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Abstract. In this paper, we propose a modal extension of Boolean Bledal
DMBI, that captures the notion of resource transformatamcan express prop-
erties on any reachable resource. Moreover, we provide adsand complete
calculus and a countermodel extraction method for thisubadc

1 Introduction

In computer science, the notionmesources widely current, for instance memory, per-
missions, data, messages can be viewed as resources. Auna@se consists in mod-
elling and expressing properties on these resources, Bathotation, consumption
of, access to. In order to achieve this objective, differesburce logics were recently
proposed, like Linear Logic (LL) [7], where propositionginsbols are considered as
resources with a focus on production and consumption olress, and Bunched Im-
plications logic (BI) [12,14], where propositional symbdare viewed as properties of
resources, with a focus on sharing (properties satisfied unyigue resource) and sep-
aration (properties satisfied by different sub-resourdgk)ogic and its variants, like
Boolean BI (BBI) [14], can be seen as the logical kernel otatted separation logic,
like BI's Pointer Logic (PL) [9] that allows us to express pesties on pointers and pro-
vides a semantics for programs that manipulate mutablesiatetures, or BiLoc [1]
that is based on resource trees and captures the notioncef pla

Of course, a resource is not a static entity, but a dynamityehat can move, change
his state/properties, be produced or consumed... In thitegh a modal extension
of BI, called MBI [3,13], has been defined Its models are judgets of the form
RE3R.FE, meaning that a proce&s performs an actiom on a resourc® in or-
der to obtain a resourd® and then becomes a procéSs As we see, MBI introduces
dynamics in resource, which is resource transformatianréisourcer is transformed
into the resourc®. Unfortunately, there is no complete calculus for MBI. Mover,
the modalities a la Hennessy-Milner of MBI can not expresgpprties on any reach-
able resource and process, knowing that reachable meangpafforming any action.
In parallel, another modal extension of Bl, called DBI [4adbeen recently proposed.
Such an extension captures the notion of dynamic propesfiessources, where dy-
namic means here that the properties of resources can chebgenodified depending
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on the state of a system. The interest of this logic is thatritexpress properties on any
reachable state (usigand] modalities) and a sound and complete calculus was pro-
vided for this logic. Unfortunately, DBI is not able to capuesource transformations.

In this context, we propose a new logic, called DMBI, that imedal extension of a
classical variant of Bl, called BBI [14], and is situatedweén DBI and MBI. Indeed,
DMBI captures the notion of resource transformations, as, M@t is restricted to only
one process that manipulates resources. Moreover, DBI litiedare conserved to
express properties on any reachable resources. After veemqtréhe language and the
semantics of DMBI, we show that DMBI is also able to expresgpprties on resources
that are manipulate by concurrent processes. Then, we compare the expressiveness
of DMBI to MBI on a simple example. Relying on previous worla Bl [5,6], we
provide a labelled tableau method that is proved sound antplete and having a
countermodel extraction method. Future works will be destdb transform the DMBI
tableau method to obtain a calculus to check properties anureent processes that
manipulate resources and to implement such a tool.

2 DMBI logic

Bl and BBI are logics that express sharing and separatiopepties on resources
[12,14]. DBI and MBI logics are extensions of Bl that focus ogspectively, dynamic
resource properties and resource transformations [3,A\E3present here a new logic,
called DMBI, which extends BBI by adding the MBI modalities and[-] (modalities
a la Hennessy-Milner [8]) to capture resource transfoionand the DBl modalitie$
and(] to capture reachability.
Let Sact be a countable set of action symbols. Beop be a countable set of proposi-
tional symbols. The language of DMBI is defined as follows, where € Prop and
a € Sact:

Xi=p|L]THX=X]|X«X | X=X | {(@X]OX

We define the following logical connectors:

—Pp=0— L T=-1 ovVYP=-0— Y
AP =—(9— ) o= —(a)-0 Oep=-0-0

We now define a Kripke semantics for DMBI, that is based on aurs monoid,
an action monoid, a state set, a transition relatiprand a functionu

Definition 1 (Resource monoid) Anresource monoit a structure® = (R, e, €) such
that:

— Ris a set ofresources

—eeR

— e :Rx R— R such that, for anyirry, r3 € R:
- Neutral element:fee=cer;=rg
- Commutativity: fer, =roer;
- Associativity: e (roerg) = (ryerp)ers



Definition 2 (Action monoid). An action monoids a structure4 = (Act,®,1) such
that:

— Act is a set ofactions

— 1€ Act

— ®:Actx Act— Act such that, for anygap,az € R:
- Neutralelement: a0 l=10Cai=a
- Associativity: a® (a0 a3) = (g ©ap) ® ag

We calletheunit resourcel theunit action e theresource compositioand® the
action compositionlf a; anday are actions thea; ® az is the action that consists in
performing the actioa; and after the action,. We remark that is not commutative,
for instancewriteMail ® sendMailis equivalent tesendMaile® writeMail.

Definition 3 (1-DRM). A -:DRM (p-dynamic resource monoid§ a structureM =
(R,A4,S|),1), whereR = (R,e.€) is a resource monoid and = (Act,®,1) is an
action monoid, such that:

— Sis a set oktates
— |-) € Sx Actx Sis a relation on states and actions such that, for ang,s= S and
any a,ap € Act:
= )-unit: s 1) 51
- |-)-composition: if g |a;) s, and $ |a2) s then g |a; © a2) s3
— u:Actx R— R such that, for any € R and any a a; € Act:
- p-unit wW(Lr) fand 1,r)=r
- p-composition: if @ag, r) | and Wag, u(as,r)) | then ag ®ap,r) | and a1 ©
a,r) = u(az, u(ala r)

Here,| means "is defined” antl means "is undefined{i(a, r) is the resource that
results from performing the actianon the resource. We noter,s > r’,< if and only
if war)J, wa,r)=r"ands|a)s (equivalently(s,a,s) € |-)). We can remark that,
for anyr € Rand anysec S, r,si> r,s holds. We nota,s ~ 1’,s if and only there
areao,...,an € Act, r1,...,y € Randsy,...,s, € Ssuch thalr,si'é r,s1 A,
S =% .. We can also remark thats ~ r,s holds for anyr € Rand anyse S,

because we haves N r,s.

As we remark, as opposed to BBI, we consider here a total resaomposition (rather
than a partial composition) because, as we will see in thé seption, resources are
considered as multisets of atomic resources and the resoangposition is considered
as the multiset union, which is a total function. Compare®Bi, we can remark that
an action monoid.g) is added to the DBI models, transitions on the stateg @re
now labelled by actions and a functipris added to deal with resource transformation.
Compared to MBI, we meet the judgements of the formy r',s and the function
K, which are the fundamental principle (philosophy) of MBxcept that we restrict
the models to only one process wh&es the process state set ah{l is the process
transition relation. In conclusion, @DRM encodes a procesS,(|-)), that performs
actions @) and transforms/manipulatgs) fesources®).

We denoté?(E) is the powerset of the s&t namely the set of sets built froE



Definition 4 (p-Model). A (-Model is a 4-uplet® = (M, [-],] - |,F«) such thatM
is a p-DRM,[-] : Prop— P(Rx S), | - | : Sact — Act andF« is a forcing relation on
Rx Sx L defined as follows:

- r,skg piff (r,s) € [p]

— I,skE L never

—rskEgliffr=e

—sEx 0= Yiffr,sEq @=r,sFE4 Y

— I,sEx @xPiff Iry,ro e R-r=ryerpandn,skEg @and r,skEx P
—r,skEx @*Yiff VI’ e R-I'skEx @=rer skEx Y

—r,skEx (@)oiff I e R-3 € S~r,sﬁ> r''sandr.s Fg @
- r,skg O@iff I e R-3s € S-r,s~ 1/, S andr,s F4 @

Definition 5 (Validity). A formulag is valid, denoted= ¢, if and only if rskE4 ¢ for
all u-Models Xk, all resources r and all states s. The notatipi Y means that for all
resources r and all states s of any p-Modg€] if r,skE g @then rskq .

Proposition 1. For any r,r,r3 € R and aa € Act and §,%,s3 € S, the following
. a a acd
property holds: if §,5 — ra, s and r, s — rz, 3 thenn, s —— r3, Sz.

Proposition 2. For any I’ € R and ss' € S, we have,s~ 1’ ¢ iff there is ac Act
such thatrs 3 r'.s.

3 Concurrent processes modelling

As we presented in the previous sectiop;BRM encodes a system composed by only
one process, whose states are elements of theawed transitions are the relatidr),
that manipulates resources. In this section, we show hpwnadel can modeh con-
current processes and can express properties on resoundes@d by these processes.
We suppose that a user give a descriptiomafoncurrent processe®y( ..., P)
manipulating resources, where> 1. We aim to construct a-model that captures
the behaviour of these processes. We denote the descrigti@m by the userp =

(Ratom, ACtatom, Hpre, Mpost; {Pi,...,Pn}), where:

— Ratomis a set ofatomic resources
— ActziomiS a set ofatomic actions
— Hpre : ACltom — M (Ratom)
— Mpost : ACttom — M (Ratom)
- B =(S,—p), such that
e S is the set of states of the procdys
e —pC § x Acttom x § is the transition relation of the proce3s

Here, the processes product/consatmnic resourceand performatomic actions
An atomic resource is a resource that can not be decompaseslilp-resources and an
atomic action is an action that can not be decomposed as essi@e of simpler actions.
Mt (Ratom) is the set of all multisets ovéRaom that are function&atom — N. We call



resourcea multiset of atomic resources. To encode consumption afiatoesources,
the user provides a functiqmyre, Whereppre(a) is the resource that is consumed when
a process performs the actianThe functionpyest encodes the production of atomic
resources, which means thgbst(a) is the resource that is produce after performing the
actiona. (S, —»p ) is an automaton that encodes the pro¢gss

Let us give the following example. Concerning resourcesjemteR = {r1,r1,r2} the
multiset such thaR(r1) =2, R(r2) = 1 andR(r) =0 forallr € Ratom\ {r1,r2}. We also
denotee the empty multiset, that ig(r) = 0 for all r € Ratom- R1 is said a sub-resource
of Ry (denotedr; < Ry) iff Ry(r) < Rx(r) for all r € Rytom We define composition of
resources byR; + R, = Rz such thaiRs(r) = Ry(r) + Ry(r) for all r € Ratom We also
defineR; — Ry = Rz such thaiRs(r) = Ry(r) — Rx(r) for all r € Ratom and we remark
thatR; — Ry is defined iffR, < R;.

We introduce a denotation that captures transitions ofdhsdem. We consider that
if the available resource iR and each proceds is in states then each process can
performs the atomic actioa and reaches stageand the new available resourceR’s

a
S1 —p, §1
denotedR{ : ¢ RLIff ppre(a1) + ... + Hpre(an) < RandR = R— ppre(ar) —

an
S —p, S
aj . .
... — Hpre(@n) + Hpost(d1) + ... + Hpost(an) ands —p, § for all i € {1,...,n}. This deno-
tation means that if the resource available for the prosesseand if each proced3
is in states then:

— R contains enough atomic resources to perform the atomiorsa] (Mpre(a1) +
...+ Hpre(an) <R)

— Each procesB can reach the stage (s ip, g, forallie {1,....n})

— The resource that will be available for the system after &eetion of these atomic
actions isR = R— Wpre(@1) — ... — Hpre(@n) + Hpost(a1) + ... + Hposf(@n). Indeed R
is the resourc® less all atomic resources consumed by the act@®r{fipre(a;))
plus all atomic resources produced by the act@(§lpost(a;)).

Here, we remark that the processes are synchronous, mehatrag each transition,
all processes perform an action. If we want to consider dsymous processes, it suf-
fices to consider an atomic actiskipand extend the descriptiah given by the user,

ki
such thatupre(skip) = Hpost(Skip) = e ands S—l|>pp| s for all processP and alls € S.
S| --op S

We introduce another denotation that captures reachalildat isR (24

Sh R, #1
iff (R=R andsi#...#s, = si#..#s,) or there isk > 1, there areRj € ¢ (Ratom) (for
all j € {1,....k—1}), there area}, ..., ah € Actuom (for all j € {1,...,k}) and there are



§ e g (foralli e {1,....n} andj € {1,....k— 1}) such that:

S1 _°P1 ﬁ ﬁ _°P1 5% éf éf éf P dl
Rq R1 I Rk_1 : 24

ah a4 . ) 1
Sh —*p, S% S% Py Sﬁ §r§ H> Pn §r§ éé H>F’n

This denotation expresses that if all procBsare in states and if the available resource
is Rthen each process can perform a succession of atomic astiohshat each process
R, reaches the stagand the resource that results from these action execudis i
Now, we show how to obtain pDRM. Concerning the resource monoid, we simply
consider the multisets ov&om

Proposition 3. R = (M(Ratom), +, €) iS @ resource monoid.

To obtain an action monoid, we firstly defiet’,, = {au#..#an | ay,...,an €
Actiom}, Which encode all concurrent atomic actions that can beopeed by the
processes. As example nf= 2 then the concurrent atomic actiag#a, represents the
processP; performing the actiora; and the procesB, performing the actioray. We
also consider lists of concurrent atomic actions. We degttet? ) the set of all lists
built on Act,, [ the empty list® the concatenation of lists anld the size of the list
L. In instance[Aq; A2], whereAq, Ay € Actfjmm, is the action that consists in performing
the concurrent atomic actioly and thenA,.

Proposition 4. 4 = (£(Actiom), @, []) is an action monoid.

Now we define the functioqu that encodes production and consumption of re-
sources. We firstly give the functigi’ : Actf,,, x 9 (Ratom) — 9(Ratom) that deals
with concurrent atomic actions performing on resources.

if (@) + ... + Hpre(@n) £ R
F(an#.. Han, R {T "' Hpre(&1 P .

We extend this function on list of concurrent atomic acti@iging pist : £(Actiom) x
9:R(Ratom) - 9:R(Ratom)-

R ifL=]
Wist(L,R) =< 1 if L=[Ag;...;A] andp(A,R) 1
Wist ([A2; ... A, ¥ (A1, R))  wherel = [Ag;...; A

In this definitionpist ([], R) = R because if the system performs no concurrent atomic
action onR thenR is not modified.

Proposition 5. The function g : £(Actom) X 9 (Ratom) — 9M(Ratom) satisfies the
properties p-unit and p-composition.



The last step consists in capturing the processes tramsiti capture the states
of the concurrent processes, we defiséd- {i#...#s, | s € S forany 1<i < n}. As
example, ifn = 2 thens#s; is the state that represents the prodgsm states; and
the proces$, in states,. We define a relation)# : S* x Actf,, x S* that captures
concurrent transitions of processes.

it Hs |anth. Han) P 4 iff s op o forall L<i<n

We extend the previous definition to deal with lists of coment atomic actions, giving
|'Viist - S x L(Act,m) x S such that

S|[As;-i A st S iff 35y, Sc1 €S- SIA) TS [A2) " A1) T S1 [AY TS
In this definition, it is implicit thatS|[]) jist Salways holds.

Proposition 6. The function}-) jist : S x £(Acthom) x S satisfies the propertigls)-unit
and|-)-composition.

We started this section by considering that a user givesaigéen of a system that
is composed by concurrent processes that manipulate resources. Thisiplést is
a 5-upletD = (Ratom, ACtatom, Hpre, Hpost, { P1, ..., P }) whereR, = (S, —p ). We present
in this section a method to obtain a 5-upfft = (R, 4,S",|-)ist, Wist), Where® =
(M (Ratom), +,€) andA = (£(Actiom), ©, [])- Now we show thatM is ap-DRM.

Lemma 1. Let D = (Ratom, ACttom, Hpre, Mpost: {P1, --.,Pa}), where P= (S, —p ), be a
description of a system composed by n concurrent procesaefpuftating resources.
TheS'UpletM = (K.v'qag#v |> list s ““St)! WhereR = (m(Ratom>a+ae) and Whereq =
(£(ACom). @, []) is a p-DRM.

Now, we show how to obtaingmodel X from 9/ that allow us to express resource
reachability. LetX = (M, [-],| - |,F«) such thaf] : Prop — P(9M(Ratom) x S¥) and
|| : Sact — £(Acth,) be defined by:

Iril={{ri},s) |se€ S} and |a#. Han| = [ag#...#ay]
andF x be defined w.r.t. the Definition 4. We also define the functidit(Ratom) — L:

/R\ | if R=e
T rixexkrgif R={rq,...,r¢}

to encode resources into formulae.
Proposition 7. For any Re M (Ratom) and s#...#s, € S, we have Rsi#.. #sn Fg R.
Proposition 8. If R= R then R=R.

We prove two lemmas that show that {i®RM captures transitions and reachabil-
ity of the system described by the user.



Lemma 2. LetRR € M(Ratom), letay, ...,an € Actyom. lets, s € S foralli € {1,...,n}.

ai
S1—p, S
R VR iff R, 2y gy s
an
S =P Sh

Lemma 3. Let RR' € M(Ratom). Let ,5 € S foralli € {1,...,n}.

S| --op S
Rq i pROff Rsi#. #sy ~ R Si#.#s)

S (i #1

Now, we show that reachability is equivalent to satisfidili

Theorem 1. LetRR € 9 (Ratom)- Let ay, ..., an € Actiom Lets € S foralli € {1,...,n}.
The following property holds:

aj
S1 —p 5'1
s €S,...,35 € SRS D o RO Rysi# #s Fy (au#. H#an)R

an
Sw—DPn#1

Theorem 2. Let RR € M (Ratom)- Let g € S foralli € {1,...,n}. The following prop-
erty holds:

S --op S
3, €S, €S-RE R iff R Sj#.#s, Ey OR
3177+Pn$1

4 Expressiveness of DMBI

In this section, we present one example inspired by that3jf(fhutual exclusion) and
we show that DMBI allows us to express interesting propgthiat can not be expressed
by MBI or DBI. In this section, we use denotations and requiésented in the previous
section.

We consider that a user gives a description of a system thahiposed by two pro-
cesses in mutual exclusion. This descriptiofis- (Ratom, ACtatom, Hpre, Mpost { P1, P2}),
where:

- Ratom: {J}

— Actitom= {anc, ac,ap,av}

— MHpre is defined by:
° Hpre(anc) = l-lpre(ac) = l-lpre(av) =€
® Hpre(ap) =J



— Mpostis defined by:
® Hpost(@nc) = Hpost(ac) = Hpost(@p) = €

® Hpost(@y) =J
— PL=(S1,—p,) andP, = (S, —p,) such that:

* 5 =5 ={Sc5}
e Foranyi € {1,2}, we have:
anc ap ac ay
Shc >R Snc Sc R & SR & S PR Sne

In this description, the user considers only one atomicneso(J), which represents
atoken, and four atomic actioas (a non critical action)a. (a critical action)ap (the
action that consists in taking a token) aagd(the action that consists in releasing a
token). Upre(@) andppost(@) capture respectively the resources that are consumed and
produced when the actianis performed. We remark that when a process takes a token
then a token is consumefige(ap) = J) and when a process releases a token then a
token is producedUpost@v) = J). These processes have two states, thagai@rocess
in a non-critical state) angl (process in a critical state).

Now, using the method that we presented in the previousasgatie can obtain
a p-model M that simulates the behaviour of these processes. In thimgra MBI
is able to express that the acti@ap#anc can not be performed [13], that R E x
E F [ancffanc] L, whereR is one token andk is a process in non-critical section. But,
we remark that because of the Henessy-milner modg@iyfanc|, the formula means
that when there are only one token and two processes in riticetsection then it is
impossible that they perform together a critical actionisTdoes not mean that after
performing any succession of actions, the processes cgrenform together a critical
action. As opposed to MBI, DMBI is able to express such pridggrusing) or I
modalities, that is:

{3}, sneftsnc Fx Dlactac] L

Here, this means that if the current resource is only onetekel if the processes start
in a non-critical state then, after performing any sucaessif actions, they can not
perform together a critical action. Using multiplicativenmector, it is also possible to
express that it is impossible to reach a state such that haredne token is available:

{3}, sncHtSnc Fg 7O %I T)

5 A proof system for DMBI

In this section, we proposed a proof system for DMBI, basegdrerious works for Bl
[6] and BBI [10,11], with resource graph. Specifically, w&aduce rules to deal with
modalities and introduce constraints to capture the natforesource transformation
(W and transitions|(}).

5.1 Labels for resources, actions and states

Our tableaux method for DMBI contains some semantic infdiona that allows us
to extract countermodels in case of non-validity. This rodthontains resource labels,
action labels and state labels to capture, respectivadyigbource monoid, the actions
monoid and the state set of models.



Definition 6 (Resource labels)L, is a set ofresource labelbuilt from a constant,,
an infinite countable set of constants= {ci, ¢y, ...} and a function denoted

Xi=1|¢|XoX

where ¢ € y;. Moreovero is a function on L that is associative, commutative ahdis
its unit.

We denoteythe resource labaloy. Moreover we say thatis aresource sublabedf y
iff there existsz such thako z=y. The set of resource sublabelsxaé denotedz; (x).

Definition 7 (Action labels). L, is a set ofaction labelduilt from a constant,, the
action symbol set g, an infinite countable set of constangs= {d1,d,...} and a
function denotect

Xi=1a|a | di| X.X

where @ € Sact, d € Ya and SN ya = 0. Moreover. is a function on L that is asso-
ciative (not commutative) antj, is its unit.

We denotef g the action labef .g. Moreover we say thatt is aaction sublabebf g iff
there existd such thatf .h = g. The set of action sublabels bfis denotedE,( f).

Definition 8 (State labels) Ls is an infinite countable set oftate labelgor state con-
stants), denotingd= {l4,l2,...}.

This tableaux method contains also constraints to capheredquality on resources, the
pfunction and the transitiong-)) of the process that manipulates the resources.

Definition 9 (Constraints). A resource constrains an expression of the form~y

- . f
where x and y are resource labels. Acgnstraintis an expression of the form-x y
where x and y are resource labels and f is an action labétaAsition constraint an

) f . .
expression of the forms» v where u and v are state labels and f is an action label.

A set of constraintg” is a set that contains resource constraipspnstraints and tran-

.. . . ap di do i
sition constraints. For instancé,= {c1 ~ C,C3 ~ C2,C1 — C2,C3 —» C3C3,l1 — Iz} isa
set of constraints. We now define the domains and the alphahetuch sets.

Definition 10 (Domain).Let C be a constraint set. The resource/actiomainof C is
the set of all resource/action sublabels appearingirin particular:

- DO = [Veyee BERUEW]U|U 1 (ERUEO)

- D00 = U, D] U]U, ()

X—»yeC

Definition 11 (Alphabet). Let C be a constraint set. The resource/action/stifgha-
betsof C is the set of resource/action/state constants (and actjombsls) appearing
in C. In particular:



Rules that product resource constraints:

- X~ XY ~ X X~ ~Z
e T T
o X! y~y f f f
" X—Y X—»Z X—>Yy
Xy ~ Xy (9) —y~7 ke) xox_ (@)

Rules that produgt-constraints:

f g f f

X~ X /
1 X —» —-Z X — X~ X X —» ~
L Y Y72y, Y k) Y VY g
X —» X fg f f
X—»Z X =y Xy
Rules that product transition constraints:
f f f 9
o) )
U u Vi v U W

Fig. 1. Rules for constraint closures

- A(C) =% ND(C)
— Aa(C) = (SactUYa) N Da(C)
a ﬂs(C) - UULVGC{LLV}

Definition 12 (Closure of constraints).Let C be a set of constraints. The closure of
C, denoted, is the least relation closed under the rules of Figure 1 sthelt C C C.

We remark that there are seven rulég ), (s), (dr), (tr), (9r), (kr) and(a,,)) that
produce resource constraints, there are four rutgs,((t.), (ky,) and(k,)) that pro-
ducep-constraints and there are three rulgs, §, (1,) and(t;)) that produce transition
constraints. As opposed to DBI, itis impossible to closeasafely a resource constraint
set and gi-constraint set, because of the rul&s, (ar,), (1), (ky,) and(k,). For ex-
ample, to apply the rulék ) that returns a resource constraint, we need to choose two

. f f .
p-constraints X — y andx — 2z) and to apply the rulél,) that returns gi-constraint,
we need to choose a resource constraint ): closure of resource constraints and

. . a
p-constraints are interdependent. As example(let {c; ~ ¢2,Cz ~ C3,C1 — C2}, we

ag —
havecs — ¢ € C because:
a CL~Cp Co~C3
CL—> C2 C1 ~ C
% (k)

ap
C3 —» C2

(t)

Proposition 9. The following rules can be derived from rules of closure ofstmints:

XK~y X ~ yk

f f
—~~x (P W(pr> xk—y X yk

(&) ~ <% (@) Y~y (ar)




Corollary 1. Let C be a set of constraints,& 2 (C) iff x ~ x € C.

— 1, —
Corollary 2. LetC be a set of constraints, @ 4s(C) iff u — u e C.

Proposition 10. Let C a set of constraints. We hav& (C) = 4 (C), 4a(C) = Aa(C)

andAs(C) = A4s(C).

Lemma 4 (Compactness)Let C be a (possibly infinite) set of constraints:
1. If x~y € C then there is a finite sef; such thatCt C C and x~y € Ct
2. If x—f» y € C then there is a finite sef; such thatCs C ¢ and x—f» yeCr

f _ f _
3. Ifu— v e Cthenthere is afinite sef; such thatCs C C and u— v e Ct

5.2 A tableaux method for DMBI

In this subsection we propose a tableau methods for DMBI éngihirit of previous
works for Bl [6], BBI [10,11] and DBI [4].

Definition 13. Alabelled formulds a 4-uplet(S,@,x,u) € {T,F} x L x L; x Ls written
S@: (x,u). A constrained set of statemerf&SS) is a paif ¥, C), where ¥ is a set of
labelled formulae and” is a set of constraints, satisfying the followi(Rss) property:

if S@: (x,u) € ¥ then x~ x € C and utue?
A CSSF,C) isfiniteif & and C are finite. The relationg is defined by:
(F.0)<(F.C)ift F CFandCC
We denoté 7;, Ct) <1 (F,C) when(¥z, Cr) < (F, C) holds and( ¥, Cr) is finite.

Figure 2 presents rules of tableaux method for DMBI. Let umaxk that 't; and
cj are new label constants” meaas# cj € y; \ 4 (C), "d; is a new label constants”
meand; € ya \ 4a(C) and 1 is a new label constants” meah Ls\ 4s(C). We note
@ concatenation of lists. For examptg; e; e4] @ [es; €3] = [€1; €2; €4; €4; €3).

Definition 14 (p-tableau).Let (%o, (o) a finite CSS.A ytableauor this CSS is a list of
CSS, which are callelranchesbuilt inductively according the following rules:

1. The one branch ligt o, (v)] is a p-tableau for Fo, Co)
2. Ifthe listTyn® [(F, C)] ® Tn is a p-tableau for Fo, (o) and
cond ¥,C)
(F,C) | o | (F Ge)

is an instance of some rule of Figure 2 for which cofidC) is fulfilled, then the
list

In®[(FUFL,CUCL); s (F U, CUG) D Tn
is a p-tableau for Fo, (o).



TI: (x,u) € ¥ -

(0, {1 ~x})
T b: (xu) € 7 (T ) Foowiwer .o
{Fo: (xw}0) | {Ty:(xu)},0) {To: (x,u),F: (x,u)},0)
Toxy: (x,u) € F - Fox Y : (x,u) € F andyz~Xx€ C .
{To: (ci,u), TP : (cj,u)},{cicj ~X}) {Fo: (y,w},0) | {Fy:(zu)},0)
Te—+y: (x,u) € F andxy~xyc C o Fo—y: (xu) € F )
({Fo: (y,u)},0) | ({Tw:(xy,u)},0) ({To: (ci,u),Fy: (xG,u)},{xG ~xG})
T(he: (x,uf) €F f -y F(He: (xu) efandx;yefandugvef F)
{To: (i, 1)}, {x—ci,u—1li}) (Fo: (y,v),0)
T0@: (xu) € 7 (TO) ]F()(p:(x,u)e?andx—f»yefandugve?

(FO)

({To: (6,10} (xS e u i) Fo: V)].0)

Note:gj, ¢j, di andl; are new label constants.

Fig. 2. Rules of tableaux method for DMBI

A ptableador the formulagis a rtableador ({Fo: (ci,l1)},{c1~cy,l1 - I1}).

Itis possible to prove, by observing rules of tableau mefoo®MBI, that a new CSS
obtained by applying a rule of Figure 2 respects the prop@dyd of Definition 13
(using Corollary 1 and Corollary 2).

Definition 15 (Closure condition).A CSS ¥, C) is closedif one of the following con-
ditions holds:

1. Te: (x,u) € F,Fo: (y,u) € F andx~ye C
2. Fl: (x,u) € F andl; ~xeC
3. TL:(xu)eF

A CSS iopenifit is not closed. A p-tableau is closed if all its branches elosed.
Definition 16 (p-proof). A peprooffor a formulag@is a closed p-tableau fap.

Let us give an example q@f-proof. We consider the formula= ((P — (a) (b)Q) =
P) — 0Q and give au-proof for it. By Definition 14, ther-tablead ({Fo: (c1,11)}, {1~
1l ﬁ [1})] is ap-tableau forg. We introduce a new representation fop-tableau,
which is
7] (I
F((P—(a)(b)Q) *xP) — ¢Q: (c1,l1) a~c lhi—




We can observe that there are two columns, one for the labfeltenula sets of the CSS
of thep-tableau (denoteld’ |) and one for the constraint sets of the CSS ofthiableau
(denoted(]). By applying some rules, we obtain the followipgableau:

(7] [a .
\/1F((P—*<a><b>Q)*P)—><>QZ(Cl,|1) ci~C ly—11

V2 T(P—(a)(b)Q) xP: (c1,11)
\/6 ]F<>Q (Clall)

V3 TP = (a)(b)Q: (c2,11) C2C3 ~ C1
TP: (03,|1
~ ~
FP: (C3, |1) \/4 T<a><b>Q . (C2C37 |1)
Y Vs T(B)Q: (ca,l2) CoC3 > Ca Iy o1y
TQI(IC5,|3) C4j*05I |2>i|3
|
FQ: (cs,13)
Y

We decorate a labelled formula wit to show that we apply a rule on this formula
at step. We remark that column# ] and[(C] are trees that contain two branches. There
are two branches because there are two CSS ip-thbleau. The branches on the left
(resp. right) contain the elements of the first (resp. sec@85. We also remark that
all CSS are closed (denoted. The CSS of the left is closed becal®®: (cz,l1) € F,
FP: (c3,l1) € F andcz ~ c3 € C (by rule(p)). We give more details concerning steps 5
and 6. In step 5, when the ru{&(—)) is applied on the labelled formulkb)Q: (ca, l2),
we have to choose a new resource labgl énd a new state labdgj. Then the labelled

formula TQ : (cs,13), the p-constraintca el cs and the transition constraimg 2 I3
are introduced in the branch. In step 6, to apply the (Hlg) on the labelled formula
FOQ: (c1,l1), we have to choose a resource lajaedn action labef and a state label

f _ f _ b
vsuchthat; »ye Candly —ve C. Asly 2 I> andl; — I3 belong toC, by rule(t)
b — b L .
we havelq N I3 € C. AscoC3 & C4, C4 — Cs andcyc3 ~ €1 belong toC, it is possible
b
C2C3 —a» Cq C4 — C5
(tw)

b —
to show that; > cs € C: CaCa o o Cala ~ €1 . Thus, by
(kyy)

ab

C1 — Cs
choosingy = c5, f = abandv = I3, we can apply the rule that introduces the labelled
formulalFQ: (cs,13) in the branch. We can conclude that as thtableau is closed then
it is ap-proof of ((P — (a)(b)Q) x P) — 0Q.




5.3 Soundness and completeness properties
Theorem 3 (Soundness)f there exists a p-proof for a formulathengis valid.

Before to study completeness we present the countermotitakéan method for
DMBI. The main idea consists in transforming resource,cactind transition con-
straints into g--DRM, from a branch #, C) which is not closed.

In order to obtain a countermodel, this transformation loagetify two properties: if
Te: (x,u) € F thenx,ukE« @and ifF@: (x,u) € F thenx,u#« @. In order to satisfy
these properties, our method need$ulfilled labelled formulae (to obtain a Hintikka
CSS).

Definition 17 (Hintikka CSS). A CSS(¥, C) is a Hintikka CSSif for any formula
@, € L, any action fe Saet and any label x L; and ue Lg:

. T@: (x,u) & F or Fe: (y,u) ¢ F orx~y¢ C
CFl:(xu) € Fordl ~x¢gC
CTL:(xu) & F

I TI: (x,u) € F thenl, ~x€C

.M Te— w: (x,u) € ¥ thenFe: (x,u) € F or TY: (x,u) € F

. fFe— W: (x,u) € F thenT@: (x,u) € F andFy: (x,u) € F

T+ : (x,u) € F then3dy,ze Ly, yz~x€ C andTe: (y,u) € F andTy: (zu) €
F

. fF@+: (x,u) € F thenvy,ze€ Ly, yz~xe C = F: (y,u) € F orFy: (zu) € F

Ty : (x,u) € F thenvy € Ly, xye D (C) = F: (y,u) € F or TY: (xy,u) €
F

10. If Fo—y : (x,u) € ¥ then3y € Ly, xy€ D (C) andT: (y,u) € F and Fy :

(xy,u) € F
11. If T(f)
(y,v) €
)

(

)

12. If F(

(yv) €

13. IfT<>(p (x,u) € F thendy € Ly, 3f €Ly, Ive Ls,xl»ye?and uve Cand
( ) €7 f f

14. |fIF<>(p (x,u) € F thenvye L, Vf €Ly, WeLs, (x»yeCandu—ve ()=

P:(yv)eF

~NOoO O~ WNPRE

© 00

f — f —
@:(x,u) € Fthendyel,,velg, x»ye Ccandu—ve CandTo:
F

f — f —
f@: (x,u) € F thenVye L, WelLs, (x>yeCandu—ve C)=Fo:
F

The conditions (1), (2) and (3) of Definition 17 certify thaHintikka CSS is not
closed. Others conditions certify that all labelled foramibf a Hintikka CSS are satu-
rated.

We define now a functio® that allows us to extract a countermodel from a Hintikka
CSS. We denoti] = {yc L, |[x~ye C}andD:(C)/ ~ ={[{ | x€ D:(C)}. We re-
mark that the relation- from a closure of constraintg is reflexive (by Corollary 1),
symmetric (by rule(s )) and transitive (by rulét,)). So, it is an equivalence relation.
Thus[X] is an equivalence class.



Definition 18 (Function Q). Let (¥, C) be a Hintikka CSS. The functiéhassociates

to <?~7 C) a 4‘UpletQ(<f7 C)) - (Ma [[]]7' . |a':i7C)’ WhereM = (-‘Rn/qasv ||>>au)v -'R, =
(R e,e) and 4 = (Act,®,1), such that:

- R= @r(C)_/ ~ o
— Act= D,(C)U{a} (wherea & Da(C))
- S:ﬂs(c)

- e=[L]

—1=1,

= ey =[xoy | L
— Forany ac Act and[x] € R, W(a,[x]) = {T if{y|x>yeC}=0

{y|x Sye C} otherwise

. f —
—s|fysiffsi—seC _
ai.ap ifal.a € Da(C)
0 otherwise

a ifaeD
— Forall a € Saq, |a| Na otherwiz(eC)

— ([X,s) € [P] iff 3y € [] such thaflP: (y,s) € F

— Forallaj,ay € Act, g G ap = {

We recall tﬂat@ must be a total function. So, we introduce an actigrbecause
if a1.a2 & Da(C) then we wanty © a; to be still define. For the construction pf if

f — f —
{y|x—ye C}=0theny(f,[x) is undefined. Moreover ify | x - y € C} # 0 then
f — f — —
{y|x—y € C} is an equivalence class, meaning thgtx -y e C} € D (C)/ ~.

Lemma 5. Let (F,C) be a Hintikka CSS such th&tp: (x,u) € F. Q((F,C)) is a
countermodel of.

Theorem 4 (Completeness)f @is valid then there is a p-proof for the formuga

6 Conclusion

We have defined and study a modal extension of BBI, called DMt allows us

to capture resource transformations as MBI and to expregsepies on any reach-
able resources using DBI modalities. We showed that DMBI ef®dan captures syn-
chronous or asynchronous concurrent processes that ntamguresources. We pro-
pose a tableaux method that is proved sound and completaavidgpa countermodel
extraction method. Future works will be devoted to studycwlais that allows us to
check satisfiability of properties on concurrent processebsto implement it. More-
over we will interest us into the study of located resourdemsion of DMBI [2].
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