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Abstract. The logic of Bunched implications (BI) and its variants otemsions
provide a powerful framework to deal with resources haviagis properties. In
this paper, we propose a modal extension of Bl logic, call&d, @vhich allows
us to deal with dynamic resource properties. After definir¢ripke semantics
for DBI, we illustrate the interest of DBI for expressing sedynamic properties
and then we propose a labelled tableaux calculus for this.ldgis calculus is
proved sound and complete w.r.t. the Kripke semantics. blane we also give a
method for countermodel generation in this logic.

1 Introduction

The notion ofresourcds an important notion in computer science. The locatiomew
ship, access to and, indeed, consumption of, resourcesmatr@lbconcerns in the design
of systems, such as networks, and in the design of programshwaccess memory and
manipulate data structures like pointers. We are intetldatstudying such notions on
resources through logics with an emphasis on usable sersamtil proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses esaurce consumption
and the logic of Bunched Implications (BI) [13] that maintclises on resource sharing
and separation. The Bl logic and its variants, like Boolea(BBI) [11,13], can be seen
as the logical kernel of so-called separation logics, thavides a concrete way of un-
derstanding the connectives in the context of program eatifin [7,14]. Some recent
results on Bl and BBI concern new semantics [4], proof-dearith labelled tableaux
and resource graphs [3,4] and (un)decidability of thes&to#,9]. Some extensions
or refinements have led to separation logics, like Bl's paifdgic (PL) [7] that allows
us to express properties on pointers or BiLoc [1] that is Baseresource trees and
captures the notion of place. In this context MBI logic [1®{ends Bl with modalities
and a calculus a la Hennessy-Milner [10] dealing with psses and resources.

We can remark that two kinds of dynamic are captured by Bl, BBd their exten-
sions. On the one hand, there are logics that transform reseinto other resources,
which is a first kind of dynamic. On the other hand, there agé&cowhere properties of
resources can change (called here dynamic properties)tdcalted here static prop-
erties). For example, in Bl logic the resource propertiesstatic because if a resource
satisfies a property, it will always satisfies this propertye dynamic, that corresponds
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to the transformation of resources, is captured in LL by fs@md in PL by a calculus
a la Hoare [6]. Moreover in MBI, the dynamic is also basedesource transformation
because of a calculus a la Hennessy-Milner with judgenitte formR, E 2 R, E/,
which means that a proceBsperforms an actiom on a resourc® in order to obtain
a resourcd? and then becomes a procéssBut the modalities a la Hennessy-Milner
can only express properties BhandE’, directly at the next state, but not on any reach-
able resource and process (or state), knowing that resehegans after performing any
action.

In this paper, we are interested in expressing some dynammpepgies on resources di-
rectly at level of formulae, on future states (and not onlyfanext ones) and in dealing
with interacting systems. Then we define a modal extensi&h,afalled DBI (Dynamic
Bunched Implications logic), in order to model some dynapmiperties of resources.
We define a Kripke semantics for this logic, which is an extamsf Kripke semantics
for Bl with state constraints (a set of states with a pregratgroduced in addition to
resource constraints. We also give a labelled tableauxikeslén the spirit of works on
Bl logic [3,4] but dealing with both resource graphs andestrbphs. This calculus is
proved sound and complete w.r.t. this semantics, with geioer of countermodels in
case of non-validity in DBI.

2 The DBI logic

Bl logic is a logic that expresses sharing and separatiopgsties on resources [11,13].
We present here a modal extension of Bl, called DBI, whictvedlus to express some
dynamic properties on resources. The languagef DBI is obtained by adding two
modalitiesd and¢ to the Bl language [13].

Let Propbe a countable set of propositional symbols, the languageDBI is defined
as follows, whereg € Prop:

Xu=p|TIL|TXAX|[XVX|X—=X|XxX]|X-X]OX|OX

The negation is defined byX = X — L. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of Bl [4] baseadresource monoid. In
the case of DBI we consider a dynamic resource monoid withxplioit inconsistency,
and also a preorder set of states with an accessibilityioalattween states.

Definition 1 (Dynamic resource monoid).A dynamic resource monoid a structure
M = (Re,e,1,C,S <) such that:

R is a set ofresourcesind S is a set o$tates
ec RandneR
e : Rx R— R such that:
- Neutral elementyr c R,ree—=¢cer =r
- AssociativityVri,ra,rs € R, rpe(rpers) = (rperp)ers
- Commutativityvri,ro € R, rperp=roer;
C C Rx Ris a preorder (on resources):
- ReflexivityvVr e R, rCr



- Transitivity: Vri,ra,r3 e R, ifrnCroandp Ergthenn Crg
— 1€ Ris the greatest elementr € R, rC mandVvVr € R, reTt=TL
— X C Sx Sis apreorder (on states)
— Compatibility (P):Vry,ro,r3 e R, ifry CEraothenrpersCroers

We noteP(E) the powerset of the s&, namely the set of sets built frol. We
call etheunit resourcgempty resource)itheinconsistent resourcende theresource
compositionA preordered seS, <) is added to the Kripke’s Bl semantics wiithat
can be viewed as the states of a systemdras$ the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretatioms a function[] :
Prop— P(Rx S), that verifies the following properties, for an¥sS and ps Prop:

— Monotonicity (K):vr,r’ € R such that i r', if (r,s) € [p] then(r’,s) € [p]
— Inconsistency (BC)r € R such thattCr, (r,s) € [p]

As we see the dynamic interpretation makes the resourceegiepnon static: the
interpretation of a propositional symbol is not only a setafources (as Bl), but a set
of pairs of resources and states.

Definition 3 (Dynamic resource model) A dynamic resource mod@ a triple X =
(M, [], Ex) such thatM is a dynamic resource monoifl] is a dynamic interpretation
andkg is a forcing relation on R« Sx L defined as follows:

—r,sE4 piff (r,s) € [p]

—rskEgliffeCr

— I,skE¢ T always

—IsEg Liff mCr

— I,sEx QAYIffr,skEq @andrskEq P

—,skEx @V Uiffr,skEg @orr,sEx Y

—rskx@—Yiff Vi e R-(rCr andr, sk« @) = r',sE« Y

—r,sEx @« iff I',r" eR-r'er" Crandr,sEq @and’,skE4 P

—r,skEx @xYiff VI’ e R-I'skEx @=rer sk4 Y

— 1,5k« O@iff 3s € S-s<dandrs F4« @

— r,skg O@iff VS € S-s<d =r5Fx @

The definition of the forcing relation is an extension of tHed@cing realtion with
the cases fodl and¢. For instance, s 4 ¢@means that a resourcet states satisfies
Q@if a states' can be reached from the statés < ') such thar in states' satisfiesp
(r,s E« ¢). Now we define the notion of validity.

Definition 4 (Validity). A formulagis valid, denoted= ¢, if and only if esk4 @ for
all dynamic resource modelg (and all states & S).

The notationy = Y means that for all resources r and all states s of any dynasnic r
source modelX, if r,sE4 @then rskE4 .

We give two lemmas that hold for all dynamic resource modg¢lzall formulaeq,
all resources,r’ € Rand all states € S,

Lemma 1 (Monotonicity). If r,sEx @andrCr’ then ¥, sE4 @.
Lemma 2 (Inconsistency)We havat, sk @.



3 Expressiveness of DBI

We have previously introduced a semantics for modellingueses having dynamic
properties. In this section we emphasize the interest sfrttodal extension of Bl by
illustrating it through some simple examples.

The first example deals with the management of resourcesiyitamic properties. In
Bl logic the propositional symbols are considered as stdgcriptions/properties of
resources. But, we know that resource properties are natyalstatic. For example, if
we consider the price of gold and silver, it is a dynamic propgepending not only on
the resource. Let us denatgthe resource "one ounce of gold” argthe resource "one
ounce of silver”. Propositional symbolg, andPs, are prices ofy andrs on January
1st of the yeay. Moreovers, denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silvet gold price:

rgers,51970F % (Pyyg70* Peigr0) A O (P * Posonn)

It means that on January 1st of the year 195{g7(), a resource composed by one ounce
of gold and one ounce of silverfers) has two properties: it could be decomposed into
two resources respectively satisfying the propeRigs,, andPs,y,, (Pg;470* Psig70) @nd,

in a future state, it could be decomposed into two resouegsectively satisfying the
propertiengzm andpszmz (P92012 * I352012)'

The second example illustrates how with DBI and a dynamiougse monoid we can
deal with properties on interacting systems. A dynamicues®monoid can be viewed
as two interacting systems. Indeed a resource monoid caelradist system, where
resources are states of this system and the preoder oncesasithe state reachability
of this system [2]. Furthermore, the dynamic part of a dyram@source monoid (set of
states with a preorder), can be viewed as an automaton aihdreadels a second sys-
tem. Moreover, the dynamic interpretation can be vieweti@sdasult of the interaction
of these systems. For examples) € [p] can express that, if a first system is in state
and a second system is in statinen their interaction satisfies the propeptyHere the
word interactiondoes not mean that one of these systems influences the sesend o
the preorder on resources does not depend on states an@tidgrron states does not
depend on resources. Then the interactios) € [p] means that there are two free (non
influencing) systems which can perform together an actidwighvsatisfies the property

p if the first system is in stateand the second system is in state

Let us consider a message sent in a network and modelled wégoarce monoid. We
consider only five states (resourc&s)- {e, Msent, Mpassing Mdelivered T}, Whereeis the
state with no messagg,is the state with an error that occurs in the systaga;is the
state where the message is sénassingis the state where the message is passing in
transit andmyeliverediS the state where the message is delivered. The relatjavhere
reflexivity and transitivity are not represented, is:

R



In a first step, there is no message Then the message is created and sesd ).
In a third step, it is passing in transibfassing and then, in a fourth step, it is delivered
(Myelivered- As we can remarkfpassing= Msent DUt Mpassingis the next state ofsent
and itis not a mistake. AientCan reacmpassingthen we aim the properties ofpassing
to be satisfied by the resourngen. In other words, if a resouraesatisfies a property
p, then all resources that can reackatisfyp. This is the property (K) of Definition 2.
In this example, we only consider one message and then wee@dfiy(eer =r) and
(rer’ =Tmuif r #£eandr’ # e), but it is possible to consider states composed by more
than one message. We remark titas the biggest resource (by definition of dynamic
resource monoid), so when an error occuus éll states are reachable: it is considered
that when an error occurs, it is impossible to predict theabir of the system.
Now we define the following service as a second system, wiedlexivity and transi-
tivity of < are not represented. It contains four st&es{s, 51,2, S3} with 5p as initial
state and in the stasg our service reads the delivered messages.

Having defined a dynamic resource monoid we are able to expinas when the
message is sent, it is possible that our service read thisagesthat ismsent, So Fx
OPrmeag» WherePn ., is the propositional symbol "message read” that occurs vahien
delivered and the service is in state [Pn,,,] = {(.S3) | Mdelivered C '}

We havemyeiivered 3 F % Pmeaq- AS S0 = S3 then Myelivered S0 Fx OPmeqq (the DBI
modalities encode the reachability of states).n\gn;can reachmyelivered (Myelivered =
Msent) theNMsent, So F« OPm..q (DBl monotonicity encodes the resource reachability).

4 A proof system for DBI

In this section, we propose a proof system for DBI, in theispirprevious works on
labelled proof system for Bl with resource graphs [4]. Weadtice some rules to deal
with modalities and also the notions of state labels andtcainss, in order to capture
some dynamic aspects.

4.1 Labels for resources and states

In labelled tableaux method for Bl [4], there dabels and constraintsin order to
capture some semantic information inside the proof systexbels are related to the
resource sefR), a label composition is related to the resource compasfipand rela-
tions on labels naméddbel constraintsare related té. In DBI, the resource monoids
are dynamic and then there are two sets (for resources aed)saad two relations (on
resources and states). Thus we introduce a new kind of labelsonstraints to deal
with states. Let us now define labels and constraints for DBI.



Definition 5 (Resource labels)L, is a set ofresource labelbuilt from a constant,
an infinite countable set of constants= {ci, Cz, ...} and a function denoted,

Xi=1|c|XoX

where ¢ € y;. Moreovero is a function on L that is associative, commutative athd
is its unit. Aresource constraing an expression of the form<y where x and y are
resource labels.

For example the resource lalmgb 1o c 03 is equal to the resource lalmlo ¢y o Co.
We denotexy the resource labeloy. Moreover we say thatis aresource sub-labedf
y if and only if there existz such thatko z=y. The set of resource sub-labelsxois
denotedE(X).

Definition 6 (State labels)Lsis an infinite countable set aftate label$ls = {I1,12,...}).
A state constraintn such labels is an expression of the forrma ¥, where x and y are
state labels.

Definition 7 (Domain). Let ; be a resource constraints set, thlemainof ¢;, denoted
Dr(G), is the set of all resource sub-labels appearing’n In particular: D (&) =
Ux<yeq (E(X)UE(Y)).

Definition 8 (Alphabet). Thealphabedf a set of resource / state constraints is the set
of all label constants appearing ik / Cs.
In particular we have?; (&) = yr N Dr (G) and As(Cs) = Uuque (U, V}-

We can remark that is reflexive, transitive and compatible. Moreovetris reflex-
ive and transitive. These properties have to be capturedégdnstraint sets. For that
we introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints)Let (; be a set of resource constraints,
theclosureof ; (denoted’) is the least relation closed under the following rules such
thatG C G

X<y y<z Xy < Xy ky <ky X<y X<y X<y

X<z (tr) X< X (dr) kXS ky — (cr) X;X (I y<y (re)
We can remar_k that as these rules do not introduce new restalyel constants,
then4, (G) = 4 (G).

Definition 10 (Closure of state constraints)Let (s be a set of state constraints, the
closureof s (denoted(s) is the least relation closed under the following rules such
that GC G

X<y X<y X<y y<z

xax ¥ yay ¥ T xaz Y

As illustration we conside€s = {l1 <I 2,12 <1 13,13 <t l4}. We havd; < I, € s because
Cs C Gsand we havédy <114 € s because



|1<1|2 |2<1|3 t)
|1<1|3 ° |3<|4
|1<]|4

(ts)

Proposition 1. Let (¢ be a set of resource constraints, the following propertielsih

1. Ifkx<ye G thenx<xe &
2. Ifx<kye G theny<ye G

Corollary 1. Let (G be a set of resource constraintsexD; (G ) iff x < x € G.

Lemma 3 (Compactness)Let G (resp. (s) be a (possibly infinite) set of resource
constraints (resp. state constraints). Ikxy € G (resp. u<v € () then there exists a
finite setCr such thatCt C G (resp.Ct C Gs) and X<y € Ct (resp. uiv € ().

4.2 A labelled tableaux method for DBI

We now define a labelled tableaux method for DBI in the spirppr@vious works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS).A labelled formulas a 4-uplet(S, @,x,u) €
{T,F} x L x L, x LswrittenS@: (x,u). Aconstrained set of statemef&SS) is a triple
(F,G,Gs), where F is a set of labelled formulae;; is a set of resource constraints
andGsis a set of state constraints, such that the following propealled(P:ss), holds:

if S@: (x,u) € F thenx< xe G and u< u € Cs.

A CSS(¥,G,Cs) Is a representation of a branch in which the formulae are the
labelled formulae off and the constraints on labels are the element3 ahdCs. Our
calculus extends some principles of Bl calculus by addirgcasd kind of labels (state
labels) and a set of constraintg) for state labels.

A CSS{¥,G,G) is finite iff 7, G and G are finite. We define the relatiog by:
(F,G,Cs) < (F',¢,C)iff F C ¥ andG C ¢ andGs C C;. Moreover we denote
(Ft.G, Cst) <t (F LG, Cs) when(Ft, Gy, Cs;) < (F, G, Gs) holds and ¢, G, Gs; )

is finite.

Definition 12 (Inconsistent label).Let (7, G, Gs) be a CSS and x be a resource label.
x is inconsistenif there exist two resource labels y and z such thakyze ¢ and
TL:(y,u) € F. Alabel isconsistentf it is not inconsistent.

Proposition 2. Let (¥, &, Gs) be a CSS. The following properties hold:

1. Ify<xe ?Land X is a consistent label then y is a consistent label.
2. Ifxye D () is a consistent label then x and y are consistent labels.

Figure 1 presents rules of labelled tableaux method for DBl.us remark that;
andc;j are new label constants; ¢“ ¢j € yr \ 4 (()) and that; is a new label constant
meand; € Ls\ 4s(Gs). We noted the concatenation of lists. For exampée; eo; 4] @
[e4;€3] = [€1;€2; €4; €4; €3]



TOAY: (X,u) € F TA) FoAp: (x,u) € F A
{{T: (x,u), Ty : (x,u)},0,0) ({Fo: (x,u)},0,0) | ({Fy:(x,u)},0,0)
Tovy: (x,u) € F ) Fovy: (x,u) e F )
{To: (xW)}.0,0) | ({Tw: (xu)}.0.0) (F@: (U, F @ (% 0)},0,0)
Tl: (x,u) € F (’ﬂ‘l)
(0,{1<x},0)
Te— P: (x,u) € F andx<ye€ G - Fo— Y:(xu)e¥F )
{Fo: (y,w)},0,0) | ({TY: (y,u)},0,0) ({To: (ci,u),Fy: (ci,u)},{x<ci},0)
ToxP: (X,U) € F . Fox+: (x,u) € F andyz< xe G )
({To: (ci,u), Ty : (cj,u)},{cic; < x},0) ({Fo: (,u)},0,0) | ({Fy:(zu)},0,0)
Te—=: (x,u) € F andxy< xye G - Fo—y: (x,u) € F .-
{Fo: (y,u)},0,0) | ({Ty: (xy,u)},0,0) {To: (c,u),Fy: (xg,u)},{xG < xg},0)
= T.<>(p:-(x, uerF o) FO@: (X, u) e Fandu<ve G #0)
¢: (lel)}707{u < |I}> <{F(p (X>V)}>0>0>
TO@: (X,u) e Fandu<ve G a0 F.D(PI.(X, uer o)
{To: (xV)},0.0) {F: 0h)},0.{u< 1))

Note:c;j, cj andl; are new label constants.

Fig. 1. Tableaux rules for DBI

Definition 13 (DBI-tableau). A DBI-tableaufor a finite CSS %o, G, Gs,) IS a list of
CSS branche} built inductively according the following rules:

1. The one branch ligt o, Gy, Cs,)] is @ DBI-tableau fox o, G, Cs,)
2. Ifthe listTn® [(F, G, Gs)) @ T is a DBI-tableau for( o, G, Cs,) and

Cond<?7CT7CS>)
<TlaC‘l’1aCS]_> | | <TkaC‘l’kaCS,<>

is an instance of a rule of Figure 1 for which cofi¢f, G, G)) is fulfilled, then

the list T ® [(F U F1, G U Gy, GU Gy )i {F U i GU G GU G @ T s a
DBI-tableau for( %o, G, Cs,)-

A DBI-tableau for a formulapis a DBI-tableau for{F¢: (1,11)},{1<1},{l1 <l1}).

It is possible to prove, by observing rules of the tableaushoe for DBI, that new
CSS, obtained by applying a rule, respect the conditf®gs) of Definition 11. Then,
for all brancheq ¥, (¢, Gs) of a DBI-tableau for a formuleg, asFo: (1,11) € ¥, then
1< 1€ G. Thereby, for all brancheF , G, Cs), it holds that 1€ D; ().




A first kind of rules concerngTl), (F —), (Tx), (F—), (T{) and(FO). These rules
introduce new constraints and also new label constants;j(andl;), except for(TI)
that only introduces a new constraint. Let us illustrate(ffi¢) rule. To apply this rule
on a CSS( ¥, G, Gs) on a labelled formul@ ¢ : (c1,13) € F, we choose a new label
which does not appear ifs. For example, we say thht ¢ Cs. Thus, by choosingo,

we can apply the rule, getting the new C88U {T@: (c1,110)}, G, GU{lz < l10}). We
notice the new state constraigt< I,o added to the set of constraints. Let us observe
that the(T) rule introduces two new resource labels. Concerning the(fiti+), as
Fy : (xg,u) is added to the set of labelled formulxe, has to belong t@; in order to
satisfy the conditioriP.ss) of Definition 11. By addingg < Xg to (, xG belongs taGy
and soPess) Is satisfied.

A second kind of rules concerf& —), (Fx), (T—), (FO) and(TO). These rules have

a condition on a closure of label constraints. In order tolyappe of these rules we
have to choose an existing label which satisfies the comdétitd then apply the rule
using it. Otherwise, we cannot apply such rules. We illustthe(T) rule: let a CSS
(F,C, Gs) such thatflfOo: (c1,l1) € F. To apply this rule, we have to choose a state
labell such that; <11 € Gs. If we consider thak, < |, € Csthen we can decide to apply
the rule usindz, getting the CSSF U{T@: (c1,l2)}, G, Gs). Let us observe thgi)

rule needs to choose two labglandz such thayz< x € (.

Definition 14 (Closure condition).A CSS(¥, (¢, Gs) is closedif one of the following
conditions hold:

1. Te: (x,u) € F,Fo: (yu) € F andx<ye &
2. Fl: (x,u)e F and1l<xe G
3.FT:(xuye F

4. F@: (x,u) € ¥ and x is inconsistent

A CSS impenif it is not closed. A DBI-tableau is closed if all its branchare closed.

Definition 15 (DBI-proof). A DBI-prooffor a formulagis a DBI-tableau forp which
is closed.

Let us recall that we deal with labelled formulae with twodsof labels: resource
labels and state labels. Each CSS (branch) contains twoketanstraints, one for
resources and another for states. Moreover the closurebfcanstraints can be repre-
sented by graphs. There are rules which modify constraiat(geaphs) and introduce
new labels. Other rules have a set of conditions that musatisfied, by finding labels
satisfying it and then to solve constraints on the condtaiphs.

Let us now consider the formulp= (O(P — ¢Q) A OP) — ¢Q and give a DBI-proof
for it. By Definition 13, the following DBI-tableal{{F¢: (1,11)},{1 < 1},{l1 <11})]
is a DBI-tableau forp. We introduce a new representation for a DBI-tableau, wisich

[F] [G] (&
F(O(P — 0Q) AOP) —0Q: (1,11) 1<1 ly <l



We can observe that there are three columns, one for thdddldermula sets of the
CSS of the DBI-tableau {1]), one for the resource constraint sets of the CSS of the
DBI-tableau {(;]) and one for the state constraint sets of the CSS of the DiBéda
([G4])- By applying some rules, we obtain the following DBI-tadle

(7] [G] (G
V1 F(E(P — 0Q)AQP) = 0Q: (1,11) 1<1 l1 <y
! |
Vo TOP — 0Q) AP : (c1,11) a<c

V7 FOQ: (e, 1)

\/4 TD(P HIQQ) . (Cl7|l)
\/3 TOP: (C1,|1)

TP: (Icl,lz) Iy <l
Vs TP — 0Q: (cy,l2)
FP: (c1,|5 ¢6\11‘<>Q: (c1,12) /
' TQ: (ICl,|3) lp <3
FQ: (Icl,lg)
°

We decorate a labelled formula witi to show that we apply a rule on this formula at
stepi. We remark that columng %, [(¢] and[(s]) are trees that contain two branches.
There are two branches because there are two CSS in the DIB&ata The branches
on the left (resp. right) contain the elements of the firsgfresecond) CSS. We also
remark that all CSS are closed (denotejl The CSS of the left is closed because
TP : (c1,l2) € F, FP: (c1,l2) € F andcy < ¢; € G. Thus, by definition, this DBI-
tableau is a DBI-proof of (P — 0Q) A OP) = 0Q.

5 Soundness and completeness results

The soundness proof uses similar techniques than the oedsiugl for a labelled
tableaux method [4]. The key point is the notionreélizability of a CSS(¥F, i, Gs),
that means there exists a dynamic mo#{ehnd embeddings from resource labels to the
resource set/(|) and state labels to the state sei) of & such that ifT¢: (x,u) € ¥
then|x|, [u] Eg @and ifFe: (x,u) € F then|x|, [u] Hx ¢.

Definition 16 (Realization).Let (¥, G, Gs) be a CSS. Aealizationof it is a triple
(K, [.],]-7) suchthatk = (M, [-],F x) is a dynamic resource model = (R,e,e, 11, C
.S =), [ D (G) — Rand[.] : 4s(Cs) — S, such that:



- [l =e

[xoy] = [x]ely]

If To: (x,u) € F then|x|,[u] Fx @
If Fo: (x,u) € ¥ then|x], [u] Fx ¢
Ifx <ye G then|x]| C |y]|
Ifu<ve Gthen[u] < [V]

We say that a CSS/branchrealizableif there exists a realization of it. We say that
a tableau isealizableif it contains a realizable CSS/branch.

Lemma 4. Let(7F, G, Cs) be aCSS andX, |.],[.]) arealization of it. Forallx<y €
G, [X] C |yl and forallu<ve G, [u] < [v].

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a rofehe DBI-tableau
method is applied on a labelled formula of a realizable CS$ thne of the obtained
CSSis realizable.

Theorem 1 (Soundness).et@be a formula, if there exists a DBI-proof ofthengis
valid.

Proof. Let 7 be a DBI-proof ofg. Let us assume thatis not valid. Then there exits a
dynamic resource modé{ such thae, s« ¢. If we consider 1] = eand(l1] =swe
obtain a realisatioi %, |.], [.]) of the initial CSS({F¢: (1,11)},{1 < 1},{l1 < I1}).
Thus, by Lemma 6, one branch @fis realizable. But by Lemma 5 it is contradictory,
because ag is a DBI-proof, thenZ is closed. Thugis valid.

Before to study completeness we consider the countermodiglction for DBI
tableaux method. The main idea consists in transformingureg and state constraints
into a dynamic resource monoid, from a brarf¢h ¢, Gs) which is not closed.

In order to obtain a countermodel, this transformation lbagetify two properties: if
Te: (x,u) € F thenx,ukF« @and ifF@: (x,u) € F thenx,uZ« @. In order to satisfy
them, our method needs saturatelabelled formulae (to obtain a Hintikka CSS), that
means, for instance, TO@: (x,u) € ¥ then we want thax,u =4 O, so for all state
labelsv such thati <t v € G, T@: (x,V) € F has to be verified.

Definition 17 (Hintikka CSS). A CSS(¥, ¢, Cs) is aHintikka CSSif for any formula
@,y € L and any labelxy € Ly anduv € Lg:

. Te: (xu) ¢ ForF: (,u) ¢ F orx<y¢Z G

Fl: (x,u)¢ Forl<x¢G

FT:(xu)¢&F

. Fo: (x,u) ¢ F or x is consistent

. fTI: (x,u) € F thenl<xe G

If TeA Y : (x,u) € F thenTe: (
. fFeAW: (x,u) € F thenFo: (
. fTevw: (x,u) € F thenTeo: (
. IfFevy: (x,u) € ¥ thenFo: (

x

,u) € FandTy: (x,u) € F
u e ForFy: (x,u)e F
uye ForTy: (x,u) € F

€ F andFy: (x,u) € F
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10. fTe— Y: (x,u) € F thenvye L, x<ye G = F@: (y,u) € F or TY: (y,u) € F

11. IfFe— : (x,u) € F thendy Lr,xgyeaandﬁl‘(p:( u) € F andFy: (y,u) €
F

12, f Tex P : (x,u) € F thenIy,z€ Ly, yz< x€ G andT: (y,u) € F and Ty :
(zuyerF -

13. IfF@«y: (x,u) € F thenvy,ze Ly, yz<xe G = Fo: (y,u) € F orFy:(zu) € ¥

14. IfTe—\: (x,u) € F thenvy e Ly, xye D (G) = Fo: (y,u) € F or T : (xy,u) €
F

15. If Fo—=W: (x,u) € F then3y € Ly, xye D (G) andTo: (y,u) € F andFy :
(xyu) € o

16. IfTO@: (x,u) € ¥ thendve Ls,u<ve GandT: (x,v) € F

17. IfFO@: (x,u) € F thenwe Ls, u<ve G = Fo: (x,v) € F

18. IfTOe: (x,u) € ¥ thenW e Ls,u<ve G= To: (x,v) € F

19. IfFO@: (x,u) € F thenave Ls,u<ve GandF@: (x,v) € F

The conditions (1), (2), (3) and (4) of Definition 17 certifyat a Hintikka CSS is
not closed. Others conditions certify that all labelledhfiotae of a Hintikka CSS are
saturated. Let us now define a functi@rthat allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Q). Let (F, G, Cs) be a Hintikka CSS and;, be the restric-
tion of ; to constraints including only consistent labels. The fiorcf associates to
(F,G,Cs) atriple QUF, G, G) = (M, [-],Fx) whereM = (R,e,e,T,C, S, <), such
that:

- R= D (Go)U{m}, withTtg D (G)

S= (G
—e=1

e is defined byVry,rp € R{

rierp=ryory ifryor, € D(Ge)
rierp =TIl otherwise
rMCraiffry <ro€ Georra=T

s <siffs; <€ G

—(rs)e[Pliffr=mor (@' eRr' CrandTP: (r',s) € F)

Let (F,G, Cs) be a CSS and € D (). We remark thak is a consistent label
resource if and only ik € Dy (G,). Indeed, ifx € Dy (G ) then by Corollary 1x <
X € (. Thus, asx is consistent, all resource labels and sub-labels afe consistent
by Proposition 2. Thug < x € Crw andx € D (G). Now, if x € Dy (G,) then there
existxy < ze G O0rz< xye G- Thereforexis consistent otherwisey < z¢ G, or
2<xy ¢ G

Lemma?7. Let(¥, G,Cs> be aHintikka CSS an@((F, &, Gs)) = (M, [-],E« ) where
M= (Re,emC,S =) (M,[],Fx) is adynamic resource model.
)

Lemma 8. Let(¥F, G, Gs) be aHintikka CSS. L& ((F, G, G)) = (M, [-],E«) where
M = (R e,e 1, S <). For any formulap the following properties hold:



1. mskE4 @
2. IfFo: (r,5) € ¥ and r consistentthens« @
3. IfT: (r,s) € F and r consistent thensk 4« @

Lemma9. Let(7, G, Cs) be a Hintikka CSS such thatp: (1,s) € ¥ . @is not valid.

Proof. If the resource label 1 is inconsistent, then it is contrixiic becauséfo :
(1,s) € F and by condition (4) of Definition 17. Thus 1 is consistent. IBymma 7,
Q((F,G,Cs)) is a dynamic resource model. By Lemmaegs i« @ in this model.
ThusQ((¥, G, Gs)) is a countermodel ap and thenpis not valid.

The proof of completeness consists in building a HintikkaSG8m a CSS which
cannot be closed, in the spirit of the proof developed for Bl Then we need a fair
strategy and a oracle which contains all fiinsisten{not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategyis a labelled formulae sequen¢8;F :
(%, ui))ien in {T,F} x L x Ly x Lg such that any labelled formula occurs infinitely
many times in this sequence, that{iss N | SiF : (xi,ui) = SF : (x,u)} is infinite for
anySF : (x,u) € {T,F} x L x Ly x Ls.

Proposition 3. There exists a fair strategy.
The main argument is that the set of labelled formulae is taile.
Definition 20. Let? be a set of CSS.

1. P is x-closedif (¥,G,Gs) € P holds whenevel T, G, G) < (F',C,CL) and
(F',C,CS) € Phold.

2. s of finite characteif (¥, G, Gs) € P holds wheneve{¥s, G ¢, Css) € P holds
for every(Ft, G 1, Gst) <t (F, G, Gs)-

3. P issaturatedf for any (¥, G, Gs) € P and any instance

cond ¥,G, Cs)
(F1,G1,GCs1) | o | {Fi> G Cok)

of arule of Figure 1, if cond¥ , ¢, Gs) is fulfilled then{ F U i, G U G, GU Gi) €
P for atleast one i {1, ...,k}.

Definition 21 (Oracle).Anoracleis a set of non closed CSS which<sclosed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS foclwtiiere
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists nedl@BI-tableau for
their finite sub-CSS<). Let us assume that there exists no DBI-proof of fornjuénd
show thatp is not valid by constructing a Hintikka CSS. Let us note thakenotes the
formula for which we are constructing a Hintikka CSS apdenotes any formula. Let
7o a initial DBI-tableau forp, we have



1 To=[({{Fo: (L1} {1<1}{l1<l1})]
2. Ty cannot be closed

By Lemma 10, there exists an oracle which contains everyefi@$S for which
there exists no closed DBI-tableau. LBtbe such an oracle. By hypothesis we have
({Fd : (1,11)},{1 < 1},{l1 < l1}) € . By Proposition 3, there exists a fair strategy.
Let S be such a strategy. We denot8d : (x,u;) the ith formula of S. We built a
sequencéf, G, Gsi)ogi as follows:

= (%0,Go,C0) = ({Fo : (L,11)},{1 <1}, {l1 < 11})

= IF (FU{SiF: (W)}, Gi, Gsi) € Pthen(Fii1, Giy1, Gsiv1) = (i, Gi, Gsi)

— If (FU{SiF: (%,u)}, Gi, Gsi) € Pthen(Fir1, Git1, Gsivr) = (FU{SiF : (X, u) }U
Fe, GiU G, Gsj U Gse) such thaf, (e and Gy are determined by:

EIE Fe [ _Ge | Ge |

Flo— | {To: (a,u),Fy: (a,u)} | {x <a} 0
T| e« || {To: (a,u), Tw: (b,u)} | {ab< xi} 0
Flo—W [|[{To: (a,u),Fu: (xa,u)}|{{xa<xa}| 0
T| | 0 {1< %} 0
T| 0@ {To: (x;,c)} () {ui<c}
F| Og {Fo: (xi,c)} 0 {ui<c}
Otherwisg 0 () 0

with a=cyj.1, b=cCpi.2 andc = ..
Proposition 4. For any i€ N, the following properties hold:

CFo: (L) eFi,l<leGiandh <l € Gy
- F C Fiv1, Gi € Gizr and G5 € Goizn

- AF,Gi,Gsi)o<i €P

- A (Gi) €{1,c1,C,...,Cai }

. As(Gsi) € {l1 12, liva}

G WNPF

We now consider the limit CS&Few, G, Cso) Of the sequencéf, G, Gsi)oxi de-
fined by:

Fo=J% and Go=|JGi and Cew=|JGs
i i
Proposition 5. We have %, G o, Cseo) € P and for all labelled formula&eg: (x,u), if
(Fo U{S@: (X,U)}, G, Gso) € P thenS@: (x,u) € Fe
Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness).et$ be a formula, if¢ is valid then there exists a DBI-
proof for .

Proof. We suppose that there is no DBI-proofdfand show that is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSSl.bynma 11. By property
1 of Proposition 4F¢ : (1,11) € %. By Lemma 96 is not valid.



6 Conclusion

We have defined and studied a modal extension of Bl, called Bk allows us to
express dynamic properties about resources. We proposplkekgemantics for DBI
and a labelled tableaux method that is proved sound and edenplr.t. this semantics.
Compared to previous works on proof-theory in Bl, the ladxilableaux method for
DBI deals not only with a so-called resource graph but algb wistate graph. More-
over we show how we can generate countermodels in case ofaimfity.

Future works will be devoted to the study of other extensmfrBl with other modal-
ities such that fragments of SCRP/MBI [12], in order to mixhéynic resources and
processes, and to the study of semantics based on Petronstsch extensions.
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