Characterizing Provability in BI's Pointer Logic through
Resour ce Graphs

Didier Galmiche and Daniel Méry

LORIA - Université Henri Poincaré
Campus Scientifique, BP 239
Vandceuvre-lés-Nancy, France

Abstract We propose a characterization of provability in BI’s Pointer Logic (PL)
that is based on semantic structures called resource graphs. This logic has been
defined for reasoning about mutable data structures and results about models and
verification have been already provided. Here, we define resource graphs that
capture PL models by considering heaps as resources and by using a labelling
process. We study provability in PL from a new calculus that builds such graphs
from which proofs or countermodels can be generated. Properties of soundness
and completeness are proved and the countermodel generation is studied.

1 Introduction

Separation logics are logics for reasoning about mutable data structures in which the
pre- and postconditions are written in a logic enriched with specific forms of conjunc-
tion or implication. In this context, Reynolds has proposed an intuitionistic logic ex-
tended with a separation connective % [12] and Ishtiag and O’Hearn have investigated
the same approach from the point of view of the logic of Bunched Implications (BI)
[10]. A key point of BI logic is its joint treatment of intuitionistic implication — and
conjunction A (additive connectives) and linear implication — and conjunction % (mul-
tiplicative connectives). BI’s semantics allows statements to be made using standard
connectives and then to combine them in a modular way using — and . The resource
interpretation of the connectives, where x decomposes the current resource into pieces
and —« talks about new and fresh resource, is central. BI’s pointer logic (PL) provides
a concrete way of understanding the connectives in the context of program verification
apart from logical concerns [6] . It is a possible worlds model of Boolean BI (BBI) where
additives are classical that validates the axioms for Hoare triples. PL being used as an
assertion language for mutable data structures, it appears essential to provide a proof
theory and related proof search methods in order to check PL assertions.

In this paper we propose a characterization of provability in PL that is based on se-
mantic structures, called resource graphs, and a new labelled calculus that builds such
graphs from which proofs or countermodels can be generated. A similar approach has
been developed for BI with intuitionistic additives [3,4] but it cannot be directly applied
to BBI and its classical additives. The key point consists in defining resource graphs
that capture PL models by considering heaps as resources and by using an appropriate
labelling process. Such graphs allow to capture semantic information essential for the

provability analysis [5]. Having defined PL resource graphs, we propose a calculus with
labels and constraints for a propositional fragment of PL, called PL"™, in a tableau style
that is adapted to countermodel extraction. Soundness and completeness of the related
proof search method are proved and countermodel generation from resource graphs is
analyzed. Finally, extensions of the calculus and results to PL can be developed.

2 BI'sPointer Logic

BI’s Pointer Logic (PL) is a logic for reasoning about mutable data structures [6]. Some
problems about pointer management, including aliasing, are difficult to deal with. Re-
cent works have provided logics with a spatial form of conjunction x that splits the heap
into distinct subheaps and with a form of assertion, the points-to relation —, to make
statements about the contents of heap cells [9,12]. It leads to simple axioms and captures
the intuitive operational locality of assignment. They are based on Bl logic that includes
two implication connectives — and — with two conjunction connectives A and * [10].
BI’s semantics allow statements to be made using standard (additive) connectives and
then to combine them using the (multiplicative) connectives.

Here, we consider PL that is a model of Boolean BI (with classical additives) [6]
and summarize its key notions and results. First, we have a set of values Val that can
be integers or locations, a set of variables Var and a countable set of locations Loc.
A stack s : Var —j, Val is a finite partially defined function that associates values to
variables and a heap h : Loc —ijn Val x Val is a finite partially defined function that
associates pairs of values to locations. An expression E can represent a variable, called
a stack variable, an integer or a constant that is interpreted w.r.t. a stack s as a value
([E]s € Val).

Definition 2.1. The language of PL consists of the predicates — and =, the connectives
of BI, the existential quantifier and two countable sets of variables of stacks and values.
The set of formulae is inductively defined as follows:

— At = (E — E1,Ep) | E1 = Ex where E, E1 and E; are expressions,
- Qu=At[1|ox0| o=@ T|L|oAQ| 90— @| @V @ IX.Q

Moreover, we can define =@ by =@ = @ — L and use it to define connectives rather
than taking them as primitives. The predicate (x — a,b) allows to represent the state of
the memory: there exists a variable x in a stack s such that there exists a location | in a
heap h such that [E]s =1 and h(l) = {a,b). The actual use of PL consists in describing
states about resources with the language and in proving properties about these resources
with the logic. The semantics of the formulae is given by a satisfaction relation of the
form s,h = @that asserts that @is true in stack s € S and heap h € H. It is required that
the free variables of @ are included in the domain of s.

Definition 2.2. The semantics of the formulae is defined as follows:

-sshEEI=E iff [E1]s =[E2]s
- s,h = (E—~Eg,Ep) iff dom(h) = {[E]s} and h([E]s) = ([E1]s;[E2]s)
-shi=T always

-shE L never

- s,hiE oAy iff s,hj=o@ands,hEuy

-s,hi=ovuy iff sshiEoors,hi=uw

-sshi=e—>y iff ifs,h=o@thens,h=y

-s,hEl iff histhe empty heap

- S,h'=(p>kL|J iff 3hy,hy. hi#thy, hy-ho=h,s,h; |=(pand S,h2|= 1]
- s,hi= -y iff Vhy.if hy#thands,hy = @thenshi-h =y

- s,h =30 iff IveVval. [six—V],hi=0

In the previous definition, hi#h, means that the domains of heaps h; and h; are
disjoint and h; - h, denotes the union of disjoint heaps (union of functions with disjoint
domains). Composition of non-disjoint heaps is undefined so that heap composition
is only partial. Moreover, the semantic consequence relation @ = W between formulae
holds if and only if for all s, h, if s,h = @thens,h = Y.

In this model, the worlds are heaps (collections of cons cells in storage) and the
conjunction @= Y is true just when the current heap can be split into two components,
one of which makes @ true and the other which makes s true. The implication @—
talks about new or fresh pieces of heap, disjoint from the current heap. It says that,
whenever we have a new heap that makes @ true, the combined new and current heap
will make s true. The other connectives are interpreted pointwise. For instance, the
formula (x = 3,5) % ((x — 7,5) —«P) says that x denotes a cell which holds (3,5) in
the current heap and that if we update the car to 7 then P will be true. The semantics
of * splits the heap into two parts, one where (x — 3,5) holds and another where the
location x is dangling. Then the semantics of —« and — ensures that P must be true
when the second heap is extended by binding x’s location to (7,5).

Main concepts and results about the use of PL as an assertion language are given
in [6]. As an interesting result, we can mention an operation that disposes of memory,
by creating dangling pointers, through the command dispose(E) which deallocates a
location. From a semantic point of view, it removes a location from the heap and is
defined by the following axiom: {P«3 a b.(E — a,b)} dispose(E) {P}, where a,b are
not free in E. Reasoning backwards from T we can find cases under which a program
is safe to execute. With a double dispose we obtain L for the precondition as expected,
indicating that the program is not safe to execute for any start state:

{1}
{Tx«3Jab.(x—a,b)x3Icd.(x—c,d)}
dispose(x)
{Tx3ab.(x—a,b)}
dispose(x)

{T}

We first study a propositional fragment of PL, denoted PL", restricted to atomic
formulae (1 — a,b) in which I,a,b are constants, meaning that at location | there is a
cell containing (a,b). Then, we can forget the stack variables in the semantic clauses
corresponding to this fragment.

3 Heaps, Labelsand Resource Graphs

Purely syntactic proof methods (in sequent or natural deduction style) usually deal with
a great amount of operational overhead (structural rules, permutabilities of inferences)
which is mainly irrelevant w.r.t. the provability of a formula. On the other hand, purely
semantic methods often abstract away too much of the operational aspects to be signif-
icant and helpful for countermodel construction. In the case of PL, we have a complete
semantics based on partial monoids of heaps, and then syntactic and semantic conse-
quence relations (provability and validity) coincide 1. Therefore, the main properties of
heap composition and of PL semantic consequence relation can be reflected at a syntac-
tic level using labels, constraints and a specific closure operator [5] in order to define a
resource driven proof method for PL.

3.1 Labels and constraints

Definition 3.1 (labels). The labelling language consists of a countable set of constant
symbols cg,c1,--- and a binary symbol o. The set L of labels is the smallest set which
contains constants ¢; (i € N) (atomic labels) and such that x oy is a (compound) label
whenever x, y are labels which do not share any constant symbol.

The constants are intended to reflect heaps, while o is intended to reflect heap com-
position. We view labels as unordered sequences of symbols, i.e., o is interpreted as
an associative and commutative operation on labels. For example, we consider the two
labels c1 0 (c20(c30¢C4)) and (c2ocC1) 0 (Caoc3) as equal and we do not distinguish
between the two of them. Since order and association are irrelevant, we frequently omit
the symbol o and simply write xyz instead of xoyoz.

More formally, we first say that a label x is a sublabel of a label y if any constant
occuring in x also occurs in y, i.e., x<y iff (Vc; € x)(ci € y). Then, we define x=y
iff x<y and y <x. The length |x| of a label x is the number of constants it contains.
Moreover, we define x —y as the label z obtained from x by discarding all the constants
iny that also occur in x, eventually setting z to cg if there is no constant left in x. We then
define label constraints as expressions of the form yz <1x, Zx, Ux, Ax that respectively
reflect that a heap can be decomposed into two sub-heaps, may contain no cell (Zero),
may contain exactly one cell (Unit) and may contain at least one cell (Aggregate).

Definition 3.2 (constraints). A label constraint is an expression of the form x <ty or of
the form Tx, where x and y are labelsand T € {Z,U,A}.

Moreover we need to capture the various resource interactions that occur in PL
models and we do it through a closure operator (-)T on sets of labels and constraints.
Let us note that when we write x € X', x being a label, we do not intend x to be a
member of X T explicitly, we only require that X contains some label y such that y =x,
i.e., we slightly abuse our notations to work with equivalence classes of labels modulo
the equality = induced by the associativity and commutativity of label composition.

1 This is not the case for Boolean BI, for which there is currently no known complete monoid-
based semantics.

Given a constraint k (y <1x, Zx, Ux or Ax), we say that k holds in X, written X F k, if
k € X*. The domain D(X) of a set X of labels and constraints is defined as the restriction
of XT to its labels.

Definition 3.3 ((-)"-closure). Let X be set of labels and label constraints. We define X '
as the smallest set containing X U { co, Zc } such that

-xeX"and y<x =y e X" (saturation),

-x<y € X" = x,y € X («-completion),

—Zxe X or Ux e XT = x € XT (ZU-completion),

-x€ X" = x<x e XT (reflexivity),

—x<ayeXTandy<z e X" = x<z e XT (transitivity),
-x<yeX'andyze X' = xz<yz € X' («-propagation),

—-Zxe X" and y<x= Zy € X' (Z-decomposition),
—UxeXxTandy<xand Uy e X" = Z(x—y) € X (U-decomposition),
-Txe X and (y<xor x<y) € X = Ty e X' (T-propagation).

The reflexivity, transitivity and <i-propagation conditions simply capture the fact
that in PL, the validity relation satisfies @}= ¢, = and P = X imply @ = X, and
@ = Y implies @+ X = W+ X. The Z-decomposition condition reflects that all sub-heaps
of an empty heap are empty. The U-decomposition condition reflects that if x stands for
a heap having exactly one location and if y represents a sub-heap with only one location
also, then any sub-heap of x disjoint from y must be empty. Finally, the T-propagation
condition simply explains how the properties of being an empty heap, a one-location
heap, or an aggregate heap are propagated through heap composition. For example, let
us set T =Z, x = ¢ and y = cycs, then, the condition means that if ¢, represents an
empty heap (Zc1) which may be obtained by composition of the two heaps ¢, and c3
(coc3 <acy), then cocs also represents an empty heap (Zcacs3).

3.2 Resource graphs

In this subsection, we explain how labels and constraints give rise to a specific semantic
structure, called a resource graph, which is a graphical representation of the (-)T—closure
operator.

Definition 3.4. Let X be set of labels and constraints, the resource graph associated to
X and denoted G(X) is a directed graph [N, E].

The set of nodes N is derived from the labels occurring in X' (the domain of X) by
decorating each label x with a tag I" which is a (possibly empty) subset of {Z,U,A}
such that, forany T € {Z,U A}, if X - Txthen T e T.

The set of arrows E is such that there is an arrow I'x — Ay from the node I'x to the node
Ay iff the constraint x <y holds in X, i.e., X Fx<y.

Let us illustrate the previous definition with some examples. Firstly, we consider the
set X = {Zcp,CoC3 < €1, Uc,Ucycz }. In order to obtain X T, we must add the constraint
Zcs to satisfy the (U-decomposition) of Definition 3.3 since we have Ucy, Ucyc3 and

c3 < cyc3. Furthermore, due to the presence of cac3 ¢y and Ucycs, (U-propagation)
leads to the addition of Uc; so that X = { Zco, caoc3 <1 c1,Ucy, Ucacs, Zez, Ucy }.
Secondly, beginning with the set Y = {Zcg,c2c3 <1¢1,Ucz,Ucs,Zcy }, the application
of (Z-propagation) and (Z-decomposition) on the constraints cac3 <1 ¢y and Zc; lead to
Yt = {Zcg,czc3 <1¢q,Ucy,Ucs, Zcg,Zcocs, ZCp,Zc3 }. The resource graphs Go(X) and
Go(Y), respectively associated to X and Y, then look as follows 2:

Go(X): [Zco] [Zes] [Uci] [Uc,] Go(Y): [Zco | [ZUcs] [Ze1] [2Uc, |

3.3 Normalizing resource graphs

In order to reduce the size of the resource graphs, we need to remove nodes that are
semantically redundant. For that, we define a normalization process on resource graphs
that takes into account that there is only one empty heap which is moreover the unit of
heap composition. Therefore, we only keep the node Zcg to represent the empty heap
and discard all other nodes of the form Zx. Let G(X) = [N,E] be the resource graph
associated with a set X of labels and constraints. Labels x € D(X) such that X - Zx
are called Z-labels, or Z-constants when x is a constant symbol. Since such labels are
assumed to behave as units w.r.t. label composition o, we define an equivalence relation
~ on X such that x~y iff (Vci)(X I/ Zci = (¢i € y & ¢ €X)), i.e., the labels x and
y are equivalent upto ~ if they have the same non-zero constants. We write X - x~y
to mean that x~y holds in X. In terms of the resource graph G(X), Fx~Ay holds in
G(X), written G(X) F I'x~ Ay, iff x~y holds in X3. For example, Uc,c3 ~ Uc; holds
in Go(X) because Zcs holds in Go(X).

In order to put a resource graph G(X) = [N,E] in normal form, the first step is to
gather all labels that are equivalent upto ~, i.e., for all labels ¥, its equivalence class
modulo ~ is given by X = {y| X F x>~y }. For the equivalence classes of labels modulo
~ to give rise to the nodes N of a resource graph in normal form, we need to decorate
them with appropriate tags. Therefore, the second step of the normalization process
is to merge the tags associated to the labels populating an equivalence class using set
union. Thus, for all classes X, we computethesetd = |J A. The tag associated to

AyeN,yex
X, denoted @, is then obtained from ¢ by discarding theyA I)étter whenever the U letter
is already a member of ¢, i.e., ®=¢ — {A} if {U,A} C 9and ® = ¢ otherwise *.
Finally, in order to give rise to the edges E of the normal resource graph associated
to G(X)[N,E], we add an arrow ®X — Wy going from a node ®X to a node Wy iff
u—Av € E for some u € X and v € y. Keeping the label with a minimum length as the

2 For simplicity, we do not explicitly represent reflexive and transitive arrows.

3 In the rest of the paper, we define relations a either in terms of labels, or in terms of nodes, the
link between the two forms is such that X - xay iff G(X) - I'xa Ay.

4 This is semantically justified by the fact that it is no use knowing that a heap contains at least
one cell when one already knows it contains exactly one.

witness for its equivalence class modulo ~, the previous examples lead to the following
normal resource graphs:

Gn(X) Gn(Y): [ZUc

Ucy

3.4 Points-to predicate distributions

Given a resource graph G(X) = [N, E], we consider distributions of points-to predicates
over nodes of the form Ux. For example, in the previous resource graph Gn(X), we
associate (I — a,b) and (k — c,d) to the node Uc;. Such a distribution is denoted as
follows: Pto(Ucz) = {(l — a,b),(k — c,d) }.

Gn(X) GnlY): NI

k—c,d

Ve | | 5 ab

Let us define the new relation ~ as the smallest equivalence on X generated by
(< U =~). Then, in order to keep track of which locations are defined in a given heap,
we associate multisets of points-to predicates called loc-sets to the nodes of a resource
graph. The loc-set Loc(I'x) associated to a node I'x is such that Pto(I'x) C Loc(I'x) and
if G(X)F Mx=Ayz for some 21y, 35z € N, then Loc(Z1y) U Loc(Zz) C Loc(Ix). In
other words, loc-sets inherit points-to predicates via label composition and arrows of
the resource graphs. Finally, we say that Loc(I'x) and Loc(Ay) are compatible, denoted
Loc(Ix) #Loc(Ay), or more shortly x#y, if they share no location .
Let us illustrate the previous notions with the following resource graph:

I+ ab I+ ab

k—c,d ks g f

Here, the points-to distribution is such that Pto(Uy) = { (I — a,b),(k+~c,d)} and
Pto(Uz) = {(I — a,b),(k — e, f) }. The loc-set associated with the node Ax is such
that Loc(Ax) = {(l — a,b), (I — a,b),(k — c,d),(k — e, f) }. Notice that (I — a,b)
occurs twice in Loc(Ax), the first occurence coming from Pto(Uy) and the second com-
ing from Pto(Uz). Therefore Loc(Uy) and Loc(Uz) are not compatible since they share
the location | (and the location k too).

3.5 Structural consistency

Let us define the notion of a structural consistency for (normal) resource graphs, which
intuitively means that a resource graph indeed represents a “real” model of PL. We first
introduce the notion of well-formed resource graphs.

Definition 3.5. A normal resource graph G(X) =[N, E] is well-formed iff for all I'x €
N, the set " contains at most one element.

Then, we introduce the notion of complexity measure on the nodes of a resource graph.
The role of such a notion is to unambiguously determine how many cells are assumed to
be in the heap represented by a given node. The information conveyed by the constraints
of type Ax is only a rough abstraction (at least one cell) that needs to be completed if
we have to extract countermodels from resource graphs as explained later in Section 5.

Definition 3.6. Given a well-formed normal resource graph G(X) = [N,E], a com-
plexity measure on G(X) is a total function Comp : N — N such that

— Comp(Zx) =0, Comp(Ux) = 1, Comp(Ax) > 1,
— Comp(I'xy) = Comp(Ax) +Comp(Zy),
- G(X) F I'x= Ay = Comp(I'x) = Comp(Ay).

Definition 3.7. Given a measure of complexity Comp on a well-formed resource graph
G(X) and a distribution Pto, G(X) is structurally consistent w.r.t. (Pto,Comp) iff:

—-VZx e N, Loc(Zx) is the empty set (SC1),

—VUx € N, Loc(Ux) is a singleton set (SC2),
-VIx,Ay € N, Zxy € N = Loc(I'x) #Loc(Ay) (SC3),
- VIx, Cardinal (Loc(Ix)) < Comp(I'x) (SC4).

G (X) is structurally consistent w.r.t. a distribution Pto iff there exists some complexity
measure Comp for which it is structurally consistent w.r.t. (Pto,Comp).

The previous conditions simply reflect that a heap with no cell should have no location,
that a heap with one cell should have exactly one location, that heaps must not share
locations if they are to be composed and that there should not be more locations in a
heap than there are cells. In the rest of the paper, since a label x uniquely determines a
node "x in a resource graph, we shall sometimes write Loc(x) and Comp(x) instead of
Loc(Ix) and Comp(Ix).

4 Resource Graphsand Provability

In this section, we propose a tableau-based calculus for PL that builds resource graphs.
The choice of a tableau proof-search method is motivated by its well-known ability to
propose countermodel extraction facilities [2], but our notions of labels, constraints and
resource graphs can be integrated to connection-based, or sequent-based calculi [3], in
order to characterize provability in PL.

Definition 4.1. A signed formula is an expression S @: x, where S € {F, T } is a sign, @
isaPL™ formula and x is a label.

Definition 4.2. Let X be aformulain PL™. A tableau for X is a binary tree 7 whose root
node is labelled with the signed formula F X : co, all other nodes being either labelled
with a signed formula, or with a constraint, and which is built (respecting the structure
of X) according to the rules depicted on Figure 1.

Fo—y:x ToeAP:X Foviy:x
| | |

T@:x T@:x Fo:x
Fy:x Ty:x Fy:x
Te—yP:Xx FoAp:x Toevy:x
PN
Fo:x Ty:x Fo:x Fy:x Te:x TY:x
ToxY:x Fo+p:x T(l—ab):x Tl:x Fl:x
| | | | |
To:c as : Ux |as:Zx| |as:Ax|
F Uy :xc | |
To:c
Ty

Foxy:x Toe—=y:x (1) with¢,cj being new constants
| (2) with y,z being existing labels
[rq:yz<ax] ‘rq:x#y‘

Fo:yFy:z Fo:y Ty:xy

Figurel. Tableaux rules for TPL"™

Given a branch B, As(‘B) is the set of its assertions and Rq(‘B) the set of its require-
ments. The domain of a branch B, denoted D(‘B), is the restriction of the set As(Q%)T
to its labels. We shall see that assertions behave as known facts while requirements
behave as goals that must be achieved using assertions. The application of expansion
rules of Figure 1 leads to the (incremental) construction of a resource graph, denoted
G(B), that is induced by the (- -closure of the assertions occuring in B. Moreover, the
points-to predicate distribution is given by the signed formulae of the branch with sign
T, i.e., G(B) is the resource graph g(As(g)T)[N,E] such that, for all nodes Ux € N,
Pto(Ux) = {(l = a,b) | T (I = a,b) : x € B}.

Having resource graphs associated to tableau branches and built from the assertions
we relate them to the requirements generated by the F @ : x and T @— : x signed
formulae. This leads to the notion of admissible tableau.

Definition 4.3. A requirement is admissible in a branch B8 of a tableau 7 if it holds in
the ((-)T-closure of the) assertions that occur (in B) closer to the root of 7" than this
requirement. A branch B is admissible if all its requirements are admissible in B and a
tableau 7 is admissible if all its branches are admissible.

Before we proceed with the notion of logical consistency, which intuitively means
that a formula of PL™ can be falsified, we need to introduce an equivalence relation
on the nodes of a resource graph. Given a complexity measure Comp on the resource
graph G(‘B) of a branch B, we say that the relation 'x ~ Ay holds in G(‘B), written
G(B) | I'x ~ Ay (or more shortly B F x ~y), iff either G(B) F IN'x~ Ay or Comp(I'x) =

V1 F (= ab)((I = ab)—(k—c,d)))—=(h—ef):cy
Vo T(I—ab)*((l »—>a|,b)—*(kn—>c,d)):cl
F(h—ef):ci(=coc1)
|

T(—ab):c
V3 T(l—=ab)—(k—cd):cs
/\

F(l—ab):cy T(k—c,d):cocs
| |

X X

Figure2. Tableau for ((1 — a,b) * ((I — a,b) = (k> c,d))) = (h— ¢, f).

Comp(Ay), Loc(Mx) = Loc(Ay) and Cardinal (Loc(I'x)) = Comp(I'x). In other words,
two nodes are equivalent upto ~ if they represent heaps having the same cells (with the
same content) and the same locations.

Definition 4.4. A branch B is logically inconsistent w.r.t. to a complexity measure
Comp on G(‘B) if it satisfies one of the following conditions:

-T(l—ab):x,F(l—ab):ye Band B+ x~y (CL1);
—F1l:x€ BandComp(lx) =0 (CL2);

-FT:xe B(CL3);

-T1l:xe€ B(CL4).

A tableau is logically inconsistent w.r.t. Comp if it has a branch that is logically incon-
sistent w.r.t. Comp.

Definition 4.5. A branch B is open if it is logically consistent and if its resource graph
G(B) is structurally consistent w.r.t. some complexity measure Comp on G(‘B), other-
wise it is closed. A tableau 7T is open if it has an open branch.

Definition 4.6. Let @be a formula of PL™, a tableau T is a TPL-proof of @if there is a
sequence of tableaux (Z)1<i<n such that

1. 77 is the one-node tableau the root of which is labelled with F @: co,

2. Tiy1 is obtained from 77 by a decomposition rule of Figure 1,

3.7, =T, 7T is closed and admissible.

A formula @is provable in TPL if there exists a TPL-proof of .

Let us illustrate these closure conditions. The tableau of Figure 2 has a left branch
which is not logically consistent (condition (CL1) on (I — a,b) and c5). In the right
branch, we have to capture the semantics of —. For instance, if a heap forces (I —
a,b) then this heap has only one cell that is at location | and contains the values
{(a,b). The resource graph associated to this branch is Go(X), given in subsection 3.2,
that after normalization is not structurally consistent because the loc-set Loc(Ucy) =

{(I'—~ a,b),(k+— c,d) } is not a singleton set as required by condition (SC2) of Defini-
tion 3.7. Then this branch is closed (marked with a x).

ViF((l=ab)x(l—cd)—=Ll:co [ze] [Uc C1 Uc
|
Vo T(Il—=ab)x(l—cd):c I —ab | —c,d
Fl:c
-

VaT
VaT

. C
.C3

(I~ a,b)
(I'—cd)
|

asy - Ucg

Figure3. Tableau for ((1 — a,b) * (I — c,d)) — L.

Figure 3 gives a tableau for the formula ((I — a,b) x (I — c,d)) — L that means
that we cannot have two cells in a heap that are at the same location. We could deduce
the existence of two heaps (represented by ¢, and c3) that respectively force (I — a,b)
and (I — c,d), but then their composition (represented by czc3) is not defined since
they are not disjoint and thus cannot force (I — a,b) % (I —~ c,d). We observe that
the associated resource graph in normalized form is not structurally consistent since
Loc(Ucz) ={ (I — a,b) } and Loc(Ucz) = { (I — c,d) }, so that Loc(coc3) = Loc(cy) =
{(I'— a,h),(I — c,d)}, which contradicts condition (SC3) of Definition 3.7 because
the loc-sets Loc(Uc,) and Loc(Ucs) are not compatible (they share location I). Then
this branch is closed.

5 Countermodel Construction and Completeness

Before we study the completeness we prove the soundness of TPL by introducing the
size of a heap h, denoted Size(h), that is the number of locations it contains.

Definition 5.1 (realization). Let B be a branch. A realization of B is a mapping ||-|| :
D(B) — Heaps that satisfies:

=[Ixoyll = [IxI[-lyll, B+ Zx = [|x|| =,

— BE Ux= Size(||x]]) = 1, BF Ax= Size(||x]]) > 1,

—yz<aAx € As(B) = [IX|| - llyll = l|zll, B+ x=~y = [X|| = [yl

-Te:xeB=|x]| EpandF@:x€ B=||X|| = ¢

A branch B is realizable if there exists a realization of B. A tableau ‘7 is realizable if it
contains a realizable branch.

Lemma 5.1. A closed tableau is not realizable.
Proof. By analysis of the (-) "-closure rules.
Lemma 5.2. The rules of TPL preserve realizability.

Proof. We show that, for all realizable tableaux T, if 7’ is a tableau obtained from 7
by application of a TPL rule, then 7" is realizable.

Theorem 5.1 (soundness). Let @ be a formula of PL™. If there exists a TPL-proof of ¢
then @is valid in PL™ semantics.

Proof. Let (7)1<i<n be a TPL-proof of @. Suppose that ¢ does not hold in PL™ seman-
tics, then e [= @. Consequently, ||co|| = e is a trivial realization of 7. Lemma 5.2 then
entails that all tableaux in (Z)1<i<n are realizable. This is a contradiction because, by
definition of a TPL-proof, 7, is closed, which implies, by Lemma 5.1, that 7y, is not
realizable.

Definition 5.2. A signed formula S @: x is analyzed in a branch B, denoted B> S @: X,
iff S@:y € B for some label y such that B x=y.

Definition 5.3. A signed formula S @: x is completely analyzed or fulfilled in a branch
B, denoted BIFS @: x, if it matches one of the following cases:

— BIFTI:x iff B>~TIl:xand BF Zx,

— BIFF1:x iff B>FIl:xand BF Ax,

— BIFT (I~ a,b) : x iff B Ux,

— BIFFUWAX:x iff B-F@:xor B>FX:x,

- BIFTWYAX:x iff B>TyY:xand B>TX:X,

- BIFFYVX:xiff B>Fy:xand B>FX:x,

— BIFETYVX:xiff B>TY:xor B>TX:X

- BIFFY— X:xiff B>TY:xand B>FX:Xx,

- BIFTY—->X:x iff B-Fy:xor B>TX:X,

— BIFF Y= X:x iff (Vy,z€ D(B))(Bryzmx= (B>Fy:yor B>FX:z)),
- BIFTYxX:x iff (Jy,z€ D(B))(BFyz~xand B>Ty:yand B>TX:z),
- BIFFp—X:x iff Ay € D(B))(xy € D(B) and B>TY:yand B>FX:xy),
- BIETY—=X:x iff (Vye D(B))(xy € D(B) = (B>FP:yor B>TX:xy)).
for all other cases, BIFS @: x iff B>S@: x.

Definition 5.4. A branch B is complete iff it is open and all signed formulae in B are
fulfilled. A tableau 7 is complete iff it contains a complete branch.

It is standard to define a tableau construction procedure that builds either a closed
tableau or a complete tableau [2]. Let us now explain how to construct a countermodel
from an complete branch using the tableau depicted on Figure 4. In this example, the re-
source graph induces a complexity mesure such that Comp(Uc3) = Comp(Ucs) = 1. On
the other hand, we have Loc(c1) = Loc(cac3) = Loc(cacs) = { (I — a,b),(k+— a,b) },
which implies Comp(c1) = Comp(cac3) = Comp(caCs) > 2.

F(Tx(l—=ab)A(Tx(k—ab))—=(—ab):c
T(Tx(l »—>a,b))/\|(T*(kn—>a,b)) e
F(l—ab):c
TTx(l n—|>a,b):cl
TTx(k—ab):cg
|

as:CxC3<iCy

TT:c

T(—ab):cs |UC3| |U05|
| l—ab k—a,b

TT:cy
T(k—ab):cs

Figured. Open tableau for (T * (I — a,b)) A (T * (k> a,b)) = (I — a,b)

After having solved the linear system of equations induced by the definition of a
complexity measure, we can deduce Comp(cz) = Comp(cs) = 1. Moreover, we have
Loc(cy) = Loc(ca) = 0, so that Cardinal (Loc(cy)) = Cardinal (Loc(cs)) = 0. Then the
branch is logically and structurally consistent. However, condition (SC4) of Definition
3.7 only requires Cardinal (Loc(I"'x)) < Comp(I'x) for all nodes I'x. Therefore, in order
to obtain a countermodel, we need to find a completion of all loc-sets such that for all
nodes I'x, Cardinal (Loc(Ix)) = Comp(I'x).

A completion of all loc-sets can be achieved using set unification on the equations
induced by the resource graph and the definition of Loc. Here, we obtain four equations:

— Loc(cz) ULoc(Ucg) = Loc(cacs) = { (1 — a,b),(k— a,b) },
— Loc(cs) ULoc(Ucs) = Loc(cacs) = { (I — a,b),(k— a,b) },
— Loc(Ucz) = {(I = a,b) },
— Loc(Ucs) = {(k—a,b)}.

From this, we get Loc(cz) = {(k— a,b)} and Loc(cs) = {(l —a,b)}, so that all
locations in Loc(cz) and Loc(cs) are fully determined by the system of Loc equa-
tions, but in the general case it is sometimes necessary to add special locations, not
occurring in the resource graph and pointing to any content. For example, if we re-
place (k — a,b) by (I — a,b) in the formula of Figure 4, then we must complete
Loc(cz) and Loc(cs) with a location that does not occur in the heap, for instance,
Loc(cz) = Loc(csg) = {(m+— ?,?) }. The question marks mean that the content of the
cell associated to the additional location does not matter.

The last step of the countermodel construction process is to derive a partial monoid
of heaps from the labels in the resource graph. We proceed as follows: for all nodes I'x ,
we define a heap hy : Loc — Val x Val such that hy(I) = (a,b) iff (I — a,b) € Loc(I'x).
Then, we define # = (H, -, h,) as the structure such that H = { hy | F'x € G(‘B) }, know-
ing that heap composition is given by the union of disjoint partial functions.

Lemma 5.3. If B is a complete branch then # = (H,-,hc,) is a PL™-model such that
a)if B>T@:x then (ATrz e G(B))(B+z~x and h; = @) and b) if B>F @: x, then
(3rze G(B))(BFz~xand hy [~ @).

Proof. We show that condition (SC1) of Definition 3.7 implies that he, is the empty
heap and that condition (SC3) implies that whenever there exists Az in the resource
graph such that B |- z~xy then hy- hy = h,. The two properties a) and b) are deduced
by induction on @w.r.t. conditions of Definition 5.3.

Theorem 5.2 (completeness). Let @be a formula of PL™. If @is valid in PL"™ seman-
tics, then there exists a TPL-proof of @.

Proof. Let @ be a valid PL™ formula. Suppose that ¢ has no TPL-proof, then, there
exists no sequence of tableaux (Z)1<i<n such that 7y is closed. Therefore, any (fair)
tableau construction procedure results in a tableau containing a complete branch B
from which we can build the structure # = (H,-,hg,). Since B> F @: co, Lemma 5.3
entails that # is a PL"”-model such that he, [~ @, which contradicts the validity of @.

6 ExtensiontoPL

We can extend these results for PL™ in order to deal with the predicate E; = E» and the
formula 3x.@. Here, — associates a cell to a stack variable and such variables are in the
scope of quantifiers and then the formulae are closed.

In order to deal with 3, we can use a standard technique that eliminates existential
quantifiers by instantiating the variables with constants depending on the sign of the
signed formulae [2]. When the sign is T one generates a new constant and when it is F
we reuse a constant already generated. Here, the constants are locations and we need to
memorize the variable instantiations for countermodel construction. The corresponding
expansion rules look as follows:

*T QX)) 1y FIxoev):y
| |
Toc):y Faol):y

*:c is a new constant.

Notice that the previous expansion rules do not concern labels because, from the se-
mantics, we observe that we consider stack variables and not heaps that are the actual
resources. Coming back to the example about double dispose in Section 2, we can use
the tableau method to prove that L <+ Tx3a b.(x — a,b)*3 ¢ d.(x — c,d) and then
to conclude that the program is not safe to execute for any start state.

Finally, in order to deal with the predicate = we have the same rules but need to
extend the tableau closure conditions. Having a signed formula T X =Y : x with con-
stants X and Y syntactically equal, because of semantics S (X — a,b) : x is duplicated
as S (Y —a,b) : x. For FX =Y : x, we need to check if constants X and Y are syntac-
tically equal. In this case we have a contradiction with the semantics since the formula
is signed by F.

7 Conclusions and Per spectives

Separation logics provide verification formalisms for pointer programs and allow to
express properties about data structures with shared mutable state [6,12]. We study
proof-theoretic foundations for such logics, by focusing first on PL, the BI’s pointer
logic [6]. We mainly define a characterization of provability in PL through so-called
resource graphs and provide a new calculus with labels and constraints that builds re-
source graphs from which countermodels can be extracted. We expect to develop the
same approach for the affine variant of PL [6] with intuitionistic additives that allows
to prove interesting properties about sharing. Some spatial logics for trees or graphs
[1] are related to PL as extensions of Boolean Bl and we aim to study these logics from
our proof-theoretic perspective. Moreover, comparisons with existing works on theorem
proving dedicated to pointer programs [7,8,11] could be fruitful for some refinements.

References

1. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In Int. Conference
on Automata, Langages and Programming, ICALP’ 02, LNCS 2380, pages 597-610, 2002.

2. M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Monographs in
Computer Science. Springer Verlag, 1990.

3. D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic. In
18th Int. Conference on Automated Deduction, CADE-18, LNAI 2392, pages 111-128, 2002.
Copenhagen, Danemark.

4. D. Galmiche and D. Méry. Semantic labelled tableaux for propositional BI without bottom.
Journal of Logic and Computation, 13(5):707-753, 2003.

5. D. Galmiche and D. Méry. Resource graphs and countermodels in resource logics. Electronic
Notesin Theoretical Computer Science, 125(3):117-135, 2005.

6. S. Ishtiag and P. O’Hearn. BI as an assertion language for mutable data structures. In
28th ACM Symposium on Principles of Programming Languages, POPL 2001, pages 14-26,
London, UK, 2001.

7. J. Jenson, M. Jorgensen, N. Klarkund, and M. Schwartzback. Automatic verification of
pointer programs using monadic second-order logic. In Conf. on Programming Language
Design and Implementation, PLDI’ 97, pages 225-236, 1997.

8. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In Int. Conference
on Automated Deduction, CADE-19, LNCS 2741, pages 121-135, Miami, USA, July 2003.

9. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data struc-
tures. In 15th Int. Workshop on Computer Science Logic, CSL 2001, LNCS2142, pages 1-19,
Paris, France, 2001.

10. P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbalic Logic,
5(2):215-244, 1999.

11. S. Ranise and D. Deharbe. Applying light-weight theorem proving to debugging and verify-
ing pointer programs. Electronic Notesin Theoretical Computer Science, 86(1), 2003.

12. J. Reynolds. Separation logic: A logic for shared mutable data structures. In IEEE Sympo-
siumon Logic in Computer Science, pages 55-74, Copenhagen, Danemark, July 2002.

