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Abstract We aim to emphasize the interest of labelled structures for analyzing provability
in some resource logics. Labels and constraints allow to capture the semantic consequence
relation in some resource logics, like BI logic that combines intuitionistic and linear con-
nectives. They provide new methods in proof theory which are based on specific structures,
namely dependency graphs or labelled proof nets. Such semantic structures are central for
the analysis of provability and the generation of proofs or countermodels. Knowing that BI is
conservative w.r.t. Multiplicative Intuitionistic Linear Logic (MILL), we consider MILL from
the BI perspective and show how labelled proof structures can provide a new based-on con-
nection characterization of MILL provability. We also provide an algorithm that builds MILL
proof nets and its related connection method based on labelled structures and constraints.
The generation of proofs and countermodels is analyzed in this context.

1 Introduction

Since last years there is an increasing amount of interest for logical systems that are resource
sensitive. Among so-called resource logics, we can mention Linear Logic (LL)[11] with its resource
consumption interpretation, Bunched Implications logic (BI) [17] with its resource sharing inter-
pretation but also order-aware non-commutative logic (NL) [1]. As specification logics, they can
represent features as interaction, resource distribution and mobility, non-determinism, sequentiali-
ty or coordination of entities. For instance, BI has been recently used as an assertion language
for mutable data structures [12]. In this context, it is important to verify pre- or post-conditions
expressed in this logic but also to discover non-theorems and, if possible, to provide explanation
about non-validity by generating readable and usable countermodels.

In this paper we aim to discuss about models and labelled structures that capture the interactions
and the semantics of resources. We present structures with labels and constraints, mainly labelled
proof structures or nets, that can be seen as a kind of abstraction of formulae derivations in which
we mainly manipulate labels and associated constraints instead of formulae. These structures give
a geometrical representation of possible interactions in a formula [3]. Our perspective is to define
methods in proof theory with a focus on semantic structures that provide a bridge between seman-
tics and syntax and then could capture the essence of provability.

It is not trivial to find adequate methods in proof theory for the above mentioned resource logics.
It is due to the specific management of resources or sets of resources (like bunches in BI or NL) and
also to the difficulty to capture the specific interactions between connectives (additive and mul-
tiplicative connectives in BI, commutative and non-commutative connectives in NL), namely the
particular semantics of these logics. Based-on semantics methods like tableaux or connection-based
methods cannot be obtained for BI from standard methods with prefixes as defined for classical,
intuitionistic or linear logics [14]. The notion of prefix is not strong enough to capture the semantics
of BI and thus it is necessary to introduce another structure to deal with semantic information,
namely a dependency graph (or resource graph) from which provability can be studied.

The correspondence between (resource) semantics and syntactic labels and constraints, used to
defined new labelled calculi for BI, can be seen in both directions. For instance, in the case of BI
without L, the labels and constraints directly reflect the elementary Kripke semantics of the logic
[6] and then the relationships between semantics and dependency (or resource graphs) are clearly
identified. In the case of BI (with L), the specific labels and constraints of the new proof theory do
not reflect the initial Grothendieck topological semantics for which BI has been proved complete.



But, as the dependency graph associated to a BI formula contains the necessary information for
analyzing provability, we can also deduce a new simple resource semantics that is complete for
BI [8]. Even if our approach can be illustrated for a given logic, namely BI, we have to discuss
and study if it can be developed for other logics in which we consider the formulae as resources
and if it leads to new proof-theoretical foundations that are appropriate for verification tools, for
instance in separation logics [12,20]. Moreover, it is important to notice that the labelled calculi
with constraints can be used with different proof search methods: a tableaux method that deals
with dependency graphs [9] but also a connection method that deals with particular labelled trees
(including constraints) [5]. It is known that connection methods drastically reduce the search space
compared to calculi analyzing the outer structure of formulae such as sequent or tableau calculi
[2,22]. By introducing labels and constraints in a connection-based characterization of provability,
we propose a simple and natural way to capture the essence of the provability and thus we gen-
eralize the based-on prefixes methods that are defined for IL or MLL [14]. The connection-based
characterization of provability in BI with constraints has been defined in [5] and refined in [15] and
provides an alternative method based on formula trees with constraints.

Starting from our previous results, we aim to emphasize the use and the interest of labelled struc-
tures with constraints by defining a connection-based characterization of provability for MILL. In
fact, it is derived from the one proposed for BI by taking into account that BI is conservative
w.r.t. MILL. This point was only mentioned in [5] and then we develop it in this paper in order to
illustrate the underlying concepts. There exists a connection-based characterization of provability
of Multiplicative Linear Logic (MLL) [14] based on prefixes but not for MILL because prefixes are
not adapted to capture the initial semantics of MILL. Our new method is based on constraints
that allow to capture the Urquhart’s semantics of MILL at a syntactic level and generalize pre-
fixes. Another reason to consider MILL is the possibility to relate our results with the notion of
proof net that is a particular geometric representation of proofs defined in Linear Logic. As it was
previously done for MLL [4], we can show that such a connection-based characterization and its
related method for MILL can lead to an algorithm for the construction of MILL proof nets. Con-
versely, this algorithm can be seen as a new connection method, that also builds in parallel sequent
proofs. This method starts with the formula (or decomposition) tree and builds, step by step and
automatically, axiom-links (or connections) and partial proof nets, being guided by strategies and
resolution of constraints. Taking into account labels and constraints attached to different positions
in the formula tree, some steps of proof nets construction are only possible if some constraints are
satisfied. Another interesting point to study is the generation of proofs and mainly of countermod-
els in case of non-provability in MILL.

In section 2, we summarize what is BI logic, mainly in a semantic perspective and we remind our
results about provability based on dependency (or resource) graphs. BI being conservative w.r.t.
MILL, we derive new results for MILL from the ones obtained for BI. In section 3 we develop the
main concepts of a new characterization of provability in MILL. In section 4 we propose an algo-
rithm for MILL proof nets construction, based on labels and constraints, that can be considered
as a connection method that implements our new characterization. In section 5 we focus on the
generation of proofs and countermodels from this connection method. This paper is focused on a
particular approach of the quest of the essence of provability and of proofs and we expect to relate
it to other studies based on other kinds of structures and semantic objects and also with works on
games semantics for proof-search.

2 From BI to MILL

The logic of Bunched Implications (BI) provides a logical analysis of the basic notion of resource,
that is central in computer science, with well-defined proof-theoretic and semantic foundations
[18,19]. Its propositional fragment freely combines multiplicative (or linear) * and —« connec-
tives and additive (or intuitionistic) A, — and V connectives [17] and can be seen as a merging
of intuitionistic logic (IL) and multiplicative intuitionistic linear logic (MILL). BI has a Kripke-
style semantics (interpretation of formulae) [17] which combines the Kripke semantics of IL and
Urquhart’s semantics of MILL. The latter uses possible worlds, arranged as a commutative monoid
and justified in terms of “pieces of information” [21]. The key property of the semantics is the



sharing interpretation. The (elementary) semantics of the multiplicative conjunction, m = A x B
iff there are n; and ng such that n; ene C m, ny = A and nge |= B, is interpreted as follows: the
resource m is sufficient to support A * B just in case it can be divided into resources n; and n» such
that n; is sufficient to support A and n- is sufficient to support B. Thus, A and B do not share
resources. Similarly, the semantics of the multiplicative implication, m = A — B iff for all n such
that n = A, men |= B, is interpreted as follows: the resource m is sufficient to support A —« B just
in case for any resource n which is sufficient to support A the combination m e n is sufficient to
support B. Thus, the function and its argument do not share resources. In contrast, if we consider
the standard Kripke semantics of the additives A and — the resources are shared. Because of the
interaction of intuitionistic and linear connectives and its sharing interpretation, BI is different
from Linear Logic (LL) and does not admit the usual number-of-uses reading [17]. BI logic has a
sequent calculus with bunches with good properties but not well adapted to proof-search following
backward reasoning (from the goal to the axioms).

In order to capture the specific interactions between connectives, for instance additive and multi-
plicative connectives in BI, and finally the semantics of connectives, we have defined labelled calculi
including specific labels, constraints that allow to build semantic structures, called dependency (or
resource graphs) [7]. Such structures contain the necessary semantical information from which
provability can be studied. We can generate proofs or countermodels [6] from such labelled struc-
tures that can be also defined for other mixed logics like Non-commutative logic (NL) for which
one has no simple resource semantics but only a bunched calculus not adapted to proof-search.
In fact, a resource graph corresponds to a particular set of constraints and in order to propose a
based-on connection method for BI we have integrated similar constraints in this formalism and
thus proposed a new characterization of provability [5].

An important result is that BI logic is conservative w.r.t. Multiplicative Intuitionistic Linear Logic
(MILL) and thus we can try to adapt the previous approach based on labelled semantic structures
to MILL and analyze its impact on provability. It corresponds to generate semantic structures from
MILL’s Urquhart’s semantics [21] and to develop a characterization of provability with labels and
constraints that capture this semantics. It can be done with labelled tableaux calculi [6] but here we
prefer to focus on connection-based calculi with constraints. A connection-based characterization
of provability with constraints for BI has been defined in [5] and refined in [15]. Here we present
its adaptation for MILL that was mentioned in previous works on BI but not explicitly developed.
Our focus on MILL is also motivated by the possible relationships between our works and methods
for proof nets construction or verification [4,16].

3 A Characterization of Provability in MILL

In this section, we focus on the notions of labels and constraints that are adequate for capturing
the semantics of the connectives and their interactions. As said before, a connection-based charac-
terization of provability with constraints for BI has been defined in [5] and refined in [15]. Thus, we
present here its specialization (or refinement) for MILL and thus provide a new characterization
based on labels and constraints for this logic. There exist methods based on prefixes defined for
instance for IL or MLL [13,14,22] cannot be applied to MILL, the notion of prefix being not enough
strong for capturing MILL semantics constraints. In fact, this development corresponds to start
from MILL’s Urquhart’s semantics and to build specific semantic structures.

3.1 Labels and constraints

Given an alphabet C (for instance a,b,c---), C°, the set of atomic labels on C is defined as the set
C extended with the unit symbol e. Then we define C*, the set of labels on C, as the smallest set
including C° closed by composition (z,y € C* implies zy € C*).

Let us note that aabee, cbaca and cbeaal are equivalent by definition (associativity and identity 1.
A constraint is an expression z < y in which z and y are labels. A constraint < z is an axiom and
we write £ = y to denote x < y and y < x. The inference rules used for reasoning on constraints

are:

z<y z<z z2<y
func —— trans
zz < yz z<y




The rule trans formalizes the transitivity of < and the rule func corresponds to the compatibility

of the label composition for <. In this system, given a constraint k and a set of constraints H, we
denote H | k the deduction of k from H. The notation H |x K, where K is a non-empty set of
constraints, means that for all k € K, H |z k.

3.2 Indexed formula trees with labels

Here we recall the standard notions coming from previous characterizations of provability by matrix
[14,22]. A decomposition tree of a formula A is its representation as syntactic tree with nodes called
positions. A position u exactly identifies a subformula of A denoted f(u). An atomic position is a
position for an atomic formula. The decomposition tree induces a partial order < on the positions
such that the root is the least element and if u <« v then 4 dominates v in the tree. In fact, we do not
distinguish a formula A from its decomposition tree. For each position, we assign a polarity pol(u),
a principal type ptyp(u) and a secondary type styp(u). Therefore, we have different principal types
depending on the connective and the associated polarity. For instance in BI we have four principal
types named «, 8, wa, w03.

Depending of the principal type, we associate a label slab(u) and sometimes a constraint kon(u)
to a position u. Such a label is either a position or a position with a tilde in order to identify the
formula that introduces resources. We define constraints in order to capture the composition and
distribution of formulae that are considered as resources. The labelled signed formula lsf(u) of a
position u is a triple (slab(u), f(u), pol(u)) and is denoted slab(u) : f(u)*°"™.

The construction of the indexed formula tree is inductively defined in Figure 1.

lsf(u) |ptyp(u) kon(u)|lsf(u1)|lsf(us)
z:(A=B)°| na |zu=da|u:A"|q:B°
z:(A+*B)'| 7ma |ua<zlu:A"[a:B?
z:(A=B)| 78 |zu=u|u:A"|a:B’
c:(AxB)°| 78 |ui<z|u:A°|@:B°

Figure 1. Signed formulae for MILL

For a given formula A the root position ag has a polarity pol(ag) = 0, a label slab(ap) = 1 and the
signed formula 1 : (A)0 where 1 is the identity of the label composition. u; and us are respectively
the first and second subpositions. The subpositions inherite the formula and the polarity of the
position. The principal type of a position u depends on its principal type and its polarity and the
associated constraint is built from its principal connector and its label.

Like in BI, the constraints associated to ma formulae are called assertions and those associated
to w3 formulae are called obligations (or requirements) and they must be satisfied from the set of
assertions.

In fact, the rules xp, —; and —; of BI’s sequent calculus, that deal with 78 formulae, divide
contexts and distribute resources. Because of weakening and contraction, we can have several
occurrences of formulae and than we introduce a notion of multiplicity p attached to w5 formulae.
In this presentation, we keep this notion for MILL but we expect to show that a multiplicity of 1
is enough in MILL. Therefore, like in [22], we consider a formula A associated to a multiplicity u
and call this couple an indezed formula A*. Then the indexed formula tree for A* (indt(A*)) is
inductively defined as follows

Definition 1. u” is an indexed position of indt(A*) iff

1) u is a position in the decomposition tree of A.

2) Let uy < --- < uy, be all the wf3-positions that dominate u in the decomposition tree of A, then
a) wlu;) 20,1 <i<nandb)k=my---my, 1 <m; <n,1<i<n.

The order relation <* between two indexed positions u* and v” is defined in the following
way: u” <" v" iff u € v and & is an initial sequence of 7. We denote Occ(u”) the set of indexed
positions 4" that are in A¥.



3.3 Paths, connections and covers

In this paragraph, we consider the adaptations for MILL of the notions of paths, connections and
covers as defined in [15] for BIL

Definition 2 (Path). Let A* be an indexed formula, u" an indexed position of indt(A*) and
uy,us the immediate successors of u. The set of paths of A" is inductively defined as the smallest
set such that:
1. {ao} is a path where ag is the root;
2. If s is a path that includes u® then

a) if ptyp(u®) € { a,ma } then, (s\u") Uus Uus is a path,

b) if ptyp(u®) € { B, 7B} then, (s\u") Uu1 and (s\u")Uus are paths.

An atomic path is a path that only contains atomic positions. A configuration of A" is a finite
set of paths of A¥.

Definition 3 (Reduction). A reduction of an indezed formula A* is a finite sequence (S;)1<i<n
of configurations in A¥ such that S;y1 is obtained from S; by reduction of a position u in a path s
of S; following Definition 2. We say that S;11 is obtained by reduction of S; of u in s.

Definition 4 (Connection). A connection is a couple (u,v) of atomic positions such that f(u) =
f(w), pol(u) =1 and pol(v) = 0. We denote Con the set of connections of A*.1.

Definition 5 (Cover). Let A* be an indexzed formula. A connection (u,v) in A" covers a path
s in A* if u,v € s. Let S be a set of paths in A¥, a cover of S is the set C' defined as C =
{(s,{u,v))/s €S and (u,v) € Con and {u,v) cover s} such that

(s,{u,v)) € C and (s,{(u',v'")) € C imply that u =u' et v ="1".
A cover of A¥ is a cover of the set of atomic (consistent) paths in AH.

Given a formula A de BI, we use the following notations. The set of positions of A is denoted
Pos. Given a set of positions p C Pos we introduce:

— the set of positions of type ma: Py(p) = {u | u € p et ptyp(u) = 7a '}

— the set of positions of type 7f: Pg(p) = {u | u € p et ptyp(u) =74}

— the set of positions of secondary type ma;: Sa;(p) = {u | u € p et styp(u) =«
— the set of positions of secondary type 78;: Sg,(p) = {u | u € p et styp(u) = 73,
— the set of positions of secondary type ma: Sq(p) = Sa1(p) U Sas(p)

— the set of positions of secondary type 73: Sg(p) = Sp,(p) U Ss,(p)

— the set of constants: X, (p) = { slab(u) | (3v € P,(p))(u in the set of subpositions of v) }
— the set of variables: X (p) = { slab(u) | (v € P,(p))(u in the set of subpositions of v) }
— the set of assertions: Ko (p) = { kon(u) | u € Py(p) }
— the set of obligations: Kg(p) = { kon(u) | u € Ps(p) }

When p = Pos, we simply write Py, Pib, Sa;, S, Sa, S, X0 €t Xg.

An example. Let us consider the formula A*
MILL. Figure 2 presents its indexed formula tree.
The two sets of positions 7a and 78 are Py = {ag,a1,a3,a11 } and Pz = { a4, as,ag }. Moreover,
the set of assertions is Ko = {ap = @o,a141 = ag,azads < @1,a9a11 < d11 } and the set of obliga-
tions is ICg = {a3a4 = &4,(18&8 S &0,@9&9 S as }

The reduction path process from { ag } provides the following atomic paths:

s1 = {az,a5,a7,a10 }, s2 = {az,as,ar,a12,a13 }, 83 = {az,as,ar,a14 }, s4 = {az,a6,a7,a10 },
s5 = { az,a6,a7,012,013 } et s = { az,a¢,a7,014 }.

Their respective connections are:

<a2, aio ), <a12, as ), <a7, ai4 >, <a2, aio >, (ag, a3 ) and (a7, a14) and we have a cover C of A* :
C = {(s1,(a2,a10)), (52,(a12,as5)), (s3,(ar,a14)), (s4, (a2, a10)), (s5, ( ag, a13)), (s6, { ar, a14)) }.

The set of constraints from connections generated by C' is then

Ko ={(s1,a1 < ag),(s2,a11 < a4),(s3,as < ag), (54,01 < @g), (55,04 < a11)(86,a3 < ag) }.

(p* ((g = 7) x5)) = ((p (¢ 7)) x5) of

! Remark: the first position in a connection is the one of polarity 1.



a4 :q aq :T ail - g 6/11 T as ag ai2 ais
as : — &3 H 81 ag :pO C~l9 H —0 ag ar aigo aii
ap :p' dqc k! ag %%  ag:s° as as ag a14
ag - *1 El() : *0 a] as
1: —*0 aop

u Jpol(w) @) ptyp(u)[styp(@slab(w)] kon(u)

ao| 0 |(p*x((g—1)*x8))—=((px(qg—=r1))*s)| wa - 1 ap = ao

ar| 1 p*((g—71)*s) Ta T a0 | a1a1 < ao
as 1 P — T ai -

as| 1 (q—*7)*s TQ T a1 | asasz < ax
as| 1 q—>*T 9] Ta as a3a4 = a4
as| O q - w6, a4 -

ae 1 r — 703, Qa4 —

ar 1 s — T as -

as| 0 (px(g—*r))*s w8 | was | a0 | asds < do
ao| 0 p*(g—*r) w3 w3, as agag < ag
aio| O p — ige N ag —

aii 0 q—=*7r ixe% 71',32 5,9 dgan = 5,11
aiz2| 1 q - uge’ aii —

ai1s 0 T — Q2 611 —

aia| 0 s — e as —

Figure 2. Indexed formula tree of (p * ((qg —7) * 8)) = ((p* (g =+ 7)) * 3)

3.4 A new characterization of MILL provability

We now derive a new based-on characterization for MILL based on constraints that generalize the
standard notion of prefix, already adapted to the MLL fragment [14]. It is derived from previous
works in BI [15].

Definition 6 (MILL-substitution). Let A* an indezed formula. A MILL-substitution is an
application o : g — X,*, that can be extended to labels and constraints as follows:

— o(x) =z if © is a constant or if x = 1,
—o(zey) =o(z) eo(y),
—o(z<y)=o0(z) <o(y).

Definition 7 (MILL-certification). Let A* an indezed formula. A MILL-certification for A*
is an application v : P3 — p(P,) that associates, to any indexed position of principal type 7, a
subset of the set of positions with ma. as principal type.

Definition 8 (Complementarity). Let A* be an indezed formula and o o MILL-substitution, a
path s of A¥ is complementary under o, or o-complementary, if it is covered by a connection (u,v)
such that 0(Kqy) | o(slab(v)) < o(slab(u)). A cover C is complementary under o if all paths s are
complementary under o.

Definition 9 (CMILL-Provability). A formula A of MILL is CMILL-provable if there exist a
multiplicity u, a cover C of the set of atomic paths of A*, a MILL-substitution o and o MILL-
certification v for A" such that:

(CBI1) the reduction relation < is irreflexive,



(CBI2) V¥(s,(u,v)) € C,Vw € Pg({u,v}),v(w) C Pu(s),

(CBI3) ¥(s,(u,v)) € C,Vw € Ps({u,v }),o(k(y(w))) x o(k(w)),
(CBL}) V(s,(u,v)) € C,Vz € Zg({u,v}),0(x) € Xy(s),

(CBI5) ¥(s,(u,v)) € C,0(Ka(s)) |x (o(slab(v)) < o(slab(u))

Let us come back to our example. In order to find a MILL-substitution ¢ from K¢, we consider:
O’(ag) = al,a(a4) = au,a(&g) = 6370(&4) = &11,0(@3) = X,O'(ag) =Y.
Then we have to compute o(K4) |~ 0(K3) and then

1. ap = @o,a101 < ap,a3a3 < a1,Yar1 = a1 |R azan = an

2. ag = Gp,a181 < ag,azdz < a1,Yar1 = an R Xas < ao

3. ag = dp,a181 < ag,azdz < a1,Yan =an RayY <X

From 1. we directly deduce Y = a3 and also y(as) = {ai11}. The obligation of 1. is the one
of the position a4 and in order to verify it we use the assertion asai;; = @11 of position a;1. From
3. we deduce a trivial solution for X that is X = aja3 and also that v(ag) = 0. The condition 2.
is verified because we have:

a1 <ap asaz < ap

func
arazaz < a10; ai1a; < ag

- trans ~
aiazaz < ag ap = Qo

- - trans
arazaz < Qo

and then we deduce v(ag) = {ao, a1, a3 } since ag = do, a1d1 < ag, azds < d; are the respective
assertions of ag, a,as.

In order to verify the conditions (CBI2) to (CBI5), let us consider the following table

(5,{u,v)) |Ps({u,v})| Pals) Ts({u,v}) Za(s)
(s1,(az,a10))| as,ag ap, ai, as asg, ag, ag, dg ao, do, a1, 01, a3, a3
(82,(&12,@5)) as,ag,0a9 |Gg,0a1,a3,011 a4,a4,(18,6/8,a9,6/9 &Oaalaalaa3aa3aallaall
(s3,(ar,a14))| as,ag ap,a1,as ag, g ag, 4o, 01,01, 03,03
(84,(az,a10))| as,ag ag, 01, a3 as, s, ag, Ay ag, Gg, a1, 41, a3, a3
(s5,(ae,a13))| as,as,a9 |ao,a1,as,a1|as,ds,as,ds,ay, ag|do, a1, a1, as,as, a1, ai
(s6,(ar,a14))| as,ag ag, 01, a3 ag, ag ag, 4o, a1, 41, a3, a3

Moreover, y(ag) = 0 C P,(s), for any path s € { s1, $2, 84, 85,86 } and y(as) = { ag,a1,a3 } C
P,(s) for any path s € {s1...s6}. Moreover, for any path, s € {s2,s5}, v(as) = {a11} C
P,(s). Then the condition (CBI2) is verified. In addition, for any path s € {s1,52,54,85} we
have o(ag) = a1 € Xu(s)" and o(ag) = a3 € Xa(s)” for any path s € {s1, 52,53, 54, 85,56 } we
have o(ag) = araz € Xo(s)" and o(ds) = G € Xa(s)", and for any path s € { 2,5} we have
o(as) = a11 € Xo(s)™ and 0(ay) = @11 € Ta(s)™.

It remains to compute the reduction relation < that is obtained by the transitive closure of the
domination relation <, the instantiation relation C and the deduction relation C'. The instantiation
relation induced by o is

a1 C ag,a3 C ag,a1 C ag,a11 C aq
and the deduction relation induced by 7 is
! ! ! !
ap C" ag,a1 C ag,a3 ' ag,ar1 C ag.

The reduction relation < is represented in Figure 3. As the graph is acyclic, A* is valid in MILL.
As illustrated by the example, the constraints have composed labels on the lefthand side.
Moreover, the constraints for the implication deal with equality.
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\al 1

aq* ary
as as
a1 Ta as

ao
Figure 3. Reduction order for (p* ((q—7) *8)) = ((p*(q —7)) * 8)

3.5 Soundness and Completeness

These properties are proved like the corresponding ones for BI [15] with adequate restrictions to
MILL.

Definition 10 (Complete reduction). Let A" be an indezed formula and C be a cover of AV,
a reduction (S;)1<i<n in A" is complete for C if C is a cover of S,.

Definition 11 (Proper reduction). Let A* be an indezed formula and o be a MILL-substitution
pour A, a reduction (S;)1<i<n is o-proper if

(i) VS € (Si)i<i<n, Vs € S,0(Ka(s)) | 0(Kp(s))

(i) VS € (S, )0<,<n,V8 € S,Vz € Eg( ),0(x) € Ea(s)*.

Definition 12 (Realization). Let A* be an indexed formula and s be a path of A*. A CMILL-

interpretation of s in a resource model K = ((M,C,e,¢e),}=,[-]) is a function || - ||: Zo(s) > M
that can be extended to labels Xo(s)* with || 1||=e and || zy ||=|| = || | ¥ |-
Given a MILL-substitution o, a realization of s is a couple (|| — ||, o) such that:

1. For any assertion © < y € Kq(s),|| o(z) [|IC|| o(y) ||-

2. For any position u € s such that Isf(u) =z : Al, || o(2) || E A.

3. For any position u € s such that Isf(u) =z : A%, || o(2) || £ A.
A path is said realizable if there exists a realization of s in a model K. A configuration is realizable
if there is at least one of its paths that is realizable.

Lemma 1. Let A" be an indexed formula, o be a MILL-substitution for A* and (S;)1<i<n be a
o-proper reduction for A, if S; is o-realizable then S;y1 is o-realizable.

Lemma 2. Let A" be an indexred formula and o be a MILL-substitution for A*. If a path s is
complementary under o then it is not realizable under o.

Proof. Let us suppose s o-complementary and realizable for an interpretation ¢ in a resource
model M. s is o-complementary because it contains a connection that is o-complementary. In fact,
s contains a connection {u,v ) that is complementary and such that

fw) = f(v), pol(u) =1, pol(v) =0 and o(K,(s)) | o(slab(v)) < o(slab(u)).

As s is realizable, we have || o(slab(u)) || E f(u), || o(slab(v)) || & f(u) et slab(v)
is contradictory because, by monotonicity, slab(v) C slab(u) and || o(slab(u)) |

| o(slab(v)) || = f(u)-

In order to study the properties of this characterization, we consider the Urquhart’s resource
semantics for MILL [21].

C slab(u) that
| = f(u) imply

Theorem 1 (Soundness of the characterization). If o formula A is CMILL-provable then it
is valid in the resource semantics of MILL.



Proof. The conditions (CBI1) to (CBI5) of Definition 9 are verified because A* is provable. Let
us assume that A is not valid in the semantics, then there exists a resource model M such that
e £ A. Then, the initial set of paths S; = {{ao}} is realizable under o for the interpretation
|| = || with an empty domain. The above mentioned conditions imply that there exists a reduction
(Si)1<i<n from Sy, that is complete for C, o-proper and such that each path of S, contains at
least a connection of C. As S; is realizable under o, by Lemma 1, S,, is also realizable under o.
But S,, cannot be complementary from Lemma 2. That is contradictory and then A is valid.

Theorem 2 (Completeness of the characterization). If a formula A of MILL is valid in the
resource semantics, then it is CMILL-provable.

Proof. Tt is sufficient to show that if A is provable then it is CMILL-provable. The proof is by
induction on the derivation in the MILL calculus deduced from LBI. Let us remind that a sequent
I' F A is provable in LBI iff & —« A is provable in LBI. We only consider the case —g, the others
being similar.

By induction hypothesis, we assume that I, A + B is CMILL-provable and show that '+ A — B
is also CMILL-provable. As I’ A + B is CMILL-provable, there exist a multiplicity u, an atomic
reduction Ry = (S;)i<i<n of ((@r * A) — B)*, a cover C of S,, a MILL-substitution o and a
MILL-certification v for A* that satisfies the conditions of Definition 9.

From the atomic reduction R; for ((r x A) — B)*, we can build an atomic reduction Ry for
(Pr —« (A = B))*. In the following figure, we give the first steps of R; on the lefthand side and
those of Ry and the righthand side.

{1:((@r*A)—=B)°} {1:(®r = (A= B))°}
| |

{ao: (®r+A)',ao:B°} | {ao:®r' ao: A—B°}
| |

{alz(ﬁpl,&l:Al,do:BO} {a1:¢p1,a¢:A1,&i:BO}
| |

After the two first reduction steps, we observe that the two paths of R; and R» contain the same
signed formulae modulo a label renaming a; in a; and @; in a;. Consequently, the next steps
of Ry can be the same as for R; and both reductions introduce same signed formulae and label
constraints modulo renaming. The assertions of the two first steps of Ry, { ap = do,a1d1 < ag }, are
weaker than those of Ry, {ag = do,doa; = a; }. Since Ry provides a set of atomic paths satisfying
CMILL-provability (see Definition 9), by induction hypothesis, the set of atomic paths for R» also
satisfies these conditions.

4 Connections and Proof Nets construction

The notion of proof nets has been introduced by Girard [11] in order to deal with the intrinsic
parallelism of the sequent calculus. It has been defined for various fragments of linear logic and
studied from both construction and verification perspectives [4,16]. It is known that there are strong
relationships between connection methods and proof nets construction for MLL [4] and our aim is
to analyze if the previous results can be related to MILL proof nets construction.

4.1 Proof nets with constraints

Let us first present the main ideas that are derived from the principles used in MLL and adapted
to MILL with an emphasis on constraints. This approach is based on the construction of the
decomposition tree with semantical information included in the tree: formulae, polarities, labels,
constraints associated to subformulae.

Then, from basic results about permutabilities and proof-search strategies in Linear Logic [10], we
know that we have to treat the connectives —!, x%,x! and —9 following this order. It means that
the w3-formulae have to be dealt before the ma formulae.



Therefore, we start from leaves (belonging to Xg) of a subformula of type 73 that is the highest
in the labelled tree and try to connect them to leaves of the set X, in order to build axiom-links
(or connections). Each time the subformulae of a wS-formula belong to a net under construction,
we generate a MILL-substitution ¢ and then apply it to the obligation associated to the formula.
For instance, for a connection (wu,v ) in which slab(u) is a variable and slab(v) is a constant, we
have o(slab(u)) = slab(v). When two premisses of a subformula of type 78 are conclusions of two
partial proof nets, we merge them and extend the resulting net with a 73-link and provide a new
proof net. We also add the corresponding constraint to the set of obligations after the application
of . When two premisses of a subformula of type wa belongs to the same net, we extend it with
a ma-link and add the associated constraint to the set of assertions.

During this construction, several choices of connections are possible and then if, after a first choice,
the resolution of constraints leads to a failure we must backtrack and going on with another choice.
It is necessary to test all possibilities until the net covers all the initial decomposition tree. Then
we can deduce if it is provable or not.

Let us consider the example of Section 3. First, we build the initial labelled tree that is the one
of Figure 2. The highest w8 formula in this tree is a4 and thus we start by trying to connect
its subformulae (or subpositions) as and ag. Let us start with a5 that is connected to a2 because
flas) = f(a12) = g, pol(as) = 0 and pol(ai12) = 1. We obtain an elementary net Ry and o(a4) = ai1-
Then, we connect ag to the only possible position a;3 because f(as) = f(a13) = r, pol(ag) = 0 et
pol(a13) = 1. We create a new elementary net Ry and generate o(@4) = @11.

Y\ B | ol A
a4 :q Qg1 a1 :q4 Gy 10
asz : —x'  dz:s! ag:p® @9 :—O
ay :pt TR ag : %0 ag 1 s°
ap : %! Go : *°

1:—0

Thus, we merge R; and R, into a new net R; with a w-link and we apply o to the obligation
asa4 = C~l4. Then, we deduce asaylp = &11(R6q1).

. 40 .|
a4 :q aqg : T ail 1 q ail 7‘0
asz : —x'  dz:s! ag:p® @9 :—O
ay pl &1 : *1 as : *0 63 80
ap : x1 (7710 : *0

1:—0

The leaves a1 et a;3 are now conclusions of the net R; and also the premisses of the position
a1 that is a wa-position. Then, we extend R; with a wa-link and obtain o(d9) = a3 because



the positions a4 and a;; are linked and the assertion becomes azaqs = aG4. Thus, it satisfies the
obligation of a4. Let us remark that, in order to satisfy Reql, we have used the position a;;.

a :pt Gy *! ag : %9 ag : s°
ag : *' dg @ +0
1:—0

Position ag corresponds to a w83 formula and its subposition a;; has been already treated. Then
we need to consider the position ajg. We connect it with as (that is the only possibility) and
generate a new net Ry and deduce o(ag) = a;. As the two subpositions of ag are the conclusions
of Ry and R,, we merge them with extension by a mw-link in order to provide a new net R;. The
application of ¢ to the obligation provides a;as < o(ag). Then we have a solution for ag that is
o(ag) = ajas. In order to satisfy this obligation, we have not to use assertions.

a i p aj . *x ag : ok ag : S
ag : *! Gp : *°
1:—0

It remains to consider the wj3-position ag. Its subposition a4 does not belong to a net and
then we connect it to as and thus we have o(dg) = ds. It provides a new elementary net R,.
The positions ag and aq4 respectively belong to Ry and Rs and are the premisses of ag. We can
then merge R; and R, into a new R; with a w(-link and apply o to the obligation associated
to ag: arazas < ag (Req2). At position ag, the two premisses are in fact conclusions of R and
then we extend it with a wa-link and we add the assertion azds < a; to our set of constraints. By
compatibility, we have ajasds < a1d; (Ass). As before, we extend the net at the position a; with
a ma-link and a new assertion a1d; < ap and then (Ass) becomes, by transitivity, ajasas < ag.
Finally, at position ag, we extend the net Ry with a wa-link and by transitivity (Ass) becomes
araszas < ap and consequently (Req2) is verified. As for the obligation (Reql), we are in position
to claim that the assertions necessary to satisfy (Req2) come from positions ag,a; and asz. We
then conclude that all connections are o-complementary and then A* is provable and then valid
in MILL.



ap :pt Gy @ %' ag : %0 ag : sY
ap : x1 ("10 : *0
1:—0

This method for proof nets construction corresponds to a particular algorithm that implements
the based-on connection characterization of provability and then can be viewed as a new connection
method for MILL. We observe in our example that the connections we find are the same than the
ones obtained in the example developed in Section 3. We have generated connections that could
be o-complementary and then verified, step by step, the admissibility of the MILL-substitution.
Moreover, for the resolution of constraints, we can say which assertions is used for the satisfaction
of an obligation without using the process of path reduction. In addition, the computation of
obligations from the assertions and of the certification are automatically made step by step.

4.2 An algorithm for proof nets construction

Let us describe more formally this algorithm that is based on the algorithm dedicated to the
construction of MLL proof nets [4] in which, in addition to the search of connections, one must
verify that the obligations are satisfied from the assertions. Here, we only describe the main steps
of the algorithm.

input: Formula A
output: Proof net of A or failure.
step 0: Construction of the labelled decomposition tree.
step 1: Choice of a 73-position pm, not being already treated? and highest in the labelled tree.
step 2: If the left subposition pbg of pm is not already treated, connect pbg as follows:
If pbg is a leaf then
choose a position pa; such that slab(pay) constant, pol(pay) # pol(pbg) and f(pay) = f(pbg);
build an elementary net Ry;
generate o(slab(pbfg)) = slab(pal)
Else return failure.
step 3: If the right subposition pbd of pm is not already treated, connect pbd as follows:
If pbfd is a leaf then
choose a position pas such that slab(pas) constant, pol(pas) # pol(pbd) and f(pas) = f(pbd);
build an elementary net Ry;
generate o (slab(pbd)) = slab(pa2)
Else return failure.
step 4: Merge R; and R, into a net R at position pbm and apply o to its obligation (Obl) that
becomes the current obligation;
Verify if (Obl) is an axiom: if yes return at step 1;
step 5: For all ma-positions,
if the two premisses of a wa-position, pam, are conclusions of R then
extend the net at this position; apply o to the assertion of pam; add it to the resolution
systern;
verify (Obl) from the set of assertions.

2 A position is treated if it belongs to a net



step 6: If the initial labelled tree is not completely covered by the net R then
if there is no w3-position to treat and at least a w3-position u has one subposition for which
connections are possible then
if there are nets then
break the net from the current position to the position u and return to step 1
else if it remains w3 positions to treat then return to step 1.
else return failure
else return the net.

To verify an obligation means here that each time an assertion is added to the resolution set,
one does the transitive and compatible closure of the assertion added from the last generated con-
straint and compare the new constraint with the last obligation.

This algorithm can be proved correct and complete from similar proofs of the algorithm for MLL
proof nets [4] with addition of a specific treatment of the constraints.

Theorem 3 (Correctness). If the algorithm returns a proof net for A then the formula A is
provable in MILL.

Theorem 4 (Completeness). If a formula A is provable in MILL then the algorithm returns a
proof net for A.

Moreover this algorithm provides a connection method for MILL because it builds, step by step,
a set of connections, a cover, a substitution and a certification such that A is CMILL-provable.
If we aim to relate the connection method associated to our new characterization and the construc-
tion of a proof net, we again consider our example with the formula (px((g—#r)*s)) —«((p*(g—*r))x*s).
We can observe that they both generate the same set of connections, namely (as,a10 ), {a12,as ),
(ar,014), (@2,a10), (ae,a13) and (ar,a14). Moreover, the MILL-substitutions and the MILL-
certifications are the same in both cases. We aim, in future works, to study such an algorithm also
in the context of verification [16] by focusing on the constraint resolution.

5 Generation of proofs and countermodels

The previous algorithm builds a set of connections and a proof net in case of provability in MILL.
It corresponds to a proof-search procedure with forward reasoning (from axioms to the goal for-
mula) that can, step by step, build a proof in the MILL sequent calculus. In parallel with the proof
nets construction, the algorithm builds a proof in a top-down way, from axioms (corresponding to
axiom-links) by application of inference rules each time the corresponding partial nets are extended
by a new link.

Let us come back to our example and show how the algorithm builds a sequent proof. The first
connection {as,ajs ) corresponds to the sequent g F ¢ and the second one to r - r. Then we build
the sequent q,q — r F r by the n8-link of the position a4, and then, at position a;;, the wa-link
provides the sequent ¢ —xr - q — r.

With the connection (a4, a1 ), we build the sequent p - p and the w(-link at position ag gener-
ates the sequent p,q —r  p x (¢ = r). Then, the connection (a7, a14 ) provides the sequent s - s
and the w(3-link applied to position ag generates p,q —xr,s F (p* (¢ —r)) * s. Finally, successive
applications of wa-links to the positions ag, a1, a¢ (following this order) provide, step by step, the
sequent p, (g =« 71) x s b (p* (¢ —r)) * s, the sequent px ((¢g =« r) *s) - (p * (¢ = r)) * s and finally
the sequent F (p* ((q —=«7) *x8)) = ((p* (g —r)) * 5).



The final sequent proof built in parallel of the proof net construction is the following;:

qbq rbEr
q,q—=rhkr
pkp q—=xrkq—r
*R
p, g1k px(qg—xr) sk s
*R
p,g—*r,8F (px(g—xr1))*s .
L
p,(q—xr)*xst (px(qg—=r))*s
X,

px((g—=*xr)xs)F (px(qg—=71)) *s
F(p*((qg—xr)*xs)) = ((p*(g—r)) *s)

—*R

The most interesting point is the case of non-provability of a formula and then the possible
generation of countermodels in a given semantics. Recent results on proof-search in BI, and conse-
quently in MILL and IL [6], are based on a specific semantic structures, called resource graphs, that
graphical representation of the set of assertions generated through the proof-search process. In case
of non-provability, we can extract countermodels from such structures that can be also considered
directly as geometric representations of countermodels. With our approach based on connections
and on proof nets construction the questions of generation and representation of countermodels also
arise. It appears that we can extract a countermodel from the labelled formula tree, an incomplete
set of connections and the partial proof structure built before the failure in the construction process.

Let us illustrate this point with an example of a non-provable formula, namely the formula

(p—=+(g*7)) = ((p = q) * (p =7)). Its indexed formula tree is given in Figure 4.

as:qt  az:rt ar:pt  Gr:q® awo:p' Gwo:r°
ap :p° @y c %! ag : —9 dg 1 —°
agp : x! &0 : %0
1:—0

u Jpol(u) F(a) pyp()[styp()[slab(u)]_kon(w)
a| 0 [(p—x(gxr)—>*(p=xq)*x(p—r))| ma - 1 ao = Go
ar| 1 p—x(g*r) ] Tan ap | aca1 = a1
az| 0 D - 0B, a1 -
az| 1 qgxr T 0By a1 aszaz < a1
aq 1 q — Ta1 a3 —
as| 1 r — TQ2 as —
ae 0 (p —k q) * (p —k 7“) Wﬁ iye’) ao asls < Qo
ar| 0 p—*q T w6, as asar = ar
ag| 1 P - Ta a7 —
ag| O q — T2 ar —
aio 0 p—xT ™ WﬂQ ae asa10 = 10
ain| 1 P - T aio -
ai2 0 T — (e ) aio —

Figure 4. Indexed formula tree for (p — (g * 7)) = ((p =+ q) * (p = 1))

Let us build a proof net following our algorithm. The only variable on a leaf is a; the position
of which is ay. There are two possibilities: either we connect it with the position a;; or with the



position ag. Let us try to connect with the position a;; (with label ai9). We obtain the MILL-
substitution o(a;) = aio. Then, we consider the position as where Isf(as) = a3 : ¢* and try to
connect it. The only possibility is ag with the label a7 that does not belong to the set of variables
X3 but to the set of constants X. As we have o : ¥g — X, *, we obtain a failure.

as: q1 s st
\/
a; :p° G c k! ag : —9
\/
aop : —*1
0

1: —

Let us erase the previous connections and try now to connect as with ag, having the label a;. We
deduce o(a1) = az.

as: q1 s st
ap :p° G cx! ag : —
aop : —*1

1:—0

As in the previous case, no connection is possible because the set of non-treated leaves is in-
cluded in X, and then it is not possible to build connections. Therefore, we conclude that the
formula is not valid in MILL.
From the indexed labelled tree and the connection in the second case (and consequently from the
MILL-substitution), we can build a countermodel. The forcing relation is defined as follows: for p
tar Epand ayo = p, for q: a3 =g, for r: ds =r.
In order to check, we can show that ag = p —« (¢ *x7) and do £ (p =k q) * (p —x ). We have a3 |= ¢
and ag = r and then agds |= ¢ *r. As agds = d; we deduce d; = ¢ * r. Moreover, we have a7 = p
and, from aga; = a1 and o(a1) = a7, we deduce that apay = @ and consequently agar = g *r
and ag = p — (¢ xr). To show that dg £ (p — q) * (p = r), we must show either ag J£ p — ¢ or
6/6 l;é p—kr because Cl6(~16 = C~I,0. We have aio '= p and thus &Gam l?é T since C~l(5a10 = (Nll() and C~l10 bé r.

We have generated a countermodel of (p — (g *7)) — ((p =« q) * (p =« r)) from the labelled formula
tree with existing connections before the failure of the construction attempts. Such a structure can
be seen as a graphical representation of the countermodel like it is the case with a resource graph
with the related tableau method in BI [7].

Our new connection method for MILL, that corresponds to a method of proof nets construc-
tion, is well-adapted to avoid several kinds of redundancy one has to deal with in more standard
backward reasoning methods. In addition, it allows to efficiently detect the non-provability of for-
mulae because the initial labelled formula tree contains the necessary semantic information. It also
generate a countermodel in case of non-provability. It is a key point of the approach to say that
such labelled proof structures or nets eliminate some bureaucracy from deductive systems but also
are central structures with enough semantics in order to generate either proofs or countermodels.
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