
A modal extension of Boolean BI for resource
transformations ⋆

J.R. Courtault and D. Galmiche

Université de Lorraine – LORIA UMR 7503
Campus Scientifique, BP 239
Vandœuvre-lès-Nancy, France

Abstract. In this paper, we propose a modal extension of Boolean BI, called
DMBI, that captures the notion of resource transformationsand can express prop-
erties on any reachable resource. Moreover, we provide a sound and complete
calculus and a countermodel extraction method for this calculus.

1 Introduction

In computer science, the notion ofresourceis widely current, for instance memory, per-
missions, data, messages can be viewed as resources. A main purpose consists in mod-
elling and expressing properties on these resources, such that location, consumption
of, access to. In order to achieve this objective, differentresource logics were recently
proposed, like Linear Logic (LL) [7], where propositional symbols are considered as
resources with a focus on production and consumption of resources, and Bunched Im-
plications logic (BI) [12,14], where propositional symbols are viewed as properties of
resources, with a focus on sharing (properties satisfied by aunique resource) and sep-
aration (properties satisfied by different sub-resources). BI logic and its variants, like
Boolean BI (BBI) [14], can be seen as the logical kernel of so-called separation logic,
like BI’s Pointer Logic (PL) [9] that allows us to express properties on pointers and pro-
vides a semantics for programs that manipulate mutable datastructures, or BiLoc [1]
that is based on resource trees and captures the notion of place.
Of course, a resource is not a static entity, but a dynamic entity that can move, change
his state/properties, be produced or consumed... In this context, a modal extension
of BI, called MBI [3,13], has been defined Its models are judgements of the form
R,E

a→ R′,E′, meaning that a processE performs an actiona on a resourceR in or-
der to obtain a resourceR′ and then becomes a processE′. As we see, MBI introduces
dynamics in resource, which is resource transformation: the resourceR is transformed
into the resourceR′. Unfortunately, there is no complete calculus for MBI. Moreover,
the modalities à la Hennessy-Milner of MBI can not express properties on any reach-
able resource and process, knowing that reachable means after performing any action.
In parallel, another modal extension of BI, called DBI [4], has been recently proposed.
Such an extension captures the notion of dynamic propertiesof resources, where dy-
namic means here that the properties of resources can changeor be modified depending

⋆ This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and
Update Logics (project no. ANR-11-BS02-011).

on the state of a system. The interest of this logic is that it can express properties on any
reachable state (using♦ and�modalities) and a sound and complete calculus was pro-
vided for this logic. Unfortunately, DBI is not able to capture resource transformations.
In this context, we propose a new logic, called DMBI, that is amodal extension of a
classical variant of BI, called BBI [14], and is situated between DBI and MBI. Indeed,
DMBI captures the notion of resource transformations, as MBI, but is restricted to only
one process that manipulates resources. Moreover, DBI modalities are conserved to
express properties on any reachable resources. After we present the language and the
semantics of DMBI, we show that DMBI is also able to express properties on resources
that are manipulate byn concurrent processes. Then, we compare the expressiveness
of DMBI to MBI on a simple example. Relying on previous works for BI [5,6], we
provide a labelled tableau method that is proved sound and complete and having a
countermodel extraction method. Future works will be devoted to transform the DMBI
tableau method to obtain a calculus to check properties on concurrent processes that
manipulate resources and to implement such a tool.

2 DMBI logic

BI and BBI are logics that express sharing and separation properties on resources
[12,14]. DBI and MBI logics are extensions of BI that focus on, respectively, dynamic
resource properties and resource transformations [3,4,13]. We present here a new logic,
called DMBI, which extends BBI by adding the MBI modalities〈·〉 and[·] (modalities
à la Hennessy-Milner [8]) to capture resource transformation and the DBI modalities♦
and� to capture reachability.
Let SAct be a countable set of action symbols. LetProp be a countable set of proposi-
tional symbols. The languageL of DMBI is defined as follows, wherep ∈ Prop and
a∈ SAct:

X ::= p | ⊥ | I | X → X | X ∗X | X−∗X | 〈a〉X | ♦X

We define the following logical connectors:

¬φ ≡ φ →⊥ ⊤≡ ¬⊥ φ∨ψ ≡ ¬φ → ψ
φ∧ψ ≡ ¬(φ →¬ψ) [a]φ ≡ ¬〈a〉¬φ �φ ≡ ¬♦¬φ

We now define a Kripke semantics for DMBI, that is based on a resource monoid,
an action monoid, a state set, a transition relation||·〉〉 and a functionµ.

Definition 1 (Resource monoid).Anresource monoidis a structureR =(R,•,e) such
that:

– R is a set ofresources
– e∈ R
– • : R×R→ R such that, for any r1, r2, r3 ∈ R:

- Neutral element: r1 •e= e• r1 = r1

- Commutativity: r1• r2 = r2 • r1

- Associativity: r1 • (r2• r3) = (r1 • r2)• r3

Definition 2 (Action monoid). An action monoidis a structureA = (Act,⊙,1) such
that:

– Act is a set ofactions
– 1∈ Act
– ⊙ : Act×Act→ Act such that, for any a1,a2,a3 ∈ R:

- Neutral element: a1⊙1= 1⊙a1 = a1
- Associativity: a1⊙ (a2⊙a3) = (a1⊙a2)⊙a3

We calle theunit resource, 1 theunit action, • theresource compositionand⊙ the
action composition. If a1 anda2 are actions thena1⊙a2 is the action that consists in
performing the actiona1 and after the actiona2. We remark that⊙ is not commutative,
for instance,writeMail⊙ sendMailis equivalent tosendMail⊙writeMail.

Definition 3 (µ-DRM). A µ-DRM (µ-dynamic resource monoid)is a structureM =
(R ,A ,S, ||·〉〉,µ), whereR = (R,•,e) is a resource monoid andA = (Act,⊙,1) is an
action monoid, such that:

– S is a set ofstates
– ||·〉〉 ⊆ S×Act×S is a relation on states and actions such that, for any s1,s2 ∈ S and

any a1,a2 ∈ Act:
- ||·〉〉-unit: s1 ||1〉〉s1
- ||·〉〉-composition: if s1 ||a1〉〉s2 and s2 ||a2〉〉s3 then s1 ||a1⊙a2〉〉s3

– µ : Act×R⇀ R such that, for any r∈ R and any a1,a2 ∈ Act:
- µ-unit: µ(1, r) ↓ and µ(1, r) = r
- µ-composition: if µ(a1, r) ↓ and µ(a2,µ(a1, r)) ↓ then µ(a1⊙a2, r) ↓ and µ(a1⊙

a2, r) = µ(a2,µ(a1, r))

Here,↓ means ”is defined” and↑ means ”is undefined”.µ(a, r) is the resource that
results from performing the actiona on the resourcer. We noter,s

a−→ r ′,s′ if and only
if µ(a, r) ↓, µ(a, r) = r ′ ands||a〉〉 s′ (equivalently(s,a,s′) ∈ ||·〉〉). We can remark that,

for any r ∈ R and anys∈ S, r,s
1−→ r,s holds. We noter,s r ′,s′ if and only there

area0, ...,an ∈ Act, r1, ..., rn ∈ R ands1, ...,sn ∈ S such thatr,s
a0−→ r1,s1

a1−→ ...
an−1−−→

rn,sn
an−→ r ′,s′. We can also remark thatr,s r,s holds for anyr ∈ R and anys∈ S,

because we haver,s
1−→ r,s.

As we remark, as opposed to BBI, we consider here a total resource composition (rather
than a partial composition) because, as we will see in the next section, resources are
considered as multisets of atomic resources and the resource composition is considered
as the multiset union, which is a total function. Compared toDBI, we can remark that
an action monoid (A) is added to the DBI models, transitions on the states (||·〉〉) are
now labelled by actions and a functionµ is added to deal with resource transformation.
Compared to MBI, we meet the judgements of the formr,s

a−→ r ′,s′ and the function
µ, which are the fundamental principle (philosophy) of MBI, except that we restrict
the models to only one process whereS is the process state set and||·〉〉 is the process
transition relation. In conclusion, aµ-DRM encodes a process (S, ||·〉〉), that performs
actions (A) and transforms/manipulates (µ) resources (R).
We denoteP(E) is the powerset of the setE, namely the set of sets built fromE.

Definition 4 (µ-Model). A µ-Model is a 4-upletK = (M ,J·K, | · |,�K) such thatM
is a µ-DRM,J·K : Prop→ P(R×S), | · | : SAct → Act and�K is a forcing relation on
R×S×L defined as follows:

– r,s�K p iff (r,s) ∈ JpK
– r,s�K ⊥ never
– r,s�K I iff r = e
– r,s�K φ → ψ iff r,s�K φ ⇒ r,s�K ψ
– r,s�K φ∗ψ iff ∃r1, r2 ∈ R· r = r1 • r2 and r1,s�K φ and r2,s�K ψ
– r,s�K φ−∗ψ iff ∀r ′ ∈ R· r ′,s�K φ ⇒ r • r ′,s�K ψ

– r,s�K 〈a〉φ iff ∃r ′ ∈ R· ∃s′ ∈ S· r,s |a|−→ r ′,s′ and r′,s′ �K φ
– r,s�K ♦φ iff ∃r ′ ∈ R· ∃s′ ∈ S· r,s r ′,s′ and r′,s′ �K φ

Definition 5 (Validity). A formulaφ is valid, denoted� φ, if and only if r,s�K φ for
all µ-ModelsK , all resources r and all states s. The notationφ � ψ means that for all
resources r and all states s of any µ-ModelK , if r,s�K φ then r,s�K ψ.

Proposition 1. For any r1, r2, r3 ∈ R and a,a′ ∈ Act and s1,s2,s3 ∈ S, the following

property holds: if r1,s1
a−→ r2,s2 and r2,s2

a′−→ r3,s3 then r1,s1
a⊙a′−−→ r3,s3.

Proposition 2. For any r, r ′ ∈ R and s,s′ ∈ S, we have r,s r ′,s′ iff there is a∈ Act
such that r,s

a−→ r ′,s′.

3 Concurrent processes modelling

As we presented in the previous section, aµ-DRM encodes a system composed by only
one process, whose states are elements of the setSand transitions are the relation||·〉〉,
that manipulates resources. In this section, we show how aµ-model can modeln con-
current processes and can express properties on resources produced by these processes.

We suppose that a user give a description ofn concurrent processes (P1, ..., Pn)
manipulating resources, wheren > 1. We aim to construct aµ-model that captures
the behaviour of these processes. We denote the description, given by the user,D =
(Ratom,Actatom,µpre,µpost,{P1, ...,Pn}), where:

– Ratom is a set ofatomic resources
– Actatom is a set ofatomic actions
– µpre : Actatom→M(Ratom)
– µpost : Actatom→M(Ratom)
– Pi = (Si ,_Pi), such that

• Si is the set of states of the processPi

• _Pi⊆ Si ×Actatom×Si is the transition relation of the processPi

Here, the processes product/consumeatomic resourcesand performatomic actions.
An atomic resource is a resource that can not be decomposed into sub-resources and an
atomic action is an action that can not be decomposed as a succession of simpler actions.
M f (Ratom) is the set of all multisets overRatom, that are functionsRatom→ N. We call

resourcea multiset of atomic resources. To encode consumption of atomic resources,
the user provides a functionµpre, whereµpre(a) is the resource that is consumed when
a process performs the actiona. The functionµpost encodes the production of atomic
resources, which means thatµpost(a) is the resource that is produce after performing the
actiona. (Si ,_Pi) is an automaton that encodes the processPi .
Let us give the following example. Concerning resources, wedenoteR= {r1, r1, r2} the
multiset such thatR(r1) = 2,R(r2) = 1 andR(r) = 0 for all r ∈ Ratom\{r1, r2}. We also
denotee the empty multiset, that ise(r) = 0 for all r ∈ Ratom. R1 is said a sub-resource
of R2 (denotedR1 ≤ R2) iff R1(r) 6 R2(r) for all r ∈ Ratom. We define composition of
resources byR1+R2 = R3 such thatR3(r) = R1(r)+R2(r) for all r ∈ Ratom. We also
defineR1−R2 = R3 such thatR3(r) = R1(r)−R2(r) for all r ∈ Ratom and we remark
thatR1−R2 is defined iffR2 ≤ R1.

We introduce a denotation that captures transitions of thissystem. We consider that
if the available resource isR and each processPi is in statesi then each process can
performs the atomic actionai and reaches states′i and the new available resource isR′,

denotedR





s1
a1
_P1 s′1

...
...

sn
an
_Pn s′n





R′, iff µpre(a1)+ ...+ µpre(an) ≤ R andR′ = R− µpre(a1)−

...−µpre(an)+µpost(a1)+ ...+µpost(an) andsi
ai
_Pi s′i for all i ∈ {1, ...,n}. This deno-

tation means that if the resource available for the processes isR and if each processPi

is in statesi then:

– R contains enough atomic resources to perform the atomic actionsai (µpre(a1)+
...+µpre(an)≤ R)

– Each processPi can reach the states′i (si
ai
_Pi s′i , for all i ∈ {1, ...,n})

– The resource that will be available for the system after the execution of these atomic
actions isR′ = R−µpre(a1)− ...−µpre(an)+µpost(a1)+ ...+µpost(an). Indeed,R′

is the resourceR less all atomic resources consumed by the actionsai (µpre(ai))
plus all atomic resources produced by the actionsai (µpost(ai)).

Here, we remark that the processes are synchronous, meaningthat at each transition,
all processes perform an action. If we want to consider asynchronous processes, it suf-
fices to consider an atomic actionskipand extend the descriptionD given by the user,

such thatµpre(skip) = µpost(skip) = e andsi
skip
_Pi si for all processPi and allsi ∈ Si .

We introduce another denotation that captures reachability, that isR





s1 99KP1 s′1
...

...
sn 99KPn s′n





R′

iff (R= R′ ands1#...#sn = s′1#...#s′n) or there isk> 1, there areRj ∈ M f (Ratom) (for
all j ∈ {1, ...,k−1}), there area j

1, ...,a
j
n ∈ Actatom (for all j ∈ {1, ...,k}) and there are

sj
i ∈ Si (for all i ∈ {1, ...,n} and j ∈ {1, ...,k−1}) such that:

R





s1
a1

1
_P1 s1

1
...

...

sn
a1

n
_Pn s1

n





R1





s1
1

a2
1

_P1 s2
1

...
...

s1
n

a2
n

_Pn s2
n




...





sk−2
1

ak−1
1
_ P1 sk−1

1
...

...

sk−2
n

ak−1
n
_ Pn sk−1

n





Rk−1





sk−1
1

ak
1

_P1 s′1
...

...

sk−1
n

ak
n

_Pn s′n





R′

This denotation expresses that if all processPi are in statesi and if the available resource
is R then each process can perform a succession of atomic actionssuch that each process
Pi reaches the states′i and the resource that results from these action executions isR′.
Now, we show how to obtain aµ-DRM. Concerning the resource monoid, we simply
consider the multisets overPatom.

Proposition 3. R = (M(Ratom),+,e) is a resource monoid.

To obtain an action monoid, we firstly defineAct#atom = {a1#...#an | a1, ...,an ∈
Actatom}, which encode all concurrent atomic actions that can be performed by the
processes. As example, ifn= 2 then the concurrent atomic actiona1#a2 represents the
processP1 performing the actiona1 and the processP2 performing the actiona2. We
also consider lists of concurrent atomic actions. We denoteL(Act#atom) the set of all lists
built onAct#atom, [] the empty list,⊕ the concatenation of lists and|L| the size of the list
L. In instance,[A1;A2], whereA1,A2 ∈ Act#atom, is the action that consists in performing
the concurrent atomic actionA1 and thenA2.

Proposition 4. A = (L(Act#atom),⊕, []) is an action monoid.

Now we define the functionµ that encodes production and consumption of re-
sources. We firstly give the functionµ# : Act#atom×M(Ratom) ⇀ M(Ratom) that deals
with concurrent atomic actions performing on resources.

µ#(a1#...#an,R)=

{
↑ if µpre(a1)+ ...+µpre(an) 6≤ R
R−µpre(a1)− ...−µpre(an)+µpost(a1)+ ...+µpost(an) otherwise

We extend this function on list of concurrent atomic actions, givingµlist :L(Act#atom)×
M(Ratom)⇀M(Ratom).

µlist(L,R) =





R if L = []
↑ if L = [A1; ...;Ak] andµ#(A1,R) ↑
µlist([A2; ...;Ak],µ#(A1,R)) whereL = [A1; ...;Ak]

In this definitionµlist([],R) = R because if the system performs no concurrent atomic
action onR thenR is not modified.

Proposition 5. The function µlist : L(Act#atom)×M(Ratom) ⇀ M(Ratom) satisfies the
properties µ-unit and µ-composition.

The last step consists in capturing the processes transitions. To capture the states
of the concurrent processes, we definedS# = {s1#...#sn | si ∈ Si for any 16 i 6 n}. As
example, ifn = 2 thens1#s2 is the state that represents the processP1 in states1 and
the processP2 in states2. We define a relation|·〉# : S# ×Act#atom×S# that captures
concurrent transitions of processes.

s1#...#sn |a1#...#an〉# s′1#...#s′n iff si
ai
_Pi s′i for all 16 i 6 n

We extend the previous definition to deal with lists of concurrent atomic actions, giving
|·〉 list : S#×L(Act#atom)×S# such that

S|[A1; ...;Ak]〉 list S′ iff ∃S1, ...,Sk−1 ∈ S# ·S|A1〉# S1 |A2〉# ... |Ak−1〉# Sk−1 |Ak〉# S′

In this definition, it is implicit thatS|[]〉 list Salways holds.

Proposition 6. The function|·〉 list : S#×L(Act#atom)×S# satisfies the properties||·〉〉-unit
and||·〉〉-composition.

We started this section by considering that a user gives a description of a system that
is composed byn concurrent processes that manipulate resources. This description is
a 5-upletD = (Ratom,Actatom,µpre,µpost,{P1, ...,Pn}) wherePi = (Si ,_Pi). We present
in this section a method to obtain a 5-upletM = (R ,A ,S#, |·〉 list ,µlist), whereR =
(M(Ratom),+,e) andA = (L(Act#atom),⊕, []). Now we show thatM is aµ-DRM.

Lemma 1. LetD = (Ratom,Actatom,µpre,µpost,{P1, ...,Pn}), where Pi = (Si ,_Pi), be a
description of a system composed by n concurrent processes manipulating resources.
The5-upletM = (R ,A ,S#, |·〉 list ,µlist), whereR = (M(Ratom),+,e) and whereA =
(L(Act#atom),⊕, []) is a µ-DRM.

Now, we show how to obtain aµ-modelK fromM that allow us to express resource
reachability. LetK = (M ,J·K, | · |,�K) such thatJ·K : Prop→ P(M(Ratom)×S#) and
| · | : SAct → L(Act#atom) be defined by:

Jr iK = {({r i},s) | s∈ S#} and |a1#...#an|= [a1#...#an]

and�K be defined w.r.t. the Definition 4. We also define the function·̂ :M(Ratom)→L:

R̂=

{
I if R= e

r1∗ ...∗ rk if R= {r1, ..., rk}
to encode resources into formulae.

Proposition 7. For any R∈M(Ratom) and s1#...#sn ∈ S#, we have R,s1#...#sn �K R̂.

Proposition 8. If R̂= R̂′ then R= R′.

We prove two lemmas that show that theµ-DRM captures transitions and reachabil-
ity of the system described by the user.

Lemma 2. Let R,R′ ∈M(Ratom), let a1, ...,an∈Actatom. let si ,s′i ∈Si for all i ∈{1, ...,n}.

R





s1
a1
_P1 s′1

...
...

sn
an
_Pn s′n





R′ iff R,s1#...#sn
[a1#...#an]−−−−−−→ R′,s′1#...#s′n

Lemma 3. Let R,R′ ∈M(Ratom). Let si ,s′i ∈ Si for all i ∈ {1, ...,n}.

R





s1 99KP1 s′1
...

...
sn 99KPn s′n





R′ iff R,s1#...#sn R′,s′1#...#s′n

Now, we show that reachability is equivalent to satisfiability.

Theorem 1. Let R,R′ ∈M(Ratom). Let a1, ...,an ∈Actatom. Let si ∈Si for all i ∈{1, ...,n}.
The following property holds:

∃s′1 ∈ S1, ...,∃s′n ∈ Sn ·R





s1
a1
_P1 s′1

...
...

sn
an
_Pn s′n





R′ iff R,s1#...#sn �K 〈a1#...#an〉R̂′

Theorem 2. Let R,R′ ∈M(Ratom). Let si ∈ Si for all i ∈ {1, ...,n}. The following prop-
erty holds:

∃s′1 ∈ S1, ...,∃s′n ∈ Sn ·R





s1 99KP1 s′1
...

...
sn 99KPn s′n





R′ iff R,s′1#...#s′n �K ♦R̂′

4 Expressiveness of DMBI

In this section, we present one example inspired by that of [13] (mutual exclusion) and
we show that DMBI allows us to express interesting properties that can not be expressed
by MBI or DBI. In this section, we use denotations and resultspresented in the previous
section.

We consider that a user gives a description of a system that iscomposed by two pro-
cesses in mutual exclusion. This description isD =(Ratom,Actatom,µpre,µpost,{P1,P2}),
where:

– Ratom= {J}
– Actatom= {anc,ac,ap,av}
– µpre is defined by:

• µpre(anc) = µpre(ac) = µpre(av) = e
• µpre(ap) = J

– µpost is defined by:
• µpost(anc) = µpost(ac) = µpost(ap) = e
• µpost(av) = J

– P1 = (S1,_P1) andP2 = (S2,_P2) such that:
• S1 = S2 = {snc,sc}
• For anyi ∈ {1,2}, we have:

snc
anc
_Pi snc snc

ap
_Pi sc sc

ac
_Pi sc sc

av
_Pi snc

In this description, the user considers only one atomic resource (J), which represents
a token, and four atomic actionsanc (a non critical action),ac (a critical action),ap (the
action that consists in taking a token) andav (the action that consists in releasing a
token).µpre(a) andµpost(a) capture respectively the resources that are consumed and
produced when the actiona is performed. We remark that when a process takes a token
then a token is consumed (µpre(ap) = J) and when a process releases a token then a
token is produced (µpost(av) = J). These processes have two states, that aresnc (process
in a non-critical state) andsc (process in a critical state).

Now, using the method that we presented in the previous section, we can obtain
a µ-modelM that simulates the behaviour of these processes. In this example, MBI
is able to express that the actionanc#anc can not be performed [13], that isR,E ×
E � [anc#anc]⊥, whereR is one token andE is a process in non-critical section. But,
we remark that because of the Henessy-milner modality[anc#anc], the formula means
that when there are only one token and two processes in non-critical section then it is
impossible that they perform together a critical action. This does not mean that after
performing any succession of actions, the processes can notperform together a critical
action. As opposed to MBI, DMBI is able to express such properties, using♦ or �
modalities, that is:

{J},snc#snc�K �[ac#ac]⊥
Here, this means that if the current resource is only one token and if the processes start
in a non-critical state then, after performing any succession of actions, they can not
perform together a critical action. Using multiplicative connector, it is also possible to
express that it is impossible to reach a state such that more than one token is available:

{J},snc#snc �K ¬♦(J∗ J∗⊤)

5 A proof system for DMBI

In this section, we proposed a proof system for DMBI, based onprevious works for BI
[6] and BBI [10,11], with resource graph. Specifically, we introduce rules to deal with
modalities and introduce constraints to capture the notionof resource transformation
(µ) and transitions (||.〉〉).

5.1 Labels for resources, actions and states

Our tableaux method for DMBI contains some semantic informations that allows us
to extract countermodels in case of non-validity. This method contains resource labels,
action labels and state labels to capture, respectively, the resource monoid, the actions
monoid and the state set of models.

Definition 6 (Resource labels).Lr is a set ofresource labelsbuilt from a constant1r ,
an infinite countable set of constantsγr = {c1,c2, ...} and a function denoted◦:

X ::= 1r | ci | X ◦X

where ci ∈ γr . Moreover◦ is a function on Lr that is associative, commutative and1r is
its unit.

We denotexy the resource labelx◦y. Moreover we say thatx is aresource sublabelof y
iff there existszsuch thatx◦ z= y. The set of resource sublabels ofx is denotedEr(x).

Definition 7 (Action labels). La is a set ofaction labelsbuilt from a constant1a, the
action symbol set SAct, an infinite countable set of constantsγa = {d1,d2, ...} and a
function denoted�:

X ::= 1a | ai | di | X �X

where ai ∈ SAct, di ∈ γa and SAct∩ γa = /0. Moreover� is a function on La that is asso-
ciative (not commutative) and1a is its unit.

We denotef g the action labelf �g. Moreover we say thatf is aaction sublabelof g iff
there existsh such thatf �h= g. The set of action sublabels off is denotedEa(f).

Definition 8 (State labels).Ls is an infinite countable set ofstate labels(or state con-
stants), denoting Ls = {l1, l2, ...}.

This tableaux method contains also constraints to capture the equality on resources, the
µ function and the transitions (||·〉〉) of the process that manipulates the resources.

Definition 9 (Constraints). A resource constraintis an expression of the form x∼ y

where x and y are resource labels. A µ-constraintis an expression of the form x
f
։ y

where x and y are resource labels and f is an action label. Atransition constraintis an

expression of the form u
f
֌ v where u and v are state labels and f is an action label.

A set of constraintsC is a set that contains resource constraints,µ-constraints and tran-

sition constraints. For instance,C = {c1 ∼ c2,c3 ∼ c2,c1
a1
։ c2,c3

d1
։ c3c3, l1

d2
֌ l2} is a

set of constraints. We now define the domains and the alphabets on such sets.

Definition 10 (Domain).LetC be a constraint set. The resource/actiondomainofC is
the set of all resource/action sublabels appearing inC . In particular:

– Dr(C) =
[⋃

x∼y∈C (Er(x)∪Er(y))
]
∪
[
⋃

x
f
։y∈C

(Er(x)∪Er(y))

]

– Da(C) =

[
⋃

x
f
։y∈C

Ea(f)

]
∪
[
⋃

u
f

֌v∈C
Ea(f)

]

Definition 11 (Alphabet). Let C be a constraint set. The resource/action/statealpha-
betsof C is the set of resource/action/state constants (and action symbols) appearing
in C . In particular:

Rules that product resource constraints:

〈1r 〉
1r ∼ 1r

x∼ y
〈sr 〉y∼ x

xy∼ xy
〈dr 〉x∼ x

x∼ y y∼ z
〈tr 〉x∼ z

x∼ x′ y∼ y′
〈gr 〉

xy∼ x′y′
x

f
։ y x

f
։ z

〈kr 〉y∼ z
x

f
։ y

〈ar1〉x∼ x

Rules that productµ-constraints:

x∼ x 〈1µ〉
x

1a
։ x

x
f
։ y y

g
։ z

〈tµ〉

x
f g
։ z

x
f
։ y x∼ x′

〈kµ1〉

x′
f
։ y

x
f
։ y y∼ y′

〈kµ2〉

x
f
։ y′

Rules that product transition constraints:

u
f
֌ v 〈1t1〉

u
1a
֌ u

u
f
֌ v 〈1t2〉

v
1a
֌ v

u
f
֌ v v

g
֌ w 〈tt〉

u
f g
֌w

Fig. 1. Rules for constraint closures

– Ar(C) = γr ∩Dr(C)
– Aa(C) = (SAct∪ γa)∩Da(C)
– As(C) =

⋃

u
f

֌v∈C
{u,v}

Definition 12 (Closure of constraints).Let C be a set of constraints. The closure of
C , denotedC , is the least relation closed under the rules of Figure 1 suchthatC ⊆ C .

We remark that there are seven rules (〈1r〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈gr〉, 〈kr〉 and〈ar1〉) that
produce resource constraints, there are four rules (〈1µ〉, 〈tµ〉, 〈kµ1〉 and〈kµ2〉) that pro-
duceµ-constraints and there are three rules (〈1t1〉, 〈1t2〉 and〈tt〉) that produce transition
constraints. As opposed to DBI, it is impossible to close separately a resource constraint
set and aµ-constraint set, because of the rules〈kr〉, 〈ar1〉, 〈1µ〉, 〈kµ1〉 and〈kµ2〉. For ex-
ample, to apply the rule〈kr〉 that returns a resource constraint, we need to choose two

µ-constraints (x
f
։ y andx

f
։ z) and to apply the rule〈1µ〉 that returns aµ-constraint,

we need to choose a resource constraint (x ∼ x): closure of resource constraints and

µ-constraints are interdependent. As example, letC = {c1 ∼ c2,c2 ∼ c3,c1
a1
։ c2}, we

havec3
a1
։ c2 ∈ C because:

c1
a1
։ c2

c1 ∼ c2 c2 ∼ c3 〈tr〉c1 ∼ c3 〈kµ1〉
c3

a1
։ c2

Proposition 9. The following rules can be derived from rules of closure of constraints:

xk∼ y
〈pl 〉x∼ x

x∼ yk
〈pr 〉y∼ y

x
f
։ y

〈ar2〉y∼ y
xk

f
։ y

〈ql 〉x∼ x
x

f
։ yk

〈qr 〉y∼ y

Corollary 1. LetC be a set of constraints, x∈Dr(C) iff x ∼ x∈ C .

Corollary 2. LetC be a set of constraints, u∈ As(C) iff u
1a
֌ u∈ C .

Proposition 10. Let C a set of constraints. We haveAr(C) = Ar(C), Aa(C) = Aa(C)
andAs(C) = As(C).

Lemma 4 (Compactness).LetC be a (possibly infinite) set of constraints:

1. If x∼ y∈ C then there is a finite setC f such thatC f ⊆ C and x∼ y∈ C f

2. If x
f
։ y∈ C then there is a finite setC f such thatC f ⊆ C and x

f
։ y∈ C f

3. If u
f
֌ v∈ C then there is a finite setC f such thatC f ⊆ C and u

f
֌ v∈ C f

5.2 A tableaux method for DMBI

In this subsection we propose a tableau methods for DMBI in the spirit of previous
works for BI [6], BBI [10,11] and DBI [4].

Definition 13. A labelled formulais a 4-uplet(S,φ,x,u)∈ {T,F}×L×Lr ×Ls written
Sφ : (x,u). A constrained set of statements(CSS) is a pair〈F ,C 〉, whereF is a set of
labelled formulae andC is a set of constraints, satisfying the following(Pcss) property:

if Sφ : (x,u) ∈ F then x∼ x∈ C and u
1a
֌ u∈ C

A CSS〈F ,C 〉 is finite if F andC are finite. The relation4 is defined by:

〈F ,C 〉4 〈F ′,C ′〉 iff F ⊆ F ′ andC ⊆ C ′

We denote〈F f ,C f 〉4 f 〈F ,C 〉 when〈F f ,C f 〉4 〈F ,C 〉 holds and〈F f ,C f 〉 is finite.

Figure 2 presents rules of tableaux method for DMBI. Let us remark that ”ci and
c j are new label constants” meansci 6= c j ∈ γr \Ar(C), ”di is a new label constants”
meansdi ∈ γa \Aa(C) and ”l i is a new label constants” meansl i ∈ Ls\As(C). We note
⊕ concatenation of lists. For example[e1;e2;e4]⊕ [e4;e3] = [e1;e2;e4;e4;e3].

Definition 14 (µ-tableau).Let 〈F0,C0〉 a finite CSS.A µ-tableaufor this CSS is a list of
CSS, which are calledbranches, built inductively according the following rules:

1. The one branch list[〈F0,C0〉] is a µ-tableau for〈F0,C0〉
2. If the listTm⊕ [〈F ,C 〉]⊕Tn is a µ-tableau for〈F0,C0〉 and

cond〈F ,C 〉
〈F1,C1〉 | ... | 〈Fk,Ck〉

is an instance of some rule of Figure 2 for which cond〈F ,C 〉 is fulfilled, then the
list

Tm⊕ [〈F ∪F1,C ∪C1〉; ...;〈F ∪Fk,C ∪Ck〉]⊕Tn

is a µ-tableau for〈F0,C0〉.

TI : (x,u) ∈ F
〈TI〉

〈 /0,{1r ∼ x}〉

Tφ → ψ : (x,u) ∈ F
〈T→〉

〈{Fφ : (x,u)}, /0〉 | 〈{Tψ : (x,u)}, /0〉
Fφ → ψ : (x,u) ∈ F

〈F→〉
〈{Tφ : (x,u),Fψ : (x,u)}, /0〉

Tφ∗ψ : (x,u) ∈ F
〈T∗〉

〈{Tφ : (ci ,u),Tψ : (c j ,u)},{cic j ∼ x}〉
Fφ∗ψ : (x,u) ∈ F andyz∼ x∈ C

〈F∗〉
〈{Fφ : (y,u)}, /0〉 | 〈{Fψ : (z,u)}, /0〉

Tφ−∗ψ : (x,u) ∈ F andxy∼ xy∈ C
〈T−∗〉

〈{Fφ : (y,u)}, /0〉 | 〈{Tψ : (xy,u)}, /0〉
Fφ−∗ψ : (x,u) ∈ F

〈F−∗〉
〈{Tφ : (ci ,u),Fψ : (xci ,u)},{xci ∼ xci}〉

T〈 f 〉φ : (x,u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci , l i)},{x
f
։ ci ,u

f
֌ l i}〉

F〈 f 〉φ : (x,u) ∈ F andx
f
։ y∈ C andu

f
֌ v∈ C

〈F〈−〉〉
〈Fφ : (y,v), /0〉

T♦φ : (x,u) ∈ F
〈T♦〉

〈{Tφ : (ci , l i)},{x
di
։ ci ,u

di
֌ l i}〉

F♦φ : (x,u) ∈ F andx
f
։ y∈ C andu

f
֌ v∈ C

〈F♦〉
〈{Fφ : (y,v)}, /0〉

Note:ci , c j , di andl i are new label constants.

Fig. 2. Rules of tableaux method for DMBI

A µ-tableaufor the formulaφ is a µ-tableaufor 〈{Fφ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉.

It is possible to prove, by observing rules of tableau methodfor DMBI, that a new CSS
obtained by applying a rule of Figure 2 respects the property(Pcss) of Definition 13
(using Corollary 1 and Corollary 2).

Definition 15 (Closure condition).A CSS〈F ,C 〉 is closedif one of the following con-
ditions holds:

1. Tφ : (x,u) ∈ F , Fφ : (y,u) ∈ F and x∼ y∈ C

2. FI : (x,u) ∈ F and1r ∼ x∈ C

3. T⊥ : (x,u) ∈ F

A CSS isopenif it is not closed. A µ-tableau is closed if all its branches are closed.

Definition 16 (µ-proof). A µ-proof for a formulaφ is a closed µ-tableau forφ.

Let us give an example ofµ-proof. We consider the formulaφ ≡ ((P−∗〈a〉〈b〉Q)∗
P)→♦Q and give aµ-proof for it. By Definition 14, theµ-tableau[〈{Fφ : (c1, l1)},{1∼
1, l1

1a
֌ l1}〉] is a µ-tableau forφ. We introduce a new representation for aµ-tableau,

which is

[F]

F((P−∗〈a〉〈b〉Q)∗P)→ ♦Q : (c1, l1)

[C]

c1 ∼ c1 l1
1a
֌ l1

We can observe that there are two columns, one for the labelled formula sets of the CSS
of theµ-tableau (denoted[F]) and one for the constraint sets of the CSS of theµ-tableau
(denoted[C]). By applying some rules, we obtain the followingµ-tableau:

[F]√
1 F((P−∗〈a〉〈b〉Q)∗P)→ ♦Q : (c1, l1)

√
2 T(P−∗〈a〉〈b〉Q)∗P : (c1, l1)√

6 F♦Q : (c1, l1)

√
3 TP−∗〈a〉〈b〉Q : (c2, l1)

TP : (c3, l1)

FP : (c3, l1)
√

4 T〈a〉〈b〉Q : (c2c3, l1)

× √
5 T〈b〉Q : (c4, l2)

TQ : (c5, l3)

FQ : (c5, l3)

×

[C]

c1 ∼ c1 l1
1a
֌ l1

c2c3 ∼ c1

c2c3
a
։ c4 l1

a
֌ l2

c4
a
։ c5 l2

a
֌ l3

We decorate a labelled formula with
√

i to show that we apply a rule on this formula
at stepi. We remark that columns[F] and[C] are trees that contain two branches. There
are two branches because there are two CSS in theµ-tableau. The branches on the left
(resp. right) contain the elements of the first (resp. second) CSS. We also remark that
all CSS are closed (denoted×). The CSS of the left is closed becauseTP : (c3, l1) ∈ F ,
FP : (c3, l1)∈F andc3 ∼ c3 ∈ C (by rule〈pl 〉). We give more details concerning steps 5
and 6. In step 5, when the rule〈T〈−〉〉 is applied on the labelled formulaT〈b〉Q : (c4, l2),
we have to choose a new resource label (c5) and a new state label (l3). Then the labelled

formula TQ : (c5, l3), the µ-constraintc4
a
։ c5 and the transition constraintl2

a
֌ l3

are introduced in the branch. In step 6, to apply the rule〈F♦〉 on the labelled formula
F♦Q : (c1, l1), we have to choose a resource labely, an action labelf and a state label

v such thatc1
f
։ y∈ C andl1

f
֌ v∈ C . As l1

a
֌ l2 andl2

b
։ l3 belong toC , by rule〈tt〉

we havel1
ab
֌ l3 ∈ C . As c2c3

a
։ c4, c4

b
։ c5 andc2c3 ∼ c1 belong toC , it is possible

to show thatc1
ab
։ c5 ∈ C :

c2c3
a
։ c4 c4

b
։ c5 〈tµ〉

c2c3
ab
։ c5 c2c3 ∼ c1 〈kµ1〉

c1
ab
։ c5

. Thus, by

choosingy= c5, f = ab andv= l3, we can apply the rule that introduces the labelled
formulaFQ : (c5, l3) in the branch. We can conclude that as thisµ-tableau is closed then
it is a µ-proof of ((P−∗〈a〉〈b〉Q)∗P)→ ♦Q.

5.3 Soundness and completeness properties

Theorem 3 (Soundness).If there exists a µ-proof for a formulaφ thenφ is valid.

Before to study completeness we present the countermodel extraction method for
DMBI. The main idea consists in transforming resource, action and transition con-
straints into aµ-DRM, from a branch〈F ,C 〉 which is not closed.
In order to obtain a countermodel, this transformation has to verify two properties: if
Tφ : (x,u) ∈ F thenx,u �K φ and ifFφ : (x,u) ∈ F thenx,u 6�K φ. In order to satisfy
these properties, our method needs tofulfilled labelled formulae (to obtain a Hintikka
CSS).

Definition 17 (Hintikka CSS). A CSS〈F ,C 〉 is a Hintikka CSSif for any formula
φ,ψ ∈ L, any action f∈ SAct and any label x∈ Lr and u∈ Ls:

1. Tφ : (x,u) 6∈ F or Fφ : (y,u) 6∈ F or x∼ y 6∈ C

2. FI : (x,u) 6∈ F or 1r ∼ x 6∈ C

3. T⊥ : (x,u) 6∈ F

4. If TI : (x,u) ∈ F then1r ∼ x∈ C

5. If Tφ → ψ : (x,u) ∈ F thenFφ : (x,u) ∈ F or Tψ : (x,u) ∈ F

6. If Fφ → ψ : (x,u) ∈ F thenTφ : (x,u) ∈ F andFψ : (x,u) ∈ F

7. IfTφ∗ψ : (x,u)∈F then∃y,z∈ Lr , yz∼ x∈ C andTφ : (y,u)∈F andTψ : (z,u)∈
F

8. If Fφ∗ψ : (x,u)∈F then∀y,z∈ Lr , yz∼ x∈ C ⇒ Fφ : (y,u)∈F or Fψ : (z,u)∈F

9. If Tφ−∗ψ : (x,u) ∈ F then∀y∈ Lr , xy∈Dr(C)⇒ Fφ : (y,u) ∈ F or Tψ : (xy,u) ∈
F

10. If Fφ−∗ψ : (x,u) ∈ F then∃y ∈ Lr , xy∈ Dr(C) and Tφ : (y,u) ∈ F and Fψ :
(xy,u) ∈ F

11. If T〈 f 〉φ : (x,u) ∈ F then∃y ∈ Lr , ∃v ∈ Ls, x
f
։ y ∈ C and u

f
֌ v ∈ C andTφ :

(y,v) ∈ F

12. If F〈 f 〉φ : (x,u) ∈ F then∀y ∈ Lr , ∀v ∈ Ls, (x
f
։ y ∈ C and u

f
֌ v ∈ C) ⇒ Fφ :

(y,v) ∈ F

13. IfT♦φ : (x,u) ∈ F then∃y∈ Lr , ∃ f ∈ La, ∃v∈ Ls, x
f
։ y∈ C and u

f
֌ v∈ C and

Tφ : (y,v) ∈ F

14. IfF♦φ : (x,u) ∈ F then∀y∈ Lr , ∀ f ∈ La, ∀v∈ Ls, (x
f
։ y∈ C and u

f
֌ v∈ C)⇒

Fφ : (y,v) ∈ F

The conditions (1), (2) and (3) of Definition 17 certify that aHintikka CSS is not
closed. Others conditions certify that all labelled formulae of a Hintikka CSS are satu-
rated.
We define now a functionΩ that allows us to extract a countermodel from a Hintikka
CSS. We denote[x] = {y∈ Lr | x∼ y∈ C} andDr(C)/ ∼ = {[x] | x∈Dr(C)}. We re-
mark that the relation∼ from a closure of constraints (C) is reflexive (by Corollary 1),
symmetric (by rule〈sr〉) and transitive (by rule〈tr〉). So, it is an equivalence relation.
Thus[x] is an equivalence class.

Definition 18 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The functionΩ associates
to 〈F ,C 〉 a 4-upletΩ(〈F ,C 〉) = (M ,J·K, | · |,�K), whereM = (R ,A ,S, ||·〉〉,µ), R =
(R,•,e) andA = (Act,⊙,1), such that:

– R=Dr(C)/∼
– Act=Da(C)∪{α} (whereα 6∈Da(C))
– S= As(C)
– e= [1r]
– 1= 1a
– [x]• [y] = [x◦ y]

– For any a∈ Act and[x] ∈ R, µ(a, [x]) =

{
↑ if {y | x

a
։ y∈ C}= /0

{y | x
a
։ y∈ C} otherwise

– s1 || f 〉〉 s2 iff s1
f
֌ s2 ∈ C

– For all a1,a2 ∈ Act, a1⊙a2 =

{
a1 �a2 if a1 �a2 ∈Da(C)
α otherwise

– For all a ∈ SAct, |a|=
{

a if a∈Da(C)
α otherwise

– ([x],s) ∈ JPK iff ∃y∈ [x] such thatTP : (y,s) ∈ F

We recall that⊙ must be a total function. So, we introduce an actionα, because
if a1 �a2 6∈ Da(C) then we wanta1⊙a2 to be still define. For the construction ofµ, if

{y | x
f
։ y∈ C} = /0 thenµ(f , [x]) is undefined. Moreover if{y | x

f
։ y∈ C} 6= /0 then

{y | x
f
։ y∈ C} is an equivalence class, meaning that{y | x

f
։ y∈ C} ∈Dr(C)/∼.

Lemma 5. Let 〈F ,C 〉 be a Hintikka CSS such thatFφ : (x,u) ∈ F . Ω(〈F ,C 〉) is a
countermodel ofφ.

Theorem 4 (Completeness).If φ is valid then there is a µ-proof for the formulaφ.

6 Conclusion

We have defined and study a modal extension of BBI, called DMBI, that allows us
to capture resource transformations as MBI and to express properties on any reach-
able resources using DBI modalities. We showed that DMBI models can captures syn-
chronous or asynchronous concurrent processes that manipulating resources. We pro-
pose a tableaux method that is proved sound and complete and provide a countermodel
extraction method. Future works will be devoted to study calculus that allows us to
check satisfiability of properties on concurrent processesand to implement it. More-
over we will interest us into the study of located resource extension of DMBI [2].

References

1. N. Biri and D. Galmiche. A Separation Logic for Resource Distribution. In23rd Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS’03,
LNCS 2914, pages 23–37, December 2003. Mumbai, India.

2. M. Collinson, B. Monahan, and D. Pym. A Logical and Computational Theory of Located
Resource.Journal of Logic and Computation, 19(6):1207–1244, 2009.

3. M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.Math-
ematical Structures in Computer Science, 19(5):959–1027, 2009.

4. J.R. Courtault and D. Galmiche. A Modal BI Logic for Dynamic Resource Properties. In
Logical Foundations of Computer Science, volume 7734 ofLecture Notes in Computer Sci-
ence, pages 134–148. Springer Berlin Heidelberg, 2013.

5. D. Galmiche and D. Méry. Tableaux and Resource Graphs forSeparation Logic.Journal of
Logic and Computation, 20(1):189–231, 2010.

6. D. Galmiche, D. Méry, and D. Pym. The semantics of BI and Resource Tableaux.Math.
Struct. in Comp. Science, 15(6):1033–1088, 2005.

7. J.Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–102, 1987.
8. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.Journal

of the ACM, 32(1):137–161, January 1985.
9. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In

28th ACM Symposium on Principles of Programming Languages,POPL 2001, pages 14–26,
London, UK, 2001.

10. D. Larchey-Wendling. The Formal Proof ot the Strong Completeness of Boolean BI.
http://www.loria.fr/˜larchey/BBI, 2012.

11. D. Larchey-Wendling and D. Galmiche. Exploring the relation between intuitionistic BI and
boolean BI: An unexpected embedding.Math. Struct. in Comp. Science, 19:1–66, 2009.

12. P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

13. D. Pym and C. Tofts. Systems modelling via resources and processes: Philosophy, calculus,
semantics, and logic.Electronic Notes in Theoretical Computer Science, 172:545–587, 2007.

14. D.J. Pym.The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26
of Applied Logic Series. Kluwer Academic Publishers, 2002.

