
A modal separation logic for resource dynamics⋆

J.R. Courtault and D. Galmiche

Université de Lorraine – LORIA UMR 7503

Campus Scientifique, BP 239

Vandœuvre-lès-Nancy, France

Abstract. The logic of Bunched implications (BI), and its boolean version (Boolean BI), are logics

that allow us to express properties on resources and to provide logical frameworks for the so-called

separation logics. In this paper we study a new modal separation logic that extends Boolean BI with

two kinds of modalities, in order to deal with resources having dynamic properties (which depend on

the current state of a system) and also to capture some resource evolutions or transformations. We show

how we can model concurrent processes manipulating resources, and we provide a sound and complete

tableau calculus, with a countermodel extraction method, for proving properties expressed in this logic.

1 Introduction

In computer science, the notion of resource is very common having in mind that memory, permissions,

data, messages can be viewed as resources. Modelling and expressing properties on resources (such as

location, consumption of, access to) are central concerns. In this context, different resource logics have

been proposed, like Linear Logic (LL) [9], in which propositional symbols can be considered as resources

with a focus on production and consumption of resources, or like Bunched Implications logic (BI) [15,16],

where propositional symbols can be viewed as resource properties, with a focus on sharing and separation

of resources. BI logic and its boolean variant,called Boolean BI (BBI) [16], can be seen as logical kernels

of separation logics, like for instance BI’s Pointer Logic (PL) [12] that allows us to express properties on

pointers and provides a semantics for programs that manipulate mutable data structures, or like BiLoc [1]

that is based on the notions of location and of resource tree. Of course, a resource is not a static entity,

but a dynamic one that can move, change his state and properties, can be produced or consumed. We can

observe that they are two kinds of dynamics on resources. On the first hand, there are systems that transform

resources (what we call here dynamics of resources), as the producer/consumer problem, and on the other

hand, there are systems that modify resource properties (what we call here dynamic properties of resources),

like for instance cellular automata where the cells (the resources) are not produced or consumed, but only

the values (the properties) of the cells change during the iterations of the system.

Observing that the dynamic properties of resources are not captured by logics like BI or Boolean BI, we

have recently defined a modal extension of BI, called DBI [5], that allows us to capture such properties. A

key point is to consider that a property is not only satisfied by a resource, but by a resource in a given state.

With the DBI modalities ♦ and � one can express properties on a resource not only on the current state but

also on next states, contrary to BI, and therefore some dynamic properties of resources. For instance, we can

express r,s � P∗♦Q that means that the resource r in a state s can be decomposed into two sub-resources,

the first one satisfying P and the second one satisfying Q in a next state s′. Unfortunately, DBI is not able

to deal with the dynamics of resources, namely the evolution of resources produced and consumed through

transtions between states. Such an evolution can be captured in LL by proofs and in PL by a calculus à la

Hoare [11], but cannot be captured by their models.

Thus, we aim at defining an extension of the known models in order to express such a dynamics of re-

sources, by introducing actions on resources. In this context we can mention MBI logic [3,4,17,18], that

⋆ This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and Update Logics (project

no. ANR-11-BS02-011).

deals with processes performing actions on resources. Its models are transition systems, with transitions

described by judgements of the form R,E
a→ R′,E ′, generated by the operational semantics, meaning that a

process E performs an action a on a resource R in order to obtain a resource R′ and then becomes a process

E ′. Then, in the spirit of MBI from the idea of multi-dimensional worlds (and associated transitions) we

aim at studying properties, like the ones on any reachable resource and process, knowing that reachable

means here ”after performing any succession of actions”.

In this paper we propose a new modal separation logic, called DMBI (Dynamic Modal BI), that intro-

duces a dynamics of resources through its modalities [a] and 〈a〉 and allows us to express properties on any

reachable resource/state through its modalities ♦ and �. After the presentation of the language, we first

define the semantics of DMBIthat is based on so-called dynamic resource monoids. Then we show that the

models of DMBI are able to represent concurrent processes that manipulate resources. From previous works

for BI [7,8] and DBI [5], we define a labelled tableau calculus and prove its soundness and completeness

w.r.t. our semantics. A countermodel extraction method is also provided.

In Section 2 we present the language and the semantics of DMBI. In Section 3 we show how the DMBI

logic can be used to model n concurrent processes and also to express properties on resources produced and

consumed by these processes. Moreover, we illustrate the interest and impact of DMBI through examples

based on concurrent processes. In Section 4, we propose a calculus for DMBI, based on previous works

for BI [7,8] and BBI [13,14], by introducing specific labels and constraints. A key point is the introduction

of rules to deal with modalities and constraints in order to capture the notion of resource transformation

and also transitions. In section 5 we show the soundness and completeness of the calculus w.r.t. the given

semantics and develop proofs based on techniques similar to the ones used in previous works on BI and

BBI tableau calculi [8,13]. A countermodel extraction method is also defined and illustrated.

Further works will be devoted to study modelling of protocols, webservices, multi-agent systems in this

logic, knowing that in these cases we consider agents or processes that exchange messages or informations

that can be seen as resources, which is the central concern of DMBI. We will also study an extension of

DMBI with located resources [1,2].

2 DMBI logic

We aim at introducing the notion of dynamics in the expressiveness of BI logic. Indeed, we can remark

that most of the systems manipulate resources, such that data in memory, messages in a network, tokens

in a Petri net. Globally, we can observe two kinds of dynamics. On the first hand, there are systems that

produce and consume resources (what we call dynamics of resources), as the producer/consumer problem,

and on the other hand there are systems that modify the properties of the resources (what we call dynamic

properties of resources), as cellular automata where the cells (the resources) are not produced or consumed,

but only the values (the properties) of the cells change during the iterations of the system.

Recently, we have defined DBI logic [5] that captures dynamic properties of resources. This logic allows

us to express properties (on the resources) that can change depending on the state of the system, but cannot

capture the dynamics of resources (resource production and consumption), because of its models, and more

specifically because the DBI modalities (♦ and �) quantify only on the state, not on the resource.

In this paper we define a modal separation logic, called DMBI, adding the notion of action to the mod-

els of DBI, modalities à la Hennessy-Milner [10] (〈·〉 and [·]) to the language of DBI and modifying the

semantics of the modalities ♦ and �. Thereby, it allows us to express properties on resources that are pro-

duced and consumed by a system that performs actions.

Let us present now the language of DMBI and then its Kripke semantics.

Let ΣAct be a countable set of action symbols. Let Prop be a countable set of propositional symbols. The

language L of DMBI is defined as follows, where p ∈ Prop and a ∈ ΣAct :

X ::= p | ⊥ | I | X → X | X ∗X | X −∗X | 〈a〉X | ♦X

We define the other logical connectors as follows: ¬X ≡ X → ⊥, ⊤ ≡ ¬⊥, X ∨Y ≡ ¬X → Y , X ∧Y ≡
¬(X →¬Y), [a]X ≡ ¬〈a〉¬X , �X ≡ ¬♦¬X .

The modalities of DMBI express properties on the resources that are obtained after performing an action a,

in the case of the Hennessy-Milner modality 〈a〉, or a succession of actions, in the case of the modality ♦.

For instance, if a resource r and a state s satisfy 〈a〉φ, then it means: ”considering the system in a state s

and the available resource being r, the system can perform the action a on r, reaching a state and obtaining

a resource satisfying φ”. Moreover if a resource r and a state s satisfy ♦φ, then it means: “being in state s

and having the resource r there exists a sequence of actions allowing to the system, after performing them,

to reach a state and a new available resource that satisfy φ.”

Then the formula ♦P ∗ (Q∧〈b〉R) expresses that the available resource can be decomposed into two sub-

resources: a first that, after performing a succession of actions, allows the system to reach a state and a

resource satisfying P, and a second which satisfies Q and also allows the system, after performing the ac-

tion b, to reach a state and a resource satisfying R.

Therefore we have a new modal resource logic that allows us to model a system performing actions on re-

sources and to express properties on the resources that are produced. Let us now define a Kripke semantics

for DMBI, that is based on a resource monoid, an action monoid, a state set, a transition relation ||·〉〉 and a

function µ.

Definition 1 (Resource monoid). A (partial) resource monoid is a structure R = (R,•,e) such that:

– R is a set of resources

– e ∈ R

– • : R×R ⇀ R such that, for any r1,r2,r3 ∈ R r1 • e ↓ and r1 • e = r1 (neutral element), if r1 • r2 ↓ then

r2 • r1 ↓ and r1 • r2 = r2 • r1 (commutativity) and if r1 • (r2 • r3) ↓ then (r1 • r2)• r3 ↓ and r1 • (r2 • r3) =
(r1 • r2)• r3 (associativity).

Here, ↓ means ”is defined” and ↑ means ”is undefined”.

Definition 2 (Action monoid). An action monoid is a structure A = (Act,⊙,1) such that:

– Act is a set of actions

– 1 ∈ Act

– ⊙ : Act × Act → Act such that, for any a1,a2,a3 ∈ R, a1 ⊙ 1 = 1 ⊙ a1 = a1 (neutral element) and

a1 ⊙ (a2 ⊙ a3) = (a1 ⊙ a2)⊙ a3 (associativity).

We call e the unit resource, 1 the unit action, • the resource composition and ⊙ the action composition. If

a1 and a2 are actions then a1 ⊙ a2 is the action that consists in performing the action a1 and then the action

a2. We remark that ⊙ is not commutative indeed, for instance, writing a mail and sending it (writeMail ⊙
sendMail) is not equivalent to sending the mail (in this case sending a blank mail) and then writing the mail

(sendMail⊙writeMail).

Definition 3 (DRM). A DRM (dynamic resource monoid) is a structure M = (R ,A ,S, ||·〉〉,µ), where R =
(R,•,e) is a resource monoid and A = (Act,⊙,1) is an action monoid, such that:

– S is a set of states

– ||·〉〉 ⊆ S×Act×S is a relation on states and actions such that, for any s1,s2,s3 ∈ S and any a1,a2 ∈ Act:

- ||·〉〉-unit: s1 ||1〉〉 s1

- ||·〉〉-composition: if s1 ||a1〉〉 s2 and s2 ||a2〉〉 s3 then s1 ||a1 ⊙ a2〉〉 s3

– µ : Act ×R ⇀ R such that, for any r ∈ R and any a1,a2 ∈ Act:

- µ-unit: µ(1,r) ↓ and µ(1,r) = r

- µ-composition: if µ(a1,r) ↓ and µ(a2,µ(a1,r)) ↓ then µ(a1⊙a2,r) ↓ and µ(a1⊙a2,r)= µ(a2,µ(a1,r))

µ(a,r) is the resource that results from performing the action a on the resource r. This is a modification

function as defined in the works on MBI [4,17,18].

We note r,s
a−→ r′,s′ if and only if µ(a,r) ↓, µ(a,r) = r′ and s ||a〉〉 s′ (equivalently (s,a,s′) ∈ ||·〉〉). We can

remark that, for any r ∈ R and any s ∈ S, r,s
1−→ r,s holds. We note r,s r′,s′ if and only there are

a0, ...,an ∈ Act, r1, ...,rn ∈ R and s1, ...,sn ∈ S such that r,s
a0−→ r1,s1

a1−→ ...
an−1−−→ rn,sn

an−→ r′,s′. We also

remark that r,s r,s holds for any r ∈ R and any s ∈ S, because we have r,s
1−→ r,s.

Compared to DBI, we notice that an action monoid (A) is added to the DBI models, transitions on the

states (||·〉〉) are now labelled by actions and a function µ is added to deal with resource transformation.

In conclusion, a DRM encodes a process (S, ||·〉〉), that performs actions (A) and transforms/manipulates (µ)

resources (R). We have an implicit interpretation that maps action symbols to actions J·KΣAct
: ΣAct ⇀ Act.

Moreover, we require JaKΣAct
= 1 if and only if a = 1. Finally, we write a for JaKΣAct

and denote ℘(E) the

powerset of the set E , namely the set of sets built from E .

Definition 4 (Model). A model is a 3-uplet K =(M ,J·K,�K) such that M is a DRM, J·K : Prop→℘(R×S)
and �K is a forcing relation on R× S×L defined as follows:

– r,s �K p iff (r,s) ∈ JpK
– r,s �K ⊥ never

– r,s �K I iff r = e

– r,s �K φ → ψ iff r,s �K φ implies r,s �K ψ

– r,s �K φ∗ψ iff ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1,s �K φ and r2,s �K ψ

– r,s �K φ−∗ψ iff ∀r′ ∈ R · (r • r′ ↓ and r′,s �K φ) implies r • r′,s �K ψ

– r,s �K 〈a〉φ iff ∃r′ ∈ R · ∃s′ ∈ S · r,s a−→ r′,s′ and r′,s′ �K φ

– r,s �K ♦φ iff ∃r′ ∈ R · ∃s′ ∈ S · r,s r′,s′ and r′,s′ �K φ

Let us note that the interpretation of action symbols J·KΣAct
is a partial function. Moreover our semantics

is well defined. Indeed, r,s �K 〈a〉φ only if there are r′ ∈ R and s′ ∈ S such that r,s
JaKΣAct−−−−→ r′,s′, then only

if µ(JaKΣAct
,r) ↓, then only if JaKΣAct

∈ Act, then only if JaKΣAct
is defined. In other words, the meaning of

r,s �K 〈a〉φ is the following: “a is an action (JaKΣAct
is defined) and being in state s and performing the

action a on the resource r, the system can reach a state s′ obtaining a resource r′ (r,s
a−→ r′,s′) that satisfy

φ (r′,s′ �K φ)”. In order to emphasize the semantics of the modalities we also explicitly give the following

clauses for the two other modalities, namely,

- r,s �K [a]φ iff ∀r′ ∈ R · ∀s′ ∈ S · r,s a−→ r′,s′ implies r′,s′ �K φ

- r,s �K �φ iff ∀r′ ∈ R · ∀s′ ∈ S · r,s r′,s’ implies r′,s′ �K φ.

Definition 5 (Validity). A formula φ is valid, denoted � φ, if and only if r,s �K φ for all models K , all

resources r and all states s. The notation φ � ψ means that for all resources r and all states s of any model

K , if r,s �K φ then r,s �K ψ.

Proposition 1. For any r1,r2,r3 ∈ R, any a,a′ ∈ Act and any s1,s2,s3 ∈ S, we have the following property:

if r1,s1
a−→ r2,s2 and r2,s2

a′−→ r3,s3 then r1,s1
a⊙a′−−→ r3,s3.

Proof. By definition, µ(a,r1) ↓, µ(a,r1) = r2 and s1 ||a〉〉 s2. Moreover, we have µ(a′,r2) ↓, µ(a′,r2) = r3 and

s2 ||a′〉〉 s3. Then µ(a′,µ(a,r1)) ↓ and µ(a′,µ(a,r1)) = r3. By µ-composition, µ(a⊙a′,r1) ↓ and µ(a⊙a′,r1) =

µ(a′,µ(a,r1)) = r3. By ||·〉〉-composition, s1 ||a⊙ a′〉〉 s3. Thus r1,s1
a⊙a′−−→ r3,s3.

Proposition 2. For any r,r′ ∈ R and s,s′ ∈ S, we have r,s r′,s′ iff there is a ∈ Act such that r,s
a−→ r′,s′.

Proof. We suppose that there is a ∈ Act such that r,s
a−→ r′,s′. Then, by definition, r,s r′,s′. Now we

suppose that r,s r′,s′. By definition, there are a0, ...,an ∈ Act, r1, ...,rn ∈ R and s1, ...,sn ∈ S such that

r,s
a0−→ r1,s1

a1−→ ...
an−1−−→ rn,sn

an−→ r′,s′. By induction on n and by Proposition 1, we can obviously show that

r,s
a0⊙a1⊙...⊙an−1⊙an−−−−−−−−−−−−→ r′,s′.

3 Examples of modelling with DMBI logic

In this section, we show how DMBI logic can model concurrent processes and express properties on re-

sources produced and consumed by these processes.

3.1 Concurrent processes modelling

The DMBI models encode a system composed of only one process, whose states are the elements of the

set S and transitions are captured by the relation ||·〉〉. In this section, we show how a DMBI model can

model n concurrent processes and express properties on resources that are produced and consumed by these

processes.

As a first step, we consider a system composed of n concurrent processes (P1, ..., Pn), that we denote

S= (Ratom,Actatom,µpre,µpost ,{P1, ...,Pn}), where:

– Ratom is a finite set of atomic resources

– Actatom is a finite set of atomic actions

– µpre : Actatom →M(Ratom)
– µpost : Actatom →M(Ratom)
– Pi =(Si,_Pi

), such that Si is the set of states of the process Pi and _Pi
⊆ Si×Actatom×Si is the transition

relation of the process Pi

Here, the processes produce/consume atomic resources and perform atomic actions. An atomic resource is

a resource that cannot be decomposed into sub-resources and an atomic action is an action that cannot be

decomposed as a succession of simpler actions.

We denote M(Ratom) the set of all multisets over Ratom, that are functions Ratom → N. We call resource a

multiset of atomic resources. The consumption of atomic resources is defined by the function µpre, where

µpre(a) is the resource that is consumed when a process performs the action a. The function µpost encodes

the production of atomic resources, which means that µpost(a) is the resource that is produced after per-

forming the action a. The process Pi = (Si,_Pi
) is encoded by an automaton, where Si is its set of states

and _Pi
is its transitions. We highlight that the processes are not supposed to share the same set of states or

the same transition functions.

As a second step, we model the system S using a DMBI model. Concerning the resources, we denote

R = {r1,r1,r2} the multiset such that R(r1) = 2, R(r2) = 1 and R(r) = 0 for all r ∈ Ratom \{r1,r2}. We also

denote e the empty multiset, that is e(r) = 0 for all r ∈ Ratom. We say that R1 is a sub-resource of R2 (denoted

R1 ≤ R2) iff R1(r) 6 R2(r) for all r ∈ Ratom. We define the composition of resources by R1 +R2 = R3 such

that R3(r) = R1(r)+R2(r) for all r ∈ Ratom. We also define R1 −R2 = R3 such that R3(r) = R1(r)−R2(r)
for all r ∈ Ratom and we remark that R1 −R2 is defined iff R2 ≤ R1. Being the free commutative monoid

over Ratom, R = (M(Ratom),+,e) is a resource monoid.

Concerning the actions, we first define Act#
atom = {a1#...#an | a1, ...,an ∈ Actatom}, which is the set of all

concurrent atomic actions that can be performed by the processes. As example, if n = 2 then the concurrent

atomic action a1#a2 represents the process P1 performing the action a1 and the process P2 performing the

action a2. This set Act#
atom is of course the n-fold cartesian product of Actatom.

Then we consider the lists of concurrent atomic actions. We denote L(Act#
atom) the set of all lists built over

Act#
atom, [] the empty list, ⊕ the concatenation of lists and |L| the size of the list L. For instance, [A1;A2],

where A1,A2 ∈ Act#
atom, is the action that consists in performing the concurrent atomic action A1 and then

the concurrent atomic action A2. Being the free monoid over Act#
atom, A = (L(Act#

atom),⊕, []) is an action

monoid.

We define a function for production and consumption of resources. Moreover we give the function µ# :

Act#
atom ×M(Ratom)⇀M(Ratom) that deals with concurrent atomic actions performing on resources.

µ#(a1#...#an,R) =

{

↑ if µpre(a1)+ ...+ µpre(an) 6≤ R

R− µpre(a1)− ...− µpre(an)+ µpost(a1)+ ...+ µpost(an) otherwise

As the available resource for the system is R, we remark that we consider that the processes can perform

the concurrent atomic action a1#...#an if and only if R contains enough atomic resources to perform the

atomic actions ai, that is µpre(a1)+ ...+ µpre(an) ≤ R. Moreover, the resource that will be available for the

system after the execution of these atomic actions is R−µpre(a1)− ...−µpre(an)+µpost(a1)+ ...+µpost(an).
Indeed, the new available resource is the resource R less all atomic resources consumed by the actions ai

(µpre(ai)) plus all atomic resources produced by the actions ai (µpost(ai)).
We define the function µlist as follows: L(Act#

atom)×M(Ratom)⇀M(Ratom).

µlist(L,R) =







R if L = []
↑ if L = [A1; ...;Ak] and µ#(A1,R) ↑
µlist([A2; ...;Ak],µ

#(A1,R)) where L = [A1; ...;Ak]

In this definition µlist([],R) = R because if the system performs no concurrent atomic action on R then

R is not modified. For instance, we observe that µlist([A1;A2],R) is equal to the resource obtained after

performing the concurrent atomic action A1 on R, and then the concurrent atomic action A2 on the obtained

resource.

Proposition 3. The function µlist : L(Act#
atom)×M(Ratom)⇀M(Ratom) satisfies the properties µ-unit and

µ-composition.

Proof. Proof is given in Appendix A.

As a last step we consider the process transitions. To encode the states of the concurrent processes, we

defined S# = {s1#...#sn | si ∈ Si for all 16 i6 n}. As example, if n= 2 then s1#s2 is the state that represents

the process P1 in state s1 and the process P2 in state s2. In other words, S# is the n-fold cartesian product of

S.

We define a relation |·〉# : S# ×Act#
atom× S# that captures concurrent transitions of processes.

s1#...#sn |a1#...#an〉 # s′1#...#s′n iff si

ai
_Pi

s′i for all 16 i6 n

For instance, s1#s2 |a1#a2〉# s′1#s′2 means that when P1 is in state s1 and P2 is in state s2 then they can perform

the concurrent atomic action a1#a2 and finally be respectively in state s′1 and s′2.

We extend the previous definition for lists of concurrent atomic actions as follows:

|·〉 list : S# ×L(Act#
atom)× S# such that

S |[A1; ...;Ak]〉 list S′ iff ∃S1, ...,Sk−1 ∈ S# ·S |A1〉 # S1 |A2〉# ... |Ak−1〉# Sk−1 |Ak〉# S′

In this definition, it is implicit that S |[]〉 list S always holds.

Proposition 4. The function |·〉 list : S#×L(Act#
atom)×S# satisfies the properties ||·〉〉-unit and ||·〉〉-composition.

Proof. Proof is given in Appendix A.

In the model we build the processes that are synchronous, meaning that at each transition, all processes

perform an atomic action. If we want to consider asynchronous processes, it is sufficiant to introduce a new

atomic action skip and extend S such that µpre(skip) = µpost(skip) = e and si

skip
_ Pi

si for all processes Pi

and all si ∈ Si. As performing the atomic action skip is equivalent to perform no atomic action, we obtain

asynchronism.

Proposition 5. Let S = (Ratom,Actatom,µpre,µpost ,{P1, ...,Pn}), where Pi = (Si,_Pi
), be a system com-

posed of n concurrent processes manipulating resources. The 5-uplet M = (R ,A ,S#, |·〉 list ,µlist), where

R = (M(Ratom),+,e) and where A = (L(Act#
atom),⊕, []), is a DRM.

Proof. By Propositions 3 and 4, knowing that R is a resource monoid et A is an action monoid.

We have considered a system S= (Ratom,Actatom,µpre,µpost ,{P1, ...,Pn}), where Pi = (Si,_Pi
), composed

of n concurrent processes that manipulate resources and provided a construction that allow us to obtain a

DRM M = (R ,A ,S#, |·〉 list ,µlist). The final step consists in defining the DMBI model K = (M ,J·K,�K)
with Prop = Ratom, JrK = {({r},s) |∈ S#}, ΣAct = Act#

atom and JAKΣAct
= [A].

3.2 A mutual exclusion example

In this subsection, we present an example of two processes that are in mutual exclusion and we show that

DMBI allows us to express some properties.

We consider the system S = (Ratom,Actatom,µpre,µpost ,{P1,P2}) composed of two processes that are in

mutual exclusion, such that:

– Ratom = {J}
– Actatom = {anc,ac,ap,av}
– µpre is defined by µpre(anc) = µpre(ac) = µpre(av) = e and µpre(ap) = {J}
– µpost is defined by µpost(anc) = µpost(ac) = µpost(ap) = e and µpost(av) = {J}
– P1 = (S1,_P1

) and P2 = (S2,_P2
) such that S1 = S2 = {snc,sc} and for any i ∈ {1,2}, we have

snc

anc
_Pi

snc snc

ap

_Pi
sc sc

ac
_Pi

sc sc

av
_Pi

snc

This system is composed of two processes P1 and P2, which have two states that are snc (the process in a

non-critical state) and sc (the process in a critical state). We consider only one kind of atomic resources J,

which is a token and four atomic actions: anc (a non critical action), ac (a critical action), ap (the action

that consists in taking a token) and av (the action that consists in releasing a token). We recall that µpre(a)
and µpost(a) respectively capture the resources that are consumed and produced when the atomic action a

is performed. Moreover when a process takes one token then one token is consumed (µpre(ap) = {J}) and

when a process releases one token then one token is produced (µpost(av) = {J}).

Finally, a process holds a token when it enters in critical (snc

ap

_Pi
sc) and releases the token when it goes

back in non critical section (sc

av
_Pi

snc). We observe that a process can only perform a critical action (ac)

when and only when it is in critical section (sc). As illustrated in the subsection 3.1 we can build a DMBI

model that captures the behaviour of these concurrent processes.

Considering this DMBI model, we now present properties that can be expressed in DMBI logic on the

concurrent processes.

For instance we can express that if there is only one available token and if the processes are in non-critical

section then it is impossible that they perform together a critical action: {J},snc#snc �K [ac#ac]⊥.

Because of the Hennessy-Milner modality, the property means that when there is only one token and when

the processes are in non-critical section then it is impossible that they perform together a critical action.

This does not mean that after performing any succession of actions, the processes cannot perform together

a critical action. Then, the ♦ and � modalities of DMBI allow us to express a more interesting property,

that is {J},snc#snc �K �[ac#ac]⊥.

In this way, we express that if the current resource is only one token and if the processes start in a non-

critical state then, whatever the resources and the concurrent state that the system reaches, the processes

can never perform together a critical action. Now, using the separation connective, DMBI is also able to

express properties on the resources that are produced. For instance we can express that it is impossible to

reach a state/resource such that more than one token is available: {J},snc#snc �K ¬♦(J ∗ J ∗⊤).

3.3 A producer/consumer example

In this last subsection, we present an example based on two processes: a producer and a consumer. Then we

consider the following system S= (Ratom,Actatom,µpre,µpost ,{Pp,Pc}) with

– Ratom = {r}
– Actatom = {ap,ac,aw}
– µpre is defined by µpre(ap) = µpre(aw) = e and µpre(ac) = {r}
– µpost is defined by µpost(ac) = µpost(aw) = e and µpost(ap) = {r}
– Pp = (Sp,_Pp) and Pc = (Sc,_Pc) such that Sp = Sc = {s}, the transitions of Pp are s

ap

_Pp s and s
aw
_Pp s

and the transitions of Pc are s
ac
_Pc s and s

aw
_Pc s

This system is composed of a producer Pp and a consumer Pc. These processes have only one state s.

We only consider one atomic resource r. The producer can perform only two atomic actions: producing a

resource (ap) and waiting (aw). In the other hand, the consumer can also perform only two atomic actions:

consuming a resource (ac) and also waiting (aw).

We consider the DMBI model obtained as it is presented in the subsection 3.1. We can express with DMBI

that whatever the initial resources (noted R) and whatever the list of concurrent atomic actions that are

performed (�), if there is no resource (I) then the consumer cannot consume a resource while the producer

is waiting: R,s#s �K �(I → [aw#ac]⊥). We can also, for instance, express the following property: e,s#s �K

♦(r ∗⊤)→ ♦〈ap#aw〉⊤, that means that considering that we have no resource (e), if after performing a list

of concurrent atomic actions one obtains one or more resource (r ∗⊤), then it means that the producer will

produce a resource while the consumer will be waiting.

4 A proof system for DMBI

In this section, we propose a proof system for DMBI with labels and constraints that is based on previous

works for BI [8] and BBI [13,14]. Specifically, we introduce rules to deal with modalities and constraints

to capture the notion of resource transformation (µ) and transitions (||.〉〉).

4.1 Labels for resources, actions and states

Our tableaux calculus for DMBI contains some semantic informations that allows us to extract countermod-

els in case of non-validity. It deals with resource labels, action labels and state labels to capture, respectively,

the resource monoid, the action monoid and the state set of models.

Definition 6 (Resource labels). Lr is a set of resource labels built from a constant 1r, an infinite countable

set of constants γr = {c1,c2, ...} and a function denoted ◦:

X ::= 1r | ci | X ◦X

where ci ∈ γr and 1r 6∈ γr. Moreover ◦ is a function on Lr that is associative, commutative and 1r is its unit.

The resource label x◦y is denoted xy. In other words, c1c2c4c4 is the resource label c1◦c2◦c4◦c4. Moreover

we say that x is a resource sublabel of y if and only if there exists z such that x◦ z = y. The set of resource

sublabels of x is denoted Er(x). The resource labels can be viewed as words built from γr without letter

order: they are the free commutative monoid over γr.

Definition 7 (Action labels). La is a set of action labels built from a constant 1a, the action symbol set

ΣAct , an infinite countable set of constants γa = {d1,d2, ...} and a function denoted �:

X ::= 1a | ai | di | X �X

where ai ∈ ΣAct \ {1}, di ∈ γa, 1a 6∈ ΣAct ∪ γa and ΣAct ∩ γa = /0. Moreover � is a function on La that is

associative (not commutative) and 1a is its unit.

We denote f g the action label f �g. In other words, a1d2d2 is the action label a1 �d2 �d2. Moreover we say

that f is a action sublabel of g if and only if there exist h and h′ such that h � f � h′ = g. The set of action

sublabels of f is denoted Ea(f). The action labels can be viewed as words built from γa ∪ΣAct \ {1} with

letter order: they are the free monoid over γa ∪ΣAct \ {1}.

Definition 8 (State labels). Ls is an infinite countable set of state labels (or state constants), denoting

Ls = {l1, l2, ...}.

Our tableaux calculus contains also constraints to capture the equality on resources, the µ function and the

transitions (||·〉〉) of the process that manipulates the resources.

Definition 9 (Constraints). A resource constraint is an expression of the form x ∼ y where x and y are

resource labels. A µ-constraint is an expression of the form x
f
։ y where x and y are resource labels and f

is an action label. A transition constraint is an expression of the form u
f
֌ v where u and v are state labels

and f is an action label.

A set of constraints C is a set that contains resource constraints, µ-constraints and transition constraints.

For instance, C = {c1 ∼ c2,c3 ∼ c2,c1

a1
։ c2,c3

d1
։ c3c3, l1

d2
֌ l2} is a set of constraints. We now define the

domains and the alphabets on such sets.

Definition 10 (Domain). Let C be a constraint set. The resource/action domain of C is the set of all re-

source/action sublabels appearing in C . In particular:

– Dr(C) =
[⋃

x∼y∈C (Er(x)∪Er(y))
]

∪
[

⋃
x

f
։y∈C

(Er(x)∪Er(y))

]

– Da(C) =

[

⋃
x

f
։y∈C

Ea(f)

]

∪
[

⋃
u

f
֌v∈C

Ea(f)

]

Definition 11 (Alphabet). Let C be a constraint set. The resource/action/state alphabet of C is the set

of resource/action/state constants (and action symbols) appearing in C . In particular we have Ar(C) =
γr ∩Dr(C), Aa(C) = (ΣAct ∪ γa)∩Da(C) and As(C) =

⋃
u

f
֌v∈C

{u,v}.

Rules for resource constraints

〈1r〉
1r ∼ 1r

x ∼ y
〈sr〉y ∼ x

xy ∼ xy
〈dr〉x ∼ x

x ∼ y y ∼ z
〈tr〉x ∼ z

x ∼ y yk ∼ yk
〈cr〉

xk ∼ yk
x

f
։ y x

f
։ z

〈kr〉y ∼ z

x
f
։ y

〈ar1
〉

x ∼ x

Rules for µ-constraints

x ∼ x 〈1µ〉
x

1a

։ x

x
f
։ y y

g
։ z

〈tµ〉

x
f g
։ z

x
f
։ y x ∼ x′

〈kµ1
〉

x′
f
։ y

x
f
։ y y ∼ y′

〈kµ2
〉

x
f
։ y′

Rules for transition constraints

u
f
֌ v 〈1t1

〉

u
1a

֌ u

u
f
֌ v 〈1t2

〉

v
1a

֌ v

u
f
֌ v v

g
֌ w 〈tt〉

u
f g
֌ w

Fig. 1. Rules for constraint closure

Definition 12 (Closure of constraints). Let C be a set of constraints.The closure of C , denoted C , is the

least set closed under the rules of Figure 1 such that C ⊆ C .

We remark that there are seven rules (〈1r〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉, 〈kr〉 and 〈ar1
〉) that produce resource con-

straints, there are four rules (〈1µ〉, 〈tµ〉, 〈kµ1
〉 and 〈kµ2

〉) that produce µ-constraints and there are three rules

(〈1t1〉, 〈1t2〉 and 〈tt〉) that produce transition constraints.

As we will see (Lemma 4), these rules allow us to capture the properties of the DMBI models. For example,

the rule 〈tt〉 encodes the ||·〉〉-composition and the rule 〈kr〉 encodes that µ is a function (not only a relation).

As opposed to DBI, it is impossible to close separately a resource constraint set and a µ-constraint set, be-

cause of the rules 〈kr〉, 〈ar1
〉, 〈1µ〉, 〈kµ1

〉 and 〈kµ2
〉. For example, to apply the rule 〈kr〉 that returns a resource

constraint, we need to choose two µ-constraints (x
f
։ y and x

f
։ z) and to apply the rule 〈1µ〉 that returns a µ-

constraint, we need to choose a resource constraint (x ∼ x): closure of resource constraints and µ-constraints

are interdependent. Let us illustrate these rules as follows: if C = {c1 ∼ c2,c2 ∼ c3,c1

a1
։ c2,c4 ∼ c5} then

we have c3

a1
։ c2 ∈ C because of the proof tree

c1

a1
։ c2

c1 ∼ c2 c2 ∼ c3 〈tr〉c1 ∼ c3 〈kµ1
〉

c3

a1
։ c2

Proposition 6. The following rules can be derived from the rules of constraint closure:

xk ∼ y
〈pl〉x ∼ x

x ∼ yk
〈pr〉y ∼ y

x
f
։ y

〈ar2
〉

y ∼ y
xk

f
։ y

〈ql〉x ∼ x
x

f
։ yk

〈qr〉y ∼ y

Proof. From the following deduction trees

xk ∼ y

xk ∼ y
〈sr〉

y ∼ xk
〈tr〉

xk ∼ xk 〈dr〉x ∼ x

x ∼ yk
〈sr〉

yk ∼ x
〈pl〉y ∼ y

x
f
։ y x

f
։ y

〈kr〉y ∼ y

xk
f
։ y

〈ar1
〉

xk ∼ xk 〈dr〉x ∼ x

x
f
։ yk

〈ar2
〉

yk ∼ yk
〈dr〉y ∼ y

Corollary 1. Let C be a set of constraints, x ∈ Dr(C) if and only if x ∼ x ∈ C .

Proof. We suppose that x ∈ Dr(C). By Definition 10, x ∈ ⋃
y∼z∈C (Er(y)∪Er(z)) or x ∈ ⋃

y
f
։z∈C

(Er(y)∪
Er(z)). There are two cases:

– there exists y ∼ z ∈ C such that x ∈ Er(y)∪ Er(z). Then there exists a resource label x′ such that

xx′ ∼ z ∈ C or y ∼ xx′ ∈ C . Thus, by Proposition 6, x ∼ x ∈ C .

– there exists y
f
։ z ∈ C such that x ∈ Er(y)∪Er(z). Then, there exists a resource label x′ such that

xx′
f
։ z ∈ C or y

f
։ xx′ ∈ C . Thus, by Proposition 6, x ∼ x ∈ C .

If we suppose that x ∼ x ∈ C then, by definition, x ∈ Dr(C).

Corollary 2. Let C be a set of constraints, u ∈ As(C) if and only if u
1a
֌ u ∈ C .

Proof. We suppose that u ∈ As(C). By Definition 11, u ∈⋃
v

f
֌w∈C

{v,w}. There exists v
f
֌ w ∈ C such that

u = v or u = w. Thus, by rules 〈1t1〉 and 〈1t2〉 of Figure 1, u
1a
֌ u ∈ C . If we suppose that u

1a
֌ u ∈ C then,

by definition, u ∈ As(C).

Corollary 3. Let C be a set of constraints. If xy ∈ Dr(C), x ∼ x′ ∈ C and y ∼ y′ ∈ C then xy ∼ x′y′ ∈ C .

Proof. By Corollary 1, xy ∼ xy ∈ C and we have the following deduction tree

...

y ∼ y′
〈sr〉

y′ ∼ y

...

x ∼ x′ 〈sr〉
x′ ∼ x

...
xy ∼ xy

〈cr〉
x′y ∼ xy

〈pl〉
x′y ∼ x′y

〈cr〉
x′y′ ∼ x′y

...

x ∼ x′ 〈sr〉
x′ ∼ x

...
xy ∼ xy

〈cr〉
x′y ∼ xy

〈tr〉
x′y′ ∼ xy

〈sr〉
xy ∼ x′y′

Proposition 7. Let C be a set of constraints. We have Ar(C) =Ar(C), Aa(C) =Aa(C) and As(C) =As(C).

Proof. As C ⊆ C , then we have Ar(C) ⊆ Ar(C), Aa(C) ⊆ Aa(C) and As(C) ⊆ As(C). For the converse,

it suffices to observe that rules of Figure 1 do not introduce new resource/action/state constants. Thus

Ar(C)⊆ Ar(C), Aa(C)⊆ Aa(C) and As(C)⊆ As(C).

Lemma 1 (Compactness). Let C be a (possibly infinite) set of constraints:

1. If x ∼ y ∈ C then there is a finite set C f such that C f ⊆ C and x ∼ y ∈ C f

2. If x
f
։ y ∈ C then there is a finite set C f such that C f ⊆ C and x

f
։ y ∈ C f

3. If u
f
֌ v ∈ C then there is a finite set C f such that C f ⊆ C and u

f
֌ v ∈ C f

Proof. Let C be a set of constraints and c ∈ C be a constraint. If c ∈ C because c ∈ C then, as C f = {c}, we

have C f ⊆ C and c ∈ C f . In the other cases, the constraint c is obtained by rules of Figure 1. We prove the

Lemma by induction on the size n of the deduction tree of c.

– Base case (n = 0): Case rule 〈1r〉: the deduction tree is of the form:

〈1r〉
1r ∼ 1r

In this case, c is the constraint 1r ∼ 1r. If C f = /0 then we have C f ⊆ C and c ∈ C f .

– Inductive step: we suppose that properties 1., 2. and 3. hold for deduction trees whose size is less than

or equal to n (IH). Let us prove the lemma for deduction trees of size equal to n+ 1.

- Case 〈kr〉: the deduction tree is of the form:

...

x
f
։ y

...

x
f
։ z

〈kr〉y ∼ z

In this case, c is the constraint y ∼ z. This deduction tree is finite, and the deduction trees of x
f
։ y

and x
f
։ z have a size less than or equal to n. Then, by (IH), there are C f1 ⊆ C and C f2 ⊆ C such that

x
f
։ y ∈ C f1 and x

f
։ z ∈ C f2 . Let C f = C f1 ∪C f2 . Then x

f
։ y ∈ C f and x

f
։ z ∈ C f . Thus, using the

rule 〈kr〉, y ∼ z ∈ C f . Moreover, C f is finite as an union of two finite sets and C f ⊆ C as an union

of two sets included in C .

- Other cases are treated similarly.

4.2 A tableaux calculus for DMBI

In this subsection we propose a tableau calculus for DMBI in the spirit of previous works for BI [8],

BBI [13,14] and DBI [5].

Definition 13. The function ‖.‖ : ΣAct → La is defined as follows: ‖a‖=
{

1a if a = 1

a otherwise

Definition 14. A labelled formula is a 4-uplet (S,φ,x,u) ∈ {T,F}×L ×Lr ×Ls written Sφ : (x,u).
A constrained set of statements (CSS) is a pair 〈F ,C 〉, where F is a set of labelled formulae and C is a set

of constraints, satisfying the following property:

if Sφ : (x,u) ∈ F then x ∼ x ∈ C and u
1a
֌ u ∈ C (Pcss)

A CSS 〈F ,C 〉 is finite if F and C are finite.

The relation4 is defined by 〈F ,C 〉4 〈F ′,C ′〉 iff F ⊆ F ′ and C ⊆ C ′. We denote 〈F f ,C f 〉4 f 〈F ,C 〉 when

〈F f ,C f 〉4 〈F ,C 〉 holds and 〈F f ,C f 〉 is finite.

Proposition 8. For any CSS 〈F f ,C 〉 where F f is finite, there exists C f ⊆C such that C f is finite and 〈F f ,C f 〉
is a CSS (satisfies the property (Pcss)).

Proof. By induction on the number of labelled formula that belongs to F f and using the Lemma 1.

Figure 2 presents the rules of the tableaux calculus for DMBI. We remark that ”ci and c j are new label

constants” means ci 6= c j ∈ γr \Ar(C), ”di is a new label constants” means di ∈ γa \Aa(C) and ”li is a

new label constants” means li ∈ Ls \As(C). We note ⊕ the concatenation of lists. For example [e1;e2;e4]⊕
[e4;e3] = [e1;e2;e4;e4;e3].

Definition 15 (Tableau). Let 〈F0,C0〉 be a finite CSS. A tableau for this CSS is a list of CSS, which are

called branches, built inductively according the following rules:

TI : (x,u) ∈ F
〈TI〉

〈 /0,{1r ∼ x}〉

Tφ → ψ : (x,u) ∈ F
〈T→〉

〈{Fφ : (x,u)}, /0〉 | 〈{Tψ : (x,u)}, /0〉
Fφ → ψ : (x,u) ∈ F

〈F→〉
〈{Tφ : (x,u),Fψ : (x,u)}, /0〉

Tφ∗ψ : (x,u) ∈ F
〈T∗〉

〈{Tφ : (ci,u),Tψ : (c j,u)},{cic j ∼ x}〉
Fφ∗ψ : (x,u) ∈ F and yz ∼ x ∈ C

〈F∗〉
〈{Fφ : (y,u)}, /0〉 | 〈{Fψ : (z,u)}, /0〉

Tφ−∗ψ : (x,u) ∈ F and xy ∼ xy ∈ C
〈T−∗〉

〈{Fφ : (y,u)}, /0〉 | 〈{Tψ : (xy,u)}, /0〉
Fφ−∗ψ : (x,u) ∈ F

〈F−∗〉
〈{Tφ : (ci,u),Fψ : (xci,u)},{xci ∼ xci}〉

T〈 f 〉φ : (x,u) ∈ F
〈T〈−〉〉

〈{Tφ : (ci, li)},{x
‖ f‖
։ ci,u

‖ f‖
֌ li}〉

F〈 f 〉φ : (x,u) ∈ F and x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C

〈F〈−〉〉
〈Fφ : (y,v), /0〉

T♦φ : (x,u) ∈ F
〈T♦〉

〈{Tφ : (ci, li)},{x
di

։ ci,u
di

֌ li}〉
F♦φ : (x,u) ∈ F and x

f
։ y ∈ C and u

f
֌ v ∈ C

〈F♦〉
〈{Fφ : (y,v)}, /0〉

Note: ci, c j , di and li are new label constants and ‖a‖ =
{

1a if a = 1

a otherwise

Fig. 2. Rules of tableaux calculus for DMBI

1. The one branch list [〈F0,C0〉] is a tableau for 〈F0,C0〉
2. If the list Tm ⊕ [〈F ,C 〉]⊕Tn is a tableau for 〈F0,C0〉 and

cond〈F ,C 〉
〈F1,C1〉 | ... | 〈Fk,Ck〉

is an instance of a rule of Figure 2 for which cond〈F ,C 〉 is fulfilled, then the list

Tm ⊕ [〈F ∪F1,C ∪C1〉; ...;〈F ∪Fk,C ∪Ck〉]⊕Tn

is a tableau for 〈F0,C0〉.

A tableau for the formula φ is a tableau for 〈{Fφ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉.

It is possible to show that a new CSS obtained by applying a rule of Figure 2 respects the property (Pcss) of

Definition 14 (using Corollary 1 and Corollary 2). By observing the rule 〈T〈−〉〉 we notice that the role of

the function ‖.‖ consists in introducing the action label 1a rather the action 1.

Definition 16 (Closure condition). A CSS 〈F ,C 〉 is closed if one of the following conditions holds:

1. Tφ : (x,u) ∈ F , Fφ : (y,u) ∈ F and x ∼ y ∈ C

2. FI : (x,u) ∈ F and 1r ∼ x ∈ C

3. T⊥ : (x,u) ∈ F

A CSS is open if it is not closed. A tableau is closed if all its branches are closed.

Definition 17 (Tableau-proof). A tableau-proof for a formula φ is a closed tableau for φ.

[F]
√

1 F((P−∗〈a〉〈b〉Q)∗P)→ ♦Q : (c1, l1)

√
2 T(P−∗〈a〉〈b〉Q)∗P : (c1, l1)√

6 F♦Q : (c1, l1)

√
3 TP−∗ 〈a〉〈b〉Q : (c2, l1)

TP : (c3, l1)

FP : (c3, l1)
√

4 T〈a〉〈b〉Q : (c2c3, l1)

× √
5 T〈b〉Q : (c4, l2)

TQ : (c5, l3)

FQ : (c5, l3)

×

[C]

c1 ∼ c1 l1
1a

֌ l1

c2c3 ∼ c1

c2c3

a
։ c4 l1

a
֌ l2

c4

b
։ c5 l2

b
֌ l3

Fig. 3. Tableau for the formula φ ≡ ((P−∗〈a〉〈b〉Q)∗P)→ ♦Q

4.3 A proof example

We consider the formula φ ≡ ((P−∗〈a〉〈b〉Q)∗P)→ ♦Q and give a tableau-proof for it. By Definition 15,

the tableau [〈{Fφ : (c1, l1)},{1 ∼ 1, l1
1a
֌ l1}〉] is a tableau for φ. We give another representation for the

tableaux, which is

[F]

F((P−∗〈a〉〈b〉Q)∗P)→ ♦Q : (c1, l1)

[C]

c1 ∼ c1 l1
1a
֌ l1

We observe that there are two columns, one for the labelled formula sets of the CSS of the tableau (denoted

[F]) and one for the constraint sets of the CSS of the tableau (denoted [C]). By applying some rules, we

obtain the tableau of Figure 3.

We decorate a labelled formula with
√

i to show that we apply a rule on this formula at step i. We remark

that columns [F] and [C] are trees that contain two branches. There are two branches because there are two

CSS in the tableau. The branches on the left (resp. right) contain the elements of the first (resp. second) CSS.

We also remark that all CSS are closed (denoted ×). The CSS of the left is closed because TP : (c3, l1) ∈ F ,

FP : (c3, l1) ∈ F and c3 ∼ c3 ∈ C (by rule 〈pl〉).
Let us give more details concerning steps 5 and 6. At step 5, when the rule 〈T〈−〉〉 is applied on the labelled

formula T〈b〉Q : (c4, l2), we have to choose a new resource label (c5) and a new state label (l3). Then the

labelled formula TQ : (c5, l3), the µ-constraint c4

‖b‖
։ c5 and the transition constraint l2

‖b‖
֌ l3 are introduced

in the branch. As b 6= 1a, we have ‖b‖= b and so c4

‖b‖
։ c5 is equivalent to c4

b
։ c5 and l2

‖b‖
֌ l3 is equivalent

to l2
b
֌ l3. At step 6, to apply the rule 〈F♦〉 on the labelled formula F♦Q : (c1, l1), we have to choose a

resource label y, an action label f and a state label v such that c1

f
։ y ∈ C and l1

f
֌ v ∈ C . As l1

a
֌ l2 and

l2
b
։ l3 belong to C we have l1

ab
֌ l3 ∈ C , by rule the 〈tt〉. As c2c3

a
։ c4, c4

b
։ c5 and c2c3 ∼ c1 belong to

C , we have c1

ab
։ c5 ∈ C :

c2c3

a
։ c4 c4

b
։ c5 〈tµ〉

c2c3

ab
։ c5 c2c3 ∼ c1 〈kµ1

〉

c1

ab
։ c5

Thus, choosing y = c5, f = ab and v = l3, we can apply the rule that introduces the labelled formula

FQ : (c5, l3) in the branch. Finally, as this tableau is closed then it is a tableau-proof for the formula ((P−∗
〈a〉〈b〉Q)∗P)→ ♦Q.

5 Soundness and completeness properties for DMBI

We now present the proofs of soundness and completeness for our calculus. The soundness proof is based

on techniques similar to the ones used for the BI labelled tableaux calculus [8] and the completeness proof

is based on techniques similar to the ones used for the BBI tableaux calculus [13].

5.1 Soundness

A key notion to prove soundness is the realizability of a CSS 〈F ,C 〉, that means there exist a model K

and embeddings from resource labels to the resource set (⌊.⌋r), action labels to the action set (⌊.⌋a) and

state labels to the state set (⌊.⌋s) such that if Tφ : (x,u) ∈ F then ⌊x⌋r,⌊u⌋s �K φ and if Fφ : (x,u) ∈ F

then ⌊x⌋r,⌊u⌋s 6�K φ. In order to obtain such an embedding, we consider three functions ⌊.⌋r : Ar(C)→ R,

⌊.⌋a : Aa(C) → Act and⌊.⌋s : As(C) → S. We remark, by Proposition 7, that ⌊.⌋s is defined on As(C).
Moreover, the functions ⌊.⌋r are implicitly extended to Dr(C) ⇀ R, that is for all ci1 ◦ . . . ◦ cin ∈ Dr(C),
⌊ci1 ◦ . . .◦ cin⌋r = ⌊ci1⌋r • . . .• ⌊cin⌋r and ⌊1r⌋r = e.

We notice that ⌊x⌋r can be undefined, because resource composition is partial. Finally, the functions ⌊.⌋a are

implicitly extended to Da(C)→Act, that is for all ai1 � . . . �ain ∈Da(C), ⌊ai1 � . . . �ain⌋a = ⌊ai1⌋a⊙ . . .⊙⌊ain⌋a

and ⌊1a⌋a = 1. In fact ⌊ f ⌋a is always defined, because action composition is a total function.

Definition 18 (Realization). Let 〈F ,C 〉 be a CSS. A realization of 〈F ,C 〉 is a 4-upletR=(K ,⌊.⌋r,⌊.⌋a,⌊.⌋s)
such that K = (M ,J·K,�K) is a model, where M = (R ,A ,S, ||·〉〉,µ) is a DRM and R = (R,•,e) is a

resource monoid and A = (Act,⊙,1) is an action monoid, ⌊.⌋r : Dr(C) → R, ⌊.⌋a : Da(C) → Act and

⌊.⌋s : As(C)→ S, such that:

– ⌊1r⌋r = e

– ⌊1a⌋a = 1

– ⌊.⌋r is total, that is ∀x ∈ Dr(C) · ⌊x⌋r ↓
– If f ∈ ΣAct ∩Aa(C) then ⌊ f ⌋a = f

– If Tφ : (x,u) ∈ F then ⌊x⌋r,⌊u⌋s �K φ

– If Fφ : (x,u) ∈ F then ⌊x⌋r,⌊u⌋s 6�K φ

– If x ∼ y ∈ C then ⌊x⌋r = ⌊y⌋r

– If x
f
։ y ∈ C then µ(⌊ f ⌋a,⌊x⌋r) ↓ and µ(⌊ f ⌋a,⌊x⌋r) = ⌊y⌋r

– If u
f
֌ v ∈ C then ⌊u⌋s ||⌊ f ⌋a〉〉 ⌊v⌋s

We say that a CSS is realizable is there exists a realization of this CSS. We say that a tableau is realizable

if at least one of its branches is realizable.

Proposition 9. Let 〈F ,C 〉 be a CSS and R = (K ,⌊.⌋r,⌊.⌋a,⌊.⌋s) be a realization of 〈F ,C 〉. Then R is a

realization of 〈F ,C 〉 and we have

1. For all x ∈ Dr(C), ⌊x⌋r is defined

2. If x ∼ y ∈ C then ⌊x⌋r = ⌊y⌋r

3. If x
f
։ y ∈ C then µ(⌊ f ⌋a,⌊x⌋r) ↓ and µ(⌊ f ⌋a,⌊x⌋r) = ⌊y⌋r

4. If u
f
֌ v ∈ C then ⌊u⌋s ||⌊ f ⌋a〉〉 ⌊v⌋s

Proof. The functions ⌊.⌋r and ⌊.⌋a are implicitly extended to Dr(C)→ R and Da(C)→ Act. Let c ∈ C be a

constraint. If c ∈ C because c ∈ C then there are three cases:

– c is a constraint of the form x ∼ y. In this case, x ∈ Dr(C),y ∈ Dr(C) and x ∼ y ∈ C . Then ⌊x⌋r and ⌊y⌋r

are defined, and we have ⌊x⌋r = ⌊y⌋r, by definition of realization.

– c is a constraint of the form x
f
։ y. In this case, x ∈ Dr(C), y ∈ Dr(C) and x

f
։ y ∈ C . Then ⌊x⌋r and

⌊y⌋r are defined, and we have µ(⌊ f ⌋a,⌊x⌋r) ↓ and µ(⌊ f ⌋a,⌊x⌋r) = ⌊y⌋r, by definition of realization.

– c is a constraint of the form u
f
֌ v. Then we have ⌊u⌋s ||⌊ f ⌋a〉〉 ⌊v⌋s, by definition of realization.

Else, this constraint is obtained by rules of Figure 1 and we consider mutual induction on the size n of the

constraint deduction tree.

– Base case (n = 0):

Case rule 〈1r〉: the deduction tree is of the form

〈1r〉
1r ∼ 1r

Then c is the constraint 1r ∼ 1r and then ⌊1r⌋r = ⌊1r⌋r.

– Inductive step:

We suppose that the lemma holds for constraints having a deduction tree with size less than or equal n

(IH). We prove the proposition for the constraints having a deduction tree of size equal to n+ 1.

- Case 〈cr〉: the deduction tree is of the form

...
x ∼ y

...

yk ∼ yk
〈cr〉

xk ∼ yk

By (IH), ⌊x⌋r, ⌊y⌋r and ⌊yk⌋r are defined. Moreover, by (IH), ⌊x⌋r = ⌊y⌋r. By definition of realiza-

tion we have ⌊y⌋r • ⌊k⌋r ↓ and ⌊y⌋r • ⌊k⌋r = ⌊yk⌋r. Thus ⌊x⌋r • ⌊k⌋r ↓ and ⌊x⌋r • ⌊k⌋r = ⌊y⌋r • ⌊k⌋r.

Therefore we have ⌊xk⌋r = ⌊x⌋r • ⌊k⌋r = ⌊y⌋r • ⌊k⌋r = ⌊yk⌋r.

- Case 〈kr〉: the deduction tree is of the form

...

x
f
։ y

...

x
f
։ z

〈kr〉y ∼ z

By (IH), ⌊x⌋r, ⌊y⌋r and ⌊z⌋r are defined. Moreover, again by (IH), µ(⌊ f ⌋a,⌊x⌋r) ↓, µ(⌊ f ⌋a,⌊x⌋r) =
⌊y⌋r and µ(⌊ f ⌋a,⌊x⌋r) = ⌊z⌋r. Then ⌊y⌋r = ⌊z⌋r, because µ is a function.

- Case 〈1µ〉: the deduction tree is of the form

...
x ∼ x 〈1µ〉

x
1a
։ x

By (IH), ⌊x⌋r is defined. By µ-unit and as ⌊1a⌋a = 1, µ(⌊1a⌋a,⌊x⌋r) ↓ and µ(⌊1a⌋a,⌊x⌋r) = ⌊x⌋r.

- Case 〈tµ〉: the deduction tree is of the form

...

x
f
։ y

...

y
g
։ z

〈tµ〉

x
f g
։ z

By (IH), ⌊x⌋r, ⌊y⌋r and ⌊z⌋r are defined. Moreover, by (IH), µ(⌊ f ⌋a,⌊x⌋r) ↓, µ(⌊ f ⌋a,⌊x⌋r) = ⌊y⌋r,

µ(⌊g⌋a,⌊y⌋r) ↓ and µ(⌊g⌋a,⌊y⌋r) = ⌊z⌋r. Then we have µ(⌊ f ⌋a,⌊x⌋r) ↓ and µ(⌊g⌋a,µ(⌊ f ⌋a,⌊x⌋r)) ↓.

Thus, by µ-composition, µ(⌊ f ⌋a⊙⌊g⌋a,⌊x⌋r) ↓ and µ(⌊ f ⌋a⊙⌊g⌋a,⌊x⌋r) = µ(⌊g⌋a,µ(⌊ f ⌋a,⌊x⌋r)) =
⌊z⌋r. By definition of ⌊.⌋a, ⌊ f �g⌋a = ⌊ f ⌋a ⊙⌊g⌋a. Therefore µ(⌊ f g⌋a,⌊x⌋r) ↓ and µ(⌊ f g⌋a,⌊x⌋r) =
⌊z⌋r.

- Other cases are treated similarly.

Corollary 4. Let 〈F ,C 〉 be a CSS and R= (K ,⌊.⌋r,⌊.⌋a,⌊.⌋s) a realization of 〈F ,C 〉.
If x

f
։ y ∈ C and u

f
֌ v ∈ C then ⌊x⌋r,⌊u⌋s

⌊ f ⌋a−−→ ⌊y⌋r,⌊v⌋s.

Proof. By Proposition 9, µ(⌊ f ⌋a,⌊x⌋r) ↓, µ(⌊ f ⌋a,⌊x⌋r) = ⌊y⌋r and ⌊u⌋s ||⌊ f ⌋a〉〉 ⌊v⌋s. Thus, by definition,

⌊x⌋r,⌊u⌋s
⌊ f ⌋a−−→ ⌊y⌋r,⌊v⌋s.

Lemma 2. The rules of tableaux calculus for DMBI preserve realizability.

Proof. Let T a realizable tableau. By definition, T contains a realizable branch B = 〈F ,C 〉. Let R =
(K ,⌊.⌋r,⌊.⌋a,⌊.⌋s) be a realization of the branch B , where K = (M ,J·K,�K), M = (R ,A ,S, ||·〉〉,µ), R =
(R,•,e) and A = (Act,⊙,1). If we apply a rule on a labelled formula of another branch than B then this

CSS will not be modified, then T remains realizable. Else, we show the result for the considered formula

– TI : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K I. Thus ⌊x⌋r = e, by definition of the forcing relation. As ⌊1r⌋r = e then we have

⌊1r⌋r = ⌊x⌋r and R is a realization of the new branch 〈F ,C ∪{1r ∼ x}〉.
– Tφ → ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K φ → ψ. Thus, by definition, if ⌊x⌋r,⌊u⌋s �K φ then ⌊x⌋r,⌊u⌋s �K ψ.

- Case ⌊x⌋r,⌊u⌋s �K φ: we have ⌊x⌋r,⌊u⌋s �K ψ and R is a realization of the new branch 〈F ∪{Tψ :

(x,u)},C 〉.
- Case ⌊x⌋r,⌊u⌋s 6�K φ: we have R is a realization of the new branch 〈F ∪{Fφ : (x,u)},C 〉.

– Fφ → ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K φ → ψ. Thus ⌊x⌋r,⌊u⌋s �K φ and ⌊x⌋r,⌊u⌋s 6�K ψ. Then R is a realization of the

new branch 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉.
– Tφ∗ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K φ∗ψ. Then, by definition, there exist r1,r2 ∈ R such that r1 • r2 ↓, ⌊x⌋r = r1 • r2,

r1,⌊u⌋s �K φ and r2,⌊u⌋s �K ψ. As ci and c j are new resource label constants, ⌊ci⌋r and ⌊c j⌋r are

not defined. Moreover as ci 6= c j, we can extend R by setting ⌊ci⌋r = r1 and ⌊c j⌋r = r2. Remarking

that ⌊ci⌋r • ⌊c j⌋r ↓ and, by implicit extension, ⌊cic j⌋r = ⌊ci⌋r • ⌊c j⌋r = ⌊x⌋r, we obtain a realization of

〈F ,C ∪{cic j ∼ x}〉 that is a realization of the new branch 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼
x}〉.

– Fφ∗ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s 6�K φ ∗ψ. By definition, for all r1,r2 ∈ R such that r1 • r2 ↓ and ⌊x⌋r = r1 • r2, we

have r1,⌊u⌋s 6�K φ or r2,⌊u⌋s 6�K ψ. The branch is expanded into two branches 〈F ∪{Fφ : (y,u)},C 〉
and 〈F ∪{Fψ : (z,u)},C 〉 where yz ∼ x ∈ C . By Proposition 9, ⌊x⌋r = ⌊y⌋r •⌊z⌋r. Thus ⌊y⌋r,⌊u⌋s 6�K φ

or ⌊z⌋r,⌊u⌋s 6�K ψ. Therefore R is a realization of at least one of the two new branches 〈F ∪ {Fφ :

(y,u)},C 〉 or 〈F ∪{Fψ : (z,u)},C 〉.

– Tφ−∗ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K φ−∗ψ. By definition, for all r ∈ R such that ⌊x⌋r • r ↓ and r,⌊u⌋s �K φ, we have

⌊x⌋r • r,⌊u⌋s �K ψ. The branch is expanded into two branches 〈F ∪{Fφ : (y,u)},C 〉 and 〈F ∪{Tψ :

(xy,u)},C 〉 where xy ∼ xy ∈ C . By Proposition 9 and by definition of realization, ⌊x⌋r • ⌊y⌋r ↓ and

⌊x⌋r • ⌊y⌋r = ⌊xy⌋r.

- Case ⌊y⌋r,⌊u⌋s 6�K φ: R is a realization of the first new branch 〈F ∪{Fφ : (y,u)},C 〉
- Case ⌊y⌋r,⌊u⌋s �K φ: Thus ⌊x⌋r • ⌊y⌋r,⌊u⌋s �K ψ and ⌊xy⌋r,⌊u⌋s �K ψ. R is a realization of the

second new branch 〈F ∪{Tψ : (xy,u)},C 〉.
– Fφ−∗ψ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s 6�K φ −∗ψ. Then there is r ∈ R such that ⌊x⌋r • r ↓ and r,⌊u⌋s �K φ and ⌊x⌋r •
r,⌊u⌋s 6�K ψ. As ci is a new resource label constant, then ⌊ci⌋r is not defined. We can extend R such

that ⌊ci⌋r = r. Remarking that ⌊x⌋r • ⌊ci⌋r ↓, we obtain a realization of 〈F ,C ∪{xci ∼ xci}〉 that is a

realization of the new branch 〈F ∪{Tφ : (ci,u),Fψ : (xci,u)},C ∪{xci ∼ xci}〉.
– T〈 f 〉φ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K 〈 f 〉φ. By definition, there are r ∈ R and s ∈ S such that ⌊x⌋r,⌊u⌋s
f−→ r,s and

r,s �K φ. Then µ(f ,⌊x⌋r) ↓, µ(f ,⌊x⌋r) = r and ⌊u⌋s || f 〉〉 s. As ci and li are new label constants, then

⌊ci⌋r and ⌊li⌋s are undefined. We can extend R such that ⌊ci⌋r = r and ⌊li⌋s = s. Moreover the rule

introduces the resource label ‖ f‖.

- If f = 1 then ‖ f‖= 1a and we have ⌊‖ f‖⌋a = ⌊1a⌋a = 1 = f .

- If f 6= 1 and f ∈ Aa(C) then ‖ f‖= f and we have ⌊‖ f‖⌋a = ⌊ f ⌋a = f .

- If f 6= 1 and f 6∈ Aa(C) then we can extend the realization by ⌊‖ f‖⌋a = f .

Thus, in all cases, we obtain a realization of 〈F ,C ∪{x
‖ f‖
։ ci}∪{u

‖ f‖
֌ li}〉, which is a realization of the

new branch 〈F ∪{Tφ : (ci, li)},C ∪{x
‖ f‖
։ ci,u

‖ f‖
֌ li}〉.

– F〈 f 〉φ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s 6�K 〈 f 〉φ. Then, by definition, for all r ∈ R and s ∈ S such that ⌊x⌋r,⌊u⌋s
f−→ r,s,

we have r,s 6�K φ. By the rule condition, x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C . By Corollary 4, ⌊x⌋r,⌊u⌋s

‖ f‖−−→
⌊y⌋r,⌊v⌋s.

- If f = 1 then ‖ f‖= 1a and we have ⌊‖ f‖⌋a = ⌊1a⌋a = 1 = f .

- If f 6= 1 then ‖ f‖= f and we have ⌊‖ f‖⌋a = ⌊ f ⌋a = f .

Thus we have ⌊‖ f‖⌋a = f and ⌊x⌋r,⌊u⌋s
f−→ ⌊y⌋r,⌊v⌋s. Therefore ⌊y⌋r,⌊v⌋s 6�K φ and we conclude that

R is a realization of the new branch 〈F ∪{Fφ : (y,v)},C 〉.
– T♦φ : (x,u) ∈ F :

We have ⌊x⌋r,⌊u⌋s �K ♦φ. Then, there are r ∈ R and s ∈ S such that ⌊x⌋r,⌊u⌋s r,s and r,s �K φ. By

Proposition 2, there is a ∈ Act such that ⌊x⌋r,⌊u⌋s
a−→ r,s. By definition µ(a,⌊x⌋r) ↓, µ(a,⌊x⌋r) = r, and

⌊u⌋s ||a〉〉 s. As ci, di and li are new resource labels, we can extend R such that ⌊ci⌋r = r, ⌊di⌋a = a and

⌊li⌋s = s. Then, we obtain a realization of 〈F ,C ∪{x
di
։ ci}∪{u

di
֌ li}〉, which is a realisation of the

new branch 〈F ∪{Tφ : (ci, li)},C ∪{x
di
։ ci,u

di
֌ li}〉.

– F♦φ : (x,u) ∈ F :

By realization, we have ⌊x⌋r,⌊u⌋s 6�K ♦φ. Then, by definition, for all r ∈R and s∈ S such that ⌊x⌋r,⌊u⌋s

r,s, we have r,s 6�K φ. By rule condition, x
f
։ y∈ C and u

f
֌ v∈ C . Thus, by Corollary 4, ⌊x⌋r,⌊u⌋s

⌊ f ⌋a−−→
⌊y⌋r,⌊v⌋s. By definition, ⌊x⌋r,⌊u⌋s ⌊y⌋r,⌊v⌋s holds. Therefore ⌊y⌋r,⌊v⌋s 6�K φ, and we conclude that

R is a realization of the new branch 〈F ∪{Fφ : (y,v)},C 〉.

Lemma 3. Closed branches are not realizable.

Proof. Let 〈F ,C 〉 be a closed branch. We suppose that it is realizable. Let R = (K ,⌊.⌋r,⌊.⌋a,⌊.⌋s) be a

realization of it. There are three cases:

- Tφ : (x,u)∈F , Fφ : (y,u)∈F and x∼ y∈C : by definition of realization and Proposition 9, ⌊x⌋r,⌊u⌋s �K

φ, ⌊y⌋r,⌊u⌋s 6�K φ and ⌊x⌋r = ⌊y⌋r. This case is absurd.

- FI : (x,u) ∈ F and 1r ∼ x ∈ C : by definition of realization and Proposition 9, ⌊x⌋r,⌊u⌋s 6�K I and

e = ⌊x⌋r. As ⌊x⌋r = e then ⌊x⌋r,⌊u⌋s �K I, which is absurd.

- T⊥ : (x,u) ∈ F : by definition of realization, ⌊x⌋r,⌊u⌋s �K ⊥ which is absurd.

As all cases are absurd, we can conclude that 〈F ,C 〉 is not realizable.

Theorem 1 (Soundness). If there exists a tableau-proof for a formula φ then φ is valid.

Proof. We suppose that there exists a tableau-proof for φ. Then there is a closed tableau Tφ for the CSS

C = 〈{Fφ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉. Let us suppose that φ is not valid. Then there is a countermodel

K = (M ,J·K,�K), a resource r ∈ R and a state s ∈ S such that r,s 6�K φ. Let R = (K ,⌊.⌋r,⌊.⌋a,⌊.⌋s) such

that ⌊c1⌋r = r and ⌊l1⌋s = s. We remark that R is a realization of C. By Lemma 2, Tφ is realizable. By

Lemma 3, Tφ cannot be closed. But, this is absurd because Tφ is a tableau-proof (so is closed). Thus φ is

valid.

If we come back to the example developed in Subsection 4.3 we can conclude, by Theorem 1, that the

formula ((P−∗〈a〉〈b〉Q)∗P)→ ♦Q is valid.

5.2 Countermodel extraction

Before to study completeness we present a countermodel extraction method for DMBI. The main idea

consists in transforming resource, action and transition constraints into a DRM, from a branch 〈F ,C 〉
which is not closed. In order to obtain a countermodel, this branch has to verify two properties, that are if

Tφ : (x,u) ∈ F then x,u �K φ and if Fφ : (x,u) ∈ F then x,u 6�K φ. First we define what is a Hintikka CSS.

Definition 19 (Hintikka CSS). A CSS 〈F ,C 〉 is a Hintikka CSS if for any formula φ,ψ ∈ L , any action

f ∈ ΣAct and any label x ∈ Lr and u ∈ Ls:

1. Tφ : (x,u) 6∈ F or Fφ : (y,u) 6∈ F or x ∼ y 6∈ C
2. FI : (x,u) 6∈ F or 1r ∼ x 6∈ C
3. T⊥ : (x,u) 6∈ F
4. If TI : (x,u) ∈ F then 1r ∼ x ∈ C
5. If Tφ → ψ : (x,u) ∈ F then Fφ : (x,u) ∈ F or Tψ : (x,u) ∈ F
6. If Fφ → ψ : (x,u) ∈ F then Tφ : (x,u) ∈ F and Fψ : (x,u) ∈ F
7. If Tφ∗ψ : (x,u) ∈ F then ∃y,z ∈ Lr, yz ∼ x ∈ C and Tφ : (y,u) ∈ F and Tψ : (z,u) ∈ F
8. If Fφ∗ψ : (x,u) ∈ F then ∀y,z ∈ Lr, yz ∼ x ∈ C ⇒ Fφ : (y,u) ∈ F or Fψ : (z,u) ∈ F
9. If Tφ−∗ψ : (x,u) ∈ F then ∀y ∈ Lr, xy ∈ Dr(C) ⇒ Fφ : (y,u) ∈ F or Tψ : (xy,u) ∈ F

10. If Fφ−∗ψ : (x,u) ∈ F then ∃y ∈ Lr, xy ∈ Dr(C) and Tφ : (y,u) ∈ F and Fψ : (xy,u) ∈ F

11. If T〈 f 〉φ : (x,u) ∈ F then ∃y ∈ Lr, ∃v ∈ Ls, x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C and Tφ : (y,v) ∈ F

12. If F〈 f 〉φ : (x,u) ∈ F then ∀y ∈ Lr, ∀v ∈ Ls, (x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C)⇒ Fφ : (y,v) ∈ F

13. If T♦φ : (x,u) ∈ F then ∃y ∈ Lr, ∃ f ∈ La, ∃v ∈ Ls, x
f
։ y ∈ C and u

f
֌ v ∈ C and Tφ : (y,v) ∈ F

14. If F♦φ : (x,u) ∈ F then ∀y ∈ Lr, ∀ f ∈ La, ∀v ∈ Ls, (x
f
։ y ∈ C and u

f
֌ v ∈ C)⇒ Fφ : (y,v) ∈ F

The conditions 1., 2. and 3. of Definition 19 certify that a Hintikka CSS is not closed. The other conditions,

from 4. to 14., define labelled formulae that are called fulfilled formulae.

We now define a function Ω that allows us to extract a countermodel from a Hintikka CSS. We denote

[x] = {y ∈ Lr | x ∼ y ∈ C} and Dr(C)/∼ = {[x] | x ∈ Dr(C)}. We remark that the relation ∼ from a closure

of constraints (C) is reflexive (by Corollary 1), symmetric (by rule 〈sr〉) and transitive (by rule 〈tr〉). Then

it is an equivalence relation and [x] is an equivalence class.

Definition 20 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The function Ω associates to 〈F ,C 〉 a triplet

Ω(〈F ,C 〉) = (M ,J·K,�K), where M = (R ,A ,S, ||·〉〉,µ), R = (R,•,e) and A = (Act,⊙,1), such that:

– R = Dr(C)/∼
– Act = Da(C)∪{α} (where α 6∈ Da(C)∪ΣAct)

– S = As(C)
– e = [1r]
– 1 = 1a

– [x]• [y] =
{

↑ if x◦ y 6∈ Dr(C)
[x◦ y] otherwise

– For any a ∈ Act and [x] ∈ R, µ(a, [x]) =

{

↑ if {y | x
a
։ y ∈ C}= /0

{y | x
a
։ y ∈ C} otherwise

– s1 || f 〉〉 s2 iff s1

f
֌ s2 ∈ C

– For all a1,a2 ∈ Act, a1 ⊙ a2 =

{

a1 �a2 if a1 �a2 ∈ Da(C)
α otherwise

– ([x],s) ∈ JPK iff ∃y ∈ [x] such that TP : (y,s) ∈ F

Let us note that ⊙ must be a total function. We introduce an new action α, because if a1 �a2 6∈ Da(C) then

we want a1⊙a2 to be still define. For the construction of µ, if {y | x
f
։ y∈ C}= /0 then µ(f , [x]) is undefined.

Moreover, we will show that if {y | x
f
։ y ∈ C} 6= /0 then {y | x

f
։ y ∈ C} is an equivalence class, meaning

that {y | x
f
։ y ∈ C} ∈ Dr(C)/∼.

For all a ∈ ΣAct such that ‖a‖ ∈ Da(C), we consider that JaKΣAct
= ‖a‖. Moreover, we consider that for

all a ∈ ΣAct such that ‖a‖ 6∈ Da(C), we have JaKΣAct
is not defined. We remark that our consideration is well

formed in case of 1 ∈ ΣAct . Indeed, as we have ‖1‖ = 1a and 1a ∈ Da(C) by the rules 〈1r〉 and 〈1µ〉, then

we have J1KΣAct
= ‖1‖= 1a = 1.

Lemma 4. Let C= 〈F ,C 〉 be a Hintikka CSS and Ω(C) = (M ,J·K,�K) where M = (R ,A ,S, ||·〉〉,µ), R =
(R,•,e) and A = (Act,⊙,1). We have, (M ,J·K,�K) is a model.

Proof. We have to show that R is an resource monoid, A is an action monoid, M is a DRM and J·K :

Prop →℘(R× S).

– R is a resource monoid:

- 1r ∈ Dr(C) by rule 〈1r〉. As e = [1r] and R = Dr(C)/∼, then e ∈ R.

- We show that • : R×R ⇀ R is well-defined, associative, commutative and e is its unit:

∗ We suppose that there are x,y,x′,y′ ∈ Dr(C) such that [x] = [x′] and [y] = [y′]. Then x ∼ x′ ∈ C

and y ∼ y′ ∈ C . There are two cases:

· xy ∈ Dr(C): in this case, [xy] ∈ R and [x] • [y] = [xy]. By Corollary 3, xy ∼ x′y′ ∈ Dr(C).
Thus, we have [x]• [y] = [xy] = [x′y′] = [x′]• [y′].

· xy 6∈ Dr(C): in this case [x]• [y] ↑. By Corollary 3, x′y′ 6∈ Dr(C). Thus we have [x′]• [y′] ↑.

In conclusion [x]• [y] = [x′]• [y′], so • is well-defined.

∗ Let r ∈ R. Then there is x ∈ Dr(C) such that r = [x]. As 1r is the unit of ◦, then x◦ 1r = x1r ∈
Dr(C) Then r • e ↓. Thus, by definition of Ω, r • e = [x]• [1r] = [x1r] = [x] = r.

∗ Let r1,r2 ∈ R. Then there are x,y ∈ Dr(C) such that r1 = [x] and r2 = [y]. We suppose that

r1 • r2 ↓. Then xy ∈ Dr(C). As ◦ is commutative then xy = yx. In conclusion, we have r1 • r2 =
[x]• [y] = [xy] = [yx] = [y]• [x] = r2 • r1.

∗ The proof of associativity is similar (◦ is associative).

Therefore, R is an action monoid.

– A is an action monoid:

- 1a ∈ Da(C) because 1r

1a
։ 1r ∈ C by the rules 〈1r〉 and 〈1µ〉. As 1 = 1a and Act = Da(C)∪{α}

then 1 ∈ Act.

- We show that ⊙ : Act ×Act → Act is associative and 1 is its unit:

∗ Let a ∈ Act. If a ∈ Da(C) then a⊙ 1 = a �1a = a = 1a �a = 1⊙ a, because 1a is the unit of �.

If a 6∈ Da(C) then, as a ∈ Act \Da(C) then a = α. By definition of Ω, we have 1a ⊙α =
α⊙ 1a = α. Then we conclude that, for any a ∈ Act, a⊙ 1 = 1⊙ a = a.

∗ Let a1,a2,a3 ∈ Act.

If (a1 ⊙ a2)⊙ a3 6= α we have (a1 �a2) �a3 ∈ Da(C) and (a1 ⊙ a2)⊙ a3 = (a1 �a2) �a3. As � is

associative, then (a1 �a2) �a3 = a1 � (a2 �a3) and a1 � (a2 �a3) ∈ Da(C). Thus (a1 ⊙ a2)⊙ a3 =
(a1 �a2) �a3 = a1 � (a2 �a3) = a1 ⊙ (a2 ⊙ a3).
If (a1 ⊙ a2)⊙ a3 = α then we suppose that a1 ⊙ (a2 ⊙ a3) 6= α. By arguments similar to the

previous case, a1 ⊙ (a2 ⊙a3) = (a1 ⊙a2)⊙a3, but this is absurd. Thus a1 ⊙ (a2 ⊙a3) = α and

we can conclude that (a1 ⊙ a2)⊙ a3 = a1 ⊙ (a2 ⊙ a3).
Therefore, A is an action monoid.

– M is a DRM:

- We show that ||·〉〉 satisfies the properties ||·〉〉-unit and ||·〉〉-composition:

∗ ||·〉〉-unit: let s ∈ S. Then s ∈ As(C) and there are a state label u and an action label f such that

s
f
֌ u ∈ C or u

f
֌ s ∈ C . Then, by rules 〈1t1〉 and 〈1t2〉, s

1a
֌ s ∈ C . Therefore s ||1〉〉 s.

∗ ||·〉〉-composition: let s1,s2,s3 ∈ S and a1,a2 ∈ Act such that s1 ||a1〉〉 s2 and s2 ||a2〉〉 s3. By defini-

tion of Ω, s1

a1
֌ s2 ∈ C and s2

a2
֌ s3 ∈ C . By rule 〈tt〉, s1

a1�a2
֌ s3 ∈ C . As a1 � a2 ∈ Da(C) we

have a1 ⊙ a2 = a1 �a2, and we conclude that s1 ||a1 ⊙ a2〉〉 s3, by definition of Ω.

- We show that µ : Act ×R ⇀ R is well-defined and satisfies properties µ-unit and µ-composition:

∗ We show that if µ(a, [x]) = {y | x
a
։ y ∈ C} and {y | x

a
։ y ∈ C} 6= /0 then {y | x

a
։ y ∈ C} is

an equivalence class, such that {y | x
a
։ y ∈ C} ∈ Dr(C)/ ∼. Let z ∈ {y | x

a
։ y ∈ C}. Then

x
a
։ z ∈ C . We show [z] = {y | x

a
։ y ∈ C}.

Let z′ ∈ [z] we have z ∼ z′ ∈ C and by rule 〈kµ2
〉, x

a
։ z′ ∈ C . Thus z′ ∈ {y | x

a
։ y ∈ C} and we

have [z]⊆ {y | x
a
։ y ∈ C}.

Let z′ ∈ {z | x
a
։ y ∈ C} we have x

a
։ z′ ∈ C and by rule 〈kr〉, z ∼ z′ ∈ C . Thus z′ ∈ [z] and we

have [z]⊇ {y | x
a
։ y ∈ C}.

We conclude that {y | x
a
։ y ∈ C} is an equivalence class and {y | x

a
։ y ∈ C} ∈ Dr(C)/∼.

We show that for any x ∼ x′ ∈ C and any a ∈ Act, µ(a, [x]) ↑ iff µ(a, [x′]) ↑ and if µ(a, [x]) ↓
then µ(a, [x]) = µ(a, [x′]). If µ(a, [x]) ↑ then there is no resource label y such that x

a
։ y ∈ C .

Then by rule 〈kµ1
〉 there is no resource label y such that x′

a
։ y ∈ C (else we should have

x
a
։ y ∈ C). Thus µ(a, [x′]) is also undefined. If µ(f , [x]) ↓ then there is a resource label y such

that x
a
։ y ∈ C . By rule 〈kµ1

〉, x′
a
։ y ∈ C . Tehn by definition of Ω, µ(a, [x]) = [y] = µ(a, [x′]).

∗ Let r ∈ R. There is x ∈ Dr(C) such that r = [x]. By Corollary 1, x ∼ x ∈ C and by rule 〈1µ〉,
x

1a
։ x ∈ C . Then, by definition of Ω, µ(1,r) ↓ and µ(1,r) = [x] = r.

∗ Let r ∈ R and a1,a2 ∈ Act such that µ(a1,r) ↓ and µ(a2,µ(a1,r)) ↓. As r ∈ R then there is

x ∈ Dr(C) such that r = [x]. As µ(a1,r) ↓ then there is a resource label y such that x
a1
։ y ∈ C .

Then we have µ(a1,r) = [y] and µ(a2, [y]) ↓ and there is a resource label z such that y
a2
։ z ∈ C .

Thus µ(a2, [y]) = [z] and µ(a2,µ(a1,r)) = [z]. By rule 〈tµ〉, x
a1a2
։ z ∈ C . Then, by definition of

Ω, µ(a1 ⊙ a2, [x]) ↓ and µ(a1 ⊙ a2, [x]) = [z]. In conclusion µ(a1 ⊙ a2,r) ↓ and µ(a1 ⊙ a2,r) =
µ(a2,µ(a1,r)).

- We have obviously J·K : Prop →℘(R× S).

Lemma 5. Let C= 〈F ,C 〉 be a Hintikka CSS and Ω(C) = (M ,J·K,�K) where M = (R ,A ,S, ||·〉〉,µ), R =
(R,•,e) and A = (Act,⊙,1). For any formula φ, any x ∈ Dr(C) and any u ∈ As(C), we have the following

properties:

1. If Fφ : (x,u) ∈ F then [x],u 6�K φ
2. If Tφ : (x,u) ∈ F then [x],u �K φ

Proof. Properties 1. and 2. are simultaneous proved by induction on φ.

– Base cases
- Case Fp : (x,u) ∈ F such that p ∈ Prop:

We suppose that [x],u �K p. Thus ([x],u) ∈ JpK. By definition Ω, there is a resource label y such

that y ∈ [x] and TP : (y,u) ∈ F . Then x ∼ y ∈ C and Tp : (y,u) ∈ F . Thus C is not a Hintikka CSS,

by condition 1. of Definition 19. But this is absurd, so [x],u 6�K p.
- Case Tp : (x,u) ∈ F such that p ∈ Prop:

As x ∈ [x] then, by definition of Ω, ([x],u) ∈ JpK. Then [x],u �K p.
- Case F⊥ : (x,u) ∈ F :

We have [x],u 6�K ⊥, by definition.
- Case T⊥ : (x,u) ∈ F :

As C is a Hintikka CSS then, by condition 3. of Definition 19, this case is absurd.
- Case FI : (x,u) ∈ F :

We suppose that [x],u�K I. Then [x] = e and, by definition of Ω, we have [x] = [1r]. Thus x∼ 1r ∈C .

ThereforeC is not a Hintikka CSS, by condition 2. of Definition 19. Being absurd, we can conclude

that [x],u 6�K I.
- Case TI : (x,u) ∈ F :

By condition 4. of Definition 19, 1r ∼ x ∈ C . Then, by definition of Ω, [x] = [1r] = e and [x],u �K I.
– Inductive step: we suppose that properties 1. and 2. hold for formulae φ and ψ (IH)

- Case Fφ → ψ : (x,u) ∈ F :

By condition 6. of Definition 19, Tφ : (x,u) ∈ F and Fψ : (x,u) ∈ F . Then, by (IH), [x],u �K φ

and [x],u 6�K ψ. Thus [x],u 6�K φ → ψ.
- Case Tφ → ψ : (x,u) ∈ F :

By condition 5. of Definition 19, Fφ : (x,u) ∈ F or Tψ : (x,u) ∈ F . Then, by (IH), [x],u 6�K φ or

[x],u �K ψ. Thus [x],u �K φ → ψ.
- Case Fφ∗ψ : (x,u) ∈ F :

Let [y], [z] ∈ R such that [y]• [z] ↓ and [x] = [y]• [z]. By definition of Ω, [x] = [yz]. Then x ∼ yz ∈ C

and, by condition 8. of Definition 19, Fφ : (y,u) ∈ F or Fψ : (z,u) ∈ F . Thus, by (IH), [y],u 6�K φ

or [z],u 6�K ψ. Therefore [x],u 6�K φ∗ψ.
- Case Tφ∗ψ : (x,u) ∈ F :

By condition 7. of Definition 19, there are two resource labels y and z such that yz ∼ x ∈ C , Tφ :

(y,u) ∈ F and Tψ : (z,u) ∈ F . By definition of Ω and by (IH), we have [x] = [yz] = [y] • [z],
[y],u �K φ and [z],u �K ψ. Therefore [x],u �K φ∗ψ.

- Case Fφ−∗ψ : (x,u) ∈ F :

By condition 10. of Definition 19, there is a resource label y such that xy ∈ Dr(C), Tφ : (y,u) ∈ F

and Fψ : (xy,u) ∈ F . By Corollary 1 and rule 〈dr〉, we have y ∈ Dr(C). Then, by (IH) and by

definition of Ω, there is a resource [y] such that [y],u �K φ and [x]• [y],u 6�K ψ. Therefore [x],u 6�K

φ−∗ψ.
- Case Tφ−∗ψ : (x,u) ∈ F :

Let [y] ∈ R such that [x]• [y] ↓ and [y],u �K φ. We show that [x]• [y],u �K ψ. By definition of Ω, we

have [x]• [y] = [xy] and xy ∈ Dr(C). Thus, by condition 9. of Definition 19, Fφ : (y,u) ∈ F or Tψ :

(xy,u) ∈ F . Then, by (IH) and by definition of Ω, [y],u 6�K φ (which is absurd) or [x]• [y],u �K ψ.

Therefore [x],u �K φ−∗ψ.

- Case F〈a〉φ : (x,u) ∈ F :

Let [y]∈ R and v ∈ S such that [x],u
a−→ [y],v. By definition, µ(a, [x]) ↓, µ(a, [x]) = [y] and u ||a〉〉v. We

recall that, we are supposing that µ(JaKΣAct
, [x]) ↓, µ(JaKΣAct

, [x]) = [y] et u ||JaKΣAct
〉〉v. We also remark

that a ∈ ΣAct . Moreover, as µ(JaKΣAct
, [x]) is defined, then JaKΣAct

is also defined. Then JaKΣAct
= ‖a‖

and, by definition of Ω, x
‖a‖
։ y ∈ C and u

‖a‖
֌ v ∈ C . Then, by condition 12. of Definition 19,

Fφ : (y,v) ∈ F and, by (IH), [y],v 6�K φ. Therefore [x],u 6�K 〈a〉φ.

- Case T〈a〉φ : (x,u) ∈ F :

By condition 11. of Definition 19, there are a resource label y and a state label v such that x
‖a‖
։ y∈C ,

u
‖a‖
֌ v ∈ C and Tφ : (y,v) ∈ F . As ‖a‖ ∈ Dr(C) then JaKΣAct

= ‖a‖. By definition of Ω et by (IH),

we have µ(JaKΣAct
, [x]) = [y], u ||JaKΣAct

〉〉 v and [y],v �K φ. Thus [x],u
JaKΣAct−−−−→ [y],v and [y],v �K φ.

Therefore [x],u �K 〈a〉φ.

- Case F♦φ : (x,u) ∈ F :

Let [y] ∈ R and v ∈ S such that [x],u [y],v. By Proposition 2, there is an action a ∈ Act such

that [x],u
a−→ [y],v. Then, by definition, µ(a, [x]) ↓, µ(a, [x]) = [y] and u ||a〉〉 v. By definition of Ω,

x
a
։ y ∈ C and u

a
֌ v ∈ C . Thus, by condition 14. of Definition 19, we have Fφ : (y,v) ∈ F .

Therefore, by (IH), [y],v 6�K φ. In conclusion, we have [x],u 6�K ♦φ.

- Case T♦φ : (x,u) ∈ F :

By condition 13. of Definition 19, there are a resource label y, an action label f and a state label v

such that x
f
։ y ∈ C and u

f
֌ v ∈ C and Tφ : (y,v) ∈ F . By definition of Ω and by (IH), µ(f , [x]) ↓,

µ(f , [x]) = [y], u || f 〉〉 v and [y],v �K φ. Then, by definition, [x],u [y],v and [y],v �K φ. Thus

[x],u �K ♦φ.

Lemma 6. Let 〈F ,C 〉 be a Hintikka CSS such that Fφ : (x,u) ∈ F . Ω(〈F ,C 〉) is a countermodel of φ.

Proof. Let Ω(〈F ,C 〉) = (M ,J·K,�K) where M = (R ,A ,S, ||·〉〉,µ), R = (R,•,e) and A = (Act,⊙,1). By

Lemma 4, (M ,J·K,�K) is a model. By (Pcss), as Fφ : (x,u) ∈ F then x ∈ Dr(C) and u ∈ As(C). We re-

mind that As(C) = As(C) (Proposition 7). By Lemma 5, [x],u 6�K φ in this model. Thus Ω(〈F ,C 〉) is a

countermodel of φ and then φ is not valid.

Let us illustrate the countermodel extraction by taking as an example the formula (〈a〉P∗〈b〉P)→ ♦(P∗P).
By applying the rules of the tableaux calculus, we obtain the tableau of Figure 4.

We highlight that at step 6 and 7 the rule 〈F∗〉 is applied on the labelled formula FP∗P : (c1, l1), considering

the constraint c2c3 ∼ c1 for the step 6 and the constraint c11r ∼ c11r for the step 7 (the resource label c1 is

equal to the resource label c11r).

We obtain a branch B which is a Hintikka CSS. Then, the function Ω allows us to extract a countermodel,

that is Ω(B) = (M ,J·K,�K), where M = (R ,A ,S, ||·〉〉,µ), R = (R,•,e) and A = (Act,⊙,1), such that:

– R = {e, [c1], [c2], [c3], [c4], [c5]}, where [c1] = [c2c3] and e = [1r]

– Act = {1,a,b,α}, where 1 = 1a, JaKΣAct
= ‖a‖= a, JbKΣAct

= ‖b‖ = b. We remind that we write a for

JaKΣAct
and b for JbKΣAct

.

– S = {l1, l2, l3}
– The resource composition •, the function µ and the action composition ⊙:

[F]
√

1 F(〈a〉P∗〈b〉P)→ ♦(P∗P) : (c1, l1)

√
2 T〈a〉P∗〈b〉P : (c1, l1)√

5 F♦(P∗P) : (c1, l1)

√
3 T〈a〉P : (c2, l1)√
4 T〈b〉P : (c3, l1)

TP : (c4, l2)

TP : (c5, l3)

√
6

√
7 FP∗P : (c1, l1)

FP : (c2, l1) FP : (c3, l1)

.

..

FP : (c1, l1)

B

FP : (1r , l1)

.

..

[C]

c1 ∼ c1 l1
1a

֌ l1

c2c3 ∼ c1

c2

a
։ c4 l1

a
֌ l2

c3

b
։ c5 l1

b
֌ l3

.

..

.

..

Fig. 4. Tableau for the formula (〈a〉P ∗〈b〉P)→ ♦(P∗P)

• e [c1] [c2] [c3] [c4] [c5]

e e [c1] [c2] [c3] [c4] [c5]
[c1] [c1] ↑ ↑ ↑ ↑ ↑
[c2] [c2] ↑ ↑ [c1] ↑ ↑
[c3] [c3] ↑ [c1] ↑ ↑ ↑
[c4] [c4] ↑ ↑ ↑ ↑ ↑
[c5] [c5] ↑ ↑ ↑ ↑ ↑

µ e [c1] [c2] [c3] [c4] [c5]

1 e [c1] [c2] [c3] [c4] [c5]
a ↑ ↑ [c4] ↑ ↑ ↑
b ↑ ↑ ↑ [c5] ↑ ↑
α ↑ ↑ ↑ ↑ ↑ ↑

⊙ 1 a b α

1 1 a b α

a a α α α

b b α α α

α α α α α

– The relation ||·〉〉:

l1

l2

l3

a

b

1

1

1

– The interpretation: JPK = {([c4], l2),([c5], l3)}

Now, we can verify that we have a countermodel that does not satisfy (〈a〉P∗ 〈b〉P)→ ♦(P∗P):

1. We have ([c1], l1) 6∈ JPK and ([c2], l1) 6∈ JPK. Then [c1], l1 6�K P and [c2], l1 6�K P.

2. r • r′ = [c1] iff (r = e and r′ = [c1]) or (r = [c1] and r′ = e) or (r = [c2] and r′ = [c3]) or (r = [c3] and

r′ = [c2]).
3. By 1. and 2. we have [c1], l1 6�K P∗P.

4. As ([c4], l2) ∈ JPK and ([c5], l3) ∈ JPK then [c4], l2 �K P and [c5], l3 �K P.

5. [c2], l1
a−→ [c4], l2 holds because µ(a, [c2]) = [c4] and l1 ||a〉〉 l2.

6. [c3], l1
b−→ [c5], l3 holds because µ(b, [c3]) = [c5] and l1 ||b〉〉 l3.

7. By 4. and 5. we have [c2], l1 �K 〈a〉P and by 4. and 6. we have [c3], l1 �K 〈b〉P.

8. As [c2]• [c3] = [c1] and by 7. we have [c1], l1 �K 〈a〉P∗ 〈b〉P.

9. We have r,s
f−→ [c1], l1 iff r = [c1], s = l1 and f = 1.

10. By 3. and 9. we deduce that [c1], l1 6�K ♦(P∗P)
11. By 8. and 10. we conclude that [c1], l1 6�K (〈a〉P∗ 〈b〉P)→ ♦(P∗P)

5.3 Completeness

In this section, we show the completeness of the tableaux calculus for DMBI. This proof is an extension of

the proof of completeness of tableaux for BBI [13]. In this completeness proof, we consider a formula ϕ for

which there exists no tableau-proof and we present a method that build a (possibly infinite) Hintikka CSS,

that leads to the conclusion that ϕ is not valid.

Definition 21 (Fair strategy). A fair strategy is a labelled formulae sequence (Siχi : (xi,ui))i∈N in {T,F}×
L × Lr × Ls such that any labelled formula occurs infinitely many times in this sequence, that is {i ∈ N |
Siχi : (xi,ui)≡ Sχ : (x,u)} is infinite for any Sχ : (x,u) ∈ {T,F}×L ×Lr ×Ls.

Proposition 10. There exists a fair strategy.

Proof. Let X = {F,T}×L × Lr × Ls be the set of all labelled formulae. As Prop and ΣAct are countable

then L is countable. Moreover, Lr and Ls are countable (remember that γr is countable). Therefore, X is

countable. Then N×X is countable and there exists a surjective function ϕ : N−→ N×X .

Let p : N×X −→ X defined by p(i,x) = x and u = p ◦ϕ. We show that u is a fair strategy by showing that

for any x ∈ X , u−1({x}) is infinite. Let x ∈ X . u−1({x}) = ϕ−1(p−1({x})). But p−1({x}) = {(i,x)|i ∈ N}
so p−1(x) is infinite. As ϕ is surjective ϕ−1(p−1({x})) is also infinite.

Definition 22. Let P a set of CSS,

1. P is 4-closed if 〈F ,C 〉 ∈ P holds whenever 〈F ,C 〉4 〈F ′,C ′〉 and 〈F ′,C ′〉 ∈ P holds.

2. P is of finite character if 〈F ,C 〉 ∈ P holds whenever 〈F f ,C f 〉 ∈ P holds for every 〈F f ,C f 〉4 f 〈F ,C 〉.
3. P is saturated if for any 〈F ,C 〉 ∈ P and any instance

cond(F ,C)

〈F1,C1〉 | ... | 〈Fk,Ck〉

of a rule of Figure 2, if cond(F ,C) is fulfilled then 〈F ∪Fi,C ∪Ci〉 ∈ P for at least one i ∈ {1, ...,k}.

Definition 23 (Oracle). An oracle is a set of non closed CSS which is 4-closed, of finite character and

saturated.

Lemma 7. There exists an oracle which contains every finite CSS for which there exists no closed tableau.

Proof. The proof is given in Appendix B. It is an adaptation of the completeness proof for BBI tableaux

calculus [13] which is also an adaptation of the completeness proof of tableaux for first-order logic [6].

We first start the proof of completeness by assuming that there exists no tableau-proof for the formula ϕ.

By showing that ϕ is not valid, we deduce that our labelled tableaux calculus for DMBI is complete.

Let T0 be an initial tableau for ϕ.

1. T0 = [〈{Fϕ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉]

2. There is no closed tableau for T0

By Lemma 7, there exists an oracle which contains every finite CSS for which there exists a no closed

tableau. Let P be such an oracle. By hypothesis 〈{Fϕ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉 ∈ P . By Proposition

10, there exists a fair strategy S . We denote Siχi : (xi,ui) the ith formula of S .

Now, we built a sequence 〈Fi,Ci〉06i as follows:

– 〈F0,C0〉= 〈{Fϕ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉

– If 〈Fi ∪{Siχi : (xi,ui)},Ci〉 6∈ P then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
– If 〈Fi ∪{Siχi : (xi,ui)},Ci〉 ∈ P then we have 〈Fi+1,Ci+1〉 = 〈Fi ∪{Siχi : (xi,ui)}∪Fe,Ci ∪Ce〉 such

that Fe and Ce are determined by:

Si Fi Fe Ce

T I /0 {1r ∼ xi}
T φ∗ψ {Tφ : (a,ui),Tψ : (b,ui)} {ab∼ xi}
F φ−∗ψ {Tφ : (a,ui),Fψ : (xia,ui)} {xia∼ xia}

T 〈 f 〉φ {Tφ : (a,d)} {xi

‖ f‖
։ a,ui

‖ f‖
֌ d}

T ♦φ {Tφ : (a,d)} {xi

c

։ a,ui

c

֌ d}
Otherwise /0 /0

with a= c2i+2, b= c2i+3, c= di+2 and d= li+2.

Proposition 11. For any i ∈N, the following properties hold:

1. Fϕ : (c1, l1) ∈ Fi, c1 ∼ c1 ∈ Ci and l1
1a
֌ l1 ∈ Ci

2. Fi ⊆ Fi+1 and Ci ⊆ Ci+1

3. 〈Fi,Ci〉06i ∈ P

4. Ar(Ci)⊆ {c1,c2, ...,c2i+1}
5. Aa(Ci)⊆ {d1,d2, ...,di+1}∪ΣAct

6. As(Ci)⊆ {l1, l2, ..., li+1}

Proof. - Property 1. holds for i = 0. As 〈Fi+1,Ci+1〉 is obtained by extension (∪) of 〈Fi,Ci〉 then this

property holds for all i> 0.

- Property 2. holds because 〈Fi+1,Ci+1〉 is obtained by extension (∪) of 〈Fi,Ci〉.
- Properties 3., 4., 5., and 6. are proved simultaneously by induction on i.

- The base case (i = 0) obviously holds: as 〈F0,C0〉 = 〈{Fϕ : (c1, l1)},{c1 ∼ c1, l1
1a
֌ l1}〉 then we

remark that properties 4., 5., and 6. hold and property 3. holds by hypothesis.

- Now we consider the inductive case. We assume that the properties 3., 4., 5. and 6. hold for i = n

(induction hypothesis (IH) and show that they hold for i = n+ 1:
– If 〈Fn ∪{Snχn : (xn,un)},Cn〉 6∈ P then 〈Fn+1,Cn+1〉 = 〈Fn,Cn〉. Then the properties 3., 4., 5. and

6. hold by (IH).

– If 〈Fn∪{Snχn : (xn,un)},Cn〉 ∈ P then it is a CSS (the elements of P are CSS, by definition). Then,

by (Pcss), xn ∼ xn ∈ Cn and un

1a
֌ un ∈ Cn. Thus, we have γr ∩Er(xn) ∈ Ar(Cn) and un ∈ As(Cn).

Therefore, by Proposition 7, γr ∩Er(xn) ∈ Ar(Cn) and un ∈ As(Cn) (1). There are six cases:
- If Sn = T and χn = I:

In this case, 〈Fn+1,Cn+1〉 = 〈Fn ∪ {Snχn : (xn,un)},Cn ∪ {1r ∼ xn}〉. As P is saturated and

applying the rule 〈TI〉, we have 〈Fn+1,Cn+1〉 ∈ P . By (1), we remark that Ar(Cn+1) = Ar(Cn),
Aa(Cn+1) = Aa(Cn) and As(Cn+1) = As(Cn). In conclusion, by (IH), the properties 3., 4., 5.

and 6. hold.

- Case Sn = T and χn = φ∗ψ:

In this case 〈Fn+1,Cn+1〉= 〈Fn∪{Snχn : (xn,un)}∪{Tφ : (c2n+2,un) andTψ : (c2n+3,un)},Cn∪
{c2n+2c2n+3 ∼ xn}〉. By (IH), c2n+2 6∈ Ar(Cn) and c2n+3 6∈ Ar(Cn), then they are new resource

label constants. Moreover, as 〈Fn ∪ {Snχn : (xn,un)},Cn〉 ∈ P , as P is saturated, applying

the rule 〈T∗〉 and using labels c2n+2 and c2n+3 then we have 〈Fn+1,Cn+1〉 ∈ P . Thus prop-

erty 3. holds. Moreover, by (1), Ar(Cn+1) = Ar(Cn)∪{c2n+2,c2n+3}, Aa(Cn+1) = Aa(Cn) and

As(Cn+1) = As(Cn). Therefore, the properties 4., 5. and 6. hold by (IH).

- Case Sn = F and χn = φ−∗ψ:

In this case 〈Fn+1,Cn+1〉= 〈Fn∪{Snχn : (xn,un)}∪{Tφ : (c2n+2,un) and Fψ : (xnc2n+2,un)},Cn∪
{xnc2n+2 ∼ xnc2n+2}〉. By (IH), c2n+2 6∈ Ar(Cn), then it is a new resource label constant. As

〈Fn ∪ {Snχn : (xn,un)},Cn〉 ∈ P , as P is saturated, applying the rule 〈F−∗〉 and using label

c2n+2 then we have 〈Fn+1,Cn+1〉 ∈ P . Thus property 3. holds. Moreover, by (1), we have

Ar(Cn+1) = Ar(Cn)∪ {c2n+2}, Aa(Cn+1) = Aa(Cn) and As(Cn+1) = As(Cn). Therefore, the

properties 4., 5. and 6. hold by (IH).

- Case Sn = T and χn = 〈 f 〉φ:

In this case 〈Fn+1,Cn+1〉= 〈Fn∪{Snχn : (xn,un)}∪{Tφ : (c2n+2, ln+2)},Cn∪{xn

‖ f‖
։ c2n+2,un

‖ f‖
֌

ln+2}〉. By (IH), c2n+2 6∈ Ar(Cn) and ln+2 6∈ As(Cn), then they are a new resource label con-

stant and a new state label constant. As 〈Fn ∪ {Snχn : (xn,un)},Cn〉 ∈ P , as P is saturated,

applying the rule 〈T〈−〉〉 and using labels c2n+2 and ln+2 then we have 〈Fn+1,Cn+1〉 ∈ P .

Therefore property 3. holds. Moreover, by (1), Ar(Cn+1) = Ar(Cn)∪{c2n+2} and As(Cn+1) =
As(Cn)∪{ln+2}. If f = 1 then ‖ f‖= 1a, and recalling that 1a 6∈ γa we have Aa(Cn+1) =Aa(Cn).
Else we have Aa(Cn+1) = Aa(Cn)∪{‖ f‖}. Therefore, the properties 4., 5. and 6. hold by (IH).

- Case Sn = T and χn = ♦φ:

In this case 〈Fn+1,Cn+1〉= 〈Fn∪{Snχn : (xn,un)}∪{Tφ : (c2n+2, ln+2)},Cn∪{xn

dn+2

։ c2n+2,un

dn+2

֌

ln+2}〉. By (IH), c2n+2 6∈ Ar(Cn), dn+2 6∈ Aa(Cn) and ln+2 6∈ As(Cn), then they are a new re-

source label constant, a new action label constant and a new state label constant. As 〈Fn ∪
{Snχn : (xn,un)},Cn〉 ∈ P , as P is saturated, applying the rule 〈T♦〉 and using labels c2n+2,

dn+2 and ln+2 then we have 〈Fn+1,Cn+1〉 ∈ P . Therefore property 3. holds. Moreover, by (1),

Ar(Cn+1) = Ar(Cn)∪{c2n+2}, Aa(Cn+1) = Aa(Cn)∪{dn+2} and As(Cn+1) = As(Cn)∪{ln+2}.

Therefore, the properties 4., 5. and 6. hold by (IH).

- In the last case, 〈Fi+1,Ci+1〉= 〈Fi∪{Siχi : (xi,ui)},Ci〉. By hypothesis, 〈Fi∪{Siχi : (xi,ui)},Ci〉 ∈
P , then property 3. holds. Properties 4., 5. and 6. hold by (IH).

Proposition 12. Let the limit CSS 〈F∞,C∞〉 of the sequence 〈Fi,Ci〉06i be defined by:

F∞ =
⋃

i>0

Fi and C∞ =
⋃

i>0

Ci

We have the following properties:

1. 〈F∞,C∞〉 ∈ P

2. For all labelled formulae Sφ : (x,u), if 〈F∞ ∪{Sφ : (x,u)},C∞〉 ∈ P then Sφ : (x,u) ∈ F∞

Proof. We first prove that 〈F∞,C∞〉 is a CSS (satisfies properties (Pcss)). Let Sφ : (x,u) ∈ F∞. We show

that x ∼ x ∈ C∞ and u
1a
֌ u ∈ C∞. By definition of F∞, there is i such that Sφ : (x,u) ∈ Fi. By property 3

of Proposition 11, 〈Fi,Ci〉 ∈ P . Then 〈Fi,Ci〉 is a CSS and, by (Pcss), x ∼ x ∈ Ci and u
1a
֌ u ∈ Ci. Thus, by

definition of limit CSS, x ∼ x ∈ C∞ and u
1a
֌ u ∈ C∞. We now prove the properties of the proposition:

1. Let 〈F f ,C f 〉4 f 〈F∞,C∞〉. As F f and C f are finite and as the sequence 〈Fi,Ci〉06i is increasing by prop-

erty 2 of Proposition 11, then there is j ∈N such that 〈F f ,C f 〉4 〈F j,C j〉. By property 3 of Proposition

11, 〈F j ,C j〉 ∈ P . As P is 4-closed then we have 〈F f ,C f 〉 ∈ P . Thus for all 〈F f ,C f 〉 4 f 〈F∞,C∞〉, we

have 〈F f ,C f 〉 ∈ P . Therefore 〈F∞,C∞〉 ∈ P , because P is of finite character.

2. Let Sφ : (x,u) such that 〈F∞ ∪{Sφ : (x,u)},C∞〉 ∈ P . By property (Pcss) x ∼ x ∈ C∞ and u
1a
֌ u ∈ C∞.

By compactness (Lemma 1), there are C f 1
⊆ C∞ and C f 2

⊆ C∞ such that C f 1
and C f 2

are finite and

x ∼ x ∈ C f 1
and u

1a
֌ u ∈ C f 2

. As the sequence is increasing, there are j1, j2 ∈ N such that C f 1
⊆ C j1

and C f 2
⊆ C j2 . Let j = max(j1, j2). As the sequence is increasing, we have C f 1

⊆ C j and C f 2
⊆ C j.

As Sφ : (x,u) occurs infinitely many times in our fair strategy, there is k > j such that SkFk : (xk,uk) =

Sφ : (x,u). Moreover C j ⊆ Ck. Then x ∼ x ∈ Ck and u
1a
֌ u ∈ Ck. Thus 〈Fk ∪ {Sφ : (x,u)},Ck〉 is a

CSS (satisfies the property (Pcss)) and 〈Fk ∪{Sφ : (x,u)},Ck〉 4 〈F∞ ∪{Sφ : (x,u)},C∞〉, by definition

of limit CSS. As P is 4-closed then 〈Fk ∪ {Sφ : (x,u)},Ck〉 ∈ P . By construction of 〈Fk+1,Ck+1〉,
Sφ : (x,u) ∈ Fk+1. Therefore Sφ : (x,u) ∈ F∞.

Lemma 8. The limit CSS is a Hintikka CSS.

Proof. By property 1 of Proposition 12, 〈F∞,C∞〉 ∈ P . We verify that all conditions of Definition 19 hold.

1. We suppose that Tφ : (x,u) ∈ F∞ and Fφ : (y,u) ∈ F∞ and x ∼ y ∈ C∞. Then 〈F∞,C∞〉 is closed. Thus,

by definition of oracle, 〈F∞,C∞〉 6∈ P . This is absurd, and condition 1. of Definition 19 holds.

2. Similar to condition 1.

3. Similar to condition 1.

4. We suppose that TI : (x,u) ∈ F∞. Then there is j ∈ N such that TI : (x,u) ∈ F j. Moreover there exists

k> j such that the kth formula of our fair strategy is TI : (x,u). As the sequence 〈Fi,Ci〉06i is increasing

(property 2 of Proposition 11), then TI : (x,u)∈Fk. By property 3 of Proposition 11, 〈Fk,Ck〉 ∈P . Then

〈Fk+1,Ck+1〉= 〈Fk,Ck ∪{1r ∼ x}〉. Thus 1r ∼ x ∈ C∞. Then condition 4. of Definition 19 holds.

5. We suppose that Tφ → ψ : (x,u) ∈ F∞. As P is saturated then we have 〈F∞ ∪{Fφ : (x,u)},C∞〉 ∈ P

or 〈F∞ ∪{Tψ : (x,u)},C∞〉 ∈ P , by rule 〈F →〉. By property 2 of Proposition 12, Fφ : (x,u) ∈ F∞ or

Tψ : (x,u) ∈ F∞. Then condition 5. of Definition 19 holds.

6. We suppose that Fφ → ψ : (x,u) ∈ F∞. As P is saturated then 〈F∞ ∪{Tφ : (x,u),Fψ : (x,u)},C∞〉 ∈ P

by rule 〈T→〉. As P is 4-closed then 〈F∞ ∪{Tφ : (x,u)},C∞〉 ∈ P and 〈F∞ ∪{Fψ : (x,u)},C∞〉 ∈ P .

By property 2 of Proposition 12, Tφ : (x,u) ∈ F∞ and Fψ : (x,u) ∈ F∞. Then condition 6 of Definition

19 holds.

7. We suppose that Tφ∗ψ : (x,u)∈ F∞. Using an argument similar to the one of condition 4., there is k ∈N

such that the kth formula of our fair strategy is Tφ∗ψ : (x,u), Tφ∗ψ : (x,u)∈Fk and 〈Fk,Ck〉 ∈P . Then,

by construction of the limit CSS, 〈Fk+1,Ck+1〉= 〈Fk ∪{Tφ : (a,u),Tψ : (b,u)},Ck ∪{ab∼ x}〉, where

a = c2k+2 and b = c2k+3. Then ab ∼ x ∈ C∞, Tφ : (a,u) ∈ F∞ and Tψ : (b,u) ∈ F∞. Then condition 7.

of Definition 19 holds.

8. We suppose that Fφ∗ψ : (x,u)∈ F∞. Let c,d ∈ Lr such that cd ∼ x∈ C∞. As P is saturated then we have

〈F∞∪{Fφ : (c,u)},C∞〉 ∈ P or 〈F∞∪{Fψ : (d,u)},C∞〉 ∈ P , by rule 〈F∗〉. By property 2 of Proposition

12, Fφ : (c,u) ∈ F∞ or Fψ : (d,u) ∈ F∞. Then condition 8. of Definition 19 holds.

9. Similar to condition 8.

10. Similar to condition 7.

11. We suppose that T〈 f 〉φ : (x,u) ∈ F∞. Using an argument similar to the one of condition 4., there is

k ∈N such that the kth formula of our fair strategy is T〈 f 〉φ : (x,u), T〈 f 〉φ : (x,u)∈Fk and 〈Fk,Ck〉 ∈ P .

Then, by construction of the limit CSS, 〈Fk+1,Ck+1〉= 〈Fk∪{Tφ : (a,d)},Ck∪{x
‖ f‖
։ a,u

‖ f‖
֌ d}〉, where

a = c2k+2 and d = lk+2. Then x
‖ f‖
։ a ∈ C∞, u

‖ f‖
֌ d ∈ C∞ and Tφ : (a,d) ∈ F∞. Then condition 11. of

Definition 19 holds.

12. We suppose that F〈 f 〉φ : (x,u) ∈ F∞. Let c ∈ Lr and l ∈ Ls such that x
‖ f‖
։ c ∈ C∞ and u

‖ f‖
։ l ∈ C∞. As

P is saturated then we have 〈F∞ ∪{Fφ : (c, l)},C∞〉 ∈ P , by rule 〈F〈−〉〉. By property 2 of Proposition

12, Fφ : (c, l) ∈ F∞. Then condition 12. of Definition 19 holds.

13. We suppose that T♦φ : (x,u) ∈ F∞. Using an argument similar to the one of condition 4., there is

k ∈ N such that the kth formula of our fair strategy is T♦φ : (x,u), T♦φ : (x,u) ∈ Fk and 〈Fk,Ck〉 ∈ P .

Then, by construction of the limit CSS, 〈Fk+1,Ck+1〉= 〈Fk ∪{Tφ : (a,d)},Ck∪{x
c

։ a,u
c

֌ d}〉, where

a= c2k+2, c= dk+2 and d= lk+2. Then x
c

։ a ∈ C∞, u
c

֌ d ∈ C∞ and Tφ : (a,d) ∈ F∞. Then condition

13. of Definition 19 holds.

14. We suppose that F♦φ : (x,u) ∈ F∞. Let c ∈ Lr, d ∈ La and l ∈ Ls such that x
d
։ c ∈ C∞ and u

d
։ l ∈ C∞.

As P is saturated then 〈F∞ ∪ {Fφ : (c, l)},C∞〉 ∈ P , by rule 〈F♦〉. By property 2 of Proposition 12,

Fφ : (c, l) ∈ F∞. Then condition 14. of Definition 19 holds.

Theorem 2 (Completeness). Let ϕ be a formula. If ϕ is valid then there is a tableau-proof for ϕ.

Proof. We suppose that there is no tableau-proof for the formula ϕ and show that ϕ is not valid. The method,

that we present here, allows us to build a limit CSS 〈F∞,C∞〉 that is a Hintikka CSS, by Lemma 8. By

property 1 of Proposition 11, Fϕ : (c1, l1) ∈ Fi for any i> 0. By definition of limit CSS, Fϕ : (c1, l1) ∈ F∞.

By Lemma 6, ϕ is not valid.

6 Conclusion

We have defined and studied a modal separation logic, called DMBI, that allows us to capture resource

transformations and to express properties on any reachable resources. We showed that DMBI models can

capture synchronous or asynchronous concurrent processes that perform actions on resources. Moreover we

have defined a tableaux calculus for this logic and proved soundness and completeness and also provided a

countermodel extraction method.

Further works will be devoted to study modelling of protocols, webservices, multi agent systems in such

logics, knowing that in these cases, we consider agents or processes that exchange messages or informations

that can be viewed as resources, which is the central concern of DMBI. We will also study a located resource

extension of DMBI [1,2].

References

1. N. Biri and D. Galmiche. A Separation Logic for Resource Distribution. In 23rd Conference on Foundations of

Software Technology and Theoretical Computer Science, FSTTCS’03, LNCS 2914, pages 23–37, December 2003.

Mumbai, India.

2. M. Collinson, B. Monahan, and D. Pym. A Logical and Computational Theory of Located Resource. Journal of

Logic and Computation, 19(6):1207–1244, 2009.

3. M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Mathematical Structures in

Computer Science, 19(5):959–1027, 2009.

4. M. Collinson, D. Pym, and C. Tofts. Errata for Formal Aspects of Computing (2006) 18(4): 495-517 and their

consequences. Formal Aspects of Computing, 19:551–554, 2007.

5. J.R. Courtault and D. Galmiche. A Modal BI Logic for Dynamic Resource Properties. In Logical Foundations of

Computer Science, LFCS 2013, LNCS 7734, pages 134–148, 2013. San Diego, CA.

6. M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Monographs in Computer Science.

Springer Verlag, 1990.

7. D. Galmiche and D. Méry. Tableaux and Resource Graphs for Separation Logic. Journal of Logic and Computation,

20(1):189–231, 2010.

8. D. Galmiche, D. Méry, and D. Pym. The semantics of BI and Resource Tableaux. Math. Struct. in Comp. Science,

15(6):1033–1088, 2005.

9. J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

10. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 32(1):137–

161, January 1985.

11. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, October 1969.

12. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In 28th ACM Symposium on

Principles of Programming Languages, POPL 2001, pages 14–26, London, UK, 2001.

13. D. Larchey-Wendling. The formal strong completeness of partial monoidal Boolean BI. Journal of Logic and

Computation, 2014. To appear.

14. D. Larchey-Wendling and D. Galmiche. Exploring the relation between intuitionistic BI and boolean BI: An

unexpected embedding. Math. Struct. in Comp. Science, 19:1–66, 2009.

15. P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic, 5(2):215–244, 1999.

16. D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of Applied Logic Series.

Kluwer Academic Publishers, 2002.

17. D. Pym and C. Tofts. A calculus and logic of resources and processes. Formal Aspects of Computing, 18:495–517,

2006.

18. D. Pym and C. Tofts. Systems modelling via resources and processes: Philosophy, calculus, semantics, and logic.

Electronic Notes in Theoretical Computer Science, 172:545–587, 2007.

A Proofs of Section 3

Proposition 3. The function µlist : L(Act#
atom)×M(Ratom) ⇀M(Ratom) satisfies the properties µ-unit and

µ-composition.

Proof. Obviously, µ-unit holds because µlist([],R) = R, by definition. Let us consider L1,L2 ∈ L(Act#
atom)

and R ∈ M(Ratom). We suppose that we have µlist(L1,R) ↓ and µlist(L2,µlist(L1,R)) ↓. We show that µ-

composition holds by induction on the size l of L1 (l = |L1|):

– Base case (l = 0):

We have L1 = [] and then L1 ⊕ L2 = L2 and µlist(L1,R) = R. Thus, we have µlist(L2,µlist(L1,R)) =
µlist(L2,R) = µlist(L1 ⊕L2,R) and µlist(L1 ⊕L2,R) is then defined.

– Inductive step:

We suppose that µ-composition holds for any lists L1 and L2 such that |L1| 6 l (IH) and show the

property for lists L1 and L2 such that |L1| = l + 1. We denote L1 = [A1; ...;Al+1]. As µlist(L1,R) ↓
then, by definition, we have µ#(A1,R) ↓, µlist([A2; ...;Al+1],µ

#(A1,R)) ↓ and µlist(L2,µlist(L1,R)) =
µlist(L2,µlist([A1; ...;Al+1],R))= µlist(L2,µlist([A2; ...;Al+1],µ

#(A1,R))). Then, by (IH), µlist([A2; ...;Al+1]⊕
L2,µ

#(A1,R)) ↓ and µlist([A2; ...;Al+1]⊕L2,µ
#(A1,R)) = µlist(L2,µlist([A2; ...;Al+1],µ

#(A1,R))). As we

have µ#(A1,R) ↓ and µlist([A2; ...;Al+1]⊕L2,µ
#(A1,R)) ↓ then µlist([A2; ...;Al+1]⊕L2,µ

#(A1,R)) = µlist(
[A1; ...;Al+1]⊕ L2,R) = µlist(L1 ⊕ L2,R). Wze deduce that µlist(L1 ⊕ L2,R) ↓ and µlist(L1 ⊕ L2,R) =
µlist(L2,µlist(L1,R)).

Proposition 4. The function |·〉 list : S#×L(Act#
atom)×S# satisfies the properties ||·〉〉-unit and ||·〉〉-composition.

Proof. The ||·〉〉-unit property obviously holds, by definition. Let us consider S1,S2,S3 ∈ S# and L1,L2 ∈
L(Act#

atom) such that S1 |L1〉 list S2 and S2 |L2〉 list S3. If L1 = [] then S1 = S2 and S1 |L2〉 list S3. Thus S1 |L1 ⊕L2〉 list

S3. The case L2 = [] is similar. The last case is L1 and L2 are not equal to the empty list. Then there

are A1, ...,Ak,A
′
1, ...,A

′
l ∈ Act#

atom such that L1 = [A1; ...;Ak] and L2 = [A′
1; ...;A′

l]. By definition, there are

U1, ...,Uk−1,V1, ...,Vl−1 ∈ S# such that S1 |A1〉 #U1 |A2〉# ... |Ak−1〉#Uk−1 |Ak〉# S2 and S2 |A′
1〉 #V1 |A′

2〉# ...
∣

∣A′
l−1

〉

#

Vl−1

∣

∣A′
l

〉

S3. Thus S1 |A1〉# U1 |A2〉 # ... |Ak−1〉# Uk−1 |Ak〉 # S2 |A′
1〉# V1 |A′

2〉 # ...
∣

∣A′
l−1

〉

Vl−1

∣

∣A′
l

〉

S3. There-

fore, we have S1 |L1 ⊕L2〉 list S3.

B Proof of Lemma 7

In this section, we prove that there exists an oracle which contains every finite CSS for which there is

no closed tableau. That is an extension and adaptation of the completeness proof of tableaux calculus for

BBI [13] which is an adaptation of the completeness proof of tableaux calculus for first-order logic [6]. We

keep the terminology used in these two works.

Definition 24 (Consistency). A consistency property set is a set P of CSS satisfying the following condi-

tions for any CSS 〈F ,C 〉 ∈ P , for any φ,ψ ∈ L , for any f ∈ ΣAct , for any x,y ∈ Lr and any u ∈ Ls:

1. Tφ : (x,u) 6∈ F or Fφ : (y,u) 6∈ F or x ∼ y 6∈ C

2. FI : (x,u) 6∈ F or 1r ∼ x 6∈ C

3. T⊥ : (x,u) 6∈ F

4. If TI : (x,u) ∈ F then 〈F ,C ∪{1r ∼ x}〉 ∈ P

5. If Tφ → ψ : (x,u) ∈ F then 〈F ∪{Fφ : (x,u)},C 〉 ∈ P or 〈F ∪{Tψ : (x,u)},C 〉 ∈ P

6. If Fφ → ψ : (x,u) ∈ F then 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P

7. If Tφ∗ψ : (x,u) ∈ F then ∃ci,c j ∈ γr \Ar(C), ci 6= c j and 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼
x}〉 ∈ P

8. If Fφ∗ψ : (x,u)∈ F then ∀y,z ∈ Lr, yz ∼ x∈ C ⇒ 〈F ∪{Fφ : (y,u)},C 〉 ∈ P or 〈F ∪{Fψ : (z,u)},C 〉 ∈
P

9. IfTφ−∗ψ : (x,u)∈F then ∀y∈Lr, xy∼ xy∈C ⇒〈F ∪{Fφ : (y,u)},C 〉 ∈P or 〈F ∪{Tψ : (xy,u)},C 〉 ∈
P

10. If Fφ−∗ψ : (x,u) ∈ F then ∃c ∈ γr \Ar(C), 〈F ∪{Tφ : (c,u),Fψ : (xc,u)},C ∪{xc ∼ xc}〉 ∈ P

11. If T〈 f 〉φ : (x,u) ∈ F then ∃c ∈ γr \Ar(C), ∃l ∈ Ls \As(C), 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P

12. If F〈 f 〉φ : (x,u) ∈ F then ∀y ∈ Lr, ∀v ∈ Ls, (x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C) ⇒ 〈F ∪{Fφ : (y,v)},C 〉 ∈ P

13. If T♦φ : (x,u) ∈ F then ∃c ∈ γr \Ar(C), ∃d ∈ γa \Aa(C), ∃l ∈ Ls \As(C), 〈F ∪{Tφ : (c, l)},C ∪{x
d
։

c,u
d
֌ l}〉 ∈ P

14. If F♦φ : (x,u)∈F then ∀y∈ Lr, ∀ f ∈ La, ∀v∈Ls, (x
f
։ y∈C and u

f
֌ v∈ C)⇒〈F ∪{Fφ : (y,v)},C 〉 ∈

P

Definition 25 (Alternate consistency). An alternate consistency property set is a set P of CSS satisfying the

conditions of consistency property set, except conditions 7, 10, 11 and 13, which are respectively replaced

by 7’, 10’, 11’ and 13’.

7’. If Tφ∗ψ : (x,u) ∈ F then ∀ci 6= c j ∈ γr \Ar(C), 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈ P

10’. If Fφ−∗ψ : (x,u) ∈ F then ∀c ∈ γr \Ar(C), 〈F ∪{Tφ : (c,u),Fψ : (xc,u)},C ∪{xc ∼ xc}〉 ∈ P

11’. If T〈 f 〉φ : (x,u) ∈ F then ∀c ∈ γr \Ar(C), ∀l ∈ Ls \As(C), 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P

13’. If T♦φ : (x,u) ∈ F then ∀c ∈ γr \Ar(C), ∀d ∈ γa \Aa(C), ∀l ∈ Ls \As(C), 〈F ∪{Tφ : (c, l)},C ∪{x
d
։

c,u
d
֌ l}〉 ∈ P

Conditions 1., 2. and 3. ensure that the CSS are not closed. Other conditions ensure that if we apply a rule

of Figure 2, one of the new CSS belongs to P . In other words, a set of CSS which are open and saturated

is an ”alternate consistency property set”. We can remark that all new CSS satisfy the condition (Pcss) of

Definition 14.

Proposition 13. The set of every finite CSS for which there exists no closed tableau is a consistency property

set.

Proof. Let P be the set of finite CSS for which there exists no closed tableau. We show that P is a consis-

tency property set. Let 〈F ,C 〉 ∈ P .

1. If Tφ : (x,u) ∈ F and Fφ : (y,u) ∈ F and x ∼ y ∈ C then 〈F ,C 〉 is closed. But this is contradictory,

because 〈F ,C 〉 ∈ P .

2. Similar to case 1.

3. Similar to case 1.

4. If TI : (x,u) ∈ F . We suppose that 〈F ,C ∪{1r ∼ x}〉 6∈ P (there exists a closed tableau for this CSS).

By rule 〈TI〉, [〈F ,C ∪{1r ∼ x}〉] is a tableau for 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau, which is

contradictory. Hence 〈F ,C ∪{1r ∼ x}〉 ∈ P .

5. If Tφ → ψ : (x,u) ∈ F . We suppose that 〈F ∪{Fφ : (x,u)},C 〉 6∈ P and 〈F ∪{Tψ : (x,u)},C 〉 6∈ P . By

rule 〈T →〉, [〈F ∪{Fφ : (x,u)},C 〉;〈F ∪{Tψ : (x,u)},C 〉] is a tableau of 〈F ,C 〉. Then 〈F ,C 〉 has a

closed tableau, which is contradictory. Hence 〈F ∪{Fφ : (x,u)},C 〉 ∈ P or 〈F ∪{Tψ : (x,u)},C 〉 ∈ P .

6. If Fφ → ψ : (x,u) ∈ F . We suppose that 〈F ∪ {Tφ : (x,u),Fψ : (x,u)},C 〉 6∈ P . By rule 〈F →〉,
[〈F ∪ {Tφ : (x,u),Fψ : (x,u)},C 〉] is a tableau of 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau, which

is contradictory. Hence 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P .

7. If Tφ∗ψ : (x,u) ∈ F . We choose ci 6= c j ∈ γr \Ar(C) (remember that γr is infinite and Ar(C) is finite

because C is finite, by hypothesis). We suppose that 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 6∈P .

By rule 〈T∗〉, [〈F ∪{Tφ : (ci,u),Tψ : (c j ,u)},C ∪{cic j ∼ x}〉] is a tableau of 〈F ,C 〉. Thus 〈F ,C 〉 has

a closed tableau, which is contradictory. Hence 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈ P .

8. If Fφ∗ψ : (x,u) ∈ F . Let y,z ∈ Lr such that yz ∼ x ∈ C . We suppose that 〈F ∪{Fφ : (y,u)},C 〉 6∈ P and

〈F ∪{Fψ : (z,u)},C 〉 6∈ P . By rule 〈F∗〉, [〈F ∪{Fφ : (y,u)},C 〉;〈F ∪{Fψ : (z,u)},C 〉] is a tableau of

〈F ,C 〉. Then 〈F ,C 〉 has a closed tableau, which is contradictory. Hence 〈F ∪{Fφ : (y,u)},C 〉 ∈ P or

〈F ∪{Fψ : (z,u)},C 〉 ∈ P .

9. Similar to case 8.

10. Similar to case 7.

11. If T〈 f 〉φ : (x,u) ∈ F . We choose c ∈ γr \ Ar(C) and l ∈ Ls \ As(C) (remember that γr and Ls are

infinite and Ar(C) and As(C) are finite because C is finite, by hypothesis). We suppose that 〈F ∪{Tφ :

(c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 6∈ P . By rule 〈T〈 f 〉〉, [〈F ∪{Tφ : (c, l)},C ∪{x

‖ f‖
։ c,u

‖ f‖
֌ l}〉] is a tableau

of 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau, which is contradictory. Hence 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։

c,u
‖ f‖
֌ l}〉 ∈ P .

12. If F〈 f 〉φ : (x,u) ∈ F . Let y ∈ Lr and v ∈ Ls such that x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C . We suppose that

〈F ∪{Fφ : (y,v)},C 〉 6∈ P . By rule 〈F〈 f 〉〉, [〈F ∪{Fφ : (y,v)},C 〉] is a tableau of 〈F ,C 〉. Then 〈F ,C 〉
has a closed tableau, which is contradictory. Hence 〈F ∪{Fφ : (y,v)},C 〉 ∈ P .

13. If T♦φ : (x,u) ∈ F . We choose c ∈ γr \Ar(C), d ∈ γa \Aa(C) and l ∈ Ls \As(C) (remember that γr,

γa and Ls are infinite and Ar(C), Aa(C) and As(C) are finite because C is finite, by hypothesis). We

suppose that 〈F ∪{Tφ : (c, l)},C ∪{x
d
։ c,u

d
֌ l}〉 6∈ P . By rule 〈T♦〉, [〈F ∪{Tφ : (c, l)},C ∪{x

d
։

c,u
d
֌ l}〉] is a tableau of 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau, which is contradictory. Hence

〈F ∪{Tφ : (c, l)},C ∪{x
d
։ c,u

d
֌ l}〉 ∈ P .

14. If F♦φ : (x,u) ∈ F . Let y ∈ Lr, f ∈ La and v ∈ Ls such that x
f
։ y ∈ C and u

f
֌ v ∈ C . We suppose that

〈F ∪{Fφ : (y,v)},C 〉 6∈ P . By rule 〈F♦〉, [〈F ∪{Fφ : (y,v)},C 〉] is a tableau of 〈F ,C 〉. Then 〈F ,C 〉
has a closed tableau, which is contradictory. Hence 〈F ∪{Fφ : (y,v)},C 〉 ∈ P .

In conclusion, P is a consistency property set.

Proposition 14. Any consistency property set can be extended into a 4-closed consistency property set.

Proof. Let P be a consistency property set. Let P4 its 4-closure defined by:

〈F ,C 〉 ∈ P4 iff 〈F ,C 〉4 〈F ′,C ′〉 for some 〈F ′,C ′〉 ∈ P

We have P ⊆ P4 (because4 is reflexive) and is 4-closed (because4 is transitive). We show now that P4

is a consistency property set. Let 〈F ,C 〉 ∈ P4. Then there exists 〈F ′,C ′〉 ∈ P such that 〈F ,C 〉4 〈F ′,C ′〉.

1. We suppose that Tφ : (x,u) ∈ F and Fφ : (y,u) ∈ F and x ∼ y ∈ C . Then Tφ : (x,u) ∈ F ′ and Fφ :

(y,u) ∈ F ′ and x ∼ y ∈ C ′ because 〈F ,C 〉 4 〈F ′,C ′〉. But this is contradictory because 〈F ′,C ′〉 ∈ P

and P satisfies condition 1. of Definition 24.

2. Similar to case 1.

3. Similar to case 1.

4. We suppose that TI : (x,u) ∈ F . As 〈F ,C 〉4 〈F ′,C ′〉 then TI : (x,u) ∈ F ′. Thus 〈F ′,C ′∪{1r ∼ x}〉 ∈
P . As F ⊆ F ′, C ∪{1r ∼ x} ⊆ C ′∪{1r ∼ x} then 〈F ,C ∪{1r ∼ x}〉 ∈ P4.

5. We suppose that Tφ →ψ : (x,u)∈F . As 〈F ,C 〉4 〈F ′,C ′〉 then Tφ →ψ : (x,u)∈F ′. Thus 〈F ′∪{Fφ :

(x,u)},C ′〉 ∈ P or 〈F ′ ∪{Tψ : (x,u)},C ′〉 ∈ P . But 〈F ∪{Fφ : (x,u)},C 〉 4 〈F ′ ∪{Fφ : (x,u)},C ′〉
and 〈F ∪{Tψ : (x,u)},C 〉4 〈F ′∪{Tψ : (x,u)},C ′〉. Hence 〈F ∪{Fφ : (x,u)},C 〉 ∈ P4 or 〈F ∪{Tψ :

(x,u)},C 〉 ∈ P4.

6. We suppose that Fφ→ψ : (x,u)∈F . As 〈F ,C 〉4 〈F ′,C ′〉 then Fφ→ ψ : (x,u)∈ F ′. Thus 〈F ′∪{Tφ :

(x,u),Fψ : (x,u)},C ′〉 ∈ P . But 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉4 〈F ′∪{Tφ : (x,u),Fψ : (x,u)},C ′〉.
Hence 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P4.

7. We suppose that Tφ ∗ψ : (x,u) ∈ F . As 〈F ,C 〉 4 〈F ′,C ′〉 then Tφ ∗ψ : (x,u) ∈ F ′. Thus there exist

ci,c j ∈ γr \Ar(C
′) such that ci 6= c j, 〈F ′∪{Tφ : (ci,u),Tψ : (c j,u)},C ′∪{cic j ∼ x}〉 ∈ P . As C ⊆ C ′

then Ar(C) ⊆ Ar(C
′). Thus γr \Ar(C

′) ⊆ γr \Ar(C). Moreover, 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪
{cic j ∼ x}〉 4 〈F ′ ∪ {Tφ : (ci,u),Tψ : (c j,u)},C ′ ∪{cic j ∼ x}〉. Hence, we have ci,c j ∈ γr \Ar(C),
ci 6= c j and 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈ P4.

8. We suppose that Fφ∗ψ : (x,u)∈F . Let y,z ∈ Lr such that yz∼ x∈ C . As 〈F ,C 〉4 〈F ′,C ′〉 then Fφ∗ψ :

(x,u) ∈ F ′ and yz ∼ x ∈ C ′. Thus 〈F ′∪{Fφ : (y,u)},C ′〉 ∈ P or 〈F ′∪{Fψ : (z,u)},C ′〉 ∈ P . Moreover

〈F ∪ {Fφ : (y,u)},C 〉 4 〈F ′ ∪ {Fφ : (y,u)},C ′〉 or 〈F ∪ {Fψ : (z,u)},C 〉 4 〈F ′ ∪ {Tψ : (z,u)},C ′〉.
Hence 〈F ∪{Fφ : (y,u)},C 〉 ∈ P4 or 〈F ∪{Fψ : (z,u)},C 〉 ∈ P4.

9. Similar to case 8.

10. Similar to case 7.

11. We suppose that T〈 f 〉φ : (x,u) ∈ F . As 〈F ,C 〉 4 〈F ′,C ′〉 then T〈 f 〉φ : (x,u) ∈ F ′. Thus there are

c ∈ γr \Ar(C
′), l ∈ Ls \As(C

′) such that 〈F ′ ∪ {Tφ : (c, l)},C ′ ∪ {x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P . As C ⊆ C ′

then Ar(C)⊆ Ar(C
′) and As(C)⊆ As(C

′). Then γr \Ar(C
′)⊆ γr \Ar(C) and Ls \As(C

′)⊆ Ls \As(C).

Hence c∈ γr \Ar(C) and l ∈Ls\As(C). Moreover 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉4 〈F ′∪{Tφ :

(c, l)},C ′∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉. Hence 〈F ∪{Tφ : (c, l)},C ∪{x

‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P4.

12. We suppose that F〈 f 〉φ : (x,u) ∈ F . Let y ∈ Lr and v ∈ Ls such that x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C . As

〈F ,C 〉4 〈F ′,C ′〉 then F〈 f 〉φ : (x,u) ∈ F ′, x
‖ f‖
։ y ∈ C ′ and u

‖ f‖
֌ v ∈ C ′. Thus 〈F ′∪{Fφ : (y,v)},C ′〉 ∈

P . Moreover 〈F ∪{Fφ : (y,v)},C 〉4 〈F ′∪{Fφ : (y,v)},C ′〉. Hence 〈F ∪{Fφ : (y,v)},C 〉 ∈ P4.

13. Similar to case 11.

14. Similar to case 12.

Definition 26 (Substitution). A substitution is a function σ : γr∪{1r}∪ΣAct ∪γa∪{1a}∪Ls −→ γr∪{1r}∪
ΣAct ∪ γa ∪{1a}∪Ls, such that:

– ∀ci ∈ γr ·σ(ci) ∈ γr

– ∀di ∈ γa ·σ(di) ∈ γa

– ∀li ∈ Ls ·σ(li) ∈ Ls

– ∀ f ∈ ΣAct ·σ(f) = f

– σ(1r) = 1r

– σ(1a) = 1a

We extend this definition to resource labels and action labels as follows:

– If ci1 , ...,cik ∈ γr then σ(ci1 ◦ ...◦ cik) = σ(ci1)◦ ...◦σ(cik)
– If fi1 , ..., fik ∈ ΣAct ∪ γa then σ(fi1 � ... � fik) = σ(fi1) � ... �σ(fik)

We extend it to labelled formulae and constraints as follows:

– For any labelled formula Sφ : (x,u), σ(Sφ : (x,u)) = Sφ : (σ(x),σ(u))
– For any resource constraint x ∼ y, σ(x ∼ y) = σ(x)∼ σ(y)

– For any µ-constraint x
f
։ y, σ(x

f
։ y) = σ(x)

σ(f)
։ σ(y)

– For any transition constraint u
f
֌ v, σ(u

f
֌ v) = σ(u)

σ(f)
֌ σ(v)

We extend it to labelled formulae sets and constraint sets as follows:

– For any set of labelled formulae F , σ(F) = {Sφ : (σ(x),σ(u)) | Sφ : (x,u) ∈ F }
– For any set of constraints C , σ(C) = {σ(x) ∼ σ(y) | x ∼ y ∈ C} ∪ {σ(x)

σ(f)
։ σ(y) | x

f
։ y ∈ C} ∪

{σ(u)
σ(f)
֌ σ(v) | u

f
֌ v ∈ C}

Lemma 9. Let σ be a substitution and let C be a set of constraints.We have σ(C)⊆ σ(C)

Proof. Let C † be defined by:

– x ∼ y ∈ C † iff σ(x)∼ σ(y) ∈ σ(C)

– x
f
։ y ∈ C † iff σ(x)

σ(f)
։ σ(y) ∈ σ(C)

– u
f
֌ v ∈ C † iff σ(u)

σ(f)
֌ σ(v) ∈ σ(C)

We show that C † ⊆ C †. Let c ∈ C † a constraint. We show that c ∈ C †. If c ∈ C † because c ∈ C † and the

property obviously holds. If c is obtained by rules of Figure 1. We prove that c ∈ C † by induction on the

size n of the deduction tree of c.

– Base case (n = 0):

In this case, the deduction tree is of the form
〈1r〉

1r ∼ 1r
and c is the constraint 1r ∼ 1r. By rule 〈1r〉,

1r ∼ 1r ∈ σ(C). As σ(1r) = 1r then σ(1r) ∼ σ(1r) ∈ σ(C). By definition of C †, 1r ∼ 1r ∈ C †. Then

c ∈ C †.

– Inductive step:

We suppose that any constraint of C † having a deduction tree of size less than or equal to n (IH) belongs

to C †. We show this for any constraint of C † having a deduction tree of size n+ 1.

- Case 〈tr〉:
The deduction tree is of the form

...
x ∼ y

...
y ∼ z

〈tr〉x ∼ z
and c is the constraint x ∼ z. By (IH), we

have x ∼ y ∈ C † and y ∼ z ∈ C †. By definition, σ(x) ∼ σ(y) ∈ σ(C) and σ(y) ∼ σ(z) ∈ σ(C). By

rule 〈tr〉, σ(x)∼ σ(z) ∈ σ(C). Hence x ∼ z ∈ C †.

- Case 〈cr〉:

The deduction tree is of the form

...
x ∼ y

...
yk ∼ yk

〈cr〉
xk ∼ yk

and c is the constraint xk ∼ yk. By (IH),

we have x∼ y∈ C † and yk∼ yk∈ C †. By definition, σ(x)∼σ(y)∈σ(C) and σ(yk)∼σ(yk)∈σ(C).
By definition of substitution, σ(x) ∼ σ(y) ∈ σ(C) and σ(y) ◦σ(k) ∼ σ(y) ◦σ(k) ∈ σ(C). By rule

〈cr〉, σ(x)◦σ(k)∼ σ(y)◦σ(k) ∈ σ(C). Thus σ(xk)∼ σ(yk) ∈ σ(C). Hence xk ∼ yk ∈ C †.

- Case 〈kr〉:

The deduction tree is of the form

...

x
f
։ y

...

x
f
։ z

〈kr〉y ∼ z

and c is the constraint y ∼ z. By (IH), we

have x
f
։ y ∈ C † and x

f
։ z ∈ C †. By definition, σ(x)

σ(f)
։ σ(y) ∈ σ(C) and σ(x)

σ(f)
։ σ(z) ∈ σ(C).

By rule 〈kr〉, σ(y)∼ σ(z) ∈ σ(C). Hence y ∼ z ∈ C †.

- Cases for 〈sr〉, 〈dr〉 and 〈ar1
〉 are similar.

- Case 〈1µ〉:

The deduction tree is of the form

...
x ∼ x 〈1µ〉

x
1a
։ x

and c is the constraint x
1a
։ x. By (IH), we have

x ∼ x ∈ C †. By definition, σ(x)∼ σ(x) ∈ σ(C). By rule 〈1µ〉, σ(x)
1a
։ σ(x) ∈ σ(C). As σ(1a) = 1a

then σ(x)
σ(1a)
։ σ(x) ∈ σ(C). Hence x

1a
։ x ∈ C †.

- Case 〈tµ〉:

The deduction tree is of the form

...

x
f
։ y

...

y
g
։ z

〈tµ〉

x
f g
։ z

and c is the constraint x
f g
։ z. By (IH), we

have x
f
։ y ∈ C † and y

g
։ z ∈ C †. By definition, σ(x)

σ(f)
։ σ(y) ∈ σ(C) and σ(y)

σ(g)
։ σ(z) ∈ σ(C).

By rule 〈tµ〉, σ(x)
σ(f)�σ(g)
։ σ(z) ∈ σ(C). Thus σ(x)

σ(f g)
։ σ(z) ∈ σ(C). Hence x

f g
։ z ∈ C †.

- Case 〈kµ1
〉:

The deduction tree is of the form

...

x
f
։ y

...

x ∼ x′
〈kµ1

〉

x′
f
։ y

and c is the constraint x′
f
։ y. By (IH),

we have x
f
։ y ∈ C † and x ∼ x′ ∈ C †. By definition, σ(x)

σ(f)
։ σ(y)∈ σ(C) and σ(x)∼ σ(x′)∈ σ(C).

By rule 〈kµ1
〉, σ(x′)

σ(f)
։ σ(y) ∈ σ(C). Hence x′

f
։ y ∈ C †.

- Case for 〈kµ2
〉 is similar.

- Case 〈1t1〉:

The deduction tree is of the form

...

u
f
֌ v 〈1t1

〉

u
1a
֌ u

and c is the constraint u
1a
֌ u. By (IH), we have

u
f
֌ v ∈ C †. By definition, σ(u)

σ(f)
֌ σ(v) ∈ σ(C). By rule 〈1t1〉, σ(u)

1a
֌ σ(u) ∈ σ(C). As σ(1a) =

1a then σ(u)
σ(1a)
֌ σ(u) ∈ σ(C). Hence u

1a
֌ u ∈ C †.

- Case for 〈1t2〉 is similar.

- Case 〈tt〉:

The deduction tree is of the form

...

u
f
֌ v

...

v
g
֌ w 〈tt〉

u
f g
֌ w

and c is the constraint u
f g
֌w. By (IH), we

have u
f
֌ v ∈ C † and v

g
֌ w ∈ C †. By definition, σ(u)

σ(f)
֌ σ(v) ∈ σ(C) and σ(v)

σ(g)
֌ σ(w) ∈ σ(C).

By rule 〈tt 〉, σ(u)
σ(f)�σ(g)
֌ σ(w) ∈ σ(C). Thus σ(u)

σ(f g)
֌ σ(w) ∈ σ(C). Hence u

f g
֌ w ∈ C †.

Hence C † ⊆ C †. By definition, σ(C) ⊆ σ(C). Let c ∈ C . We have σ(c) ∈ σ(C). Then σ(c) ∈ σ(C) and

c ∈ C †. Therefore C ⊆ C † and we have also C ⊆ C †. Thus C ⊆ C †.

Let c′ ∈ σ(C). There are three cases:

– c′ = x ∼ y ∈ σ(C):
There are m ∼ n ∈ C such that x = σ(m) and y = σ(n). As C ⊆ C † then m ∼ n ∈ C †. Thus σ(m) ∼
σ(n) ∈ σ(C) and we have c′ ∈ σ(C).

– c′ = x
f
։ y ∈ σ(C):

There are m
o
։ n ∈ C such that x = σ(m), f = σ(o) and y = σ(n). As C ⊆ C † then m

o
։ n ∈ C †. Thus

σ(m)
σ(o)
։ σ(n) ∈ σ(C) and we have c′ ∈ σ(C).

– c′ = u
f
֌ v ∈ σ(C):

There are m
o
֌ n ∈ C such that u = σ(m), f = σ(o) and v = σ(n). As C ⊆ C † then m

o
֌ n ∈ C †. Thus

σ(m)
σ(o)
֌ σ(n) ∈ σ(C) and we have c′ ∈ σ(C).

Therefore σ(C)⊆ σ(C).

Corollary 5. Let σ be a substitution and C be a set of constraints. If c ∈ C then σ(c) ∈ σ(C).

Proof. Let c ∈ C . By definition, σ(c) ∈ σ(C). By Lemma 9, we have σ(C)⊆ σ(C). Thus σ(c) ∈ σ(C).

Proposition 15. Let σ be a substitution. The following properties hold:

1. If 〈F ,C 〉 is a CSS then 〈σ(F),σ(C)〉 is a CSS

2. If 〈F f ,C f 〉 is a finite CSS then 〈σ(F f),σ(C f)〉 is a finite CSS.

3. If 〈F ,C 〉4 〈F ′,C ′〉 then 〈σ(F),σ(C)〉 4 〈σ(F ′),σ(C ′)〉.

Proof. Let σ be a substitution.

1. We suppose that 〈F ,C 〉 is a CSS and show that 〈σ(F),σ(C)〉 satisfies the property (Pcss) of Definition

14. Let Sφ : (x,u) ∈ σ(F). By definition, there exists Sφ : (x′,u′)∈ F such that x = σ(x′) and u = σ(u′).

As 〈F ,C 〉 is a CSS then, by (Pcss), x′ ∼ x′ ∈ C and u′
1a
֌ u′ ∈ C . By Corollary 5, σ(x′) ∼ σ(x′) ∈

σ(C) and σ(u′)
σ(1a)
֌ σ(u′) ∈ σ(C). Thus x ∼ x ∈ σ(C) and u

1a
֌ u ∈ σ(C). Therefore (Pcss) holds and

〈σ(F),σ(C)〉 is a CSS.

2. Let 〈F f ,C f 〉 be a finite CSS. By previous property, 〈σ(F f),σ(C f)〉 is a CSS. We show that 〈σ(F f),σ(C f)〉
is finite. Let f : F f −→ σ(F f) defined by f (Sφ : (x,u)) = Sφ : (σ(x),σ(u)). f is obviously surjective.

As F f is finite and as there is a surjective function f : F f −→ σ(F f) then σ(F f) is finite. The proof for

σ(C f) is similar. Thus 〈σ(F f),σ(C f)〉 is a finite CSS.

3. Let 〈F ,C 〉 and 〈F ′,C ′〉 be two finite CSS such that 〈F ,C 〉 4 〈F ′,C ′〉. Let Sφ : (x,u) ∈ σ(F). Thus

there are m ∈ Lr and n ∈ Ls such that x = σ(m), u = σ(n) and Sφ : (m,n) ∈ F . As 〈F ,C 〉 4 〈F ′,C ′〉
then Sφ : (m,n) ∈ F ′. Then Sφ : (x,u) ∈ σ(F ′). Hence σ(F)⊆ σ(F ′). The proof for σ(C)⊆ σ(C ′) is

similar. We can conclude that 〈σ(F),σ(C)〉4 〈σ(F ′),σ(C ′)〉.

Proposition 16. Let σ be a substitution, the following properties hold:

– σ(F)∪{Sφ : (σ(x),σ(u))} = σ(F ∪{Sφ : (x,u)})

– σ(C)∪{σ(x)∼ σ(y)}= σ(C ∪{x ∼ y})

– σ(C)∪{σ(x)
σ(f)
։ σ(y)} = σ(C ∪{x

σ(f)
։ y})

– σ(C)∪{σ(u)
σ(f)
֌ σ(v)}= σ(C ∪{u

σ(f)
֌ v})

Proof. This proof is left to the reader.

Proposition 17. For any a ∈ ΣAct and any substitution σ we have σ(‖a‖) = ‖a‖.

Proof. If a = 1 then, by definition, σ(1a) = 1a and ‖1‖= 1a. Then σ(‖1‖) = σ(1a) = 1a = ‖1‖. If a 6= 1

then, by definition, σ(a) = a because a ∈ ΣAct and ‖a‖= a because a 6= 1. Then σ(‖a‖) = σ(a) = a = ‖a‖.

Proposition 18. Any 4-closed consistency property set can be extended into a 4-closed alternate consis-

tency property set.

Proof. Let P be a 4-closed consistency property set. Let P+ defined by:

〈F ,C 〉 ∈ P+ iff 〈σ(F),σ(C)〉 ∈ P

for a substitution σ : γr ∪{1r}∪ΣAct ∪ γa ∪{1a}∪Ls −→ γr ∪{1r}∪ΣAct ∪ γa ∪{1a}∪Ls.

We remark that P ⊆ P+ (considering the identity substitution).

We show that P+ is4-closed. Let 〈F ,C 〉 ∈ P+ and 〈F ′,C ′〉4 〈F ,C 〉. As 〈F ,C 〉 ∈ P+, there is a substitu-

tion σ such that 〈σ(F),σ(C)〉 ∈ P . By Proposition 15, 〈σ(F ′), σ(C ′)〉 4 〈σ(F),σ(C)〉. As P is 4-closed

then 〈σ(F ′), σ(C ′)〉 ∈ P . Thus 〈F ′, C ′〉 ∈ P+.

We now show that P+ is an alternate consistency property set. Let 〈F ,C 〉 ∈ P+. By definition, there exists

a substitution σ such that 〈σ(F),σ(C)〉 ∈ P .

1. We suppose that Tφ : (x,u) ∈ F and Fφ : (y,u) ∈ F and x ∼ y ∈ C . By definition and Corollary 5,

Tφ : (σ(x),σ(u)) ∈ σ(F) and Fφ : (σ(y),σ(u)) ∈ σ(F) and σ(x) ∼ σ(y) ∈ σ(C). It is contradictory

because P is a consistency property.

2. Similar to case 1.

3. Similar to case 1.

4. We suppose that TI : (x,u) ∈ F . Then TI : (σ(x),σ(u)) ∈ σ(F). As P is a consistency property set

then 〈σ(F),σ(C)∪ {1r ∼ σ(x)}〉 ∈ P . As σ(1r) = 1r then 〈σ(F),σ(C)∪{σ(1r) ∼ σ(x)}〉 ∈ P . By

Proposition 16, 〈σ(F),σ(C ∪{1r ∼ x})〉 ∈ P . Hence 〈F ,C ∪{1r ∼ x}〉 ∈ P+.

5. We suppose that Tφ → ψ : (x,u) ∈ F . Then Tφ → ψ : (σ(x),σ(u)) ∈ σ(F). As P is a consistency

property set then 〈σ(F)∪ {Fφ : (σ(x),σ(u))},σ(C)〉 ∈ P or 〈σ(F)∪ {Tψ : (σ(x),σ(u))},σ(C)〉 ∈
P . By Proposition 16, 〈σ(F ∪{Fφ : (x,u)}),σ(C)〉 ∈ P or 〈σ(F ∪{Tψ : (x,u)}),σ(C)〉 ∈ P . Hence

〈F ∪{Fφ : (x,u)},C 〉 ∈ P+ or 〈F ∪{Tψ : (x,u)},C 〉 ∈ P+.

6. We suppose that Fφ → ψ : (x,u) ∈ F . Then Fφ → ψ : (σ(x),σ(u)) ∈ σ(F). As P is a consistency

property set then 〈σ(F)∪{Tφ : (σ(x),σ(u)),Fψ : (σ(x),σ(u))},σ(C)〉 ∈P . By Proposition 16, 〈σ(F ∪
{Tφ : (x,u),Fψ : (x,u)}),σ(C)〉 ∈ P . Hence 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P+.

7’. We suppose that Tφ ∗ψ : (x,u) ∈ F . Then Tφ ∗ψ : (σ(x),σ(u)) ∈ σ(F). Let ci,c j ∈ γr \Ar(C), such

that ci 6= c j. As P is a consistency property set then there exist c′i,c
′
j ∈ γr \Ar(σ(C)) such that c′i 6= c′j,

〈σ(F)∪{Tφ : (c′i,σ(u)),Tψ : (c′j,σ(u))},σ(C)∪{c′ic
′
j ∼ σ(x)}〉 ∈ P . Let σ′ = σ[ci 7→ c′i,c j 7→ c′j].

Moreover, by Proposition 7, ci 6∈ Ar(C) and c j 6∈ Ar(C). Then, by property (Pcss), ci and c j do not occur

in F . Thus σ(F) = σ′(F), σ(x) = σ′(x) and σ(u) = σ′(u). Then 〈σ′(F)∪{Tφ : (σ′(ci),σ
′(u)),Tψ :

(σ′(c j),σ
′(u))},σ′(C)∪ {σ′(ci)σ

′(c j) ∼ σ′(x)}〉 ∈ P . By Proposition 16, 〈σ′(F ∪{Tφ : (ci,u),Tψ :

(c j,u)}),σ′(C ∪{cic j ∼ x})〉 ∈ P . Hence 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈ P+.

8. We suppose that Fφ ∗ψ : (x,u) ∈ F . Then Fφ ∗ψ : (σ(x),σ(u)) ∈ σ(F). Let y,z ∈ Lr such that yz ∼
x ∈ C . By Corollary 5, σ(yz ∼ x) ∈ σ(C). By definition of substitutions, σ(y)σ(z) ∼ σ(x) ∈ σ(C).
Moreover as P is a consistency property then 〈σ(F)∪{Fφ : (σ(y),σ(u))},σ(C)〉 ∈ P or 〈σ(F)∪{Fψ :

(σ(z),σ(u))}, σ(C)〉 ∈P . By Proposition 16, we have 〈σ(F ∪{Fφ : (y,u)}),σ(C)〉 ∈P or 〈σ(F ∪{Fψ :

(z,u)}),σ(C)〉 ∈ P . Hence 〈F ∪{Fφ : (y,u)},C 〉 ∈ P+ or 〈F ∪{Fψ : (z,u)},C 〉 ∈ P+.

9. Similar to case 8.

10’. Similar to case 7’.

11’. We suppose that T〈 f 〉φ : (x,u) ∈ F . Then T〈 f 〉φ : (σ(x),σ(u)) ∈ σ(F). Let c ∈ γr \Ar(C) and l ∈
Ls \As(C). As P is a consistency property set then there exist c′ ∈ γr \Ar(σ(C)) and l′ ∈ Ls \As(σ(C))

such that 〈σ(F)∪{Tφ : (c′, l′)},σ(C)∪{σ(x)
‖ f‖
։ c′,σ(u)

‖ f‖
֌ l′}〉 ∈ P . Let σ′ = σ[c 7→ c′, l 7→ l′]. As

c 6∈ Ar(C) and l 6∈ As(C) then σ(C) = σ′(C). Moreover, by Proposition 7, c 6∈ Ar(C) and l 6∈ As(C).
Then, by property (Pcss), c and l do not occur in F . Thus σ(F) = σ′(F), σ(x) = σ′(x) and σ(u) =

σ′(u). By Proposition 17, σ′(‖ f‖) = ‖ f‖. Then 〈σ′(F)∪ {Tφ : (σ′(c),σ′(l))},σ′(C)∪ {σ′(x)
σ′(‖ f‖)
։

σ′(c),σ′(u)
σ′(‖ f‖)
֌ σ′(l)}〉 ∈ P . By Proposition 16, 〈σ′(F ∪{Tφ : (c, l)}),σ′(C ∪{x

‖ f‖
։ c,u

‖ f‖
֌ l})〉 ∈ P .

Hence 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P+.

12. We suppose that F〈 f 〉φ : (x,u) ∈ F . Then F〈 f 〉φ : (σ(x),σ(u)) ∈ σ(F). Let y ∈ Lr and v ∈ Ls such that

x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C . By Corollary 5, σ(x

‖ f‖
։ y) ∈ σ(C) and σ(u

‖ f‖
֌ v) ∈ σ(C). By definition

of substitutions and by Proposition 17, σ(x)
‖ f‖
։ σ(y) ∈ σ(C) and σ(u)

‖ f‖
֌ σ(v) ∈ σ(C). Moreover

as P is a consistency property set then 〈σ(F)∪ {Fφ : (σ(y),σ(v))},σ(C)〉 ∈ P . By Proposition 16,

〈σ(F ∪{Fφ : (y,v)}),σ(C)〉 ∈ P . Hence 〈F ∪{Fφ : (y,v)},C 〉 ∈ P+.

13’. Similar to case 11’.

14. Similar to case 12.

Proposition 19. Any4-closed alternate consistency property set can be extended into a4-closed alternate

consistency property of finite character set.

Proof. Let P be a 4-closed alternate consistency property set. Let P f c defined by:

〈F ,C 〉 ∈ P f c iff 〈F f ,C f 〉 ∈ P for all 〈F f ,C f 〉4 f 〈F ,C 〉

We show that P ⊆ P f c. Let 〈F ,C 〉 ∈ P . As P is 4-closed then P is 4 f -closed and for any 〈F f ,C f 〉 4 f

〈F ,C 〉, we have 〈F f ,C f 〉 ∈ P . Then 〈F ,C 〉 ∈ P f c by definition.

We show that P f c is 4-closed. Let 〈F ,C 〉 ∈ P f c. Let 〈F ′,C ′〉4 〈F ,C 〉. Let us show that 〈F ′,C ′〉 ∈ P f c.

Let 〈F ′
f ,C

′
f 〉 4 f 〈F ′,C ′〉. Then 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. Thus, we have 〈F ′

f ,C
′
f 〉 ∈ P , by definition. Hence

〈F ′,C ′〉 ∈ P f c by definition.

We show that P f c is of finite character. Let 〈F ,C 〉 be a CSS. We suppose that for all 〈F f ,C f 〉 4 f 〈F ,C 〉,
〈F f ,C f 〉 ∈P f c holds. By definition, for any 〈F ′

f ,C
′
f 〉4 f 〈F f ,C f 〉, 〈F ′

f ,C
′
f 〉 ∈P . In particular, as 〈F f ,C f 〉4 f

〈F f ,C f 〉, thus 〈F f ,C f 〉 ∈ P for any 〈F f ,C f 〉4 f 〈F ,C 〉, for which we have 〈F ,C 〉 ∈ P f c by definition. We

now show that P f c is an alternate consistency property set. Let 〈F ,C 〉 ∈ P f c.

1. We suppose that Tφ : (x,u)∈F and Fφ : (y,u)∈F and x∼ y∈C . By (Pcss), u
1a
֌ u∈C . By compactness

(Lemma 1), there exist C f 1
⊆ C and C f 2

⊆ C such that C f 1
and C f 2

are finite, x ∼ y ∈ C f 1
and u

1a
֌

u ∈ C f 2
. Then 〈{Tφ : (x,u),Fφ : (y,u)},C f 1

∪C f 2
〉 is a CSS (that satisfies the property (Pcss) and we

remark that we have 〈{Tφ : (x,u),Fφ : (y,u)},C f 1
∪C f 2

〉 4 f 〈F ,C 〉. By definition 〈{Tφ : (x,u),Fφ :

(y,u)},C f 1
∪C f 2

〉 ∈ P . But this is contradictory because P is an alternate consistency property set.

2. Similar to case 1.

3. Similar to case 1.

4. We suppose that TI : (x,u) ∈ F . As 〈F ,C 〉 is a CSS then x ∼ x ∈ C and u
1a
֌ u ∈ C . By compactness

(Lemma 1), there exist C1 ⊆ C and C2 ⊆ C such that C1 and C2 are finite, x∼ x∈ C1 and u
1a
֌ u∈ C2. We

show that 〈F ,C ∪{1r ∼ x}〉 ∈ P f c. Let 〈F f ,C f 〉4 f 〈F ,C ∪{1r ∼ x}〉. As 〈F ,C 〉 is a CSS and F f ⊆F

then 〈F f ,C 〉 is a CSS. By Proposition 8, there exists C3 ⊆ C such that C3 is finite and 〈F f ,C3〉 is a CSS.

Let F ′
f = F f ∪{TI : (x,u)}, C ′

f = C f \ {1r ∼ x}∪C1 ∪C2 ∪C3. Then 〈F ′
f ,C

′
f 〉 is a finite CSS (by rule

〈1r〉 we have 1r ∼ 1r ∈ C ′
f) and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. By definition, 〈F ′

f ,C
′
f 〉 ∈ P . As P is an alternate

consistency property set and as TI : (x,u) ∈ F ′
f then 〈F ′

f ,C
′
f ∪{1r ∼ x}〉 ∈ P . As P is 4-closed and as

〈F f ,C f 〉 4 〈F ′
f ,C

′
f ∪{1r ∼ x}〉 then 〈F f ,C f 〉 ∈ P . As it holds for any 〈F f ,C f 〉 4 f 〈F ,C ∪{1r ∼ x}〉,

then 〈F ,C ∪{1r ∼ x}〉 ∈ P f c.

5. We suppose that Tφ → ψ : (x,u) ∈ F . By contradiction, we suppose that 〈F ∪{Fφ : (x,u)},C 〉 6∈ P f c

and 〈F ∪ {Tψ : (x,u)},C 〉 6∈ P f c. Then, by definition of P f c, there exist 〈F A
f ,C

A
f 〉 4 f 〈F ∪ {Fφ :

(x,u)},C 〉 and 〈F B
f ,C

B
f 〉 4 f 〈F ∪ {Tψ : (x,u)},C 〉 such that 〈F A

f ,C
A
f 〉 6∈ P and 〈F B

f ,C
B
f 〉 6∈ P . By

compactness (Lemma 1) and by (Pcss) there exists a finite C1 ⊆C such that x∼ x∈C1 and a finite C2 ⊆C

such that u
1a
֌ u ∈ C2. Let F ′

f = F A
f \ {Fφ : (x,u)}∪F B

f \ {Tψ : (x,u)}∪{Tφ → ψ : (x,u)}. Let C ′
f =

C A
f ∪C B

f ∪C1 ∪C2. Then 〈F ′
f ,C

′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. Thus, by definition of P f c,

〈F ′
f ,C

′
f 〉 ∈ P . As Tφ →ψ : (x,u)∈ F ′

f and as P is an alternate consistency property set then 〈F ′
f ∪{Fφ :

(x,u)},C ′
f 〉 ∈ P or 〈F ′

f ∪{Tψ : (x,u)},C ′
f 〉 ∈ P . We remark that 〈F A

f ,C
A
f 〉 4 〈F ′

f ∪{Fφ : (x,u)},C ′
f 〉

and 〈F B
f ,C

B
f 〉4 〈F ′

f ∪{Tψ : (x,u)},C ′
f 〉 hold. As P is 4-closed then 〈F A

f ,C
A
f 〉 ∈ P or 〈F B

f ,C
B
f 〉 ∈ P .

But, this is contradictory. Therefore, 〈F ∪{Fφ : (x,u)},C 〉 ∈ P f c or 〈F ∪{Tψ : (x,u)},C 〉 ∈ P f c.

6. We suppose that Fφ → ψ : (x,u) ∈ F . As 〈F ,C 〉 is a CSS then, by (Pcss), x ∼ x ∈ C and u
1a
֌ u ∈ C .

By compactness (Lemma 1), there exist C1 ⊆ C and C2 ⊆ C such that C1 and C2 are finite, x ∼ x ∈ C1

and u
1a
֌ u ∈ C2. We show that 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P f c. Let 〈F f ,C f 〉 4 f 〈F ∪{Tφ :

(x,u),Fψ : (x,u)},C 〉. Let F ′
f =F f \{Tφ : (x,u),Fψ : (x,u)}∪{Fφ →ψ : (x,u)} and C ′

f =C f ∪C1∪C2.

Then 〈F ′
f ,C

′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉4 f 〈F ,C 〉. By definition, 〈F ′

f ,C
′
f 〉 ∈ P . As P is an alternate

consistency property set and as Fφ → ψ : (x,u) ∈ F ′
f then 〈F ′

f ∪{Tφ : (x,u),Fψ : (x,u)},C ′
f 〉 ∈ P . As

P is 4-closed and as 〈F f ,C f 〉4 〈F ′
f ∪{Tφ : (x,u),Fψ : (x,u)},C ′

f 〉 then 〈F f ,C f 〉 ∈ P . As it holds for

any 〈F f ,C f 〉4 f 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉, then 〈F ∪{Tφ : (x,u),Fψ : (x,u)},C 〉 ∈ P f c.

7’. We suppose that Tφ∗ψ : (x,u) ∈ F . Let ci,c j ∈ γr \Ar(C) such that ci 6= c j. We show that 〈F ∪{Tφ :

(ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈P f c. Let 〈F f ,C f 〉4 f 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼
x}〉. Let F ′

f = F f \ {Tφ : (ci,u),Tψ : (c j ,u)}∪{Tφ∗ψ : (x,u)}. As 〈F ,C 〉 is a CSS and F ′
f ⊆ F then

〈F ′
f ,C 〉 is a CSS. By Proposition 8, there exists C1 ⊆ C such that C1 is finite and 〈F ′

f ,C1〉 is a CSS.

Let C ′
f = C f \ {cic j ∼ x}∪ C1. Then 〈F ′

f ,C
′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. By definition,

〈F ′
f ,C

′
f 〉 ∈ P . Also, as C ′

f ⊆ C then Ar(C
′
f)⊆ Ar(C). As P is an alternate consistency property set, as

Tφ ∗ψ : (x,u) ∈ F ′
f , as ci,c j ∈ γr \Ar(C

′
f) and as ci 6= c j then 〈F ′

f ∪{Tφ : (ci,u),Tψ : (c j,u)},C ′
f ∪

{cic j ∼ x}〉 ∈ P . As P is 4-closed and as 〈F f ,C f 〉4 〈F ′
f ∪{Tφ : (ci,u),Tψ : (c j,u)},C ′

f ∪{cic j ∼ x}〉
then 〈F f ,C f 〉 ∈ P . As it holds for any 〈F f ,C f 〉4 f 〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉, then

〈F ∪{Tφ : (ci,u),Tψ : (c j,u)},C ∪{cic j ∼ x}〉 ∈ P f c.

8. We suppose that Fφ ∗ψ : (x,u) ∈ F . Let y,z ∈ Lr such that yz ∼ x ∈ C . We suppose that 〈F ∪{Fφ :

(y,u)},C 〉 6∈ P f c and 〈F ∪{Fψ : (z,u)},C 〉 6∈ P f c. Thus, by definition of P f c, there exist 〈F A
f ,C

A
f 〉4 f

〈F ∪{Fφ : (y,u)},C 〉 and 〈F B
f ,C

B
f 〉4 f 〈F ∪{Fψ : (z,u)},C 〉 such that 〈F A

f ,C
A
f 〉 6∈ P and 〈F B

f ,C
B
f 〉 6∈

P . By compactness there exists a finite C1 ⊆ C such that yz ∼ x ∈ C1 and a finite C2 ⊆ C such that u
1a
֌

u ∈ C2. Let F ′
f = F A

f \{Fφ : (y,u)}∪F B
f \{Fψ : (z,u)}∪{Fφ∗ψ : (x,u)}. Let C ′

f = C A
f ∪C B

f ∪C1 ∪C2.

Then 〈F ′
f ,C

′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. Thus, by definition of P f c, 〈F ′

f ,C
′
f 〉 ∈ P . As

Fφ ∗ψ : (x,u) ∈ F ′
f , yz ∼ x ∈ C ′

f and as P is an alternate consistency property set then 〈F ′
f ∪{Fφ :

(y,u)},C ′
f 〉 ∈ P or 〈F ′

f ∪{Fψ : (z,u)},C ′
f 〉 ∈ P . We remark that 〈F A

f ,C
A
f 〉 4 〈F ′

f ∪ {Fφ : (y,u)},C ′
f 〉

and 〈F B
f ,C

B
f 〉 4 〈F ′

f ∪{Fψ : (z,u)},C ′
f 〉 hold. As P is 4-closed then 〈F A

f ,C
A
f 〉 ∈ P or 〈F B

f ,C
B
f 〉 ∈ P .

But, this is contradictory. Therefore 〈F ∪{Fφ : (y,u)},C 〉 ∈ P f c or 〈F ∪{Fψ : (z,u)},C 〉 ∈ P f c.

9. Similar to case 8.

10’. Similar to case 7’.

11’. We suppose that T〈 f 〉φ : (x,u) ∈ F . Let c ∈ γr \Ar(C) and l ∈ Ls \As(C). We show that 〈F ∪{Tφ :

(c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P f c. Let 〈F f ,C f 〉4 f 〈F ∪{Tφ : (c, l)},C ∪{x

‖ f‖
։ c,u

‖ f‖
֌ l}〉. Let F ′

f =

F f \{Tφ : (c, l)}∪{T〈 f 〉φ : (x,u)}. As 〈F ,C 〉 is a CSS and F ′
f ⊆ F then 〈F ′

f ,C 〉 is a CSS. By Proposi-

tion 8, there exists C1 ⊆C such that C1 is finite and 〈F ′
f ,C1〉 is a CSS. Let C ′

f =C f \{x
‖ f‖
։ c,u

‖ f‖
֌ l}∪C1.

Then 〈F ′
f ,C

′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. By definition, 〈F ′

f ,C
′
f 〉 ∈ P . Also, as C ′

f ⊆ C

then Ar(C
′
f) ⊆ Ar(C) and As(C

′
f) ⊆ As(C). As P is an alternate consistency property set, as T〈 f 〉φ :

(x,u) ∈ F ′
f , as c ∈ γr \Ar(C

′
f) and as l ∈ Ls \As(C

′
f) then 〈F ′

f ∪{Tφ : (c, l)},C ′
f ∪{x

‖ f‖
։ c,u

‖ f‖
֌ l}〉 ∈ P .

As P is 4-closed and as 〈F f ,C f 〉4 〈F ′
f ∪{Tφ : (c, l)},C ′

f ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉 then 〈F f ,C f 〉 ∈ P . As it

holds for any 〈F f ,C f 〉 4 f 〈F ∪{Tφ : (c, l)},C ∪{x
‖ f‖
։ c,u

‖ f‖
֌ l}〉, then 〈F ∪{Tφ : (c, l)},C ∪{x

‖ f‖
։

c,u
‖ f‖
֌ l}〉 ∈ P f c.

12. We suppose that F〈 f 〉φ : (x,u) ∈ F . Let y ∈ Lr and v ∈ Ls such that x
‖ f‖
։ y ∈ C and u

‖ f‖
֌ v ∈ C . We

suppose that 〈F ∪{Fφ : (y,v)},C 〉 6∈P f c. Thus, by definition of P f c, there exists 〈F f ,C f 〉4 f 〈F ∪{Fφ :

(y,v)},C 〉 such that 〈F f ,C f 〉 6∈P . By compactness there exist a finite C1 ⊆ C such that x
‖ f‖
։ y∈ C1 and a

finite C2 ⊆ C such that u
‖ f‖
֌ v ∈ C2. Let F ′

f =F f \{Fφ : (y,v)}∪{F〈 f 〉φ : (x,u)}. Let C ′
f = C f ∪C1∪C2.

Then 〈F ′
f ,C

′
f 〉 is a finite CSS and 〈F ′

f ,C
′
f 〉 4 f 〈F ,C 〉. Thus, by definition of P f c, 〈F ′

f ,C
′
f 〉 ∈ P . As

F〈 f 〉φ : (x,u) ∈ F ′
f , x

‖ f‖
։ y ∈ C ′

f and u
‖ f‖
֌ v ∈ C ′

f and as P is an alternate consistency property set

then 〈F ′
f ∪{Fφ : (y,v)},C ′

f 〉 ∈ P . We can remark that 〈F f ,C f 〉4 〈F ′
f ∪{Fφ : (y,v)},C ′

f 〉 holds. As P is

4-closed then 〈F f ,C f 〉 ∈ P . But, this is contradictory. Therefore 〈F ∪{Fφ : (y,v)},C 〉 ∈ P f c.

13’. Similar to case 11’.

14. Similar to case 12.

Lemma 7. There exists an oracle which contains every finite CSS for which there exists no closed tableau.

Proof. We consider the set of the finite CSS for which there is no closed tableau. By Proposition 13, this set

is a consistency property set. By Proposition 14, we can extend it into a 4-close consistency property set.

By Proposition 18, we can extend it into a4-close alternate consistency property set. Finally, by Proposition

19, we can extend it into a 4-close alternate consistency property of finite character set. By conditions 4. to

14. of the alternate consistency property, this set is saturated. And by conditions 1. to 3. this is a set of non

closed CSS. Then this set is an oracle. As this set is an extension of every finite CSS for which there is no

closed tableau, we can conclude that there exists an oracle which contains every finite CSS for which there

is no closed tableau.

