
A Modal BI Logic for Dynamic Resource Properties⋆

J.R. Courtault and D. Galmiche

Université de Lorraine – LORIA UMR 7503
Campus Scientifique, BP 239
Vandœuvre-lès-Nancy, France

Abstract. The logic of Bunched implications (BI) and its variants or extensions
provide a powerful framework to deal with resources having static properties. In
this paper, we propose a modal extension of BI logic, called DBI, which allows
us to deal with dynamic resource properties. After defining aKripke semantics
for DBI, we illustrate the interest of DBI for expressing some dynamic properties
and then we propose a labelled tableaux calculus for this logic. This calculus is
proved sound and complete w.r.t. the Kripke semantics. Moreover, we also give a
method for countermodel generation in this logic.

1 Introduction

The notion ofresourceis an important notion in computer science. The location, owner-
ship, access to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access memory and
manipulate data structures like pointers. We are interested in studying such notions on
resources through logics with an emphasis on usable semantics and proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses on resource consumption
and the logic of Bunched Implications (BI) [13] that mainly focuses on resource sharing
and separation. The BI logic and its variants, like Boolean BI (BBI) [11,13], can be seen
as the logical kernel of so-called separation logics, that provides a concrete way of un-
derstanding the connectives in the context of program verification [7,14]. Some recent
results on BI and BBI concern new semantics [4], proof-search with labelled tableaux
and resource graphs [3,4] and (un)decidability of these logics [4,9]. Some extensions
or refinements have led to separation logics, like BI’s pointer logic (PL) [7] that allows
us to express properties on pointers or BiLoc [1] that is based on resource trees and
captures the notion of place. In this context MBI logic [12] extends BI with modalities
and a calculus à la Hennessy-Milner [10] dealing with processes and resources.
We can remark that two kinds of dynamic are captured by BI, BBIand their exten-
sions. On the one hand, there are logics that transform resources into other resources,
which is a first kind of dynamic. On the other hand, there are logics where properties of
resources can change (called here dynamic properties) or not (called here static prop-
erties). For example, in BI logic the resource properties are static because if a resource
satisfies a property, it will always satisfies this property.The dynamic, that corresponds

⋆ This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and
Update Logics (project no. ANR-11-BS02-011).

to the transformation of resources, is captured in LL by proofs and in PL by a calculus
à la Hoare [6]. Moreover in MBI, the dynamic is also based on resource transformation
because of a calculus à la Hennessy-Milner with judgementsof the formR,E

a→ R′
,E′,

which means that a processE performs an actiona on a resourceR in order to obtain
a resourceR′ and then becomes a processE′. But the modalities à la Hennessy-Milner
can only express properties onR′ andE′, directly at the next state, but not on any reach-
able resource and process (or state), knowing that reachable means after performing any
action.
In this paper, we are interested in expressing some dynamic properties on resources di-
rectly at level of formulae, on future states (and not only onthe next ones) and in dealing
with interacting systems. Then we define a modal extension ofBI, called DBI (Dynamic
Bunched Implications logic), in order to model some dynamicproperties of resources.
We define a Kripke semantics for this logic, which is an extension of Kripke semantics
for BI with state constraints (a set of states with a preorder) introduced in addition to
resource constraints. We also give a labelled tableaux calculus in the spirit of works on
BI logic [3,4] but dealing with both resource graphs and state graphs. This calculus is
proved sound and complete w.r.t. this semantics, with generation of countermodels in
case of non-validity in DBI.

2 The DBI logic

BI logic is a logic that expresses sharing and separation properties on resources [11,13].
We present here a modal extension of BI, called DBI, which allows us to express some
dynamic properties on resources. The languageL of DBI is obtained by adding two
modalities� and♦ to the BI language [13].
Let Propbe a countable set of propositional symbols, the languageL of DBI is defined
as follows, wherep∈ Prop:

X ::= p | ⊤ | ⊥ | I | X∧X | X∨X | X → X | X ∗X | X−∗X | ♦X | �X

The negation is defined by:¬X ≡X →⊥. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of BI [4] based ona resource monoid. In
the case of DBI we consider a dynamic resource monoid with an explicit inconsistency,
and also a preorder set of states with an accessibility relation between states.

Definition 1 (Dynamic resource monoid).A dynamic resource monoidis a structure
M = (R,•,e,π,⊑,S,�) such that:

– R is a set ofresourcesand S is a set ofstates
– e∈ R andπ ∈ R
– • : R×R→ R such that:

- Neutral element:∀r ∈ R, r•e= e• r = r
- Associativity:∀r1, r2, r3 ∈ R, r1 • (r2• r3) = (r1 • r2)• r3

- Commutativity:∀r1, r2 ∈ R, r1• r2 = r2 • r1

– ⊑ ⊆ R×R is a preorder (on resources):
- Reflexivity:∀r ∈ R, r⊑ r

- Transitivity:∀r1, r2, r3 ∈ R, if r1 ⊑ r2 and r2 ⊑ r3 then r1 ⊑ r3
– π ∈ R is the greatest element:∀r ∈ R, r⊑ π and∀r ∈ R, r•π = π.
– � ⊆ S×S is a preorder (on states)
– Compatibility (P):∀r1, r2, r3 ∈ R, if r1 ⊑ r2 then r1• r3 ⊑ r2 • r3

We noteP(E) the powerset of the setE, namely the set of sets built fromE. We
call e theunit resource(empty resource),π theinconsistent resourceand• theresource
composition. A preordered set(S,�) is added to the Kripke’s BI semantics withS that
can be viewed as the states of a system and� as the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretationis a functionJ·K :
Prop→ P(R×S), that verifies the following properties, for any s∈ S and p∈ Prop:

– Monotonicity (K):∀r, r ′ ∈ R such that r⊑ r ′, if (r,s) ∈ JpK then(r ′,s) ∈ JpK
– Inconsistency (BC):∀r ∈ R such thatπ ⊑ r, (r,s) ∈ JpK

As we see the dynamic interpretation makes the resource properties non static: the
interpretation of a propositional symbol is not only a set ofresources (as BI), but a set
of pairs of resources and states.

Definition 3 (Dynamic resource model).A dynamic resource modelis a tripleK =
(M ,J·K, �K) such thatM is a dynamic resource monoid,J·K is a dynamic interpretation
and�K is a forcing relation on R×S×L defined as follows:

– r,s�K p iff (r,s) ∈ JpK
– r,s�K I iff e⊑ r
– r,s�K ⊤ always
– r,s�K ⊥ iff π ⊑ r
– r,s�K φ∧ψ iff r,s�K φ and r,s�K ψ
– r,s�K φ∨ψ iff r,s�K φ or r,s�K ψ
– r,s�K φ → ψ iff ∀r ′ ∈ R· (r ⊑ r ′ and r′,s�K φ) ⇒ r ′,s�K ψ
– r,s�K φ∗ψ iff ∃r ′, r ′′ ∈ R· r ′ • r ′′ ⊑ r and r′,s�K φ and r′′,s�K ψ
– r,s�K φ−∗ψ iff ∀r ′ ∈ R· r ′,s�K φ ⇒ r • r ′,s�K ψ
– r,s�K ♦φ iff ∃s′ ∈ S·s� s′ and r,s′ �K φ
– r,s�K �φ iff ∀s′ ∈ S·s� s′ ⇒ r,s′ �K φ

The definition of the forcing relation is an extension of the BI forcing realtion with
the cases for� and♦. For instancer,s�K ♦φ means that a resourcer at statessatisfies
♦φ if a states′ can be reached from the states (s� s′) such thatr in states′ satisfiesφ
(r,s′ �K φ). Now we define the notion of validity.

Definition 4 (Validity). A formulaφ is valid, denoted� φ, if and only if e,s�K φ for
all dynamic resource modelsK (and all states s∈ S).
The notationφ � ψ means that for all resources r and all states s of any dynamic re-
source modelK , if r,s�K φ then r,s�K ψ.

We give two lemmas that hold for all dynamic resource modelsK , all formulaeφ,
all resourcesr, r ′ ∈ Rand all statess′ ∈ S.

Lemma 1 (Monotonicity). If r,s�K φ and r⊑ r ′ then r′,s�K φ.

Lemma 2 (Inconsistency).We haveπ,s�K φ.

3 Expressiveness of DBI

We have previously introduced a semantics for modelling resources having dynamic
properties. In this section we emphasize the interest of this modal extension of BI by
illustrating it through some simple examples.
The first example deals with the management of resources withdynamic properties. In
BI logic the propositional symbols are considered as staticdescriptions/properties of
resources. But, we know that resource properties are not always static. For example, if
we consider the price of gold and silver, it is a dynamic property depending not only on
the resource. Let us denoterg the resource ”one ounce of gold” andrs the resource ”one
ounce of silver”. Propositional symbolsPgy andPsy are prices ofrg andrs on January
1st of the yeary. Moreover,sy denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silver and gold price:

rg • rs,s1970�K (Pg1970∗Ps1970)∧♦(Pg2012∗Ps2012)

It means that on January 1st of the year 1970 (s1970), a resource composed by one ounce
of gold and one ounce of silver (rg• rs) has two properties: it could be decomposed into
two resources respectively satisfying the propertiesPg1970 andPs1970 (Pg1970∗Ps1970) and,
in a future state, it could be decomposed into two resources respectively satisfying the
propertiesPg2012 andPs2012 (Pg2012∗Ps2012).

The second example illustrates how with DBI and a dynamic resource monoid we can
deal with properties on interacting systems. A dynamic resource monoid can be viewed
as two interacting systems. Indeed a resource monoid can model a first system, where
resources are states of this system and the preoder on resources is the state reachability
of this system [2]. Furthermore, the dynamic part of a dynamic resource monoid (set of
states with a preorder), can be viewed as an automaton and easily models a second sys-
tem. Moreover, the dynamic interpretation can be viewed as the result of the interaction
of these systems. For example,(r,s) ∈ JpK can express that, if a first system is in stater
and a second system is in states then their interaction satisfies the propertyp. Here the
word interactiondoes not mean that one of these systems influences the second one:
the preorder on resources does not depend on states and the preorder on states does not
depend on resources. Then the interaction(r,s) ∈ JpK means that there are two free (non
influencing) systems which can perform together an action, which satisfies the property
p if the first system is in stater and the second system is in states.
Let us consider a message sent in a network and modelled with aresource monoid. We
consider only five states (resources)R= {e,msent,mpassing,mdelivered,π}, wheree is the
state with no message,π is the state with an error that occurs in the system,msent is the
state where the message is sent,mpassing is the state where the message is passing in
transit andmdelivered is the state where the message is delivered. The relation⊑, where
reflexivity and transitivity are not represented, is:

e

msentmpassingmdelivered

π

In a first step, there is no message (e). Then the message is created and sent (msent).
In a third step, it is passing in transit (mpassing) and then, in a fourth step, it is delivered
(mdelivered). As we can remark,mpassing⊑ msent, but mpassingis the next state ofmsent

and it is not a mistake. Asmsentcan reachmpassingthen we aim the properties ofmpassing

to be satisfied by the resourcemsent. In other words, if a resourcer satisfies a property
p, then all resources that can reachr satisfyp. This is the property (K) of Definition 2.
In this example, we only consider one message and then we define• by (e• r = r) and
(r • r ′ = π if r 6= e andr ′ 6= e), but it is possible to consider states composed by more
than one message. We remark thatπ is the biggest resource (by definition of dynamic
resource monoid), so when an error occurs (π), all states are reachable: it is considered
that when an error occurs, it is impossible to predict the behavior of the system.
Now we define the following service as a second system, where reflexivity and transi-
tivity of � are not represented. It contains four statesS= {s0,s1,s2,s3} with s0 as initial
state and in the states3 our service reads the delivered messages.

s0 s1

s2

s3

Having defined a dynamic resource monoid we are able to express that when the
message is sent, it is possible that our service read this message, that is:msent,s0 �K

♦Pmread, wherePmread is the propositional symbol ”message read” that occurs whenm is
delivered and the service is in states3: JPmreadK = {(r,s3) | mdelivered⊑ r}.
We havemdelivered,s3 �K Pmread. As s0 � s3 then mdelivered,s0 �K ♦Pmread (the DBI
modalities encode the reachability of states). Asmsent can reachmdelivered (mdelivered⊑
msent) thenmsent,s0 �K ♦Pmread (DBI monotonicity encodes the resource reachability).

4 A proof system for DBI

In this section, we propose a proof system for DBI, in the spirit of previous works on
labelled proof system for BI with resource graphs [4]. We introduce some rules to deal
with modalities and also the notions of state labels and constraints, in order to capture
some dynamic aspects.

4.1 Labels for resources and states

In labelled tableaux method for BI [4], there arelabels and constraintsin order to
capture some semantic information inside the proof system.Labels are related to the
resource set (R), a label composition is related to the resource composition (•) and rela-
tions on labels namedlabel constraintsare related to⊑. In DBI, the resource monoids
are dynamic and then there are two sets (for resources and states) and two relations (on
resources and states). Thus we introduce a new kind of labelsand constraints to deal
with states. Let us now define labels and constraints for DBI.

Definition 5 (Resource labels).Lr is a set ofresource labelsbuilt from a constant1,
an infinite countable set of constantsγr = {c1,c2, ...} and a function denoted◦,

X ::= 1 | ci | X ◦X

where ci ∈ γr . Moreover◦ is a function on Lr that is associative, commutative and1
is its unit. Aresource constraintis an expression of the form x≤ y where x and y are
resource labels.

For example the resource labelc1◦1◦c2◦c1 is equal to the resource labelc1◦c1◦c2.
We denotexy the resource labelx◦y. Moreover we say thatx is aresource sub-labelof
y if and only if there existsz such thatx◦ z= y. The set of resource sub-labels ofx is
denotedE(x).

Definition 6 (State labels).Ls is an infinite countable set ofstate labels(Ls = {l1, l2, ...}).
A state constrainton such labels is an expression of the form x⊳ y, where x and y are
state labels.

Definition 7 (Domain).LetCr be a resource constraints set, thedomainofCr , denoted
Dr(Cr), is the set of all resource sub-labels appearing inCr . In particular: Dr(Cr) =
S

x≤y∈Cr
(E(x)∪E(y)).

Definition 8 (Alphabet). Thealphabetof a set of resource / state constraints is the set
of all label constants appearing inCr / Cs.
In particular we haveAr(Cr) = γr ∩Dr(Cr) andAs(Cs) =

S

u⊳v∈Cs
{u,v}.

We can remark that⊑ is reflexive, transitive and compatible. Moreover,� is reflex-
ive and transitive. These properties have to be captured by the constraint sets. For that
we introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints).LetCr be a set of resource constraints,
theclosureofCr (denotedCr) is the least relation closed under the following rules such
thatCr ⊆ Cr

x≤ y y≤ z
〈tr〉

x≤ z
xy≤ xy

〈dr 〉
x≤ x

ky≤ ky x≤ y
〈cr〉

kx≤ ky
x≤ y

〈lr 〉
x≤ x

x≤ y
〈rr〉

y≤ y

We can remark that as these rules do not introduce new resource label constants,
thenAr(Cr) = Ar(Cr).

Definition 10 (Closure of state constraints).Let Cs be a set of state constraints, the
closureof Cs (denotedCs) is the least relation closed under the following rules such
thatCs ⊆ Cs:

x ⊳ y
〈ls〉x ⊳ x

x ⊳ y
〈rs〉y ⊳ y

x ⊳ y y⊳ z
〈ts〉x ⊳ z

As illustration we considerCs = {l1 ⊳ l2, l2 ⊳ l3, l3 ⊳ l4}. We havel1 ⊳ l2 ∈ Cs because
Cs ⊆ Cs and we havel1 ⊳ l4 ∈ Cs because

l1 ⊳ l2 l2 ⊳ l3 〈ts〉
l1 ⊳ l3 l3 ⊳ l4 〈ts〉

l1 ⊳ l4

Proposition 1. LetCr be a set of resource constraints, the following properties hold:

1. If kx≤ y∈ Cr then x≤ x∈ Cr

2. If x≤ ky∈ Cr then y≤ y∈ Cr

Corollary 1. LetCr be a set of resource constraints, x∈Dr(Cr) iff x ≤ x∈ Cr .

Lemma 3 (Compactness).Let Cr (resp.Cs) be a (possibly infinite) set of resource
constraints (resp. state constraints). If x≤ y∈ Cr (resp. u⊳ v∈ Cs) then there exists a
finite setC f such thatC f ⊆ Cr (resp.C f ⊆ Cs) and x≤ y∈ C f (resp. u⊳ v∈ C f).

4.2 A labelled tableaux method for DBI

We now define a labelled tableaux method for DBI in the spirit of previous works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS).A labelled formulais a 4-uplet(S,φ,x,u) ∈
{T,F}×L×Lr ×Ls writtenSφ : (x,u). Aconstrained set of statements(CSS) is a triple
〈F ,Cr ,Cs〉, whereF is a set of labelled formulae,Cr is a set of resource constraints
andCs is a set of state constraints, such that the following property, called(Pcss), holds:
if Sφ : (x,u) ∈ F then x≤ x∈ Cr and u⊳ u∈ Cs.

A CSS 〈F ,Cr ,Cs〉 is a representation of a branch in which the formulae are the
labelled formulae ofF and the constraints on labels are the elements ofCr andCs. Our
calculus extends some principles of BI calculus by adding a second kind of labels (state
labels) and a set of constraints (Cs) for state labels.
A CSS 〈F ,Cr ,Cs〉 is finite iff F , Cr andCs are finite. We define the relation4 by:
〈F ,Cr ,Cs〉 4 〈F ′

,C ′
r ,C

′
s〉 iff F ⊆ F ′ andCr ⊆ C ′

r andCs ⊆ C ′
s. Moreover we denote

〈F f ,Cr f ,Csf 〉 4 f 〈F ,Cr ,Cs〉 when〈F f ,Cr f ,Csf 〉 4 〈F ,Cr ,Cs〉 holds and〈F f ,Cr f ,Csf 〉
is finite.

Definition 12 (Inconsistent label).Let 〈F ,Cr ,Cs〉 be a CSS and x be a resource label.
x is inconsistentif there exist two resource labels y and z such that yz≤ x ∈ Cr and
T⊥ : (y,u) ∈ F . A label isconsistentif it is not inconsistent.

Proposition 2. Let 〈F ,Cr ,Cs〉 be a CSS. The following properties hold:

1. If y≤ x∈ Cr and x is a consistent label then y is a consistent label.
2. If xy∈Dr(Cr) is a consistent label then x and y are consistent labels.

Figure 1 presents rules of labelled tableaux method for DBI.Let us remark thatci

andc j are new label constants (ci 6= c j ∈ γr \Ar(Cr)) and thatl i is a new label constant
meansl i ∈ Ls\As(Cs). We note⊕ the concatenation of lists. For example[e1;e2;e4]⊕
[e4;e3] = [e1;e2;e4;e4;e3].

Tφ∧ψ : (x,u) ∈ F
〈T∧〉

〈{Tφ : (x,u),Tψ : (x,u)}, /0, /0〉
Fφ∧ψ : (x,u) ∈ F

〈F∧〉
〈{Fφ : (x,u)}, /0, /0〉 | 〈{Fψ : (x,u)}, /0, /0〉

Tφ∨ψ : (x,u) ∈ F
〈T∨〉

〈{Tφ : (x,u)}, /0, /0〉 | 〈{Tψ : (x,u)}, /0, /0〉
Fφ∨ψ : (x,u) ∈ F

〈F∨〉
〈{Fφ : (x,u),Fψ : (x,u)}, /0, /0〉

TI : (x,u) ∈ F
〈TI〉

〈 /0,{1≤ x}, /0〉

Tφ → ψ : (x,u) ∈ F andx≤ y∈ Cr 〈T →〉
〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (y,u)}, /0, /0〉

Fφ → ψ : (x,u) ∈ F
〈F →〉

〈{Tφ : (ci ,u),Fψ : (ci ,u)},{x≤ ci}, /0〉

Tφ∗ψ : (x,u) ∈ F
〈T∗〉

〈{Tφ : (ci ,u),Tψ : (c j ,u)},{cic j ≤ x}, /0〉
Fφ∗ψ : (x,u) ∈ F andyz≤ x∈ Cr 〈F∗〉

〈{Fφ : (y,u)}, /0, /0〉 | 〈{Fψ : (z,u)}, /0, /0〉

Tφ−∗ψ : (x,u) ∈ F andxy≤ xy∈ Cr 〈T−∗〉
〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (xy,u)}, /0, /0〉

Fφ−∗ψ : (x,u) ∈ F
〈F−∗〉

〈{Tφ : (ci ,u),Fψ : (xci ,u)},{xci ≤ xci}, /0〉

T♦φ : (x,u) ∈ F
〈T♦〉

〈{Tφ : (x, l i)}, /0,{u ⊳ l i}〉
F♦φ : (x,u) ∈ F andu≤ v∈ Cs 〈F♦〉

〈{Fφ : (x,v)}, /0, /0〉

T�φ : (x,u) ∈ F andu≤ v∈ Cs 〈T�〉
〈{Tφ : (x,v)}, /0, /0〉

F�φ : (x,u) ∈ F
〈F�〉

〈{Fφ : (x, l i)}, /0,{u ⊳ l i}〉

Note:ci , c j andl i are new label constants.

Fig. 1. Tableaux rules for DBI

Definition 13 (DBI-tableau). A DBI-tableaufor a finite CSS〈F0,Cr0,Cs0〉 is a list of
CSS (branches), built inductively according the following rules:

1. The one branch list[〈F0,Cr0,Cs0〉] is a DBI-tableau for〈F0,Cr0,Cs0〉
2. If the listTm⊕ [〈F ,Cr ,Cs〉]⊕Tn is a DBI-tableau for〈F0,Cr0,Cs0〉 and

cond(〈F ,Cr ,Cs〉)
〈F1,Cr1,Cs1〉 | ... | 〈Fk,Crk,Csk〉

is an instance of a rule of Figure 1 for which cond(〈F ,Cr ,Cs〉) is fulfilled, then
the listTm⊕ [〈F ∪F1,Cr ∪Cr1,Cs∪Cs1〉; ...;〈F ∪Fk,Cr ∪Crk ,Cs∪Csk〉]⊕Tn is a
DBI-tableau for〈F0,Cr0,Cs0〉.

A DBI-tableau for a formulaφ is a DBI-tableau for〈{Fφ : (1, l1)},{1≤ 1},{l1 ⊳ l1}〉.

It is possible to prove, by observing rules of the tableaux method for DBI, that new
CSS, obtained by applying a rule, respect the condition(Pcss) of Definition 11. Then,
for all branches〈F ,Cr ,Cs〉 of a DBI-tableau for a formulaφ, asFφ : (1, l1) ∈ F , then
1≤ 1∈ Cr . Thereby, for all branches〈F ,Cr ,Cs〉, it holds that 1∈Dr(Cr).

A first kind of rules concerns〈TI〉, 〈F →〉, 〈T∗〉, 〈F−∗〉, 〈T♦〉 and〈F�〉. These rules
introduce new constraints and also new label constants (ci , c j and l i), except for〈TI〉
that only introduces a new constraint. Let us illustrate the〈T♦〉 rule. To apply this rule
on a CSS〈F ,Cr ,Cs〉 on a labelled formulaT♦φ : (c1, l3) ∈ F , we choose a new label
which does not appear inCs. For example, we say thatl10 6∈ Cs. Thus, by choosingl10,
we can apply the rule, getting the new CSS〈F ∪{Tφ : (c1, l10)},Cr ,Cs∪{l3 ⊳ l10}〉. We
notice the new state constraintl3 ⊳ l10 added to the set of constraints. Let us observe
that the〈T∗〉 rule introduces two new resource labels. Concerning the rule 〈F−∗〉, as
Fψ : (xci ,u) is added to the set of labelled formulae,xci has to belong toCr in order to
satisfy the condition(Pcss) of Definition 11. By addingxci ≤ xci to Cr , xci belongs toCr

and so(Pcss) is satisfied.
A second kind of rules concerns〈T →〉, 〈F∗〉, 〈T−∗〉, 〈F♦〉 and〈T�〉. These rules have
a condition on a closure of label constraints. In order to apply one of these rules we
have to choose an existing label which satisfies the condition and then apply the rule
using it. Otherwise, we cannot apply such rules. We illustrate the〈T�〉 rule: let a CSS
〈F ,Cr ,Cs〉 such thatT�φ : (c1, l1) ∈ F . To apply this rule, we have to choose a state
labell such thatl1 ⊳ l ∈ Cs. If we consider thatl1 ≤ l2 ∈ Cs then we can decide to apply
the rule usingl2, getting the CSS〈F ∪{Tφ : (c1, l2)},Cr ,Cs〉. Let us observe that〈F∗〉
rule needs to choose two labelsy andz such thatyz≤ x∈ Cr .

Definition 14 (Closure condition).A CSS〈F ,Cr ,Cs〉 is closedif one of the following
conditions hold:

1. Tφ : (x,u) ∈ F , Fφ : (y,u) ∈ F and x≤ y∈ Cr

2. FI : (x,u) ∈ F and1≤ x∈ Cr

3. F⊤ : (x,u) ∈ F

4. Fφ : (x,u) ∈ F and x is inconsistent

A CSS isopenif it is not closed. A DBI-tableau is closed if all its branches are closed.

Definition 15 (DBI-proof). A DBI-proof for a formulaφ is a DBI-tableau forφ which
is closed.

Let us recall that we deal with labelled formulae with two kinds of labels: resource
labels and state labels. Each CSS (branch) contains two setsof constraints, one for
resources and another for states. Moreover the closure of such constraints can be repre-
sented by graphs. There are rules which modify constraint sets (graphs) and introduce
new labels. Other rules have a set of conditions that must be satisfied, by finding labels
satisfying it and then to solve constraints on the constraint graphs.

Let us now consider the formulaφ ≡ (�(P→ ♦Q)∧♦P)−∗♦Q and give a DBI-proof
for it. By Definition 13, the following DBI-tableau[〈{Fφ : (1, l1)} ,{1≤ 1} ,{l1 ⊳ l1}〉]
is a DBI-tableau forφ. We introduce a new representation for a DBI-tableau, whichis

[F]

F(�(P→ ♦Q)∧♦P)−∗♦Q : (1, l1)

[Cr]

1≤ 1

[Cs]

l1 ⊳ l1

We can observe that there are three columns, one for the labelled formula sets of the
CSS of the DBI-tableau ([F]), one for the resource constraint sets of the CSS of the
DBI-tableau ([Cr]) and one for the state constraint sets of the CSS of the DBI-tableau
([Cs]). By applying some rules, we obtain the following DBI-tableau:

[F]√
1 F(�(P→ ♦Q)∧♦P)−∗♦Q : (1, l1)

√
2 T�(P→ ♦Q)∧♦P : (c1, l1)√

7 F♦Q : (c1, l1)

√
4 T�(P→ ♦Q) : (c1, l1)√

3 T♦P : (c1, l1)

TP : (c1, l2)

√
5 TP→ ♦Q : (c1, l2)

FP : (c1, l2)
√

6 T♦Q : (c1, l2)

× TQ : (c1, l3)

FQ : (c1, l3)

×

[Cr]

1≤ 1

c1 ≤ c1

[Cs]

l1 ⊳ l1

l1 ⊳ l2

l2 ⊳ l3

We decorate a labelled formula with
√

i to show that we apply a rule on this formula at
stepi. We remark that columns ([F], [Cr] and[Cs]) are trees that contain two branches.
There are two branches because there are two CSS in the DBI-tableau. The branches
on the left (resp. right) contain the elements of the first (resp. second) CSS. We also
remark that all CSS are closed (denoted×). The CSS of the left is closed because
TP : (c1, l2) ∈ F , FP : (c1, l2) ∈ F andc1 ≤ c1 ∈ Cr . Thus, by definition, this DBI-
tableau is a DBI-proof of(�(P→ ♦Q)∧♦P)−∗♦Q.

5 Soundness and completeness results

The soundness proof uses similar techniques than the ones used in BI for a labelled
tableaux method [4]. The key point is the notion ofrealizability of a CSS〈F ,Cr ,Cs〉,
that means there exists a dynamic modelK and embeddings from resource labels to the
resource set (⌊·⌋) and state labels to the state set (⌈·⌉) of K such that ifTφ : (x,u) ∈ F

then⌊x⌋,⌈u⌉ �K φ and ifFφ : (x,u) ∈ F then⌊x⌋,⌈u⌉ 6�K φ.

Definition 16 (Realization). Let 〈F ,Cr ,Cs〉 be a CSS. Arealizationof it is a triple
(K ,⌊.⌋,⌈.⌉) such thatK = (M ,J·K,�K) is a dynamic resource model,M = (R,•,e,π,⊑
,S,�), ⌊.⌋ : Dr(Cr) → R and⌈.⌉ : As(Cs) → S, such that:

– ⌊1⌋ = e
– ⌊x◦ y⌋= ⌊x⌋ • ⌊y⌋
– If Tφ : (x,u) ∈ F then⌊x⌋,⌈u⌉ �K φ
– If Fφ : (x,u) ∈ F then⌊x⌋,⌈u⌉ 6�K φ
– If x ≤ y∈ Cr then⌊x⌋ ⊑ ⌊y⌋
– If u ⊳ v∈ Cs then⌈u⌉ � ⌈v⌉

We say that a CSS/branch isrealizableif there exists a realization of it. We say that
a tableau isrealizableif it contains a realizable CSS/branch.

Lemma 4. Let 〈F ,Cr ,Cs〉 be a CSS and(K ,⌊.⌋,⌈.⌉) a realization of it. For all x≤ y∈
Cr , ⌊x⌋ ⊑ ⌊y⌋ and for all u⊳ v∈ Cs, ⌈u⌉ � ⌈v⌉.

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a ruleof the DBI-tableau
method is applied on a labelled formula of a realizable CSS then one of the obtained
CSS is realizable.

Theorem 1 (Soundness).Let φ be a formula, if there exists a DBI-proof ofφ thenφ is
valid.

Proof. Let T be a DBI-proof ofφ. Let us assume thatφ is not valid. Then there exits a
dynamic resource modelK such thate,s 6�K φ. If we consider⌊1⌋= e and⌈l1⌉ = swe
obtain a realisation(K ,⌊.⌋,⌈.⌉) of the initial CSS〈{Fφ : (1, l1)},{1≤ 1},{l1 ⊳ l1}〉.
Thus, by Lemma 6, one branch ofT is realizable. But by Lemma 5 it is contradictory,
because asT is a DBI-proof, thenT is closed. Thusφ is valid.

Before to study completeness we consider the countermodel extraction for DBI
tableaux method. The main idea consists in transforming resource and state constraints
into a dynamic resource monoid, from a branch〈F ,Cr ,Cs〉 which is not closed.
In order to obtain a countermodel, this transformation has to verify two properties: if
Tφ : (x,u) ∈ F thenx,u �K φ and if Fφ : (x,u) ∈ F thenx,u 6�K φ. In order to satisfy
them, our method needs tosaturatelabelled formulae (to obtain a Hintikka CSS), that
means, for instance, ifT�φ : (x,u) ∈ F then we want thatx,u �K �φ, so for all state
labelsv such thatu ⊳ v∈ Cs, Tφ : (x,v) ∈ F has to be verified.

Definition 17 (Hintikka CSS). A CSS〈F ,Cr ,Cs〉 is aHintikka CSSif for any formula
φ,ψ ∈ L and any label x,y∈ Lr and u,v∈ Ls:

1. Tφ : (x,u) 6∈ F or Fφ : (y,u) 6∈ F or x≤ y 6∈ Cr

2. FI : (x,u) 6∈ F or 1≤ x 6∈ Cr

3. F⊤ : (x,u) 6∈ F

4. Fφ : (x,u) 6∈ F or x is consistent
5. If TI : (x,u) ∈ F then1≤ x∈ Cr

6. If Tφ∧ψ : (x,u) ∈ F thenTφ : (x,u) ∈ F andTψ : (x,u) ∈ F

7. If Fφ∧ψ : (x,u) ∈ F thenFφ : (x,u) ∈ F or Fψ : (x,u) ∈ F

8. If Tφ∨ψ : (x,u) ∈ F thenTφ : (x,u) ∈ F or Tψ : (x,u) ∈ F

9. If Fφ∨ψ : (x,u) ∈ F thenFφ : (x,u) ∈ F andFψ : (x,u) ∈ F

10. IfTφ → ψ : (x,u)∈ F then∀y∈ Lr , x≤ y∈ Cr ⇒ Fφ : (y,u)∈ F or Tψ : (y,u) ∈F

11. IfFφ → ψ : (x,u)∈ F then∃y∈ Lr , x≤ y∈ Cr andTφ : (y,u) ∈F andFψ : (y,u) ∈
F

12. If Tφ ∗ψ : (x,u) ∈ F then∃y,z∈ Lr , yz≤ x ∈ Cr and Tφ : (y,u) ∈ F and Tψ :
(z,u) ∈ F

13. IfFφ∗ψ : (x,u)∈F then∀y,z∈ Lr , yz≤ x∈ Cr ⇒ Fφ : (y,u)∈F or Fψ : (z,u)∈F

14. IfTφ−∗ψ : (x,u) ∈F then∀y∈ Lr , xy∈Dr(Cr) ⇒ Fφ : (y,u) ∈ F or Tψ : (xy,u) ∈
F

15. If Fφ−∗ψ : (x,u) ∈ F then∃y ∈ Lr , xy∈ Dr(Cr) and Tφ : (y,u) ∈ F and Fψ :
(xy,u) ∈ F

16. If T♦φ : (x,u) ∈ F then∃v∈ Ls, u⊳ v∈ Cs andTφ : (x,v) ∈ F

17. If F♦φ : (x,u) ∈ F then∀v∈ Ls, u⊳ v∈ Cs ⇒ Fφ : (x,v) ∈ F

18. If T�φ : (x,u) ∈ F then∀v∈ Ls, u⊳ v∈ Cs ⇒ Tφ : (x,v) ∈ F

19. If F�φ : (x,u) ∈ F then∃v∈ Ls, u⊳ v∈ Cs andFφ : (x,v) ∈ F

The conditions (1), (2), (3) and (4) of Definition 17 certify that a Hintikka CSS is
not closed. Others conditions certify that all labelled formulae of a Hintikka CSS are
saturated. Let us now define a functionΩ that allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Ω). Let 〈F ,Cr ,Cs〉 be a Hintikka CSS andCr ω be the restric-
tion ofCr to constraints including only consistent labels. The function Ω associates to
〈F ,Cr ,Cs〉 a triple Ω(〈F ,Cr ,Cs〉) = (M ,J·K,�K) whereM = (R,•,e,π,⊑,S,�), such
that:

– R=Dr(Cr ω)∪{π}, with π 6∈Dr(Cr)
– S= As(Cs)
– e= 1

– • is defined by:∀r1, r2 ∈ R

{

r1• r2 = r1 ◦ r2 if r1◦ r2 ∈Dr(Cr ω)
r1• r2 = π otherwise

– r1 ⊑ r2 iff r1 ≤ r2 ∈ Cr ω or r2 = π
– s1 � s2 iff s1 ⊳ s2 ∈ Cs

– (r,s) ∈ JPK iff (r = π) or (∃r ′ ∈ R, r ′ ⊑ r andTP : (r ′,s) ∈ F)

Let 〈F ,Cr ,Cs〉 be a CSS andx ∈ Dr(Cr). We remark thatx is a consistent label
resource if and only ifx ∈ Dr(Cr ω). Indeed, ifx ∈ Dr(Cr) then by Corollary 1,x ≤
x ∈ Cr . Thus, asx is consistent, all resource labels and sub-labels ofx are consistent
by Proposition 2. Thusx ≤ x ∈ Cr ω andx ∈ Dr(Cr ω). Now, if x ∈ Dr(Cr ω) then there
existxy≤ z∈ Cr ω or z≤ xy∈ Cr ω. Thereforex is consistent otherwisexy≤ z 6∈ Cr ω or
z≤ xy 6∈ Cr ω.

Lemma 7. Let〈F ,Cr ,Cs〉 be a Hintikka CSS andΩ(〈F ,Cr ,Cs〉) = (M ,J·K,�K) where
M = (R,•,e,π,⊑,S,�). (M ,J·K,�K) is a dynamic resource model.

Lemma 8. Let〈F ,Cr ,Cs〉 be a Hintikka CSS. LetΩ(〈F ,Cr ,Cs〉) = (M ,J·K,�K) where
M = (R,•,e,π,⊑,S,�). For any formulaφ the following properties hold:

1. π,s�K φ
2. If Fφ : (r,s) ∈ F and r consistent then r,s 6�K φ
3. If Tφ : (r,s) ∈ F and r consistent then r,s�K φ

Lemma 9. Let 〈F ,Cr ,Cs〉 be a Hintikka CSS such thatFφ : (1,s) ∈ F . φ is not valid.

Proof. If the resource label 1 is inconsistent, then it is contradictory becauseFφ :
(1,s) ∈ F and by condition (4) of Definition 17. Thus 1 is consistent. ByLemma 7,
Ω(〈F ,Cr ,Cs〉) is a dynamic resource model. By Lemma 8,e,s 6�K φ in this model.
ThusΩ(〈F ,Cr ,Cs〉) is a countermodel ofφ and thenφ is not valid.

The proof of completeness consists in building a Hintikka CSS from a CSS which
cannot be closed, in the spirit of the proof developed for BBI[8]. Then we need a fair
strategy and a oracle which contains all finiteconsistent(not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategyis a labelled formulae sequence(SiFi :
(xi ,ui))i∈N in {T,F}× L × Lr × Ls such that any labelled formula occurs infinitely
many times in this sequence, that is{i ∈ N | SiFi : (xi ,ui) ≡ SF : (x,u)} is infinite for
anySF : (x,u) ∈ {T,F}×L×Lr ×Ls.

Proposition 3. There exists a fair strategy.

The main argument is that the set of labelled formulae is countable.

Definition 20. LetP be a set of CSS.

1. P is 4-closed if 〈F ,Cr ,Cs〉 ∈ P holds whenever〈F ,Cr ,Cs〉 4 〈F ′
,C ′

r ,C
′
s〉 and

〈F ′
,C ′

r ,C
′
s〉 ∈ P hold.

2. P is of finite characterif 〈F ,Cr ,Cs〉 ∈ P holds whenever〈F f ,Cr f ,Csf 〉 ∈ P holds
for every〈F f ,Cr f ,Csf 〉 4 f 〈F ,Cr ,Cs〉.

3. P is saturatedif for any 〈F ,Cr ,Cs〉 ∈ P and any instance

cond(F ,Cr ,Cs)

〈F1,Cr 1,Cs1〉 | ... | 〈Fk,Cr k,Csk〉
of a rule of Figure 1, if cond(F ,Cr ,Cs) is fulfilled then〈F ∪Fi ,Cr ∪Cr i ,Cs∪Csi〉 ∈
P for at least one i∈ {1, ...,k}.

Definition 21 (Oracle).Anoracleis a set of non closed CSS which is4-closed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists no closed DBI-tableau for
their finite sub-CSS (4). Let us assume that there exists no DBI-proof of formulaϕ and
show thatϕ is not valid by constructing a Hintikka CSS. Let us note thatϕ denotes the
formula for which we are constructing a Hintikka CSS andφ denotes any formula. Let
T0 a initial DBI-tableau forϕ, we have

1. T0 = [〈{Fϕ : (1, l1)},{1≤ 1},{l1 ⊳ l1}〉]
2. T0 cannot be closed

By Lemma 10, there exists an oracle which contains every finite CSS for which
there exists no closed DBI-tableau. LetP be such an oracle. By hypothesis we have
〈{Fϕ : (1, l1)},{1 ≤ 1},{l1 ⊳ l1}〉 ∈ P . By Proposition 3, there exists a fair strategy.
Let S be such a strategy. We denotedSiFi : (xi ,ui) the ith formula of S . We built a
sequence〈Fi ,Cr i ,Csi〉06i as follows:

– 〈F0,Cr 0,Cs0〉 = 〈{Fϕ : (1, l1)},{1≤ 1},{l1 ⊳ l1}〉
– If 〈Fi ∪{SiFi : (xi ,ui)},Cr i ,Csi〉 6∈ P then〈Fi+1,Cr i+1,Csi+1〉 = 〈Fi ,Cr i ,Csi〉
– If 〈Fi ∪{SiFi : (xi ,ui)},Cr i ,Csi〉 ∈P then〈Fi+1,Cr i+1,Csi+1〉= 〈Fi∪{SiFi : (xi ,ui)}∪

Fe,Cr i ∪Cr e,Csi ∪Cse〉 such thatFe, Cr e andCse are determined by:

Si Fi Fe Cr e Cse

F φ → ψ {Tφ : (a,ui),Fψ : (a,ui)} {xi ≤ a} /0
T φ∗ψ {Tφ : (a,ui),Tψ : (b,ui)} {ab≤ xi} /0
F φ−∗ψ {Tφ : (a,ui),Fψ : (xia,ui)} {xia≤ xia} /0
T I /0 {1≤ xi} /0
T ♦φ {Tφ : (xi ,c)} /0 {ui ⊳ c}
F �φ {Fφ : (xi ,c)} /0 {ui ⊳ c}
Otherwise /0 /0 /0

with a = c2i+1, b = c2i+2 andc = l i+2.

Proposition 4. For any i∈ N, the following properties hold:

1. Fϕ : (1, l1) ∈ Fi , 1≤ 1∈ Cr i and l1 ⊳ l1 ∈ Csi
2. Fi ⊆ Fi+1, Cr i ⊆ Cr i+1 andCsi ⊆ Csi+1
3. 〈Fi ,Cr i ,Csi〉06i ∈ P

4. Ar(Cr i) ⊆ {1,c1,c2, ...,c2i}
5. As(Csi) ⊆ {l1, l2, ..., l i+1}

We now consider the limit CSS〈F∞,Cr ∞,Cs∞〉 of the sequence〈Fi ,Cr i ,Csi〉06i de-
fined by:

F∞ =
[

i

Fi and Cr ∞ =
[

i

Cr i and Cs∞ =
[

i

Csi

Proposition 5. We have〈F∞,Cr ∞,Cs∞〉 ∈ P and for all labelled formulaeSφ : (x,u), if
〈F∞ ∪{Sφ : (x,u)},Cr ∞,Cs∞〉 ∈ P thenSφ : (x,u) ∈ F∞

Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness).Let ϕ be a formula, ifϕ is valid then there exists a DBI-
proof for ϕ.

Proof. We suppose that there is no DBI-proof ofϕ and show thatϕ is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSS, byLemma 11. By property
1 of Proposition 4,Fϕ : (1, l1) ∈ Fi . By Lemma 9,ϕ is not valid.

6 Conclusion

We have defined and studied a modal extension of BI, called DBI, that allows us to
express dynamic properties about resources. We propose a Kripke semantics for DBI
and a labelled tableaux method that is proved sound and complete w.r.t. this semantics.
Compared to previous works on proof-theory in BI, the labelled tableaux method for
DBI deals not only with a so-called resource graph but also with a state graph. More-
over we show how we can generate countermodels in case of non-validity.
Future works will be devoted to the study of other extensionsof BI with other modal-
ities such that fragments of SCRP/MBI [12], in order to mix dynamic resources and
processes, and to the study of semantics based on Petri nets for such extensions.

References

1. N. Biri and D. Galmiche. A Separation Logic for Resource Distribution. In23rd Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS’03,
LNCS 2914, pages 23–37, December 2003. Mumbai, India.

2. U. Engberg and G. Winskel. Completeness results for Linear Logic on Petri nets.Annals of
Pure and Applied Logic, 86:101–135, 1997.

3. D. Galmiche and D. Méry. Tableaux and Resource Graphs forSeparation Logic.Journal of
Logic and Computation, 20(1):189–231, 2010.

4. D. Galmiche, D. Méry, and D. Pym. The semantics of BI and Resource Tableaux.Math.
Struct. in Comp. Science, 15(6):1033–1088, 2005.

5. J.Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–102, 1987.
6. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, October 1969.
7. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In

28th ACM Symposium on Principles of Programming Languages,POPL 2001, pages 14–26,
London, UK, 2001.

8. D. Larchey-Wendling. Semantic Tableaux for Boolean BI: Strong Completeness and Semi-
Decision. Technical report, Loria, 2012.

9. D. Larchey-Wendling and D. Galmiche. The Undecidabilityof Boolean BI through Phase
Semantics. In25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
pages 147–156, Edinburgh, UK, July 2010.

10. R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

11. P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

12. D. Pym and C. Tofts. Systems modelling via resources and processes: Philosophy, calculus,
semantics, and logic.Electronic Notes in Theoretical Computer Science, 172:545–587, 2007.

13. D.J. Pym.The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26
of Applied Logic Series. Kluwer Academic Publishers, 2002.

14. J. Reynolds. Separation logic: A logic for shared mutable data structures. InIEEE Sympo-
sium on Logic in Computer Science, pages 55–74, Copenhagen, Danemark, July 2002.

