
Noname manuscript No.
(will be inserted by the editor)

A Connection-based Characterization of
Bi-intuitionistic Validity

Didier Galmiche · Daniel Méry

the date of receipt and acceptance should be inserted later

Abstract We give a connection-based characterization of validity in propositional
bi-intuitionistic logic in terms of specific directed graphs called R-graphs. Such
a characterization is well-suited for deriving labelled proof-systems with counter-
model construction facilities. We first define the notion of bi-intuitionistic R-graphs
from which we then obtain a connection-based characterization of propositional bi-
intuitionistic validity and derive a sound and complete cut-free free-variable labelled
sequent calculus that enjoys variable splitting.

1 Introduction

Bi-intuitionistic logic BiInt is a conservative extension of intuitionistic logic that intro-
duces a new connective �, called co-implication (also called exclusion or subtraction),
which is dual to the implication connective �. It was first studied by Rauszer who
gives a Hilbert calculus with Kripke and algebraic semantics [14] and more recently
by Crolard from the perspective of bicartesian closed categories with coexponents
and the underlying type system with applications to type theory [3,4]. An interest-
ing aspect of BiInt lies in the duality between implication and co-implication which
motivates the definition of proof systems that work as programming languages in
which values and continuations are handled in a symmetric way.

From a proof-theoretic point of view, a strong focus has been put on the achieve-
ment of cut-free proof-systems since cut-elimination in Gentzen-style (shallow) se-
quent calculi is particularly difficult to obtain. In this perspective some cut-free
calculi for BiInt have been proposed from sequent structures like nested sequents [8]
or display inference rules [13]. Another solution makes use of Negri’s general method-
ology for designing labelled sequent calculi in modal logics [10] in order to provide
a cut-free labelled sequent calculus where labels correspond to worlds in Kripke
structures [12].

LORIA - Université de Lorraine
Campus Scientifique BP 239
Vandœuvre-lès-Nancy, France

2 Didier Galmiche, Daniel Méry

In this paper, which is an extended version of [7], we give the first connection-
based characterization of validity in bi-intuitionistic propositional logic in terms of
bi-intuitionistic R-graphs. Let us note that similar structures have been defined in
the case of BI or separation logics [5,6] in order to characterize validity. Our char-
acterization is well-suited for deriving labelled proof-systems with counter-model
construction facilities which, compared with the existing labelled proof-systems [12],
easily integrate free-variables and variable splitting [1]. The main contributions of
this work are: the definition of bi-intuitionistic R-graphs; a connection-based char-
acterization of validity in propositional BiInt; a new sound and complete cut-free
free-variable labelled sequent calculus that enjoys variable splitting; an algorithm
for solving admissibility constraints and thus deriving a connection-based method.

In Section 2 we present the bi-intuitionistic logic BiInt, its syntax and seman-
tics and recall the main existing works on calculi and proof-search in this logic.
In Section 3 we introduce for BiInt the main notions that are common to most
connection-based characterization of validity and in Section 4 we introduce the con-
cept of bi-intuitionistic R-graphs (biRGs) that allows us to reformulate all the stan-
dard notions like paths, connections, spanning sets and admissible substitutions on
the same graphical structure. In Section 5 we first introduce the notions of slice,
concrete path and admissible R-graphs and then propose a connection-based char-
acterization of propositional bi-intuitionistic validity. In Section 6 we present a new
labelled sequent calculus, show its soundness and completeness w.r.t. bi-intuitionistic
Kripke semantics and explain how to build counter-models from saturated biRGs. In
Section 7 we propose an algorithm for solving constraints and in Section 8 we briefly
discuss how the technique of variable splitting can be adapted to biRGs.

2 Bi-intuitionistic Propositional Logic

The language of BiInt consists of a countable set V of propositional letters P,Q . . . and
the logical symbols ⊥ (bottom), ∨ (disjunction), ∧ (conjunction), � (implication)
and � (co-implication). Formulas are inductively built from propositional letters as
follows:

A ::= P | ⊥ | A ∨A | A ∧A | A � A | A � A.
We write F to denote the set of all formulas of BiInt. Negation ¬A is defined as
syntactic sugar for A � ⊥ and is therefore not considered as primitive in our set-
ting. Similarly, the conjunctive unit > is defined as a shorthand for ⊥ � ⊥. Some
presentations of bi-intuitionistic logic also consider co-negation ∼A which is dual to
negation and can be defined as a shorthand for > � A.

The Kripke semantics of BiInt is a straightforward extension of that of intuition-
istic logic.

Definition 1 A Kripke model M is a triple 〈M,v, J·K〉, where M is a non-empty
set of elements called the worlds of M, v is a partial order on M and J·K is a
function from worlds to sets of propositional letters satisfying the following Kripke
monotonicity condition:

(∀P ∈ V)(∀m ∈M)(∀n ∈M)(if P ∈ JmK and m v n then P ∈ JnK).

The Kripke forcing relation |= associated with a Kripke modelM is defined as the
least relation between the worlds ofM and formulas such that:

A Connection-based Characterization of Bi-intuitionistic Validity 3

Γ,⊥ ` ∆
Γ ` ∆ ⊥RΓ ` ⊥,∆

ax
Γ,A ` A,∆

Γ ` A,∆ Γ,A ` ∆
cut

Γ ` ∆
Γ,A,B ` ∆

∧L
Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧ B,∆

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆
Γ ` A,B,∆

∨R
Γ ` A ∨ B,∆

Γ,A � B ` A,∆ Γ,B ` ∆
�L

Γ,A � B ` ∆
Γ,A ` B

�R
Γ ` A � B,∆

A ` B,∆
�L

Γ,A � B ` ∆
Γ ` A,∆ Γ,B ` A � B,∆

�R
Γ ` A � B,∆

Fig. 1 Dragalin-style sequent calculus for BiInt

– m |= ⊥ never;
– m |= P iff P ∈ JmK;
– m |= A ∨ B iff m |= A or m |= B;
– m |= A ∧ B iff m |= A and m |= B;
– m |= A � B iff for all n ∈M such that m v n, n 6|= A or n |= B;
– m |= A � B iff for some n ∈M such that n v m, n |= A and n 6|= B.

Kripke monotonicity lifts from propositional letters to formulas as in intuitionistic
logic. As usual, a formula A is satisfied in M iff m |= A for all worlds m in M ,
satisfiable if it is satisfied in some Kripke modelM, and valid if it is satisfied in all
Kripke models.

Figure 1 depicts the standard (Dragalin-style) multi-conclusioned sequent calcu-
lus for BiInt which can be found in [12]. We observe that the rules for co-implication
simply behave as duals for the ones dealing with implication. Let us recall that in
Dragalin’s multi-conclusioned sequent calculus for intuitionistic logic, intuitionism is
not obtained by restricting the right-hand side of the sequents to a single formula,
but by discarding ∆ in a backward application of the rule �R from the conclusion to
the premiss. Co-implication acting as a dual to implication, it is then natural that
in a backward application of the rule �L, the context that should disappear is Γ.

The price to pay for the easy dual formulation of the calculus of Figure 1 is
the failure of cut-elimination. Indeed, although valid in the Kripke semantics, the
sequent P ` R � ((P � Q) ∧ R),Q is not provable without cut as illustrated by the
following proof attempt:

P,R ` P
P,R,Q ` P P,R,Q ` P � Q

�RP,R,Q ` P � Q
�RP,R ` P � Q P,R ` R ∧RP,R ` (P � Q) ∧ R �R

P ` R � ((P � Q) ∧ R),Q

The proof fails because Q immediately disappears in the first step of the derivation
when the rule �R is applied. Unfortunately, that rule is the only one applicable at

4 Didier Galmiche, Daniel Méry

α α1 α2 β β1 β2

(A ∧ B)+ A+ B+ (A ∧ B)− A− B−

(A ∨ B)− A− B− (A ∨ B)+ A+ B+

(A � B)− A+ B− (A � B)+ A− B+

(A � B)+ A+ B− (A � B)− A− B+

itype

(A � B)+ φ
(A � B)− ψ

(A � B)+ ψ

(A � B)− φ

Table 1 Signs, principal, secondary and intuitionistic types

the beginning of the derivation. However, using cut on the formula P � Q, one can
construct the following proof:

P ` P,Q P,Q ` P � Q,Q
�RP ` P � Q,Q

P,P � Q,R ` P � Q P,P � Q,R ` R ∧RP,P � Q,R ` (P � Q) ∧ R �R
P,P � Q ` R � ((P � Q) ∧ R),Q

cutP ` R � ((P � Q) ∧ R),Q

Let us remark that if one mostly considers cut-elimination as a way to achieve an-
alytical calculi, then BiInt falls into the category of logics for which analytical calculi
can be obtained even when cut-elimination is not admissible [2]. Cut-elimination can
be achieved using nested sequents [8] or deep inference rules [13], but the resulting
calculi are not always well suited for automated backward proof-search. Moreover,
ensuring completeness can also prove itself tricky because of the interactions between
implication and its dual. In a recent work, such interactions are dealt with using a
cut-free calculus in which derivations and refutations are considered as first class
citizens [9]. Another recent solution is based on a cut-free labelled sequent calculus
where labels correspond to worlds in Kripke structures [12].

In this paper we consider an approach based on labels and constraints arranged
as specific directed graphs, called R-Graphs, already used to characterize provability
in logics like BI (logic of Bunched Implications) or separation logics [5]. It allows us
to derive a new labelled calculus with free variables that enjoys variable splitting.

3 Indexing BiInt Formulas

In this section, we recall some basic terminology of connection-based characteriza-
tions of validity as we shall heavily rely on it in the forthcoming sections.

The signed formula tree for a formula C is a representation of its syntactic struc-
ture as a tree the nodes of which are decorated with positive and negative signs
respectively denoted with the symbols “+” and “−”. The root node of a signed for-
mula tree is always associated with a negative sign. The sign of all other nodes is then
determined inductively as prescribed by Table 1. Let us remark that conjunction and
disjunction simply pass their sign to their subformulas leaving it unchanged. On the
contrary, implication (respectively co-implication) changes its sign to the opposite
before passing it to its left (respectively right) subformula. If one forgets about the
indexes written as subscripts, Figure 2 gives an example of a signed formula tree.

A Connection-based Characterization of Bi-intuitionistic Validity 5

�−
a

∧+
0

�+
a

∨+
1

R+
2 P+

3

Q−
4

�+
x

P−
5 ⊥+

6

�−
x

�−
b

P+
7 R−

8

Q+
9

Fig. 2 Indexed formula tree for (((R ∨ P) � Q) ∧ (P � ⊥)) � ((P � R) � Q)

The notion of sign gives rise to the notion of signed formula1, which is defined
as a formula with a sign or, more formally, a pair (C,S), written CS, where C is a
BiInt formula and S is a sign. Given a formula C, the signed formula for C is defined
as the signed formula C− induced by the signed formula tree for C. Figure 2 shows
that the signed formula for (((R ∨ P) � Q) ∧ (P � ⊥)) � ((P � R) � Q) is

(((R+ ∨+ P+) �+ Q−) ∧+ (P− �+ ⊥+)) �− ((P+ �− R−) �− Q+).

Depending on its principal connective and sign, a signed formula is given a prin-
cipal type (ptype) α or β. If α (respectively β) is the principal type of a signed
formula C, then, its left subformula A is of secondary type (stype) α1 (respectively
β1) and its right subformula B is of secondary type α2 (respectively β2). Signed
formulas the principal connective of which belongs to the set {�,�} also admit an
additional intuitionistic type (itype) φ, φ, ψ or ψ. Table 1 describes how principal,
secondary and intuitionistic types are determined w.r.t. principal connectives and
signs. For readability, we often simply speak of the type of a signed formula each
time the context makes it clear what type (ptype, stype or itype) is actually in-
tended; we also write “t-formula“ as a shorthand for “formula of type t”. Since a
node in a signed formula tree for a formula C is in one-to-one correspondence with a
unique subformula (signed subformula) of C (C−), we shall often abusively apply to
nodes all the terminology defined for formulas. For example, we shall simply write
“a t-node in C” instead of “a node in the signed formula tree for C for which the
corresponding subformula in C is of type t”.

Let us now explain the notion of indexed formula trees, which are signed formula
trees the nodes of which are not only decorated with signs, but also with indexes
(often called “positions” in the matrix terminology). Indexes are written using an
alphabet that contains all natural numbers enriched with two disjoint and denumer-
able sets of symbols Φ and Ψ respectively called variable and constant symbols. We
shall use the letters ranging from a to d (possibly subscripted) to denote constant
symbols. Similarly, we shall use the letters from x to z to denote variable symbols.
For convenience, let us also assume that Ψ always contains the particular symbol ε
and that if s is a constant (respectively variable) symbol, then so is s.

1 The reader more familiar with sequent calculi should think of positive (respectively nega-
tive) formulas as formulas that should be introduced in the left-hand (respectively right-hand)
side context of sequents in a bottom-up sequent proof.

6 Didier Galmiche, Daniel Méry

Given a formula C, an indexed formula tree for C is obtained from the signed
formula tree for C by assigning an index to every node of the tree so that distinct
nodes have distinct indexes, ψ- and ψ-nodes are indexed with constant symbols
in Ψ, φ- and φ-nodes are indexed with variable symbols in Φ, and all other nodes are
indexed with natural numbers. Let us remark that we do not require any particular
order (prefix, postfix. . .) on the indexes of an indexed formula tree in this paper.
Therefore, a formula C admits infinitely many distinct legitimate indexed formula
trees. Moreover, indexed formula trees straightforwardly induce the notion of indexed
formulas. Figure 2 shows an indexed formula tree that induces the indexed formula

(((R+
2 ∨+

1 P+
3) �+

a Q−
4) ∧+

0 (P−
5 �+

x ⊥+
6)) �−

a ((P+
7 �−

b R−
8) �−

x Q+
9).

Since indexes of an indexed formula tree for a formula C are in one-to-one correspon-
dence with the (signed) subformulas of C, we shall use indexes and (signed) formulas
interchangeably throughout the paper.

Given an indexed formula tree for a formula C, we write f(i) (respectively sf(i))
to denote the unique subformula (respectively signed subformula) associated with
the index i. A formula tree induces a strict partial ordering� on indexes, called the
domination ordering, which is such that the index of the root is the least element
and if i � j then i is encountered before j on a path from the root to j. If i is a
non-atomic index in C (i.e., if f(i) is a non-atomic formula) then the two indexes
j and k such that f(j) and f(k) are the immediate (left and right) subformulas of
f(i) are called dual and we write j 4 k = i. The domination ordering allows us to
define the label of an index i (or, equivalently, its corresponding (signed) formula)
as the greatest index ` such that ` is not a natural number and ` � i. Intuitively,
the label of an index i is the last index ` which is either a variable, or a constant,
encountered on a path from the root to i. For example, writing the labels in square
brackets, Figure 2 induces the following labelled formula

(((R+
2[a]∨+

1[a] P+
3[a])�+

a[a] Q−
4[a])∧+

0[a] (P−
5[x] �

+
x[a] ⊥+

6[x])) �−
a[ε] ((P+

7[b] �
−
b[x] R−

8[b])�−
x[a] Q+

9[x]).

In the sequent calculus of Figure 1, contraction is internalized by the repetition
of the principal formula A � B (respectively A � B) in the left (respectively right)
premiss of the �L (respectively �R) rule so that there is no need for an explicit
contraction rule. In a connection-based setting contraction is usually handled via the
notion of multiplicity. Given a formula C of BiInt, a multiplicity for C is a function µ
which assigns a strictly positive integer to each φ- or φ-subformula in C. The formula
µ(C) is then defined as the formula obtained from C by replacing all φ-subformulas A
in C with the conjunction A ∧ A ∧ . . .∧ A, where A occurs exactly µ(A) times, and
replacing all φ-subformulas B in C with the disjunction B ∨ B ∨ . . . ∨ B, where B
occurs exactly µ(B) times. For example, if C = (P � Q) � (R � S), µ(P � Q) = 2
and µ(R � S) = 3, then

µ(C) = ((P � Q) ∧ (P � Q)) � ((R � S) ∨ (R � S) ∨ (R � S)).

Intuitively, a multiplicity function encodes the number of occurrences that would be
allowed (via contraction) for each φ- or φ-formula in a sequent-style derivation. For
convenience, when dealing with indexed formulas, we use superscripted indexes to
distinguish between the copies of φ- and φ-formulas. For the previous example, if we
assume that x is the index of R � S in C, then µ(R � S) = 3 implies that x2 and x3

A Connection-based Characterization of Bi-intuitionistic Validity 7

should respectively be the indexes of the second and third occurrences (the first and
second additional copies) of R � S in µ(C).

The previous notions are fairly common to most connection-based characteriza-
tions of validity. If we were to follow the standard recipe for such characterizations,
the next step would be the introduction of the key notions of (atomic) matrix paths,
connections and spanning sets of connections together with admissible substitutions
leading to irreflexive reduction orderings. However, we shall not follow the standard
approach for the upcoming sections and rather introduce the concept of R-graphs
since it allows us to reformulate all the standard notions on the same graphical struc-
ture. Moreover, R-graphs can easily be turned into Kripke models when dealing with
non valid formulas.

4 Bi-intuitionistic R-graphs

From a very general point of view, R-graphs for a given logic are directed graphs in
which vertices are meant to represent worlds in the underlying Kripke semantics of
the logic [6]. Let us first define the general notion of R-graph before restricting it to
match the bi-intuitionistic case.

Definition 2 (R-graph) A R-graph (RG) is a directed graph G(V,E) with ver-
tices V and edges E. V is required to contain a distinguished vertex ε called the
ε-vertex. The vertices are named with elements of Ψ∪Φ. Moreover, all vertices u are
associated with a set F(G, u) of signed formulas the elements of which are referred
to as the tags of u and all edges e are tagged with a letter T (G, e) from the set
T = {ψ, φ, ψ̄, φ̄, σ, κ} of edge-tags.

A vertex named with a constant symbol (respectively variable symbol) is called
a ψ-vertex (respectively φ-vertex). The set of ψ-vertices (respectively φ-vertices) is
written V Ψ (respectively V Φ). We use the letters u, v and w to range over arbitrary
vertices and we write u[τ]v to denote the edge, tagged with the letter τ ∈ T , that
goes from u to v; we then call this edge a τ -edge and say that u and v respectively
are its source and target. Given a subset T ⊆ T , the set of all τ -edges such that
τ ∈ T is written ET .

Definition 3 (bi-intuitionistic RG) A bi-intuitionistic RG (biRG) is a R-graph
G(V,E) satisfying the following structural conditions:
– every ψ-edge has a ψ-vertex as its target;
– every ψ̄-edge has a ψ-vertex as its source;
– every φ-edge has a φ-vertex as its target;
– every φ̄-edge has a φ-vertex as its source;
– every σ-edge induces a “bidirectional” link between a φ-vertex and a ψ-vertex,

more formally, u[σ]v ∈ E if and only if v[σ]u ∈ E, with either u ∈ V Ψ and
v ∈ V Φ, or u ∈ V Φ and v ∈ V Ψ;

– every κ-edge u[κ]v is a link between two (arbitrary) vertices such that there
exists at least one formula occurring positively (with a “+” sign) in F(G, u) and
negatively (with a “−” sign) in F(G, v).

Definition 4 (purity) A biRG is pure if it does not contain any κ- or σ-edges.
The pure part of a biRG G(V,E) is the biRG obtained from G in which all κ- and
σ-edges have been removed.

8 Didier Galmiche, Daniel Méry

εa

x a x b

ψ

φ ψ̄ φ̄

ψσ

σ

κ

κ

P− Q−R+ P+R−

G1 εa

x a x

ψ

φ ψ̄ φ̄

σ

σ

κ
P− Q−R+ Q+

G2

εa

x a x b

ψ

φ ψ̄ φ̄

ψσ

σ

κ

κ

P− Q−P+ P+R−

G3 εa

x a x

ψ

φ ψ̄ φ̄

σ

σ

κ

κ

P− Q−P+ Q+

G4

Fig. 3 Bi-intuitionistic R-graphs

Figure 3 gives some examples of biRGs. Let us now explain how such graphs
can be associated with formulas. Standard matrix characterizations heavily rely on
the notion of (atomic) matrix paths. In our setting, such atomic matrix paths are
replaced with the notion of pure irreducible biRGs.

Definition 5 Let A be a BiInt formula. A (biRG-)reduction through A is a sequence
R = R0ρ1 . . . ρi−1ρi . . . in which R0 is a collection (of biRGs) containing the single
biRG G0(V0, E0), where V0 = {ε}, E0 = ∅ and F(G0, ε) = {A−}, and each ρi is
a reduction step that transforms the collection Ri−1 inherited from the previous
reduction step into a new collection Ri by applying one of the reduction rules given
in Figure 4.

In order to apply a reduction rule to a biRG G(V,E), one first needs to choose
a vertex u in V and a signed formula AS in F(G, u).

– If AS has principal type α and has no intuitionistic type, G(V,E) is reduced to
the new biRG G1(V1, E1) such that V1 = V , E1 = E, F(G1, v) = F(G, v) for
all v 6= u and F(G1, u) = F(G, u)∪ {α1(AS), α2(AS)}, where α1(AS) and α2(AS)
respectively are the first and second signed subformulas of AS (of secondary type
α1 and α2).

– If AS has principal type β and has no intuitionistic type, G(V,E) is reduced to
two new biRGs G1(V1, E1), G2(V2, E2) such that for i ∈ {1, 2}, Vi = V , Ei = E,
F(Gi, v) = F(G, v) for all v 6= u and F(Gi, u) = F(G, u) ∪ {βi(AS)}.

The previous reduction rules are the reformulation of the standard α and β matrix-
path reduction rules. The next two reduction rules are specific to BiInt and depend on
the index (a, a, x or x) and intuitionistic type of the signed formula under reduction
(principal formula).

A Connection-based Characterization of Bi-intuitionistic Validity 9

u

u

α

α1

α2

u

u u

β

β1 β2

u u aαψ
α1

α2
ψ

u u aαψ
α1

α2
ψ̄

u

u

u

x

x

φ

φ

βφ

β1

β2

u

u

u

x

x

φ̄

φ̄

βφ

β1

β2

a (resp. a, x, x) is the index of the αψ- (resp. αψ-, βφ-, βφ-) formula under reduction.

Fig. 4 Reduction rules

– If AS has principal type α and has intuitionistic type ψ (respectively ψ), G(V,E)
is reduced to the new biRG G1(V1, E1) such that V1 = V ∪ {a} and E1 = E ∪
{u[ψ]a} (respectively V1 = V ∪{a} and E1 = E∪{a[ψ̄]u}). Moreover, F(G1, v) =
F(G, v) for all v 6= a (respectively v 6= a), and F(G1, a) = {α1(AS), α2(AS)}
(respectively F(G1, a) = {α1(AS), α2(AS)}).

– If AS has principal type β and has intuitionistic type φ (respectively φ), G(V,E)
is reduced to two new biRGs G1(V1, E1), G2(V2, E2) such that for i ∈ {1, 2}, Vi =
V ∪{x} and Ei = E∪{u[φ]x} (respectively Vi = V ∪{x} and Ei = E∪{x[φ̄]u}).
Moreover, F(Gi, v) = F(G, v) for all v 6= x (respectively v 6= x) and F(Gi, x)
(respectively F(Gi, x)) = {AS} ∪ {βi(AS)}.

Let us remark that we have chosen to prevent the reduction rules from discarding
their principal formula from the tags of u (although we shall forget about them in
graphical representations to increase readability). This is not a strict requirement
but it makes the counter-model construction process (e.g., the saturation relation in
Definition 15) easier to define.

Definition 6 (irreducibility) A biRG is irreducible if it is stable under the reduc-
tion rules; it is reducible otherwise. Accordingly, a collection R of biRGs is irreducible
if and only if all biRGs in R are irreducible.

Let R be a reduction through A, we say that R is finished if and only if for some
natural number n, the collection Rn in R is irreducible and for all Rm in R such that
m < n, Rm is not irreducible. We then say that n is the length of the reduction R.
Since we consider formulas indexed w.r.t. a given multiplicity, an inspection of the
reduction rules of Figure 4 shows that all finished reductions through A lead to the
same irreducible biRG-collection denoted Rf and called the final biRG-collection
through A. Every biRG in Rf is then called an irreducible biRG through A. Let
us remark that all biRGs in Rf are pure. Figure 3 gives examples of irreducible
biRGs2, the pure parts of which also are examples of irreducible biRGs through
(((R+

2 ∨+
1 P+

3) �+
a Q−

4) ∧+
0 (P−

5 �+
x ⊥+

6)) �−
a ((P+

7 �−
b R−

8) �−
x Q+

9).
2 For readability, non-atomic signed formulas are not mentioned in the vertex tags.

10 Didier Galmiche, Daniel Méry

5 Characterizing BiInt Validity through R-graphs

Before stating our connection-based characterization of BiInt validity, we need to
define the notions of slice, concrete path and admissible R-graphs.

Definition 7 (slice) Let G(V,E) be a biRG and S be a subset of V , the S-slice of G
is defined as the smallest (w.r.t. the number of vertices and edges) biRG GS(V S , ES)
such that S ⊆ V S and for all vertices u ∈ V S and v ∈ V ,

– if v[τ]u ∈ E and τ ∈ {ψ, φ, σ}, then v ∈ V S and v[τ]u ∈ ES ;
– if u[τ]v ∈ E and τ ∈ {ψ̄, φ̄, σ}, then v ∈ V S and u[τ]v ∈ ES .

The purpose of a slice is to capture only the essential information, i.e., the min-
imal portion of a biRG, that is necessary to establish the validity of a BiInt formula.
Let us remark that in the construction of a slice ψ̄- and φ̄-edges are traversed for-
ward, from their source to their target, while ψ- and φ-edges are traversed backward,
from their target to their source.

Definition 8 (path) Given two vertices u, v in a biRG G(V,E), a path in G from u
to v is a sequence u0τ1u1 . . . up−1τpup such that u0 = u, up = v and for all 1 6 i 6 p,
ui is a vertex in V , τi is an edge-tag in T and there exists a τi-edge ui−1[τi]ui in E.
A cycle is a path such that u0 = up.

Given a subset T of T , a T -path is a path P = u0τ1u1 . . . up−1τpup such that
for all 1 6 i 6 p, τi ∈ T . In particular, when T = {ψ, ψ̄, σ}, P is called a concrete
path (in the graphical representation, a path using only solid edges). T -cycles and
concrete cycles are defined accordingly. Using concrete paths, we then define the
notion of concrete reachability as the relation (__→ _) such that

Gu→ v if and only if u = v or there exists a concrete path from u to v in G.

It is not difficult to check that concrete reachability is a preordering relation on
the vertices of a biRG which in turn gives rise to the notion of mutual concrete
reachability as the equivalence (__↔ _) between vertices such that

Gu↔ v if and only if Gu→ v and Gv → u.

Definition 9 (admissibility) A biRG G(V,E) is admissible if and only if

– all concrete cycles in G are σ-cycles that contain at most one ψ-vertex and
– for all τ -edges u[τ]v in E such that τ ∈ {φ, φ̄}, Gu→ v (in other words, if u and
v are distinct then there is a concrete path in G from u to v).

Definition 10 (consistency) A biRG G(V,E) is inconsistent if and only if
(∃u ∈ V)(⊥+ ∈ F(G, u)); it is consistent otherwise.

Definition 11 (complementarity) A biRG G(V,E) is complementary if and only
if there is at least one κ-edge u[κ]v in E such that the slice G{u,v} is admissible and
G{u,v}u→ v (there is a concrete path in the slice from u to v).

A collection of biRGs is inconsistent (respectively admissible) if it contains at
least one biRG which is inconsistent (respectively admissible). On the contrary, a
collection is complementary if all of its biRGs are complementary.

A Connection-based Characterization of Bi-intuitionistic Validity 11

Let us now consider the characterization of BiInt validity. Starting with the final
biRG-collection Rf through a BiInt formula A, we define the notions of σ- and κ-
bindings. A local σ-binding for a biRG G(V,E) is a function σ that extends G(V,E)
by inserting σ-links (bidirectional σ-edges) in E.
More formally, σ(G(V,E)) = Gσ(Vσ, Eσ) such that Vσ = σ(V) = V and Eσ =
σ(E) = E ∪ Σ, where Σ is a set of σ-links between vertices of V Φ and vertices
of V Ψ. Let us remark that a local σ-binding is completely determined by Σ.

Given two collections R = {G1, . . . , Gn} and S = {σ1, . . . , σn} such that for all
1 6 i 6 n, σi is a local σ-binding for the biRG Gi, the global σ-binding σ for R
(induced by S) is defined as σ(Gi) = σi(Gi) for all 1 6 i 6 n. A global σ-binding
induces a relation < on Ψ×Φ, called a precedence relation, such that a < x if there
is a σ-link a[σ]x in σ(Gi) for some 1 6 i 6 n.

A local σ-binding σ is admissible for a biRG G if σ(G) is admissible. A global
σ-binding σ is admissible for a biRG-collection R if for all G in R, σ(G) is admissible.
Local and global κ-bindings are defined accordingly w.r.t. the structural conditions
required for κ-edges in Definition 3.

Definition 12 (biRG-validity) A BiInt formula A is biRG-valid if and only if
there exist a multiplicity µ, a (global) σ-binding σ and a (global) κ-binding κ for the
final biRG-collection Rf of irreducible biRGs through µ(A) such that:

1. For all (not necessarily distinct) biRGs G1(V1, E1), G2(V2, E2) in σ ◦ κ(Rf) and
all φ-vertices x in V1 ∩ V2, if x[σ]u ∈ E1 and x[σ]v ∈ E2 then u = v.

2. For all consistent biRGs G(V,E) in σ ◦ κ(Rf), G(V,E) is complementary.
3. The reduction ordering C = (� ∪ <)+ induced by σ, where (·)+ stands for

transitive closure, is irreflexive.

Let us illustrate the previous definition by showing that the (indexed) formula

C = (((R+
2 ∨+

1 P+
3) �+

a Q−
4) ∧+

0 (P−
5 �+

x ⊥+
6)) �−

a ((P+
7 �−

b R−
8) �−

x Q+
9)

is biRG-valid. Firstly, let us consider a multiplicity µ such that µ(x) = µ(x) = 1. Let
us then remark that the second condition of Definition 12 implies that one only needs
to consider irreducible biRGs that are also consistent to establish the biRG-validity
of a formula. Conveniently, it happens that the pure part of the four biRGs depicted
in Figure 3 are the only consistent and irreducible biRGs through µ(C).

The first condition of Definition 12 requires that a global σ-binding should be
found from local σ-bindings that are pairwise compatible in such a way that if some
φ-vertex (i.e., a variable) gets σ-linked with some ψ-vertex (i.e., a constant) in some
biRG through µ(C), then it cannot be σ-linked to a distinct ψ-vertex in the same
or in any other biRG through µ(C). A straightforward way to build such a global
σ-binding is to propagate any σ-link inserted in an irreducible and consistent biRG
immediately to all other irreducible and consistent biRGs where that σ-link can be
inserted. For the four biRGs of Figure 3, let us consider the global σ-binding σ built
from the four local σ-bindings σi(16i64) induced by the same set Σ = {x[σ]a, x[σ]a}
of σ-links.

In order to satisfy the second condition of Definition 12, let us consider the
following local κ-bindings for the four biRGs of Figure 3: κ1 = {a[κ]b} for G1,
κ2 = κ4 = {x[κ]a} for G2 and G4, κ3 = {a[κ]x} for G3, which leads to the global
κ-binding κ = {a[κ]b, x[κ]a, a[κ]x}. Let us remark that once a global κ-binding has
been determined, the formulas tagging the vertices of biRGs become useless since

12 Didier Galmiche, Daniel Méry

εa

x a x b

ψ

φ ψ̄ φ̄

ψσ

σ

κP− Q−R+ P+R−

S1 = G
{a,b}
1 εa

x a x

ψ

φ ψ̄ φ̄

σ

σ

κ
P− Q−R+ Q+

S2 = G
{x,a}
2

εa

x a x

ψ

φ ψ̄ φ̄

σ

σ

κ

P− Q−P+

S3 = G
{a,x}
3 εa

x a x

ψ

φ ψ̄ φ̄

σ

σ

κ
P− Q−P+ Q+

S4 = G
{x,a}
4

Fig. 5 Slices under κ = {a[κ]b, x[κ]a, a[κ]x} and σ = {x[σ]a, x[σ]a}

biRG-validity only relies on the structure (shape) of the biRGs. This fact opens the
door for some factorizing optimizations as illustrated in Figure 5 where the slices
Si(16i64) generated by our global κ-binding κ are depicted. Indeed, since S2 and
S4 share the same structure, only one of these two slices needs to be considered
(the other may safely be discarded). The slices of Figure 5 should then be tested
for complementarity according to Definition 11: on one hand, for all i such that
(1 6 i 6 4), Si is admissible because the (non-solid) edges a[φ]x and x[φ̄]a are
respectively covered by the concrete paths aσx and xσaψ̄a, and on the other hand,
a[κ]b is covered by the concrete path aσxψb in S1, x[κ]a is covered by the concrete
path xσa in S2 (and S4) and a[κ]x is covered by the concrete path aψ̄aσx in S3.

Finally, the last thing to do in order to establish the biRG-validity of C is to
check the third condition of Definition 12. The global σ-binding σ = {x[σ]a, x[σ]a}
induces a precedence relation < such that a < x and a < x, which in turn implies
the reduction ordering C = (� ∪ <)+ depicted in Figure 6 as a graph, called a
reduction graph for C, where the solid and dotted arrows respectively stand for the
domination ordering � and the precedence relation <. Since the reduction graph is
acyclic, it follows that the reduction ordering C is irreflexive and thus, the formula C
is biRG-valid.

The irreflexivity ofC can also be checked directly on the biRGs of Figure 3 instead
of resorting to a reduction graph. For that, one needs to discard all non-solid edges
(since they are known to be covered by concrete paths), revert all ψ̄-edges, orient all
σ-links from their ψ-vertex (constant) to their φ-vertex (variable), merge all resulting
graphs into a single one, called a reduction biRG for C, and check it for acyclicity.
Doing so with the slices of Figure 5, leads to the reduction biRG of Figure 7, which
is easily checked irreflexive. In general, a reduction biRG has fewer vertices than
a reduction graph because biRGs only take into account vertices that correspond
to constants and variables introduced by implications and co-implications, whereas
an indexed formula tree has to take into account the whole syntactic structure of
a formula (including atoms, conjunctions and disjunctions that introduce neither
constant, nor variable indexes).

A Connection-based Characterization of Bi-intuitionistic Validity 13

�−
a

∧+
0

�+
a

∨+
1

R+
2 P+

3

Q−
4

�+
x

P−
5 ⊥+

6

�−
x

�−
b

P+
7 R−

8

Q+
9

Fig. 6 Reduction graph for (((R2 ∨1 P3) �a Q4) ∧0 (P5 �x ⊥6)) �a ((P7 �b R8) �x Q9)

εa

x a x b

�

�

�<

<

Fig. 7 Reduction biRG for (((R2 ∨1 P3) �a Q4) ∧0 (P5 �x ⊥6)) �a ((P7 �b R8) �x Q9)

6 A New Labelled Calculus

Definition 12 can be used to extract a labelled calculus, called RGBiInt, the rules of
which generate biRGs. Such a calculus is given in Figure 8 and generates one biRG
per initial sequent3 in a derivation, which is induced by the edges (written as side
conditions) introduced by the inference rules for implication, negation, co-implication
and co-negation along the branch that leads to this initial sequent. The rules for
negation and co-negation are only given for convenience as they make derivations
more compact, but let us remark that they are easily derivable from the rules for
implication and co-implication using the weakening rules wL and wR, which is also
the only real technical reason why we introduce such weakening rules4. Moreover, we
choose to handle contraction through the notion of multiplicity instead of providing
explicit contraction rules in order to cling to the notions introduced so far, and on
which Definition 12 relies.

Reduction rules of RGBiInt are a simple reformulation of the reduction rules of
Figure 4 in terms of unsigned labelled formulas, knowing that a positive (respectively
negative) labelled formula should occur on the left-hand (respectively right-hand)
side of a labelled sequent. More precisely, a labelled formula A[v] on the left-hand
(respectively right-hand) side of a labelled sequent simply means that A+ (respec-
tively A−) appears in the tags of the vertex u of the biRG associated with the branch
of the derivation where that labelled sequent occurs.

A derivation in RGBiInt is finished if all of its initial sequents are irreducible.
Figure 9 gives an example of a finished derivation in RGBiInt for our well-known
formula C = (((R2 ∨1 P3) �a Q4) ∧0 (P5 �x ⊥6)) �a ((P7 �b R8) �x Q9), more

3 A sequent that is not introduced in a derivation as the conclusion of an inference rule.
4 Weakening rules are only there to clean-up all useless occurrences of ⊥ on the right-hand

side of labelled sequents that would otherwise bloat the rules for negation and co-negation.

14 Didier Galmiche, Daniel Méry

Axioms and structural rules:

ax
Γ,A[u] ` A[u],∆

⊥LΓ,⊥[u] ` ∆
Γ ` ∆ wL

Γ,Γ′ ` ∆
Γ ` ∆ wR

Γ ` ∆,∆′

Reduction rules:

Γ,A[u],B[u] ` ∆
∧LΓ, (A ∧ B)[u] ` ∆

Γ ` A[u],∆ Γ ` B[u],∆
∧RΓ ` (A ∧ B)[u],∆

Γ,A[u] ` ∆ Γ,B[u] ` ∆
∨LΓ, (A ∨ B)[u] ` ∆

Γ ` A[u],B[u],∆
∨RΓ ` (A ∨ B)[u],∆

Γ ` A[x],∆ Γ,B[x] ` ∆
u[φ]x

Γ, (A � B)[u] ` ∆
Γ,A[a] ` B[a],∆

u[ψ]a
Γ ` (A � B)[u],∆

Γ,A[a] ` B[a],∆
a[ψ̄]u

Γ, (A � B)[u] ` ∆
Γ ` A[x],∆ Γ,B[x] ` ∆

x[φ̄]u
Γ ` (A � B)[u],∆

Derivable reduction rules:

Γ ` A[x],∆
u[φ]x

Γ,¬A[u] ` ∆
Γ,A[a] ` ∆

u[ψ]a
Γ ` ¬A[u],∆

Γ ` A[a],∆
a[ψ̄]u

Γ,∼A[u] ` ∆
Γ,A[x] ` ∆

x[φ̄]u
Γ ` ∼A[u],∆

Fig. 8 Labelled calculus RGBiInt for BiInt

precisely, for µ(C) with µ(x) = µ(P � ⊥) = 1 and µ(x) = µ((P � R) � Q) = 1.
The derivation has four irreducible initial sequents si(16i64) for which we collect the
sets Ei of all the edges that occur (as side notes to inference lines) along the branch
of the derivation that leads to si. We get E2 = E4 = {ε[ψ]a, a[φ]x, a[ψ̄]a, x[φ̄]a} for
s2 and s4, and E1 = E3 = E2∪{x[ψ]b} for s1 and s3. As easily seen, each Ei induces
a biRG the structure of which exactly corresponds to the pure part of the irreducible
biRG Gi of Figure 3. The discussion in the previous paragraph also makes it clear
that the atomic labelled formulas of each si exactly correspond to the atomic signed
formulas tagging the vertices of Gi: e.g., s1 implies that in G1, R+ and Q− are tags
for the vertex a, P− is a tag for the vertex x, and P+ and R− are tags for the vertex b.

The easiest way to define the notion of RGBiInt-provability is to relate it to the
notion biRG-validity.

Definition 13 (RGBiInt provability) A BiInt formula A is RGBiInt-provable if and
only if there exist a multiplicity µ and a finished derivation D for µ(A) such that
the biRG collection induced by the initial sequents of D is biRG-valid.

Let us remark that the first condition of Definition 12 ensures that a σ-binding is
functional and can therefore actually be translated into the more standard notion
of substitution, i.e., σ(x) = a if and only if there is a (uniquely determined) σ-link
between x and a in some irreducible biRG associated with some irreducible initial
sequent of a derivation. Moreover, the second condition of Definition 12 ensures that
the notion of κ-binding can actually be translated into the more standard notion of
spanning set of connections, i.e., for all consistent biRGs G through µ(A), there is
at least one κ-edge u[κ]v and that κ-edge corresponds to a pair of labelled formulas
A[u] and A[v] that respectively occur on the left-hand and right-hand side of the
initial sequent s associated with G in the derivation D for µ(A).

A Connection-based Characterization of Bi-intuitionistic Validity 15

s1

R[a],P[b] ` Q[a],P[x],R[b]
x[ψ]b

R[a] ` Q[a],P[x], (P � R)[x]
s2

Q[x],R[a] ` Q[a],P[x]
x[φ̄]a

R[a] ` Q[a],P[x], ((P � R) � Q)[a]
D1

s3

P[a],P[b] ` Q[a],P[x],R[b]
x[ψ]b

P[a] ` Q[a],P[x], (P � R)[x]
s4

P[a],Q[x] ` Q[a],P[x]
x[φ̄]a

P[a] ` Q[a],P[x], ((P � R) � Q)[a]
D2

D1 D2 ∨L(R ∨ P)[a] ` Q[a],P[x], ((P � R) � Q)[a]
a[ψ̄]a

((R ∨ P) � Q)[a] ` P[x], ((P � R) � Q)[a] ⊥[a] ` ((P � R) � Q)[a]
a[φ]x+ wL((R ∨ P) � Q)[a], (P � ⊥)[a] ` ((P � R) � Q)[a]

∧L(((R ∨ P) � Q) ∧ (P � ⊥))[a] ` ((P � R) � Q)[a]
ε[ψ]a

` ((((R ∨ P) � Q) ∧ (P � ⊥)) � ((P � R) � Q))[ε]

Fig. 9 RGBiInt-derivation for (((R2 ∨1 P3) �a Q4) ∧0 (P5 �x ⊥6)) �a ((P7 �b R8) �x Q9)

6.1 Soundness

Let us discuss the soundness of the characterization, which relies on the labelled
calculus RGBiInt given in Figure 8. The proof follows the standard pattern of proving
that every inference rule of the calculus preserves a standard notion of realizability
in BiInt Kripke models.

Definition 14 (realizability) Let R be a biRG collection, σ be an admissible
global σ-binding for R andM be a Kripke model 〈M,v, J·K〉. R is σ-realizable inM if
and only if for some biRG G(V,E) in R there exists a (total) function ‖·‖ : V Ψ →M ,
called a σ-realization of G inM, such that:
1. (∀u ∈ V Φ)(σ(u) = v implies ‖u‖ = ‖v‖);
2. (∀u ∈ V)(∀v ∈ V)(Gu→ v implies ‖u‖ v ‖v‖);
3. (∀u ∈ V)(∀A+ ∈ F(G, u))(‖u‖ |= A);
4. (∀u ∈ V)(∀A− ∈ F(G, u))(‖u‖ 6|= A).
A biRG collection is σ-realizable if and only if it is σ-realizable in some Kripke model
for some admissible global σ-binding.

Lemma 1 A complementary biRG collection cannot be σ-realizable.

Proof Let R be a complementary biRG collection and G(V,E) be a biRG in R. By
definition, G is complementary. Therefore, there is at least one κ-edge u[κ]v in E such
that the slice G{u,v} is admissible and G{u,v}u→ v, which trivially implies Gu→ v.
Moreover, by definition of κ-edges, there is some formula A such that A+ ∈ F(G, u)
and A− ∈ F(G, v). Let us suppose that R is σ-realizable, then for any σ-realization
of G in a Kripke model M, A+ ∈ F(G, u) implies ‖u‖ |= A, A− ∈ F(G, v) implies
‖v‖ 6|= A and Gu→ v implies u v v, which leads to the contradiction that ‖u‖ 6|= A
by Kripke monotonicity. Therefore, R cannot be σ-realizable.

16 Didier Galmiche, Daniel Méry

Lemma 2 Reduction rules preserve the σ-realizability of biRG collections.

Proof By case analysis of the rules of Figure 8.

Theorem 1 Let A be a BiInt formula. If A is biRG-valid then A is valid in the
Kripke semantics.

Proof Let us suppose that A is not valid in the Kripke semantics, then, m 6|= A for
some worldm in some Kripke modelM = 〈M,v, J·K〉. The initial biRG-collection R0
of any reduction through A is therefore σ-realizable under the empty global σ-binding
(since there are no φ-vertices in R0) by setting ‖ε‖ = m. Lemma 2 then implies that
the final biRG-collection Rf is also σ-realizable, which by Lemma 1 implies that Rf
cannot be complementary, thus contradicting the biRG-validity of A.

6.2 Completeness

Since completeness relies on counter-model construction, we first need to define a
saturation relation which plays the same role for biRGs as Hintikka collections do
for sets of formulas in intuitionistic logic.

Definition 15 (saturation) Let G(V,E) be a biRG. The saturation relation on G
is defined as the smallest relation between vertices and signed formulas such that:

– Base case: for all A in {⊥} ∪ V,
– Gu A+ iff (∃v ∈ V)(Gv → u and A+ ∈ F(G, v));
– Gu A− iff (∃v ∈ V)(Gu→ v and A− ∈ F(G, v));

– Induction:
– Gu (A ∧ B)+ iff Gu A+ and Gu B+;
– Gu (A ∧ B)− iff Gu A− or Gu B−;
– Gu (A ∨ B)+ iff Gu A+ or Gu B+;
– Gu (A ∨ B)− iff Gu A− and Gu B−;
– Gu (A � B)+ iff (∀v ∈ V)(if Gu→ v and Gv A+ then Gv B+);
– Gu (A � B)− iff (∃v ∈ V)(Gu→ v and Gv A+ and Gv B−);
– Gu (A � B)+ iff (∃v ∈ V)(Gv → u and Gv A+ and Gv B−);
– Gu (A � B)− iff (∀v ∈ V)(if Gv → u and Gv A+ then Gv B+).

G(V,E) is saturated if and only if (∀u ∈ V)(∀CS ∈ F(G, u))(Gu CS).

Definition 16 (contradiction) A biRG G(V,E) is contradictory if and only if
(∃P ∈ V)(∃u ∈ V)(Gu ⊥+ or (Gu P− and Gu P+)).

Lemma 3 If G(V,E) is a non-contradictory saturated biRG then
(∀A ∈ F)(∀u ∈ V)(Gu 1 A− or Gu 1 A+).

Proof By structural induction on A.

Definition 17 (H-model) Let G(V,E) be a biRG. The H-model of G(V,E) is
defined as the triple H(G) = 〈M,v, J·K〉 where

– M is the quotient of V by the relation of mutual concrete reachability, i.e.

M = {u̇ | u ∈ V } with u̇ = {v | v ∈ V and Gu↔ v}.

A Connection-based Characterization of Bi-intuitionistic Validity 17

– v is defined as the binary relation on M such that

(∀m ∈M)(∀n ∈M)(m v n if and only if (∀u ∈ m)(∀v ∈ n)(Gu→ v)).

– J·K is the function from M to sets of propositional letters such that

(∀P ∈ V)(∀m ∈M)(P ∈ JmK if and only if (∀u ∈ m)(Gu P+)).

Lemma 4 Let G(V,E) be a biRG and H(G) = 〈M,v, J·K〉 be its H-model. If G is
saturated and non-contradictory then H(G) is a Kripke model such that
1. (∀m ∈M)(∀n ∈M)(m v n if and only if (∃u ∈ m)(∃v ∈ n)(Gu→ v)) and
2. (∀P ∈ V)(∀m ∈M)(P ∈ JmK if and only if (∃u ∈ m)(Gu P+)).

Proof The fact that v is a partial order on M directly follows from the fact that
(G_→ _) is a preorder on V . Moreover, Lemma 3 implies that J·K is well defined
while Definition 15 ensures that J·K satisfies Kripke monotonicity. Therefore H(G) is
a Kripke model. Let us show the two additional properties.
1. The “only if” direction is immediate since equivalence classes cannot be empty.

For the “if” direction, for any two vertices u′ and v′ in m and n respectively, it
directly follows from Gu↔ u′ and Gv ↔ v′ that Gu′ → v′.

2. Immediate by the monotonicity of (G_ _) encapsulated in Definition 15.

Lemma 5 Let G(V,E) be a biRG. If G is saturated and non-contradictory then for
all formulas A and all vertices u in V , Gu A+ if and only if u̇ |= A in H(G).

Proof The proof is by induction on the structure of A. The base case where A is a
propositional letter holds by definition of |= and J·K. The base case where A is ⊥ holds
because on one hand, the fact that G is non-contradictory implies that Gu ⊥+ can
never hold and, on the other hand, ⊥ can never be forced by definition of a forcing
relation. For the induction step, we only show a few cases, the others being similar:
– Case A ≡ (B � C):

1. For the “only if” direction, let us assume that Gu (B � C)+. Let v be
some vertex in V such that u̇ v v̇ and v̇ |= B. By definition of v, u̇ v v̇
implies Gu→ v. By induction hypothesis, n |= B implies Gv B. Since G is
saturated, if follows from Gu (B � C)+, Gv B and Gu→ v that Gv C,
which leads to v̇ |= C by induction hypothesis. Therefore, u̇ |= (B � C).

2. For the “if” direction, let us assume that u̇ |= (B � C) in H(G). Let v
be a vertex in V such that Gu→ v and Gv B+. Gu→ v implies u̇ v v̇
by Lemma 4 and Gv B+ implies v̇ |= B by induction hypothesis. Since
u̇ |= (B � C), v̇ |= B implies v̇ |= C, which leads to Gv C+ by induction
hypothesis. Therefore, Gu (B � C)+.

– Case A ≡ (B � C):
1. For the “only if” direction, let us assume that Gu (B � C)+. It then follows

that there is some vertex v in V such that Gv → u, Gv B+ and Gv C−.
By definition of v, Gv → u implies v̇ v u̇. By induction hypothesis, Gv B+

implies v̇ |= B. By Lemma 3, Gv C− implies Gv 1 C+, which leads to v̇ 6|= C
by induction hypothesis. Therefore, u̇ |= (B � C).

2. For the “if” direction, let us assume that u̇ |= (B�C) in H(G). By definition,
u̇ |= (B � C) implies v̇ |= B and v̇ 6|= C for some vertex in v in V such
that v̇ v u̇. By induction hypothesis and by definition of v, it follows that
Gv B, Gv 1 C and Gv → u. Therefore, Gu (B � C)+.

18 Didier Galmiche, Daniel Méry

Let us illustrate how to extract counter-models from saturated biRGs with a
short example, the formula D = Q � ((¬(P � Q) � P) ∨ P).
Up to σ- and κ-edges, the collection of irreducible biRGs through D is as follows:

ε a x b aψ φ̄ ψ ψ̄

κ

σ
Q+ Q−P+

G00

ε a xψ φ̄

κ

σ
P−Q+ P+

G01

Both biRGs G00 and G01 are admissible and consistent, but only G00 fails to be
complementary and is therefore non-contradictory. Moreover, G00 is also saturated.
In order to turn G00 into a counter-model of D, we need to build the H-model
〈M,v, J·K〉 of G00. We first calculate the quotient of G00 by the equivalence generated
by the σ-edges which leads to the following set of vertex-classes:

M = {ε̇, ȧ, ḃ, ȧ | ε̇ = {ε}, ȧ = ẋ = {a, x}, ḃ = {b}, ȧ = {a}}.

Then, we considerM as a set of worlds on which the accessibility relationv is induced
by the reflexive and transitive closure of the solid-edges in the initial biRG. More
precisely, a world n is accessible from a worldm inM if and only if there is a concrete
path in G00 from some vertex in m to some vertex in n. Finally, for all propositional
letters P in V and all worldsm inM , the atomic Kripke interpretation J·K is obtained
by setting P ∈ JmK if P+ ∈ F(G,m) and closing under Kripke monotonicity, which
leads to the following bi-intuitionistic Kripke model5:

ε̇ ȧ ḃ ȧ

Q P

Theorem 2 Let A be a BiInt formula. If A is valid in the Kripke semantics then A
is biRG-valid.

Proof The completeness proof follows from Lemma 5 and proceeds by counter-
model construction from a saturated and non-contradictory biRG in the final biRG-
collection of a finished reduction through A.

7 Solving Admissibility Constraints

In plain intuitionistic logic, we could use prefixes instead of labels and resort to
T-string (prefix) unification to solve prefix constraints [11]. However we cannot do
that in the case of BiInt because a prefix essentially is a way to encode the path to
a given node in a Kripke tree. Since the Kripke semantics of BiInt deals with graphs
instead of trees, there can be several distinct paths to a given node and taking care

5 Kripke monotonicity is never explicity depicted in our graphical representations in order
to improve their readability, but it is always implicitly assumed.

A Connection-based Characterization of Bi-intuitionistic Validity 19

of that using prefixes (by encoding both successors and predecessors) would break
the T-string property of such prefixes, which in turns prevents the use of T-string
unification.

Given an admissible σ-binding, it is not difficult to check whether κ-edges are
covered by a concrete path or not, the problem is to find such σ-bindings. A trivial
but particularly inefficient solution would be to enumerate all possible σ-bindings
and check whether they are admissible or not. As a first step toward more efficient
solutions, we now sketch an algorithm that, given a pure biRG G and a set K of
κ-edges, enumerates only those σ-bindings that are admissible for the slice of G
induced by K by preserving the acyclicity of the underlying reduction ordering C.

In the intuitionistic case, an edge u[τ]v, with τ ∈ {ψ, φ} has a double intuitive
meaning. From a semantic standpoint, u[τ]v means that, whenever interpreted in a
Kripke modelM, the world corresponding to v should be accessible inM from the
world corresponding to u, as prescribed by the Kripke interpretation of implication
given in Definition 1. Therefore, in the semantic interpretation, one reasons in terms
of Kripke model accessibility. From a syntactic standpoint, u[τ]v means that the
formula f(v) associated with the index v should be introduced before the formula
f(u) associated with the index u in a sequent-style derivation (e.g., in the sequent
calculus of Figure 1). Therefore, in the syntactic interpretation, one reasons in terms
of introduction precedence in sequent-style derivations.

In the bi-intuitionistic case, the semantic interpretation still holds, but the syn-
tactic interpretation breaks down. Indeed, although oriented from u to v, the edge
u[ψ̄]v implies that f(u) is a subformula of f(v) and thus has to be introduced after
f(v) in a sequent-style derivation. In order to recover the syntactic interpretation,
one has to cross ψ̄- and φ̄-edges backward (from their target to their source) when
reasoning in terms of introduction precedence, which leads to the notion of walks.

A walk through a biRG is similar to a path as described in Definition 8 except
that, in a walk, φ̄- and ψ̄-edges must be crossed backward and σ-edges can only
be crossed from their ψ-vertex to their φ-vertex. T -walks are defined accordingly as
walks that only cross τ -edges such that τ ∈ T and, whenever T = {ψ, ψ̄, σ}, a T -walk
is called a concrete walk. Summing it up, we now have the notion of paths to reason
in terms of Kripke model accessibility (predecessors/successors) and the notion of
walks to reason in terms of introduction precedence (before/after).

Let u be an arbitrary vertex in a biRG, we define Ant (T, u) (respectively Bnt (T, u))
as the set of all vertices v with itype(v)6 occurring in the set t that can be reached
from u (respectively from which u can be reached) by a T -walk of length n. The two
sets Snt (T, u) and Pnt (T, u) are defined similarly using the notion of T -path instead
of T -walk. The letters A and B are reminiscent of “After” and “Before” and shall
handle constraints related to introduction precedence in the syntactic interpretation
of biRGs, while the letters S and P are reminiscent of “Successor” and “Predecessor”
and shall handle constraints related to Kripke model accessibility in the semantic
interpretation of biRGs. For all F ∈ {S, P,A,B}, we define

Ft(T, u) =
⋃
i∈N

F it (T, u), with F 0
t (T, u) =

{
{u} if itype(u) ∈ t
∅ otherwise.

6 The intuitionistic type of the subformula the reduction of which is responsible for the
introduction of the vertex v according to the rules of Figure 4.

20 Didier Galmiche, Daniel Méry

Rule selectRule(u,c,v) applyRule(u,c,v)

Bind R(v) = u c, D(v) ∪M(c, v)

Narrow c ∈ A(v) R(v), D(v)−A(u)

Widen c = R(v) ∧ (c 6= R(u) ∨ itype(u) = itype(v)) R(v), D(v) ∪M(u, v)

Table 2 Solving rules (assuming v 6= u)

Let u, v be two φ-vertices, we define the set Mt(T, u, v) as follows:

Mt(T, u, v) =
{
St(T, u)−At(T, v) if itype(v) = φ

Pt(T, u)−At(T, v) if itype(v) = φ

For readability, we shall omit the T parameter whenever T = {φ, φ̄, ψ, ψ̄} and the t
subscript whenever t = {ψ,ψ}.

Our solving algorithm relies on two particular objects R(u) and D(u) that are
initially computed for all φ-vertices u in the biRG G(V,E) given as an input to the
solving algorithm. In the initial step, for all u ∈ V Φ we set

R(u) = B1(u) and D(u) = M(R(u), u).

The setD(u), called the domain of u, is meant to represent all suitables instantiations
for u, i.e., ψ-vertices that would be suitable targets for a σ-link the source of which
is u. In the initial step R(u), called the root of u, is the vertex responsible for the
introduction of u in the biRG reduction process. Domains and roots shall be rewritten
as prescribed by the rewrite rules of Table 2 during the solving process.

In a second step, let us define the following notion of variable dependency.
Definition 18 (variable dependency) Let x and y be two φ-vertices in a biRG,
x depends on y, written x ∝ y, if and only if x ∈Mt(R(y), y) with t = {ψ,ψ, φ, φ}.
Intuitively, “x depends on y” means that y should be bound before x because
some constant b may only become admissible for x after y gets bound to some
particular constant a. Consequently, we arrange all variables in a pre-ordered list
X = x1, . . . , xn so that if i < j and xi ∝ xj then xj ∝ xi, which means that travers-
ing the list from left to right, if a variable xi is encountered before the variable xj
then, either xi does not depend on xj , or xi and xj mutually depend on each other
(so that a choice has to be made as to which one should be considered first).

The final step consists of the actual enumeration. For all variables u = xi in X,
select a constant c in D(u) and assign it to u (i.e., add a σ-link u[σ]c in the biRG).
Then, for all subsequent variables v, select the first (top-down) applicable rewrite
rule according to the firing conditions described in the second column of Table 2
and, if there is any such rule, apply it to rewrite R(v) and D(v) as prescribed by the
third column of Table 2. More precisely, for all v = xj in X such that j > i, perform

applyRule := selectRule(u, c,v)

R(v), D(v) := applyRule(u, c,v)
If all variables in X can be assigned then we have an admissible σ-binding and we
just check whether all the κ-edges in K (given as an input to the algorithm) are
covered by a concrete path. If so, we are done, otherwise, we backtrack and try new
assignments for the variables inX until a solution is found or all possible assignments
have been exhausted.

A Connection-based Characterization of Bi-intuitionistic Validity 21

8 Variable Splitting

In this section we briefly discuss how the technique of variable splitting recently
developed for prefixes [1] can be adapted to our R-graph based setting.

Let us illustrate the main ideas with a short example. With a multiplicity µ(x) =
µ((P � P) � P) = 1, it is not possible to prove the validity of the formula for which
a derivation in RGBiInt is given below (indexes are indicated as subscripts).

ax
P2[d] ` P3[d]

x[ψ]d
` (P2 �d P3)[x]

s2

P4[x],Q6[b] ` P7[b]
a[ψ]b

P4[x] ` (Q6 �b P7)[a]

s1

P4[x],R8[c] ` P9[c]
a[ψ]c

P4[x] ` (R8 �c P9)[a]
∧RP4[x] ` ((Q6 �b P7) ∧5 (R8 �c P9))[a]

a[φ]x
((P2 �d P3) �x P4)[a] ` ((Q6 �b P7) ∧5 (R8 �c P9))[a]

ε[ψ]a
(((P2 �d P3) �x P4) �a ((Q6 �b P7) ∧5 (R8 �c P9)))[ε]

The initial sequent s1 requires σ1 = {x/c}, while s2 requires σ2 = {x/b}. The
conflict on x thus makes it impossible to compute a global substitution from the two
local substitutions σ1 and σ2. A first solution would be to increase multiplicity in
order to have one copy x2 of the variable x so as to set σ1 = {x/c} and σ2 = {x2/b}.
The price to pay for this solution would be an unnecessary longer derivation because,
in this example, assigning two distinct values to x would not harm soundness. The
actual problem lies in that RGBiInt is variable sharing: the same φ- or φ-formula
occurring in distinct branches leads to the introduction of the same variable in all
branches since we use the index of that formula as the introduced variable.

Variable sharing leads to full permutability of the rules, but results in potentially
longer derivations. Had we allowed the rules �L and �R to introduce a fresh copy of
the variable associated to its principal φ- or φ-formula for each of its occurrences in
distinct branches of a derivation, expanding the β-formula (Q � P)∧(R � P) before
the φ-formula (P � P) � P would have resulted in the introduction of x and of a
fresh copy x2 in the branches corresponding to the first and second premices of ∧R
respectively. However, such a variable pure formulation of RGBiInt would break full
permutability as β-formulas would need to be expanded before φ- and φ-formulas to
enable as many copies of each variable as possible.

Variable splitting is a technique that allows variable sharing calculi to bind each
shared variable to a distinct value in each branch it occurs in, which enables the
computation of local substitutions and helps keeping derivations shorter. Let A be a
BiInt formula, a splitting set for A is a set of dual-free indexes of secondary type β1
or β2 which is downward closed w.r.t. the tree ordering�. Adding variable splitting
to RGBiInt requires that variables should be replaced with colored variables, i.e.,
pairs xX where x is a variable occurring as an index in A and X is a splitting set
for A. Substitutions are replaced with colored substitutions accordingly. A colored
substitution σ induces a splitting ordering which is the least relation between β- and
φ- or φ-indexes such that if σ(xX) 6= σ(xY), then there are dual indexes i ∈ X and
j ∈ Y such that (i4 j) ≺ x. A splitting ordering encodes the fact that β-formulas
should be introduced before φ- or φ-formulas in a variable pure bottom-up derivation.
Finally, Definition 12 is extended to take care of splitting orderings by redefining the
reduction ordering so that C= (� ∪ < ∪ ≺)+. In the above derivation, {c} and {b}
are splitting sets that give rise to two distinct colored substitutions σ1 = {x{c}/c}
and σ2 = {x{b}/b} such that (b 4 c) = 5, 5 ≺ x, b < x and c < x. The induced
reduction ordering C= (� ∪ < ∪ ≺)+ is easily checked irreflexive.

22 Didier Galmiche, Daniel Méry

9 Conclusion

The main contributions of this work are: a new connection-based characterization of
validity in propositional bi-intuitionistic logic in terms of bi-intuitionistic R-graphs
and a sound and complete cut-free free-variable labelled sequent calculus that en-
joys variable splitting. Moreover, as a first step from the characterization toward an
actual connection-based proof-search method, we define a new algorithm for solving
reachability constraints in bi-intuitionistic R-graphs. Such an algorithm is required
as encoding paths between vertices of a bi-intuitionistic R-graph would not lead to
a set of prefixes satisfying the T-string property, thus preventing the use of T-string
unification algorithms developed for intuitionistic logic [11]. Our algorithm has been
implemented in Prolog and computes admissible σ-bindings more efficiently than the
“enumerate all σ-bindings and check them for admissibility” strategy. Further work
will be devoted to the study of the complexity of our constraint-solving algorithm
and to the key problem of increasing multiplicities more wisely by finding tight upper
bounds in order to obtain more efficient connection-based proof-search procedures.

References

1. R. Antonsen and A. Waaler. A labelled system for IPL with variable splitting. In 21st Int.
Conference on Automated Deduction, CADE-21, LNAI 4603, pages 132–146, Bremen,
Germany, July 2007. Springer Verlag.

2. A. Avron and O. Lahav. Kripke semantics for basic sequent systems. In Int. Conference
on Analytic Tableaux and Related Methods, TABLEAUX 2011, LNAI 6793, pages 43–57,
Bern, Switzerland, 2011. Springer Verlag.

3. T. Crolard. Substractive logic. Theoretical Computer Science, 254(1-2):151–185, 2001.
4. T. Crolard. A formulae-as-types interpretation of substractive logic. Journal of Logic and

Computation, 14(4):529–570, 2004.
5. D. Galmiche and D. Méry. Characterizing provability in BI’s pointer logic through re-

source graphs. In Int. Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2005, LNAI 3835, pages 459–473, Montego Bay, Jamaica, December
2005. Springer Verlag.

6. D. Galmiche and D. Méry. Resource graphs and countermodels in resource logics. Elec-
tronic Notes in Theoretical Computer Science, 125(3):117–135, 2005.

7. D. Galmiche and D. Méry. A Connection-based Characterization of Bi-intuitionistic Va-
lidity, In 23rd Int. Conference on Automated Deduction, CADE-23, LNAI 6803, pages
268–282, Wroclaw, Poland, 2011. Springer Verlag.

8. R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof-search for Bi-intuitionistic
logic using nested sequents. In Advances in Modal Logic 7, pages 43–66, 2008. College
Publications, London.

9. R. Goré, and L. Postniece. Combining Derivations and Refutations for Cut-free Com-
pleteness in Bi-intuitionistic Logic. Journal of Logic and Computation, 20(1):233–260,
2010.

10. S. Negri. Proof analysis in modal logic. J. of Philos. Logic, 34(5-6):507–554, 2005.
11. J. Otten and C. Kreitz. T-string-unification: unifying prefixes in non classical proof meth-

ods. In 5th Int. Workshop on Analytic Tableaux and Related Methods, TABLEAUX’96,
LNAI 1071, pages 244–260, Terrasini, Palermo, Italy, 1996. Springer Verlag.

12. L. Pinto and T. Uustalu. Proof search and counter-model construction for Bi-intuitionistic
propositional logic with labelled sequents. In Int. Conference on Analytic Tableaux and
Related Methods, TABLEAUX 2009, LNAI 5607, pages 295–309, Oslo, Norway, 2009.
Springer Verlag.

13. L. Postniece. Deep inference in Bi-intuitionistic logic. In Int Workshop on Logic, Language,
Information and Computation, WoLLIC 2009, LNAI 5514, pages 320–334, Tokyo, Japan,
2009. Springer Verlag.

14. C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic
logic. Dissertationes Mathematicae, 168, 1980.

