and χn = φ ∗ ψ. 〈Fn+1, Cn+1〉 = 〈Fn ∪ {Snχn :
(un, xn)}∪{Tφ : (un, c2n+2),Tψ : (un, c2n+3)}, Cn∪{x ∼ c2n+2c2n+3}〉.
By the induction hypothesis, c2n+2 6∈ Ar(Cn) and c2n+3 6∈ Ar(Cn),
and they are new resource label constants. Moreover, as 〈Fn ∪
{Snχn : (un, xn)}, Cn〉 ∈ P then, by saturation for rule 〈T∗〉 and
using the labels c2n+2 and c2n+3, 〈Fn+1, Cn+1〉 ∈ P.Thus prop-
erty 3 holds. Moreover, by (1) and (IH), Aw(Cn+1) = Aw(Cn)
and Ar(Cn+1) = Ar(Cn) ∪ {c2n+2, c2n+3}. Therefore, Properties
4 and 5 hold by the induction hypothesis.

47

– Case Sn = F and χn = φ −∗ ψ. 〈Fn+1, Cn+1〉 = 〈Fn ∪ {Snχn :
(un, xn)}∪{Tφ : (un, c2n+2), Fψ : (un, xnc2n+2)}, Cn∪{xnc2n+2 ∼
xnc2n+2}〉. By the induction hypothesis, c2n+2 6∈ Ar(Cn), then it
is new resource label constant. As 〈Fn∪{Snχn : (un, xn)}, Cn〉 ∈
P, by saturation for rule 〈F−∗〉 and using the label c2n+2, 〈Fn+1, Cn+1〉 ∈
P. Thus property 3 holds. Moreover, by (1), we haveAw(Cn+1) =
Aw(Cn) and Ar(Cn+1) = Ar(Cn) ∪ {c2n+2}. Therefore, Proper-
ties 4 and 5 hold by the induction hypothesis.

– Case Sn = T and χn = ♦rφ. In this case, 〈Fn+1, Cn+1〉 = 〈Fn ∪
{Snχn : (un, xn)} ∪ {Tφ : (sn+2, c2n+2)}, Cn ∪ {(un, xn ◦ ‖r‖)
(sn+2, c2n+2)}〉. By the induction hypothesis, sn+2 6∈ Aw(Cn)
and c2n+2 6∈ Ar(Cn), and they are new world and resource la-
bel constants. As 〈Fn ∪ {Snχn : (un, xn)}, Cn〉 ∈ P, by sat-
uration for rule 〈T♦y〉 and using the labels sn+2 and c2n+2,
〈Fn+1, Cn+1〉 ∈ P. Thus Property 3 holds. Moreover, by (1),
Aw(Cn+1) = Aw(Cn)∪{sn+2} and Ar(Cn+1) = Ar(Cn)∪{c2n+2}.
Therefore, Properties 4 and 5 hold by the induction hypothesis.

– Case Sn = F and χn = �rφ. This case is similar.

– Case Sn = T and χn = ♦φ. In this case, 〈Fn+1, Cn+1〉 =
〈Fn ∪ {Snχn : (un, xn)} ∪ {Tφ : (sn+2, c2n+2)}, Cn ∪ {(un, xn)
(sn+2, c2n+2)}〉. By the induction hypothesis, sn+2 6∈ Aw(Cn)
and c2n+2 6∈ Ar(Cn), then they are new world and resource label
constants. As 〈Fn∪{Snχn : (un, xn)}, Cn〉 ∈ P, by saturation for
rule 〈T♦〉 and using the labels sn+2 and c2n+2, 〈Fn+1, Cn+1〉 ∈ P.
Thus property 3 holds. Moreover, by (1), Aw(Cn+1) = Aw(Cn)∪
{sn+2} and Ar(Cn+1) = Ar(Cn)∪{c2n+2}. Therefore, Properties
4 and 5 hold by the induction hypothesis.

– Case Sn = F and χn = �φ. This case is similar.

– Case Sn = T and χn = ♦•φ. In this case, 〈Fn+1, Cn+1〉 = 〈Fn ∪
{Snχn : (un, xn)} ∪ {Tφ : (sn+2, c2n+3)}, Cn ∪ {(un, xnc2n+2)
(sn+2, c2n+3)}〉. By the induction hypothesis, sn+2 6∈ Aw(Cn),
c2n+2 6∈ Ar(Cn) and c2n+3 6∈ Ar(Cn), then they are new world
and resource label constants. As 〈Fn ∪ {Snχn : (un, xn)}, Cn〉 ∈
P, by saturation for rule 〈T♦•〉 and using the labels sn+2, c2n+2

and c2n+3, 〈Fn+1, Cn+1〉 ∈ P. Thus property 3 holds. More-
over, by (1), Aw(Cn+1) = Aw(Cn) ∪ {sn+2} and Ar(Cn+1) =
Ar(Cn) ∪ {c2n+2, c2n+3}. Therefore, Properties 4 and 5 hold by
the induction hypothesis.

– Case Sn = F and χn = �•φ. This case is similar.

48

– In the last case, 〈Fi+1, Ci+1〉 = 〈Fi ∪ {Siχi : (ui, xi)}, Ci〉. By
hypothesis, 〈Fi∪{Siχi : (ui, xi)}, Ci〉 ∈ P, then Property 3 holds.
Properties 4 and 5 hold by the induction hypothesis, because
Aw(Cn+1) = Aw(Cn) and Ar(Cn+1) = Ar(Cn).

AppendixB. Proof of Proposition 52

Proposition 52 The following properties hold:

1. 〈F∞, C∞〉 ∈ P;

2. For all labelled formulæ Sφ : (u, x), if 〈F∞ ∪ {Sφ : (u, x)}, C∞〉 ∈ P, then
Sφ : (u, x) ∈ F∞.

Proof. We prove that 〈F∞, C∞〉 is a CSS, meaning that it satisfies properties
(Pcss). Let Sφ : (u, x) ∈ F∞. We show that (u, 1) (u, 1) ∈ C∞ and x ∼
x ∈ C∞. By definition of F∞, there is i such that Sφ : (u, x) ∈ Fi. By
Property 3 of Proposition 51, 〈Fi, Ci〉 ∈ P. Then 〈Fi, Ci〉 is a CSS and, by
(Pcss), (u, 1) (u, 1) ∈ Ci and x ∼ x ∈ Ci. Thus (u, 1) (u, 1) ∈ C∞ and
x ∼ x ∈ C∞. We now prove properties (1) and (2).

1. Let 〈Ff , Cf 〉 4f 〈F∞, C∞〉. As Ff and Cf are finite and as the sequence
〈Fi, Ci〉i>0 is increasing by Property 2 of Proposition 51, there is j ∈ N
such that 〈Ff , Cf 〉 4 〈Fj , Cj〉. By Property 3 of Proposition 51, 〈Fj , Cj〉 ∈
P. As P is 4-closed, we have 〈Ff , Cf 〉 ∈ P. Thus for all 〈Ff , Cf 〉 4f
〈F∞, C∞〉, we have 〈Ff , Cf 〉 ∈ P. Therefore 〈F∞, C∞〉 ∈ P, because P is
of finite character.

2. Let Sφ : (u, x) such that 〈F∞ ∪ {Sφ : (u, x)}, C∞〉 ∈ P. By property
(Pcss), (u, 1) (u, 1) ∈ C∞ and x ∼ x ∈ C∞. By compactness (Lemma
30), there are Cf 1 ⊆ C∞ and Cf 2 ⊆ C∞ such that Cf 1 and Cf 2 are finite

and (u, 1) (u, 1) ∈ Cf 1 and x ∼ x ∈ Cf 2. As the sequence is increasing,
by Property 2 of Proposition 51, there are j1, j2 ∈ N such that Cf 1 ⊆ Cj1
and Cf 2 ⊆ Cj2 . Let j = max(j1, j2). As the sequence is increasing, we
have Cf 1 ⊆ Cj and Cf 2 ⊆ Cj . As Sφ : (u, x) occurs infinitely many times
in our fair strategy S, there is k > j such that SkFk : (uk, xk) = Sφ :
(u, x). Moreover, Cj ⊆ Ck. Then (u, 1) (u, 1) ∈ Ck and x ∼ x ∈ Ck.
Thus 〈Fk ∪ {Sφ : (u, x)}, Ck〉 is a CSS (satisfies the property (Pcss)) and
〈Fk ∪ {Sφ : (u, x)}, Ck〉 4 〈F∞ ∪ {Sφ : (u, x)}, C∞〉, by definition of limit
CSS. As P is 4-closed, 〈Fk ∪ {Sφ : (u, x)}, Ck〉 ∈ P. By construction of
〈Fk+1, Ck+1〉, Sφ : (u, x) ∈ Fk+1. Therefore Sφ : (u, x) ∈ F∞.

49

