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Abstract. In this paper we study natural deduction for the intuitionistic and classical modal logics obtained
from the combinations of the axiomsT, B, 4 and 5. They are based on a multi-contextual structure, called tree-
sequent, that allows to design simple label-free systems. We show that they are sound and complete and that
they satisfy the normalization property and also the subformula property in the intuitionistic case.

1 Introduction

Classical modal logics (we are interested in normal modal logics) extend classical logic by two operators, called
modalities, that allow to express notions like necessity and possibility [4,9]. In the possible world (Kripke) seman-
tics, the modalities are interpreted in a set of worlds with an accessibility relation. In this context, logics differ by
the properties associated to the accessibility relation (for instance reflexivity (T), symmetry (B), transitivity (4),
euclidness (5)). Intuitionistic modal logics can be considered as logics obtained by replacing in classical modal
logics the reasoning principles with intuitionistic ones [24]. These logics have important applications in computer
science, like formal verification [13] and definition of programming languages [12,16].
Our aim in this work consists in defining label-free natural deduction systems having good properties for several in-
tuitionistic and classical modal logics. There exist many natural deduction systems in the classical case [14,20,23],
but they are rare in the intuitionistic case because of the difficulty to deal with the modality♦ [24]. As far as we
know, the only approach that provide deduction systems satisfying normalization for all the intuitionistic modal
logics we consider is the one of A. Simpson [24]. It is based onlabels that explicitly integrate some semantic
information, like the accessibility relation, into the systems. It allows to define simple systems for large number
of modal logics, but they do not satisfy some properties, forinstance the subformula property, because of the
use of labels that are not in the logic language. Recently works based on a structure, called deep sequent, has
provided label-free sequent calculi for several classicalmodal logics in a modular way and with good properties
like cut-elimination and subformula properties [5]. It canbe seen as a generalization of the approach based on
the hypersequent structure for the modal logicS5 [1]. However, deep sequent and hypersequent structures arenot
adapted to deal with natural deduction formalism and also the intuitionnistic modal logics. The key idea to solve
this problem consists in defining a multi-contextual structure appropriate to deal with the logics we consider. In this
perspective we have recently defined such a multi-contextual sequent structure that allows to defined a label-free
natural deduction system and a sequent calculus for the intuitionistic modal logicIS5 [15].

In this paper we define new natural deduction systems for the intuitionistic and classical modal logics obtained
from the combinations of the axiomsT, B, 4 and 5 that satisfy the normalization property but also thesubformula
property in the intuitionistic case. In order to design themwe first define a multi-contextual structure, in the spirit
of our previous work [15], that is adapted to deal with logicsin both intuitionistic and classical cases. Thus our
first contribution is the definition of a new structure, called Tree-sequent (T-sequent), that is different from the one
of deep sequent [5]: firstly, in a T-sequent we have an explicit difference between some formulas with hypotheses
and a conclusion; secondly, the definition of the formula associated to a T-sequent uses both operators� and♦.
In fact the absence of inter-definissability between♦ and� (one from the other) in the intuitionistic modal logics
(classical case:♦A= ¬�¬A, �A= ¬♦¬A) makes essential the use of a structure with a correspondingformula
using both operators. Intuitively, a T-sequent can be seen as a mono-conclusion version of a deep sequent. Using
this structure, we first focus on the the intuitionistic logic IK and define a natural deduction system for this logic,
that is proved sound and complete. Moreover we show that it satisfies the normalization property. Then we gener-
alize this work by defining natural deduction systems for theintuitionistic modal logics that are obtained from all



the combinations ofT, B, 4 and 5. We prove that they satisfy the normalization property but also the subformula
property. To complete these contributions we naturally derive natural deduction systems for the classical modal
logics obtained from the combinations ofT, B, 4 and 5 and prove that they satisfy the normalization property.

In Section 2 we briefly present the key points about modal logics and their related deduction systems. In Sec-
tion 3 we introduce our new multi-contextual structure, called Tree-sequent, that is similar but different from the
deep (or nested) sequent structure [5,6,19]. In Section 4 wefirst focus on the intuitionistic modal logicIK and
define a new natural deduction systemDNIK based on Tree-sequents. In order to prove the soundness we introduce
two key notions (predecessor, chain) to express if a Tree-sequent has a countermodel or not. The completeness
is proved in a standard way w.r.t. the Hilbert system axiomatization. In Section 5 we study the normalization in
the systemDNIK. For that we define a set of notions and concepts (indexed formula, discharging rule, normal
derivation) in order to describe the normalization procedure in a clear and concise way. After this work on the
intuitionistic modal logicIK with a sound and complete label-free natural deduction system satisfying normaliza-
tion as main contributions, we extend these results in Section 6 by defining natural deduction systems, based on
T-sequents, for the intuitionistic modal logics obtained from the combinations ofT, B, 4 and 5. We prove that all
our systems satisfy normalization but also the subformula and separation properties. Having first focused on the
intuitionistic modal logics we show, in Section 7, how to define in a simple way natural deduction systems for all
classical modal logics obtained from the combinations ofT, B, 4 and 5. For each logic, the system is obtained by
the replacement of the rule associated to⊥ (absurdity) by a new rule in the corresponding intuitionistic system.
We prove that they are sound and complete and that they satisfy normalization.

2 Classical and Intuitionistic Modal Logics

The language of modal logics is obtained from the language ofpropositional logic by adding two unary operators
� and♦. Let Prop be a set of propositional variables, denoted by lettersp,q, r, ... The formulas are defined by
the following grammar:A ::= p | ⊥ | A∧A | A∨A | A⊃A | �A | ♦A where the symbol⊥ represents the absurdity
(constant false). The negation, denoted¬, can be defined by using⊥ and the operator⊃ as follows:¬A, A⊃⊥.
The constant true is defined by⊤,⊥⊃⊥.

2.1 Classical Modal Logics

Let us recall some key points about semantics and proof systems in classical modal logics. The Kripke semantics,
that is related to the definition of truth w.r.t. possible worlds, includes a relation of accessibility between worlds.
Thus “�A is true in a worldw” means thatA is true in all worlds accessible fromw and “♦A is true in a worldw”
means thatA is true in at least one world accessible fromw.

Definition 1. A classical modal modelis a triple (W,R,V) where W is a non-empty set of worlds, R is a binary
relation on worlds, called accessibility relation, and V isa function from W to2Prop (the set of subsets ofProp).

We associate to each modelM = (W,R,V) a relation�M , called satisfaction relation, betweenW and the set of
formulas, that is inductively defined as follows:

– w�M p iff p∈V(w);
– w�M ⊥ never;
– w�M A∧B iff w�M A andw�M B;
– w�M A∨B iff w�M A or w�M B;
– w�M A⊃B iff if w�M A thenw�M B;
– w�M �A iff for any w′ in W, if R(w,w′) thenw′ �M A;
– w�M ♦A iff there existsw′ in W such thatR(w,w′) andw′ �M A.

The expressionw�M A means that in a modelM the formulaA is satisfied in the worldw. A formulaA is valid
in M = (W,R,V) if w�M A for any worldw in W. The classical modal models define the validity in the minimal
modal logicK: a formulaA is valid inK iff A is valid in all classical modal models [10]. The other modal logics
built from combinations of the axiomsT, B, 4 and 5 are defined by classes of classical modal models. Eachaxiom
corresponds to a property of the accessibility relation in each model:
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(T) Reflexivity: ∀w.R(w,w); (B) Symmetry:∀w,w′.R(w,w′)⊃ R(w′,w); (4) Transitivity: ∀w,w′,w′′.(R(w,w′) ∧
R(w′,w′′))⊃R(w,w′′); (5) Euclidness:∀w,w′,w′′.(R(w,w′)∧R(w,w′′))⊃R(w′,w′′).
ForTh ⊆ {T,B,4,5} the class of models defining the logicsKTh, denotedCTh, corresponds to models in which
the accessibility relations satisfies the properties associated to axioms inTh.
Let us note that the logicK{T,4} (resp.K{T,5}) is the classical modal logic denotedS4 (resp.S5).

Theorem 1. A formula A is valid inKTh iff A is valid in all models inCTh.

Proof. See [10].

Each logicKTh satisfies the finite model property w.r.t. the Kripke semantics and thus are decidable [4]. About
proof systems for such a logic we recall the Hilbert system for the classical minimal modal logicK, calledHK, that
is given by the following axioms:

1. Tautologies of propositional classical logic.
2. �(A⊃B)⊃ (�A⊃�B).
3. ♦A↔¬�¬A.

and the following rules:

A⊃B A
B

[mp]
A

�A
[nec]

Hilbert systems for other classical modal logics are obtained by adding toHK axioms among the following
ones: (T) �A⊃A; (B) A⊃�♦A; (4) �A⊃��A; (5) ♦A⊃�♦A. For any subsetTh of {T,B,4,5} we callKTh
the logic corresponding to the Hilbert systemHTh obtained by adding axioms inTh toHK.

2.2 Intuitionistic Modal Logics

Intuitionistic modal logics that we consider are the intuitionistic versions of the classical modal logics [24]. They
have important applications in computer science like formal verification [13] and definition of programming lan-
guages [12,16]. For anyTh⊆ {T,B,4,5} we callIKTh the intuitionistic modal logic corresponding to the classical
modal logicKTh. In this case the semantics and proof systems are different with key points summarized here. Let
us note that we use the namesIT, IB4, IS4 andIS5 for the intuitionistic versions of respectivelyT,K{B,4}, S4, S5.

Definition 2. A modal intuitionistic modelis a quadruple(W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) where

– W is a non-empty set ofKripke worlds;
– 6 is a partial order relation on W;
– for any w∈W, Dw is a non-empty set ofmodal worldssuch that if w6 w′ then Dw ⊆ Dw′ ;
– for any w∈W, Rw is a binary relation on Dw, called w-accessibility relation, such that if w6w′ then Rw ⊆Rw′ ;
– for any w∈W, Vw is a function from Dw to 2Prop such that if w6 w′ then Vw(p)⊆Vw′(p).

Let us note that there are two kinds of worlds: the Kripke worlds that correspond to the intuitionistic basis and
the modal worlds that capture the modal aspects. As in the classical case, we associate to each modal intuitionistic
logic a satisfaction (or forcing) relation.

Definition 3. Let M = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a modal intuitionistic model, w∈ W, d∈ Dw

and F be a formula, theforcing relation, denoted w,d �M F, is inductively defined as follows:

– w,d �M p iff d ∈Vw(p);
– w,d �M ⊥ never;
– w,d �M A∧B iff w,d �M A and w,d �M B;
– w,d �M A∨B iff w,d �M A or w,d �M B;
– w,d �M A⊃B iff for all w′ > w, if w′,d �M A then w′,d �M B;
– w,d �M �A iff if for all w′ > w and for all d′ ∈ Dw′ , if Rw′(d,d′) then w′,d′ �M A;
– w,d �M ♦A iff there exists d′ ∈ Dw such that Rw(d,d′) and w,d′ �M A.
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A formulaA is valid in a modelM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) if and only if w,d �M A for all w∈W
and for alld ∈ Dw. ForTh⊆ {T,B,4,5}, a model(W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) is in the class of models
ICTh if and only if for all w∈W, Rw satisfies the properties associated to the axioms inTh.

Theorem 2. A formula A is valid inIKTh if and only if A is valid in all the models inICTh.

Proof. See [24].

The satisfaction relation verifies the property of Kripke monotonicity like in intuitionistic logic.

Proposition 1 (Monotonicity). If w,d �M A and w6 w′ then we have w′,d �M A.

Proof. By structural induction onA.

Let us note that these logics do not satisfy the finite model property w.r.t. Kripke semantics [17,24]. But some
of them satisfy the property w.r.t. other semantics. The property has been proved forIS5 [21] w.r.t. the algebraic
semantics proposed in [7]. For the logicsIK, IK{B} andIK{T,B} the finite model property has been proved w.r.t.
the bi-relational semantics [24]. Concerning the proof systems we can mention a Hilbert system forIK, denoted
HIK, that is given by

– Tautologies of propositional intuitionistic logic.
– �(A⊃B)⊃ (�A⊃�B).
– �(A⊃B)⊃ (♦A⊃♦B).
– ♦⊥⊃⊥.
– ♦(A∨B)⊃ (♦A∨♦B).
– (♦A⊃�B)⊃�(A⊃B).

with the rules

A⊃B A
B

[mp]
A

�A
[nec]

It has been first proposed in [18] and another one can be found in [22]. For anyTh ⊆ {T,B,4,5}, a Hilbert
system for the logicIKTh, denotedHIKTh, is obtained by the addition toHIK of axioms corresponding to the
elements ofTh among the following axioms [24]: (T) (�A⊃A)∧ (A⊃♦A); (B) (♦�A⊃A)∧ (A⊃�♦A); (4)
(�A⊃��A)∧ (♦♦A⊃♦A); (5) (♦�A⊃�A)∧ (♦A⊃�♦A).
Let us consider the axiomT used in classical modal logic that is�A⊃A. Then we have�¬A⊃¬A. As we have
�A↔¬♦¬A and¬¬A↔A, we obtain¬♦A⊃¬A that is the contraposition ofA⊃♦A. But the addition ofA⊃♦A
to the axiomT in the intuitionistic case comes from the fact that the two operators� and♦ are independent.

Before to consider natural deduction systems we give the definitions of two useful notions:
Let A be a formula, thecomplexity measureof a formulaA, denoted| A |, is defined as follows:
- | p |=| ⊥ |= 1;
- | A⊗B |=| A |+ | B |+1 where⊗ ∈ {∧,∨,⊃};
- |⊠A |=| A |+1 where⊠ ∈ {�,♦}.
Let A be a formula, thenesting degreeof a formulaA, denotednest(A), is defined as follows:
- nest(p) = nest(⊥) = 0;
- nest(A⊗B) = max(nest(A),nest(B)) where⊗ ∈ {∧,∨,⊃};
- nest(⊠A) = 1+nest(A) where⊠ ∈ {�,♦}.

2.3 Natural Deduction Systems and Modal Logics

Natural deduction systems have been defined for the logicsS4 andS5 and their intuitionistic versions [20]. Other
formulations improve these systems for the classical and intuitionistic versions ofS4 [3,11]. Let us note that the
Prawitz approach is difficult to extend to other modal logics[8], for instance for the logicK [2]. Moreover, using
Fitch’s approach, natural deduction systems have been provided for several classical modal logics [14,23]. Unlike
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Gentzen-style where the derivations have a tree form, in Fitch’s approach the derivations are linear and thus, in this
case, the accessibility relation is implicitly integratedinto systems by a nesting of derivations.
Natural deduction systems for intuitionistic modal logicsare rare because of the difficulty to deal with the modal-
ity ♦ [24]. As far as we know, the only approach allowing to providesystems satisfying normalization for all
the intuitionistic modal logics we consider is the one of A. Simpson [24]. It explicitly integrates some semantic
information, like the accessibility relation, into the systems by using labels. It allows to define simple systems for
large number of modal logics, but they do not satisfy the subformula property.

In this paper we focus on the proof theory in the classical andintuitionistic modal logics obtained from the combi-
nations of the axiomsT, B, 4 and 5 via the natural deduction formalism. Here we aim at defining label-free systems
that satisfy normalization and also subformula property. In order to solve this key question we need to introduce
a multi-contextual structure in the spirit of [5,15] but it was done for the sequent calculus formalism and only for
classical modal logics. In the next section we present our tree-sequent structure that is central in this work.

3 The Tree-sequent Structure

In this section we introduce a new structure, called Tree-sequent, denoted T-sequent, that can be seen as a kind of
mono-conclusion version of a deep (or nested) sequent [5,6,19], but it is clearly different. In a deep sequent the
formulas are not explicitely considered as hypotheses or conclusion and the definition of the formula correspond-
ing to a deep sequent only uses the modal operator�. In the T-sequent structure all formulas are considered as
hypotheses except one that is called a conclusion and the definition of the formula corresponding to a T-sequent
uses the two modal operators♦ and�.

Definition 4 (T-context). A T-contextis a structure of the form A1, . . . ,Ak,〈Γ1〉, . . . ,〈Γl 〉 where{A1, . . . ,Ak} is a
multiset of formulas and{Γ1, . . . ,Γk} is a multiset of T-contexts.

A marked formulais of the formA⊢ whereA is a formula.

Definition 5 (T-sequent).A T-sequentis a structure inductively defined as follows:

– If Γ is a T-context and A⊢ is a marked formula thenΓ,A⊢ is a T-sequent.
– If S is a T-sequent andΓ is a T-context thenΓ,〈S〉 is a T-sequent.

A T-sequent has the same form as a T-context, i.e.,A1, . . . ,Ak,〈Γ1〉, . . . ,〈Γl 〉 and it can be seen as a T-context
with in addition only one occurrence of a marked formula, that is called the conclusion. T-sequents can be presented
graphically as follows:

A1, . . . , Ak

Tree(Γ1) Tree(Γ2) Tree(Γl)Tree(Γl−1)
. . .

whereTree(Γ1), . . . ,Tree(Γk) are the trees respectively corresponding toΓ1, . . . ,Γk.

Let us note that we do not distinguish the T-sequents and T-contexts and their associated trees. Then when we
mention theroot, the leaf, thedepthor asubtreeof a T-sequent or a T-context, we refer to its associated tree. In
order to illustrate this point we give the tree associated tothe T-sequentA,B〈C,〈D〉〉,〈E,F⊢〉:

A,B

C

D

E,F⊢
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Definition 6 (nT-context). A nT-context, with n> 0, is a T-context or a T-sequent with n occurrences of the
symbol{}, that is called a T-hole.

ThenT-contexts are denotedΓ

n times
︷ ︸︸ ︷

{}· · ·{} by considering that there is a bijection that maps an occurrence of{}
in the nT-context to each occurrence of the symbol{} following this notation. The structureΓ{∆1}· · ·{∆n} is
obtained by the substitution of the T-hole associated to theith occurrence of{} in Γ{}· · ·{} by ∆i , for all i ∈ [1,n].
For instance, any T-sequent has the formΓ{C⊢} whereΓ{} is a 1T-context. From now we call the T-context of
Γ{C⊢} the T-contextΓ{ /0}. In general the T-holes are substituted by T-contexts, T-sequents ornT-contexts.

The T-sequent�(A⊃B),♦A,〈A,B⊢〉. It corresponds toΓ{B⊢} such thatΓ{}= �(A⊃B),♦A,〈A,{}〉.

The T-sequent structure can be seen as a multi-contextual structure because the truth value of a T-sequent can
change w.r.t. the position (context) of its conclusion in the tree associated to its T-context.

Definition 7 (Depth). The depth of a1T-contextΓ{}, denoted depth(Γ{}), is defined as follows:

– depth(Γ,{}) = 0 ;
– depth(Γ,〈∆{}〉) = 1+depth(∆{}).

Let S be a T-sequent,sp(S) is a relation that is satisfied if and only if the depth of the tree corresponding toS is
greater than 0. We definenest(S) by nest(S) = max{nest(A) |A∈ S} wheremaxmeans the maximum andnest(A)
the nesting degree ofA previously defined.

TheF fonction that associates a formula to each T-context is defined as follows:

– F ( /0) =⊤ ;
– F (A1, . . . ,Ak,〈Γ1〉, . . . ,〈Γl 〉) = A1∧ . . . ∧Ak∧♦(F (Γ1))∧ . . . ∧♦(F (Γk)).

It is extended to T-sequents in the following way:

– F (Γ,A⊢) = F (Γ)⊃A (Γ is a T-context);
– F (Γ,〈S〉) = F (Γ)⊃�(F (S)) (Γ is a T-context andS is a T-sequent).

Thus for example we haveF (�(A⊃B),♦A,〈A,B⊥〉) = (�(A⊃B)∧ (♦A))⊃�(A⊃B).

We note that the validity of a T-sequentS in a modal logicL is defined by the validity ofF (S) in L.

4 A Natural Deduction System forIK

In this section we define a natural deduction system forIK, calledDNIK, that is based on the T-sequent structure
and we prove the key properties of soundness and completeness.

4.1 TheDNIK System

The natural deduction systemDNIK is given in Figure 1. We observe that its rules are all of the following form:

Γ{∆1
1}· · ·{∆1

k} · · · Γ{∆l
1}· · ·{∆l

k}
[R]

Γ{∆1}· · ·{∆k}

It means that each premisse is obtained by the transformation of some subtrees of the conclusion. Let us comment
now the rules ofDNIK. The rules for the intuitionistic operators are defined as the ones ofDNIPL (the natural de-
duction system for intuitionistic logic [25]) by taking into account the existence of several contexts. For instance
the rule[⊥E] expresses that if the hypotheses of the premisse imply absurdity then they also imply any formula, in
any context. This idea is captured by the use of a 2T-context.
Let us focus now on the modal rules. We say that a contextC ′ is accessible from a contextC in a T-sequentS if
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Γ{A,A⊢}
[id]

Γ{⊥⊢}{ /0}

Γ{ /0}{A⊢}
[⊥E]

Γ{A⊢} Γ{B⊢}

Γ{A∧B⊢}
[∧I ]

Γ{A∧B⊢}

Γ{A⊢}
[∧1

E]
Γ{A∧B⊢}

Γ{B⊢}
[∧2

E]

Γ{A⊢}

Γ{A∨B⊢}
[∨1

I ]
Γ{B⊢}

Γ{A∨B⊢}
[∨2

I ]
Γ{A∨B⊢}{ /0} Γ{A}{C⊢} Γ{B}{C⊢}

Γ{ /0}{C⊢}
[∨E]

Γ{A,B⊢}

Γ{A⊃B⊢}
[⊃I ]

Γ{A⊃B⊢} Γ{A⊢}

Γ{B⊢}
[⊃E]

Γ{〈∆,A⊢〉}

Γ{〈∆〉,♦A⊢}
[♦I ]

Γ{♦A⊢}{ /0} Γ{〈A〉}{C⊢}

Γ{ /0}{C⊢}
[♦E]

Γ{〈A⊢〉}

Γ{�A⊢}
[�I ]

Γ{〈∆〉,�A⊢}

Γ{〈∆,A⊢〉}
[�E]

Fig. 1.The Natural Deduction SystemDNIK

C ′ is a son ofC in the T-context ofS . The rule[�E] means that if a formulaA is true in an empty context that is
accessible from a contextC , then the formula�A is true in the contextC . The rule[�I ] means that if a formula�A
is true in a contextC andC ′ is a context accessible from it then the formulaA is true inC ′. The rule[♦I ] means
that if a formulaA is true in a contextC ′ accessible fromC , then the formula♦A is true inw. Finally the rule[♦E]
is similar to a cut rule. If the formula♦A is true in a contextC , we cannot necessarily know in which context,
accessible fromC , the formulaA is true.

In the case of an application of an elimination rule we callmajor premissethe premisse that contains the elim-
inated operator and the other premisses are calledminor premisses. Let us introduce two relations, denoted→w

et →m, that allow us to capture the notions ofweakeningandmergeon the T-sequents. They correspond to the
following structural rules on T-sequents:

Γ{C⊢}{ /0}

Γ{C⊢}{A}
[W]

Γ{〈∆1〉,〈∆2〉}

Γ{〈∆1,∆2〉}
[M]

We define the relation→w on the T-sequents byΓ{C⊢}{ /0} →w Γ{C⊢}{Σ} whereΣ is a T-context and we
denote→∗

w its reflexive and transitive closure.

Definition 8. LetS andS ′ be two T-sequents such thatS →w S ′ andD be a proof ofS in DNIK. The proofD[S ′]w
of S ′ is defined by inductionD as follows:

D[S ′]w =







D1[Γ{∆1
1}· · ·{∆1

k}{Σ}]w
Γ{∆1

1}· · ·{∆1
k}{Σ} · · ·

Dl [Γ{∆l
1}· · ·{∆l

k}{Σ}]w
Γ{∆l

1}· · ·{∆l
k}{Σ}

[R]
Γ{∆0

1}· · ·{∆0
k}{Σ}

whereS ′ = Γ{∆0
1}· · ·{∆0

k}{Σ} and

D =







D1

Γ{∆1
1}· · ·{∆1

k}{ /0} · · ·
Dl

Γ{∆l
1}· · ·{∆l

k}{ /0}
[R]

Γ{∆0
1}· · ·{∆0

k}{ /0}
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We can extend this definition to the relation→∗
w. Let S andS ′ be two T-sequents such thatS →n

w S ′ andD be
a proof ofS in DNIK. The treeD[S ′]w is defined as follows:
- if n= 0 thenD[S ′]w =D;
- otherwiseS →w S ′′ →n−1

w S ′ andD[S ′]w = (D[S ′′]w)[S
′]w.

Let us consider the following example:

D =







[Id]
�(A⊃B),�A,〈 〉,�(A⊃B)⊢

[�E]
�(A⊃B),�A,〈A⊃B⊢〉

[Id]
�(A⊃B),�A,〈 〉,�A⊢

[�E]
�(A⊃B),�A,〈A⊢〉

[⊃E]
�(A⊃B),�A,〈B⊢〉

We have�(A⊃B),�A,〈B⊢〉 →∗
w C,�(A⊃B),�A,〈D,B⊢〉 and the proofD[C,�(A⊃B),�A,〈D,B⊢〉]w is the

following:

[Id]
C,�(A⊃B),�A,〈D〉,�(A⊃B)⊢

[�E]
C,�(A⊃B),�A,〈D,A⊃B⊢〉

[Id]
C,�(A⊃B),�A,〈D〉,�A⊢

[�E]
C,�(A⊃B),�A,〈D,A⊢〉

[⊃E]
C,�(A⊃B),�A,〈D,B⊢〉

Similarly we define the relation→m on T-sequents byΓ{〈∆1〉,〈∆2〉} →m Γ{〈∆1,∆2〉} and we denote→∗
m its

reflexive and transitive closure.

Definition 9. LetS andS ′ be two T-sequents such thatS →m S ′ andD a proof ofS0 in DNIK. The proofD[S ′]m is
defined by induction onD as follows:

D[S ′]m =







D1[Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1,Σ

1
2〉}]m

Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1,Σ

1
2〉} · · ·

Dl [Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1,Σ

l
2〉}]m

Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1,Σ

l
2〉}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈Σ

0
1,Σ

0
2〉}

whereS ′ = Γ{∆0
1}· · ·{∆0

k}{〈Σ
0
1,Σ

0
2〉} and

D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1〉,〈Σ1

2〉} · · ·
Dl

Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1〉,〈Σ

l
2〉}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈Σ

0
1〉,〈Σ

0
2〉}

We can extend this definition to the relation→∗
m as it is previously done for→∗

w.
Let us consider the following example:

D =







[Id]
〈A,A⊢〉,〈B〉

[♦I ]
〈A〉,〈B〉,♦A⊢

[Id]
〈A〉,〈B,B⊢〉

[♦I ]
〈A〉,〈B〉,♦B⊢

[∧I ]
〈A〉,〈B〉,♦A∧♦B⊢

We have〈A〉,〈B〉,♦A∧♦B⊢ →m 〈A,B〉,♦A∧♦B⊢. The proofD[〈,A,B〉,♦A∧♦B⊢]m is

[Id]
〈A,B,A⊢〉

[♦I ]
〈A,B〉,♦A⊢

[Id]
〈A,B,B⊢〉

[♦I ]
〈A,B〉,♦B⊢

[∧I ]
〈A,B〉,♦A∧♦B⊢

Now we will consider some properties that are important to prove the completeness ofDNIK.

Proposition 2. Γ{A⊃B⊢} is provable in DNIK if and only ifΓ{A,B⊢} is provable in DNIK
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Proof. From the rule[⊃I ] we know that ifΓ{A,B⊢} is provable inDNIK thenΓ{A⊃B⊢} is provable inDNIK.
Let us assume thatΓ{A⊃B⊢} is provable inDNIK. We haveΓ{A⊃B⊢} →w Γ{A,A⊃B⊢} and thenΓ{A,A⊃B⊢}
is also provable inDNIK. ThusΓ{A,B⊢} is provable inDNIK:

Γ{A,A⊃B⊢}
[Id]

Γ{A,A⊢}
[⊃E]

Γ{A,B⊢}

Proposition 3. Γ{�A⊢} is provable in DNIK if and only ifΓ{〈A⊢〉} is provable in DNIK.

Proof. From the rule[�I ] we know that ifΓ{〈A⊢〉} is provable inDNIK thenΓ{�A⊢} is provable inDNIK.
Let us assume thatΓ{�A⊢} is provable inDNIK. We haveΓ{〈A⊢〉} →w Γ{〈 〉,�A⊢} and thenΓ{〈 〉,�A⊢} is also
provable inDNIK. By using the rule[�E] we show thatΓ{〈A⊢〉} is provable inDNIK:

Γ{〈 〉,�A⊢}

Γ{〈A⊢〉}
[�E]

Proposition 4. If Γ{A∧B}{C⊢} is provable in DNIK thenΓ{A,B}{C⊢} is provable in DNIK.

Proof. By structural induction on the proof ofΓ{A∧B}.
We only develop the case whereΓ{A∧B} is an instance of[Id].
1. There existsΓ′{}{} such thatΓ{A∧B}{C⊢} = Γ′{A∧B}{C,C⊢}. We see thatΓ{A,B}{C⊢} is an instance of
[Id].
2.C= A∧B andΓ{A∧B}{C⊢}= Γ{A∧B,A∧B⊢}{ /0}. A proof of Γ{A,B,A∧B⊢}{ /0} is given by:

[Id]
Γ{A,B,A⊢}{ /0}

[Id]
Γ{A,B,B⊢}{ /0}

[∧I ]
Γ{∆,A,B,A∧B⊢}{ /0}

In the other cases the proof is obtained by induction.

Proposition 5. If Γ{♦A}{C⊢} is provable in DNIK thenΓ{A}{C⊢} is provable in DNIK.

Proof. By structural induction on the proof ofΓ{♦A}{C⊢}. It is similar to the proof of Proposition 4.

4.2 Soundness ofDNIK

The soundness of the systemNDIK is proved by using the semantics ofIK. The idea here consists in proving, for
each rule, that if the conclusion is not valid (has a countermodel) then at least one premisse is not valid (has a
countermodel). We introduce two notions ofpredecessorand of(w,k)-chain that we use in order to express the
fact that a T-sequent has a countermodel. Then we propose some propositions in order to simplify the soundness
proof.

Definition 10 (Predecessor).Let Γ{} be a 1T-context without marked formulas. The value of predi(Γ{}), with
i ∈ [0,depth(Γ{})], is defined by induction as follows:

– pred0(Γ{}) = ∆ such that∆,{} is a subtree ofΓ{} (unique becauseΓ{} has only one occurrence of{}).
– If depth(Γ{})> 0 and06 j < depth(Γ{}), then predj+1(Γ{}) = predj(Γ′{}) such thatΓ{}= Γ′{〈∆,{}〉}.

This notion of predecessor can be described with the following figure:

Γ{} = ∆n , 〈 ∆n−1 , 〈 . . . 〈∆1 , 〈∆0 , {}〉〉〉〉

predn(Γ{}) predn−1(Γ{}) pred1(Γ{}) pred0(Γ{})
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Definition 11 ((w,k)-chain). LetM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model and w∈ W. A
(w,k)-chainin M is a sequence of the form d0 → d1 →··· → dk, where for all m∈ [0,k−1], we have Rw(dm,dm+1).

LetM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model,w∈W, Γ{} un 1T-context without marked
formulas andc= d1 → ··· → dk be a(w,k)-chain inM with k= depth(Γ{}). We notew,c� Γ{} if for all i ∈ [0,k],
w,di � F (predk−i(Γ{})).

Proposition 6 (Monotonicity). LetM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model, w∈W, d∈
Dw, Γ{} be a 1T-context without marked formulas and c be a(w,k)-chain such that k= depth(Γ{}). If w,c� Γ{}
and w6 w′, then w′,c� Γ{}.

Proof. By induction on the length ofc.

Proposition 7. Let M = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model, w∈ W, d∈ Dw, Γ{} be a
1T-context without marked formulas. We have w,d � F (Γ{ /0}) if and only if there exists a(w,k)-chain c= d →
d1 → ··· → dk such that k= depth(Γ{}) and w,c� Γ{}.

Proof. We prove the “if part” by induction onk.
- If k= 0 thenc= d and there exists∆ such thatΓ = ∆,{}. As w,d � F (∆) (Γ{ /0}= ∆), we havew,c� Γ{}.
- If k = n+1 with n> 0, then there existΓ′{} and∆ such thatΓ = ∆,〈Γ′{}〉 anddepth(Γ′{}) = n. As we have
w,d�F (Γ{ /0}), there existsd′ ∈Dw such thatRw(d,d′) andw,d′ �F (Γ′{ /0}). By induction hypothesis there exists
a(w,n)-chainc= d′ → d′

1 → ··· → d′
n such thatw,c� Γ′{}. Thus the(w,n+1)-chainc′ = d→ d′ → d′

1 → ··· → d′
n

satisfies the propertyw,c′ � ∆,〈Γ′{}〉. Then we havew,c′ � Γ{}.
We prove the “only if part” by induction onk, by using the definition ofF (Γ{ /0}).

Proposition 8. LetM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model,Γ{C⊢} be a T-sequent, w∈W
and c= d0 → d1 → ··· → dk be a(w,k)-chain inM such that k= depth(Γ{}). If w,c � Γ{} and w,dk 2 C then
w,d0 2 F (Γ{C⊢}).

Proof. By induction onk.
- If k = 0 then there exists∆ such thatΓ{C⊢} = ∆,C⊢ andc = d0. By usingw,c � Γ{} andw,dk 2 C, we have
w,d0 � F (∆) andw,d0 2C. Thenw,d0 2 F (Γ{C⊢}).
- If k = n+ 1 with n > 0 then there existΓ′{} and∆ such thatΓ{C⊢} = ∆,〈Γ′{C⊢}〉 anddepth(Γ′{}) = n. We
suppose thatw,c� Γ{} andw,dn+1 2C. Knowing thatw,c� Γ{} andΓ{C⊢} = ∆,〈Γ′{C⊢}〉, we havew,c′ � Γ′{}
andw,d0 � ∆ with c′ = d1 → ··· → dn+1 (a(w,n)-chain). By induction hypothesis we havew,d1 2 F (Γ′{C⊢}). As
w,d0 � ∆, we obtainw,d0 2 F (∆)⊃�(F (Γ′{C⊢})). Thus we havew,d0 2 F (Γ{C⊢}).

Proposition 9. LetM = (W,6,{Dw}w∈W,{Rw}w∈W,{Vw}w∈W) be a Kripke model, w∈W, d0 ∈ Dw andΓ{C⊢}
be a T-sequent. If w,d0 2 F (Γ{C⊢}) then there exist w′ ∈W and a(w′,k)-chain c= d0 → d1 → ··· → dk such that
w6 w′, k= depth(Γ{}), w′,c� Γ{} and w′,dk 2C.

Proof. By induction onk.
- If k= 0 then there exists∆ such thatΓ{C⊢}= ∆,C⊢. Then we havew,d0 � F (∆) andw,d0 2C. Thusw,c� Γ{}
andw,d0 2C hold withc= d0.
- If k = n+1 avecn > 0 then there existΓ′{} and∆ such thatΓ{C⊢} = ∆,〈Γ′{C⊢}〉 anddepth(Γ′{}) = n. Let
us suppose thatw,d0 2 F (∆,〈Γ′{C⊢}〉). Then there existw1 ∈ W andd1 ∈ Dw1 such thatw 6 w1, Rw1(d0,d1),
w1,d0 �F (∆) andw1,d1 2F (Γ′{∆,C⊢}). By induction hypothesis and withw,d1 2F (Γ′{C⊢}), there existw′ ∈W
and a(w′,n)-chainc′ = d1 → d1 → ··· → dn+1 such thatw1 6 w′, w′,c′ � Γ′{} andw′,dn+1 2 C. By the Kripke
monotonicity andw1,d0 � F (∆), we deduce thatw′,d0 � F (∆). Thus we havew′,c � Γ{} andw′,dn+1 2 C with
c= d0 → d1 → ··· → dn+1.

Theorem 3 (Soundness).If a T-sequent is provable in DNIK then it is valid inIK.

Proof. We give the cases concerning⊥ and the modal operators, the other cases being similar.
- Case[⊥]. We suppose thatΓ{ /0}{A⊢} is not valid inIK. By Proposition 9, there exist a Kripke modelM , w∈W
and a(w,k)-chainc= d0 → d1 → ··· → dk such thatk= depth(Γ{ /0}{}) andw,c� Γ{ /0}{}. By Proposition 7 we
havew,d0 � F (Γ{ /0}{ /0}) and we know that there existsc′ = d0 → d′

1 → ··· → d′
l such thatl = depth(Γ{}{ /0})

andw,c′ � Γ{}{ /0}. By Proposition 8 andw,d′
l 2⊥, we obtainw,d0 2 F (Γ{⊥⊢}{ /0}).
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- Case[♦I ]. We suppose thatΓ{〈∆〉,♦A⊢} is not valid inIK. By Proposition 9 there exist a Kripke modelM , w∈W
and a(w,k)-chainc= d0 → d1 →··· → dk such thatk=depth(Γ{〈∆〉,{}}), w,c�Γ{〈∆〉,{}} andw,dk 2♦A. Then
there existsdk+1 ∈ Dw such thatRw(dk,dk+1), w,dk+1 � F (∆) andw,dk+1 2 A. Thus we obtainw,c′ � Γ{〈∆,{}〉}
andw,dk+1 2 A wherec′ is the(w,k+1)-chain defined byc′ = d0 → d1 → ··· → dk → dk+1. By Proposition 8 we
havew,d0 2 F (Γ{〈∆,A⊢〉}).

- Case[♦E]. We suppose thatΓ{ /0}{C⊢} is not valid in IK. By Proposition 9 there exist a Kripke modelM ,
w∈W and a(w,k)-chainc= d0 → d1 → ··· → dk such thatk = depth(Γ{ /0}{}), w,c � Γ{ /0}{} andw,dk 2C. If
w,c 2 Γ{♦A}{} thenM is a countermodel ofΓ{♦A⊢}{ /0}. We havew,c � Γ{♦A}{} and thenw,c � Γ{〈A〉}{}.
By Proposition 8 andw,dk 2C we deduce thatw,d0 2 F (Γ{〈A〉}{C⊢}).

- Case[�I ]. We suppose thatΓ{�A⊢} is not valid inIK. By Proposition 9 there exists a Kripke modelM , w∈W
and a(w,k)-chainc= d0 → d1 → ··· → dk such thatk= depth(Γ{}), w,c� Γ{} andw,dk 2 �A. Fromw,dk 2�A
we deduce that there existw′ ∈ W anddk+1 ∈ Dw such thatw6 w′, Rw′(dk,dk+1) andw′,dk+1 2 A. Let c′ be the
(w′,k+ 1)-chain defined byc′ = d0 → d1 → ··· → dk → dk+1. Fromw,c � Γ{} we obtainw,c′ � Γ{〈{}〉}. By
Proposition 8 we havew,d0 2 F (Γ{〈A⊢〉}).

- Case[�E]. We suppose thatΓ{〈∆,A⊢〉} is not valid in IK. By Proposition 9 there exist a Kripke modelM ,
w ∈ W and a(w,k+ 1)-chain c = d0 → d1 → ··· → dk+1 such thatk = depth(Γ{}), w,c � Γ{〈∆,{}〉} and
w,dk+1 2 A. Moreoverw,dk+1 2 A entails w,dk 2 �A and w,c � Γ{〈∆,{}〉} entails w,c′ � Γ{〈∆〉,{}} where
c′ = d0 → d1 → ··· → dk. By Proposition 8 we havew,d0 2 F (Γ{〈∆〉,�A⊢}).

4.3 Completeness ofDNIK

We prove the completeness of the systemDNIK from the Hilbert axiomatisation previously mentioned. We first
show that the axioms are provable inDNIK and that the rules (modus ponens, necessity) are admissiblein DNIK.
We can see that the rules of natural deduction for intuitionistic logic (systemDNIPL) are particular cases of some
rules ofDNIK. Moreover they are admissible inDNIK and we obtain the following proposition:

Proposition 10. If A is a theorem of propositional intuitionistic logic thenA⊢ has a proof in DNIK.

Let us consider, for instance, the proof ofA⊃ (B⊃ (A∧B)) in DNIPL:

[Id]
A,B⊢A

[Id]
A,B⊢B

[∧I ]
A,B⊢A∧B

[⊃I ]
A⊢B⊃ (A∧B)

[⊃I ]
⊢A⊃ (B⊃ (A∧B))

It can be translated inDNIK as follows:

[Id]
A,B,A⊢

[Id]
A,B,B⊢

[∧I ]
A,B,A∧B⊢

[⊃I ]
A,B⊃ (A∧B)⊢

[⊃I ]
A⊃ (B⊃ (A∧B))⊢

Proposition 11. The following T-sequents are provable in DNIK:

1. �(A⊃B)⊃ (�A⊃�B)⊢

2. �(A⊃B)⊃ (♦A⊃♦B)⊢

3. ♦⊥⊃⊥⊢
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4. ♦(A∨B)⊃ (♦A∨♦B)⊢

5. (♦A⊃�B)⊃�(A⊃B)⊢

Proof. 1. (�(A⊃B)⊃ (�A⊃�B))⊢

[Id]
�(A⊃B),�A,〈 〉,�(A⊃B)⊢

[�E]
�(A⊃B),�A,〈A⊃B⊢〉

[Id]
�(A⊃B),�A,〈 〉,�A⊢

[�E]
�(A⊃B),�A,〈A⊢〉

[⊃E]
�(A⊃B),�A,〈B⊢〉

[�I ]
�(A⊃B),�A,�B⊢

[⊃I ]
�(A⊃B),�A⊃�B⊢

[⊃I ]
�(A⊃B)⊃ (�A⊃�B)⊢

2. �(A⊃B)⊃ (♦A⊃♦B)⊢

[Id]
�(A⊃B),♦A,♦A⊢

[Id]
�(A⊃B),♦A,〈A〉,�(A⊃B)⊢

[�E]
�(A⊃B),♦A,〈A,A⊃B⊢〉

[Id]
�(A⊃B),♦A,〈A,A⊢〉

[⊃E]
�(A⊃B),♦A,〈A,B⊢〉

[♦I ]
�(A⊃B),♦A,〈A〉,♦B⊢

[♦E]
�(A⊃B),♦A,♦B⊢

[⊃I ]
�(A⊃B),♦A⊃♦B⊢

[⊃I ]
�(A⊃B)⊃ (♦A⊃♦B)⊢

3. ♦⊥⊃⊥⊢

[Id]
♦⊥,♦⊥⊢

[Id]
♦⊥,〈⊥,⊥⊢〉

[⊥]
♦⊥,〈⊥〉,⊥⊢

[♦E]
♦⊥,⊥⊢

[⊃I ]
♦⊥⊃⊥⊢

4. ♦(A∨B)⊃ (♦A∨♦B)⊢

[Id]
♦(A∨B),♦(A∨B)⊢

[Id]
♦(A∨B),〈A∨B,A∨B⊢〉 D1 D2

[∨E]
♦(A∨B),〈A∨B〉,♦A∨♦B⊢

[♦E]
♦(A∨B),♦A∨♦B⊢

[⊃I ]
♦(A∨B)⊃ (♦A∨♦B)⊢

with

D1 =







[Id]
♦(A∨B),〈A∨B,A,A⊢〉

[♦I ]
♦(A∨B),〈A∨B,A〉,♦A⊢

[∨1
I ]

♦(A∨B),〈A∨B,A〉,♦A∨♦B⊢

D2 =







[Id]
♦(A∨B),〈A∨B,B,B⊢〉

[♦I ]
♦(A∨B),〈A∨B,B〉,♦B⊢

[∨2
I ]

♦(A∨B),〈A∨B,B〉,♦A∨♦B⊢

5. (♦A⊃�B)⊃�(A⊃B)⊢
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[Id]
♦A⊃�B,〈A〉,♦A⊃�B⊢

[Id]
♦A⊃�B,〈A,A⊢〉

[♦I ]
♦A⊃�B,〈A〉,♦A⊢

[⊃E]
♦A⊃�B,〈A〉,�B⊢

[�E]
♦A⊃�B,〈A,B⊢〉

[⊃I ]
♦A⊃�B⊢,〈,A⊃B⊢〉

[�I ]
♦A⊃�B,�(A⊃B)⊢

[⊃I ]
(♦A⊃�B)⊃�(A⊃B)⊢

We can easily show that the rulemodus ponensis admissible inDNIK as it is a particular case of the rule[⊃E]. In
the next proposition we show the admissibility of the necessity rule.

Proposition 12. If A⊢ is provable in DNIK then�A⊢ is provable in DNIK.

Proof. We first show that if a T-sequentS is provable inDNIK then〈S〉 is provable inDNIK, by structural induction
on the proof ofS . Then from the proof of〈A⊢〉 we apply the rule[�I ] and thus we obtain a proof of�A⊢.

Theorem 4. If A is valid in IK then A⊢ is provable in DNIK.

Proof. The validity in IK is given through the axiomatisation and the proof is by structural induction on the proof
of A. By Propositions 10 and 11 ifA is an axiom thenA⊢ has a proof inNDIK.
Then we consider the two cases of the last rule applied, namely [mp] and[nec].

- If the last rule is[mp]: A⊃B A
B

, then by induction hypothesisA⊃B⊢ andA⊢ are provable inDNIK. By the

rule [⊃E] we deduce thatB⊢ is provable inDNIK.

- If the last rule is[nec]: A
�A

, then by induction hypothesis we haveA⊢ provable inDNIK. By Proposition 12,

�A⊢ is also provable inDNIK.

Theorem 5 (Completeness).If a T-sequent is valid inIK then it is provable in DNIK.

Proof. Let S be a T-sequent. IfS is valid in IK, then its associated formulaF (S) is valid in IK. By Theorem 4
F (S)⊢ is a T-sequent provable inDNIK. Then by Propositions 2, 3, 4 and 5 we deduce thatS is provable inDNIK.

5 Normalization in DNIK

Having proved that the natural deduction systemDNIK is sound and complete we now study the property of nor-
malization in this system and the related properties. Firstwe define a set of notions and concepts in order to
describe the normalization procedure in a clear and conciseway. Then we prove the normalization theorem, i.e.,
any derivation can be transformed in a derivation in normal form.

5.1 Indexed Formulas

Let us note that the T-context of a T-sequent can contain several occurrences of the same formula and one needs to
differenciate these ones. In this perspective each formulaoccurrence in a T-context is indexed by a variable such
that if x : A andy : B are two different occurrences in a T-context thenx 6= y. We noteVar(S) the set of variables in
the T-sequentS . Let us mention some problems related to this indexation.
Let S = A⊃A⊢ andS ′ = x : B,A⊃A⊢ be two T-sequents andD be the following proof ofS :

[Id]
x : A,A⊢

[⊃I ]
A⊃A⊢

13



The proofD[S ′]w is given by:

[Id]
x : B,x : A,A⊢

[⊃I ]
x : B,A⊃A⊢

We remark thatD[S ′]w contains a T-sequent with a T-context having two different formula occurrences indexed
by the same variablex. Then in order to avoid this problem we associate a renaming fonction to the weakening.

Let S andS ′ be two T-sequents such thatS →∗
w S ′ andD be a proof ofS . We noteD[S ′]r any proof ofS obtained

fromD by renaming all variables ofVar(S ′)\Var(S) by fresh variables knowing that one cannot rename two dif-
ferent variables with the same variable. Thus we defineD[S ′]rw as being any proof corresponding to(D[S ′]r)[S

′]w.
Let us illustrate this point with the previous example:

D =







[Id]
x : A,A⊢

[⊃I ]
A⊃A⊢

D[S ′]r =







[Id]
y : A,A⊢

[⊃I ]
A⊃A⊢

D[S ′]rw =







[Id]
x : B,y : A,A⊢

[⊃I ]
x : B,A⊃A⊢

LetD be a proof ofΓ{∆}{C⊢}. We denoteD−{∆} the tree obtained fromD by arising∆ from all T-sequents
of D. Such a tree is a proof ofΓ{ /0}{C⊢} when its leaves are labelled by instances of the axiom[id].

Let D andD ′ be proofs of respectivelyS = Γ{x : A}{C⊢} andS ′ = Γ{A⊢}{ /0}. We observe that any leaf of
D is labelled by a T-sequent that is either of the formΓ′{x : A,A⊢} such thatΓ{A⊢}{ /0}→w Γ′{A⊢}, or of the form
Γ′{x : A}{y : D,D⊢}. We denoteD[D ′/x] the tree built as follows:
(i) replace all the leaves labelled by a T-sequent of the formΓ′{x : A,A⊢} by the deductionD ′[Γ′{A⊢}]rw;
(ii) suppressx : A in all T-sequents of the resulting tree.

We can show thatD[D ′/x] is a proof ofΓ{ /0}{C⊢}. It comes from the fact that the instances of[id] of the form
Γ′{x : A}{y : C,C⊢} remain axioms even after thatx : A is suppressed.

5.2 Discharging Rules

From now we use the expressiondischarging rulesin order to refer to the rules[⊃I ], [∨E] and[♦E]. There is no
discharge of hypotheses like in standard natural deductionsystems but the rules[⊃I ], [∨E] and [♦E] internalize
hypothesis discharges such that a rule application discharges the T-sequents that are concerned by the introduction
of formulas appearing in T-contexts of some premisses but not in the T-context of the conclusion.

Definition 12. LetD be a proof inIK, f be a leaf ofD, S be the T-sequent labelling f andα be an application of
a discharging rule inD. The T-sequentS is discharged byα if S is not discharged by another rule applied before
α, f and the conclusion ofα being in the same branch and one of the following properties is satisfied:

1. α is an application of[⊃I ] and there exist two1T-contextsΓ{} andΓ′{}, two formulas A and B, and a variable
x such thatS = Γ′{x : A,A⊢}, Γ{x : A,B⊢} is the premisse ofα andΓ{A⊃B⊢} is the conclusion ofα.

2. α is an application of[∨E] and there exist a2T-contextΓ{}{}, a 1T-contextΓ′{}, three formulas A, B and
C, and a variable x such thatS = Γ′{x : A,A⊢}, Γ{F⊢}{ /0} is the main premiss ofα with F equal to A∨B or
B∨A andΓ{x : A}{C⊢} is one of the minor premisses ofα (it belongs to the same branch as f ).

3. α is an application of[♦E] and there exist a2T-contextΓ{}{}, a 1T-contextΓ′{}, two formulas A and C, and
a variable x such thatS = Γ′{x : A,A⊢}, Γ{♦A⊢}{ /0} is the major premisse ofα andΓ{〈x : A〉}{C⊢} is the
minor premisse ofα (it belongs to the same branch as f ).

We illustrate this definition with an example. LetD be the following proof:
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[Id]
x : �(A⊃B),y : ♦A,♦A⊢

[Id]
x : �(A⊃B),y : ♦A,〈z : A〉,�(A⊃B)⊢

[�E]
x : �(A⊃B),y : ♦A,〈z : A,A⊃B⊢〉

[Id]
x : �(A⊃B),y : ♦A,〈z : A,A⊢〉

[⊃E]
x : �(A⊃B),y : ♦A,〈z : A,B⊢〉

[♦I ]
x : �(A⊃B),y : ♦A,〈z : A〉,♦B⊢

[♦E]
x : �(A⊃B),y : ♦A,♦B⊢

[⊃I ]
x : �(A⊃B),♦A⊃♦B⊢

[⊃I ]
�(A⊃B)⊃ (♦A⊃♦B)⊢

The T-sequentx : �(A⊃B),y : ♦A,♦A⊢ is discharged by the first application of[⊃I ]. The T-sequentx : �(A⊃
B),y : ♦A,〈z : A〉,�(A⊃B)⊢ is discharged by the second application of[⊃I ]. Moreover the application of[♦E]
discharges the T-sequentx : �(A⊃B),y : ♦A,〈z : A,A⊢〉.

5.3 Normalization

Let us recall that a detour in a natural deduction proof corresponds to an application of a rule that introduces a
logical operator followed by an application of a rule that eliminates it. The main goal of the normalization property
is the elimination of all detours in a proof. In order to provethis property for the systemDNIK we consider an
approach similar to the one of Prawitz [20,25].
We introduce first the notion of segment for this system, thenwe define the notion of cut that is a particular case
of segment and propose the rules of our normalization procedure. Finally we prove the normalization theorem.

Definition 13. A segmentof length n in a proofD in DNIK is a sequenceΓ1{A⊢}, . . . ,Γn{A⊢} of consecutive
occurrences of T-sequents inD such that:
- for n > 1 and n> i, Γi{A⊢} is a minor premisse of an application of[∨E] or [♦E] in D with the conclusion
Γi+1{A⊢},
- Γ1{A⊢} is not the conclusion of an application of[∨E] or of [♦E],
- Γn{A⊢} is not a minor premisse of an application of[∨E] or [♦E].

We note that the T-sequents of a segmentσ have the same conclusion, called the conclusion of the segment and
denotedC(σ). A segment is a premisse (resp. the conclusion) of a rule application if its last element (resp. first
element) is a premisse (resp. the conclusion) of this application. A segmentσ is a subformula of a segmentσ′ if
C(σ) is a subformula ofC(σ′).

Definition 14. A segment is acut if Γn{A⊢} is the main premisse of the application of an elimination rule, and
either n> 1 or n= 1 andΓ1{A⊢} is the conclusion of an introduction rule or of the rule[⊥].
Thecutrankσ, denoted cr(σ), is defined by the complexity of its conclusion|C(σ) | .
Thecutrankof a proofD, denoted cr(D), is the maximum of the cutranks inD (0 if D does not contain a cut).
A critical cut in a proofD is a cut the cutrank of which is the cutrank ofD.
A proof isin normal formif it does not contain a cut.

Now we give the rules used to prove the normalization property. First we present thereductionrules that allow
to eliminate the cuts of length 1 (detours) and thepermutationandsimplificationrules.

Reduction rules:

– ∧-reduction:

D1

Γ{A⊢
1}

D2

Γ{A⊢
2}

[∧I ]
Γ{A1∧A⊢

2}
[∧i

E]Γ{A⊢
i }

;

Di

Γ{A⊢
i }

for i ∈ {1,2}.
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– ∨-reduction:

D

Γ{A⊢
i }{ /0}

[∨i
I ]Γ{A1∨A⊢

2}{ /0}
D1

Γ{x : A1}{C⊢}

D2

Γ{x : A2}{C⊢}
[∨E]

Γ{ /0}{C⊢} ;

Di [x/D ]

Γ{ /0}{C⊢}
for i ∈ {1,2}.

– ⊃-reduction:

D1

Γ{x : A,B⊢}
[⊃I ]

Γ{A⊃B⊢}

D2

Γ{A⊢}
[⊃E]

Γ{B⊢}

;

D1[x/D2]

Γ{B⊢}

– �-reduction:

D

Γ{〈∆〉,〈A⊢〉}
[�I ]

Γ{〈∆〉,�A⊢}
[�E]

Γ{〈∆,A⊢〉}

;

D [Γ{〈∆,A⊢〉}]m
Γ{〈∆,A⊢〉}

– ♦-reduction:

D1

Γ{〈∆,A⊢〉}{ /0}
[♦I ]

Γ{〈∆〉,♦A⊢}{ /0}
D2

Γ{〈∆〉,〈x : A〉}{C⊢}
[♦E]

Γ{〈∆〉}{C⊢}

;

D ′
2[x/D1]

Γ{〈∆〉}{C⊢}

with D ′
2 =D[Γ{〈∆,x : A〉}{C⊢}]m

Permutation rules:

– ∨-permutation:
D

Γ{A∨B⊢}{ /0}{ /0}
D1

Γ{x : A}{C⊢}{ /0}
D2

Γ{y : B}{C⊢}{ /0}
[∨E]

Γ{ /0}{C⊢}{ /0} D ′

[RE]
Γ{ /0}{ /0}{D⊢}

;

D

Γ{A∨B⊢}{ /0}{ /0}

D1

Γ{x′ : A}{C⊢}{ /0} D ′
1
[RE]

Γ{x′ : A}{ /0}{D⊢}

D2

Γ{y′ : B}{C⊢}{ /0} D ′
2
[RE]

Γ{y′ : B}{ /0}{D⊢}
[∨E]

Γ{ /0}{ /0}{D⊢}

where[RE] is an elimination rule,D ′ is a sequence of proofs (possibly empty) andD ′
1 (resp.D ′

2) is the se-
quence of proofs obtained by adding ofx′ : A (resp.y′ : B) to proofs ofD ′ wherex′ (resp.y′) is a fresh variable
that is not inD ′.

– ♦-permutation:
D1

Γ{♦A⊢}{ /0}{ /0}
D2

Γ{〈x : A〉}{C⊢}{ /0}
[♦E]

Γ{ /0}{C⊢}{ /0} D ′

[RE]
Γ{ /0}{ /0}{D⊢} ;

D1

Γ{♦A⊢}{ /0}{ /0}

D2

Γ{〈x : A〉}{C⊢}{ /0} D ′′

[RE]
Γ{〈x : A〉}{ /0}{D⊢}

[♦E]
Γ{ /0}{ /0}{D⊢}

where[RE] is an elimination rule,D ′ is a sequence of proofs (possibly empty) andD ′′ is the sequence of proofs
obtained by addingx′ : A to proofs ofD ′ wherex′ is a fresh variable that is not inD ′.
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– ⊥-permutation:

D

Γ{⊥⊢}{ /0}{ /0}
[⊥]

Γ{ /0}{A⊢}{ /0} D ′

[RE]
Γ{ /0}{ /0}{C⊢}

;

D

Γ{⊥⊢}{ /0}{ /0}
[⊥]

Γ{ /0}{ /0}{C⊢}

where[RE] is an elimination rule.

Simplification rules:

– ∨-simplification:

D

Γ{A1∨A⊢
2}{ /0}

D1

Γ{x : A1}{C⊢}

D2

Γ{x : A2}{C⊢}
[∨E]

Γ{ /0}{C⊢} ;

Di −{x : Ai}

Γ{ /0}{C⊢}

where there is no T-sequent discharged by[∨E] in Di . The absence of discharged T-sequents reflects thatx : Ai

is not necessary in the T-sequents ofDi .

– ♦-simplification:

D

Γ{♦A⊢}{ /0}
D ′

Γ{〈x : A1〉}{C⊢}
[♦E]

Γ{ /0}{C⊢} ;

D ′−{〈x : A〉}
Γ{ /0}{C⊢}

where there is no T-sequent inD ′ that contains a subtree of the formx : A,∆ o ∆ 6= /0. In the case of disjunction
the simplification rule only eliminates a formula occurrence but in the case of♦ it eliminates the T-context
〈x : A〉. The previous condition onD ′ in order to apply simplification expresses that the formula occurrence
x : A and also the T-context〈x : A〉 are not necessary.

Theorem 6 (Normalization).Any proofD in DNIK can be reduced to a proof in normal form.

Proof. By induction on the value of the pair(n,m) wheren= cr(D) andmare the sum of the lengths of all critical
cuts ofD. We say that the pair(n′,m′) is less than(n,m) if eithern′ < n, orn′ = n andm′ < m. This proof is similar
to the one of Prawitz.
Let σ be the rightmost critical cut having no other critical cut above it inD. The application of a rule of reduction,
permutation or simplification toσ in D gives a proofD ′ where eithercr(D ′) < n or the sum of the lengths of
all critical cuts ofD ′ is less thanm. If σ is the unique critical cut inD of length 1, then by application of the
corresponding reduction rule we obtain a proof of rank less thann. Else the application of a permutation or simpli-
fication rule toσ in D gives a proof in which the sum of the lengths of all critical cuts is less thanm.

For instance we illustrate the case of♦-reduction:

D1

Γ{〈∆,A⊢〉}{ /0}
[♦I ]

Γ{〈∆〉,♦A⊢}{ /0}
D2

Γ{〈∆〉,〈x : A〉}{C⊢}
[♦E]

Γ{〈∆〉}{C⊢}

;

D ′
2[x/D1]

Γ{〈∆〉}{C⊢}

with D ′
2 =D[Γ{〈∆,x : A〉}{C⊢}]m.

As σ is the mostright critical cut thenD2 does not contain a critical cut and consequently alsoD ′
2. Moreover,

D1 has no critical cut because there is no critical cut aboveσ. We also observe that if a cut is introduced by ap-
plication of a♦-reduction then this one hasA as conclusion. Then the value of its cutranks is less thann. We then
deduce thatD ′

2[x/D1] does not contain any cutrank greater or equal ton.
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Γ{�A⊢}

Γ{A⊢}
[�T

E]
Γ{A⊢}

Γ{♦A⊢}
[♦T

I ]

Γ{〈∆,�A⊢〉}

Γ{〈∆〉,A⊢}
[�B

E]
Γ{〈∆〉,A⊢}

Γ{〈∆,♦A⊢〉}
[♦B

I ]

Γ{∆{ /0},�A⊢}

Γ{∆{A⊢}}
[�4

E](depth(∆{}) > 1)
Γ{∆{A⊢}}

Γ{∆{ /0},♦A⊢}
[♦4

I ](depth(∆{})> 1)

Γ{�A⊢}{ /0}

Γ{ /0}{A⊢}
[�5

E](depth(Γ{}{ /0}) > 0 et depth(Γ{ /0}{}) > 0)

Γ{ /0}{A⊢}

Γ{♦A⊢}{ /0}
[♦5

I ](depth(Γ{}{ /0}) > 0 et depth(Γ{ /0}{}) > 0)

Γ{�A⊢}{ /0}

Γ{ /0}{A⊢}
[�IB4

E ](sp(Γ{�A⊢}{ /0}))
Γ{ /0}{A⊢}

Γ{♦A⊢}{ /0}
[♦IB4

I ](sp(Γ{ /0}{A⊢}))

Γ{�A⊢}{ /0}

Γ{ /0}{A⊢}
[�IS5

E ]
Γ{ /0}{A⊢}

Γ{♦A⊢}{ /0}
[♦IS5

I ]

Fig. 2. Modal Rules

6 Quasi-modular Natural Deduction Systems

In this section we propose quasi-modular natural deductionsystems for the intuitionistic modal logics obtained
by combinations of the axiomsT, B, 4 and 5. The modularity is based on the association of specific rules to the
axioms. A system is modular if we have a system forIK such that for any subsetTh of {T,B,4,5}, the addition
of rules associated to axioms inTh leads to a system for the logicIKTh. For instance, in the case of classical
modal logics based on these axioms, a modular calculus, based on deep sequents, has been recently defined [5].
Our system is said quasi-modular because the logicsIB4 andIS5 are separately studied.

We associate to each logicIKTh, with Th ⊆ {T,B,4,5}, the natural deduction systemDNIKTh obtained by using
the rules described in Figure 2 as follows:

– if IKTh is IS5 thenDNIKTh is obtained fromDNIK by replacing the rules[�E] and[♦I ] by the rules[�IS5
E ] and

[♦IS5
I ];

– if IKTh is IB4 thenDNIKTh is obtained fromDNIK by replacing the rules[�E] and[♦I ] by the rules[�IB4
E ] and

[♦IB4
I ];

– otherwiseDNIKTh is obtained by adding toDNIK the rules[�x
E] and[♦x

I ] for anyx∈ Th.

The six rules[�4
E], [♦

4
I ], [�

5
E], [♦

5
I ], [�

IB4
E ] and [♦IB4

I ] can be applied only if some conditions are satisfied. For
instance we can only apply the rule[�IB4

E ] if it satisfies the conditionsp(Γ{ /0}{A⊢}).

In the case ofIK we consider that a contextC ′ is accessible from another contextC in a sequentS if C ′ is a
son ofC in the T-context ofS . The modal rules of Figure 2 internalize the properties of the accessibility relation
associated to the axiomsD, T, B, 4 and 5. For instance the pair of rules[�4

E] and[♦4
I ] internalize the transitivity

property. If a contextC ′ is the son of a contextC in a T-context of a T-sequentS , then all contexts being in the
subtreeSt with C ′ as root are accessible fromC . If a formula�A is true inC then, from the rules[�E] and[�4

E],
the formulaA is true in any context inSt. Moreover, by using the rules[�I ] and[�4

I ], if a formulaA is true in any
context ofSt, then♦A is true inC .
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6.1 Soundness and Completeness

Let us note that, for any subsetTh de{T,B,4,5}, the system obtained by adding toDNIK the rules[�x
E] and[♦x

I ]
for all x∈ Th is a sound and complete system for the logicIKTh. But all the systems defined in such a way does
not verifiy the normalization property and then the systems for IB4 andIS5 are built in a different way.
For instance let us consider the following proof withTh= {T,5}:

[Id]
�A,�A⊢

[♦T
I ]

�A,♦�A⊢

[Id]
�A,〈�A,�A⊢〉,〈〈 〉〉

[�5
E]

�A,〈�A〉,〈〈A⊢〉〉
[�I ]

�A,〈�A〉,〈�A⊢〉
[�I ]

�A,〈�A〉,��A⊢

[♦E]
�A,��A⊢

[⊃I ]
�A⊃��A⊢

We remark that there exists an application of an introduction rule ([♦T
I ]) having as conclusion the main premisse

of an application of an elimination rule ([♦E]). In the previous proof we cannot eliminate it by using only the rules
associated to axiomsT and 5.

Theorem 7 (Soundness).If a T-sequent has a proof in DNIKTh then it is valid inIKTh.

Proof. The sound rules inIK are sound in all logicsIKTh with Th ⊆ {T,B,4,5}. Then it sufficient to prove the
soundness of the other rules with the same approach used for Theorem 3. We only develop the cases of rules[♦4

I ]
and[�4

E]. Let L be one of the logicsIKTh verifying the axiom (4). We observe that Propositions 7, 8 and 9 are also
true for all logics based on combinations of axiomsT, B, 4 and 5.
- Case[♦4

I ].
We suppose thatΓ{∆{ /0},♦A⊢} (depth(∆{}) > 1) is not valid in L. There exist a modelM , w ∈ W and a
(w,k)-chain c = d0 → d1 → . . .dk such thatk = depth(Γ{∆{ /0},{}}), w,c � Γ{∆{ /0},{}} and w,dk 2 ♦A. If
w,c � Γ{∆{ /0},{}} thenw,dk � F (∆{ /0}). Then there exists a(w, l)-chainc′ = dk → dk+1 → . . .dk+l such that
l = depth(∆{}) andw,c′ � ∆{}. Thus we havew,c′′ � Γ{∆{}} wherec′′ = d0 → d1 → . . .dk+l . Given a transitive
relationRw we havew,dk+l 2 A becausew,dk 2♦A. Then we deducew,d0 2 F (Γ{∆{A⊢}}).
- Case[�4

E].
We suppose thatΓ{∆{A⊢}} (depth(∆{})> 1) is not valid inL. There exist a modelM , w∈W and a(w,k+ l)-
chainc = d0 → d1 → . . .dk+l such thatk = depth(Γ{}), l = depth(∆{}), w,c � Γ{∆{}} andw,dk+l 2 A. Given
a transitive relationRw if w,dk+l 2 A thenw,dk 2 �A. Moreover ifw,c � Γ{∆{}} thenw,c′ � Γ{∆{ /0},{}} where
c′ = d0 → d1 → . . .dk. Thus we havew,d0 2 F (Γ{∆{ /0},�A⊢}).

Theorem 8 (Completeness).If a T-sequent is valid inIKTh, then it has a proof in DNIKTh.

Proof. As for the systemDNIK this proof of completeness ofDNIKTh can be obtained from the validity inIKTh
through its Hilbert system. Let us note that the rule[�IB4

E ] (resp.[♦IB4
I ]) is a generalization of the rules[�E], [�B

E],
[�4

E], [�
5
E] (resp.[♦I ], [♦B

I ], [♦
4
I ], [♦

5
I ]). Moreover the rules[�IS5

E ] and [♦IS5
I ] generalize all the other rules that

eliminate� and introduce♦. Then for allTh⊆ {T,B,4,5}, if a T-sequent has a proof in the system obtained by
adding toDNIK the rules[�x

E] and[♦x
I ] for all x∈ Th then it has a proof inDNIKTh. Then we do not consider the

cases of the systemsDNIS5 andDNIB4.

– (�A⊃A)∧ (A⊃♦A)⊢:

[Id]
�A,�A⊢

[�T
E]

�A,A⊢

[⊃I ]
�A⊃A⊢

[Id]
A,A⊢

[♦T
I ]

A,♦A⊢

[⊃I ]
A⊃♦A⊢

[∧I ]
(�A⊃A)∧ (A⊃♦A)⊢
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– (♦�A⊃A)∧ (A⊃�♦A)⊢:

[Id]
♦�A,♦�A⊢

[Id]
♦�A,〈�A,�A⊢〉

[♦B
I ]

♦�A,〈�A〉,A⊢

[♦E]
♦�A,A⊢

[⊃I ]
♦�A⊃A⊢

[Id]
A,〈 〉,A⊢

[♦B
I ]

A,〈♦A⊢〉
[�I ]

A,�♦A⊢

[⊃I ]
A⊃�♦A⊢

[∧I ]
(♦�A⊃A)∧ (A⊃�♦A)⊢

– (�A⊃��A)∧ (♦♦A⊃♦A)⊢:
[Id]

�A,�A⊢,〈〈 〉〉
[�4

E]
�A,〈〈A⊢〉〉

[�I ]
�A,〈�A⊢〉

[�I ]
�A,��A⊢

[⊃I ]
�A⊃��A⊢ D

[∧I ]
(�A⊃��A)∧ (♦♦A⊃♦A)⊢

with

D =







[Id]
♦♦A,♦♦A⊢

[Id]
♦♦A,〈♦A,♦A⊢〉

[Id]
♦♦A,〈♦A,〈A,A⊢〉〉

[♦4
I ]

♦♦A,〈♦A,〈A〉〉,♦A⊢

[♦E]
♦♦A,〈♦A〉,♦A⊢

[♦E]
♦♦A,♦A⊢

[⊃I ]
♦♦A⊃♦A⊢

– (♦�A⊃�A)∧ (♦A⊃�♦A)⊢:

[Id]
♦�A,♦�A⊢

[Id]
♦�A,〈�A,�A⊢〉,〈 〉

[�5
E]

♦�A,〈�A〉,〈A⊢〉
[�I ]

♦�A,〈�A〉,�A⊢

[♦E]
♦�A,�A⊢

[⊃I ]
♦�A⊃�A⊢

[Id]
♦A,♦A⊢

[Id]
♦A,〈A,A⊢〉,〈 〉

[♦5
I ]

♦A,〈A〉,〈♦A⊢〉
[�I ]

♦A,〈A〉,�♦A⊢

[♦E]
♦A,�♦A⊢

[⊃I ]
♦A⊃�♦A⊢

[∧I ]
(♦�A⊃�A)∧ (♦A⊃�♦A)⊢

6.2 Normalization and Properties

As DNIK andDNIKTh contain the same rules[⊃I ], [∨E] and[♦E], we consider the notions of discharging rules and
of discharged T-sequent in the case ofDNIKTh that are the same in the case ofDNIK (Definition 12). Concerning
the notions of segment and of cut and the other related notions they are defined in the case ofDNIKTh like in the
case ofDNIK. The rules of Figure 2 are introduction and elimination rules and we have to define reduction rules in
order to eliminate the detours due to these rules. Here we only give the reduction rules for the systemDNIB4 (the
other cases are developed in Annexe A).

We define the relation→IB4 asΓ{〈∆〉}{ /0} →IB4 Γ{ /0}{∆} wheresp(Γ{ /0}{∆}) and we denote→∗
IB4 its reflex-

ive and transitive closure. Let us show now how to build the proof D[S ′]IB4 of S ′ from a proofD of S where
S → S ′. The definition ofD[S ′]IB4 is extended to the relation→n

x, by induction onn, as follows:
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– if n= 0 thenD[S ′]IB4 =D;
– elseD[S ′]IB4 = (D[S ′′]w)[S

′]IB4 such thatS →w S ′′ →n−1
IB4 S ′.

Like for relations→w and→m, the construction ofD[S ′]IB4 is done by structural induction onD:

If D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈∆
1〉}{ /0} · · ·

Dl

Γ{∆l
1}· · ·{∆l

k}{〈∆
l〉}{ /0}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈∆〉}{ /0}

then

D[S ′]IB4 =







D1[Γ{∆1
1}· · ·{∆1

k}{ /0}{∆1}]IB4
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆1} · · ·

Dl [Γ{∆1
1}· · ·{∆1

k}{ /0}{∆l}]IB4
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆l}

[R]
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆}

with S ′ = Γ{∆1
1}· · ·{∆1

k}{ /0}{∆}.

Let us introduce the reduction rules used in case of detours due to applications of[�IB4
E ] and[♦IB4

I ]:

– �
IB4-reduction:

D

Γ{〈A⊢〉}{ /0}
[�I ]

Γ{�A⊢}{ /0}
[�IB4

E ]
Γ{ /0}{A⊢}

;

D [Γ{ /0}{A⊢}]IB4
Γ{ /0}{A⊢}

– ♦IB4-reduction:

D1

Γ{A⊢}{ /0}{ /0}
[♦IB4

I ]
Γ{ /0}{♦A⊢}{ /0}

D2

Γ{ /0}{〈x : A〉}{C⊢}
[♦E]

Γ{ /0}{ /0}{C⊢}

;

D ′
2[x/D1]

Γ{ /0}{ /0}{C⊢}

with D ′
2 =D[Γ{x : A}{ /0}{C⊢}]IB4

Theorem 9 (Normalization).Any proof in DNIKTh can be reduced to a proof in normal form.

Proof. The proof is similar to the one of Theorem 6, by induction on the value of(n,m) wheren is the rank of the
proof andm is the sum of lengths of all critical cuts.

We now study the structure of proofs in normal form. It leads to prove the subformula property, namely all
formulas in a normal proof are subformulas of the root of thisproof

First we define the notion ofpath that is a particular sequence of T-sequents belonging to a proof. The idea is
that any T-sequent in a proof belongs to at least one path and we show that any path in a proof in a normal form
can be decomposed in three particular parts. Such a decomposition allows to prove that all formulas of a path in a
proof in normal form are subformulas of the formulas of the root and then to prove the subformula property. Then
we prove some interesting properties of the system.

Definition 15 (Path).A pathin a proofD in DNIK is a sequence of occurrences of T-sequentsS0, . . . ,Sn such that:

– S0 is the label of a leaf ofD that is not discharged by an application of[∨E] or [♦E];
– Si for i < n is not a minor premisse of an instance of[⊃E] and

(i) Si is not a major premisse of an instance of[∨E] or [♦E] andSi+1 is the T-sequent that is directly below
Si , or

(ii) Si is a major premisse of an instance of[∨E] or [♦E] andSi+1 is an occurrence of a T-sequent discharged
by this instance;

– Sn is a minor premisse of[⊃E], the root ofD, or a major premisse of an application of[∨E] or [♦E] that does
not discharge a T-sequent.

Proposition 13. Any T-sequent of a proofD in DNIK belongs to a path ofD.
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Proof. By structural induction onD.
If D is an axiom (an instance of[Id]), then the T-sequent belongs to the path that only contains it.
Let us consider the cases of the last rule applied inD:

– If the rule is different of[⊃E], [∨E] and [♦E], then its conclusion added to any path ending with one of its
premisses (existence of such a path due to the induction hypothesis) is a path.

– If the rule is[⊃E], then its conclusion added to a path ending by its major premisse (induction hypothesis) is a
path.

– If the rule is[∨E]:
D1

Γ{A1∨A⊢
2}{ /0}

D2

Γ{x : A1}{C⊢}
D3

Γ{x : A2}{C⊢}
[∨E]

Γ{ /0}{C⊢}

By induction hypothesis there exists a pathπ2 in D2 ending withΓ{x : A1}{C⊢}. If this path does not begin
with an occurrence of a T-sequent discharged by the application of this rule thenπ2,Γ{ /0}{C⊢} is a path in
D. Otherwise by induction hypothesis there exists a pathπ1 in D1 ending withΓ{A1∨A⊢

2}{ /0}. In this case
π1,π2,Γ{ /0}{C⊢} is a path inD.

– The case of rule[♦E] is similar to the one of[∨E].

In the next proposition we describe some characteristics ofpaths in a proof in normal form.

Proposition 14. Let D be a proof in normal form in DNIK and π = σ0, . . . ,σn be a path inD. There exists a
segmentσi in π, called the minimal segment, splittingπ in two parts, called E-part and I-part, verifying the
following properties:

– for eachσ j in the E-part ( j< i), σ j is the major premisse of an elimination rule (σ j+1 is a subformula ofσ j );
– for eachσ j in the I-part (i< j), if j 6= n thenσ j is the premisse of an introduction rule (σ j is a subformula of

σ j+1);
– If i 6= n thenσi is a premisse of an introduction rule or a premisse of[⊥] (σi is a subformula ofσ0).

Proof. Let σi be the first segment that is not a premisse of an application ofan elimination rule. Ifi = n then
we can see that the proposition is true. Otherwiseσi is an application of an introduction rule or the premisse of
an application of[⊥]. If σi is a premisse of[⊥], then eitheri +1 = n or σi is a premisse of an application of an
introduction rule (⊥-reduction). Moreover we know thatπ does not contain a segment that is the conclusion of an
application of an introduction rule and the premisse of an application of an elimination rule or of[⊥] (reduction
and permutation rules). Thus for alli < j < n, σ j is a premisse of an application of an introduction rule. The case
whereσi is a premisse of an application of an introduction rule is proved in a similar way.

Now we define the notion oforder of a paththat will be used to make a proof by induction on the paths of a
normal proof.

Definition 16. A pathin a proof in normal formD is of order 0if it satisfies the two following properties:

– it ends with the conclusion ofD;
– it begins with a T-sequent that is not discharged by any rule and ends with the major premisse of an application

of [♦E].

A pathin a proof in normal formD is of ordern+1 if it satisfies one of the following properties:

– it ends with the minor premisse of an application of[⊃E], with a major premisse in a path of order n;
– it ends with the major premisse of an application of[♦E] and its begins with a T-sequent that is discharged by

an application of[⊃I ] belonging to a path of order n.

We show now that if all conclusions of T-sequents in a proof are subformulas of the formulas of the root then
all the formulas of the proof are subformulas are subformulas of the formulas of the root.

Proposition 15. LetD be a proof ofS = Γ{C⊢} dans DNIK. For any T-sequentΓ′{C′⊢} dansD, if A is a formula
in Γ′{ /0}, then A is inΓ{ /0} or there exists a T-sequentΓ′′{C′′⊢} in D such that A is a subformula of C′′.
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Proof. By structural induction onD.

Theorem 10 (Subformula property).Let S be a T-sequent andD be a proof in normal form ofS . Any formula
ofD is a subformula of a formula ofS .

Proof. We show by induction onn that for all paths of ordern the conclusions of its segments are subformulas of
formulas ofS . By Proposition 15 we can extend this property to all formulas ofD.
Let π = σ0, . . . ,σk a path of ordern in D andσi the minimal segment ofπ.
- Casen= 0.
We know thatσk ends either withS or with the major premisse of an application of[♦E].
- If σk ends withS thenC(σk) is a subformula of a formula ofS . By Proposition 14, for allj ∈ [i +1,k], C(σ j) is
a subformula of a formulaS . Moreover we know thatσ0 begins with either a T-sequent that is not discharged or
a T-sequent discharged by an application of[⊃I ] of the I-part ofπ. ThenC(σ0) is a subformula of a formula ofS .
By Proposition 14 we deduce that for allj ∈ [0, i], C(σ j) is a subformula of a formula ofS .
- If σk ends with the major premisse of an application of[♦E]. Then for all j ∈ [0,k], σ j is the main premisse of
an elimination rule (Proposition 14). We know thatσ0 begins with a T-sequent that is not discharged. ThusC(σ0)
is a subformula of a formula ofS . By Proposition 14 we deduce that for allj ∈ [0,k], C(σ j) is a subformula of a
formula ofS .
- Casen= m+1 (m> 0).
We know thatσk ends with either the minor premisses of an application of[⊃E], or the major premisse of an
application of[♦E].
- If σk ends with the minor premisse of an application of[⊃E] then by induction hypothesis and Proposition 14,
for all j ∈ [i +1,k], C(σ j) is a subformula of a formula ofS . Moreoverσ0 begins with either a T-sequent that is
not discharged by an application of[⊃I ] of the I-part ofπ or a path of order less or equal thanm. We deduce that,
for all j ∈ [0, i], C(σ j) is a subformula of a formula ofS .
- If σk is the major premisse of an application of[♦E] then, for all j ∈ [0,k], σ j is the main premisse of an
elimination rule (Proposition 14). We know thatσ0 begins with a T-sequent that is discharged by an application
of [⊃I ] that is in a path of orderm. By induction hypothesis and Proposition 14, we deduce thatfor all j ∈ [0,k],
C(σ j) is a subformula of a formula ofS .

A direct consequence of the subformula property is the property of separation.

Proposition 16 (Separation Property).A proof of a T-sequent only uses rules associated to the operators of the
T-sequent.

In the case ofDNIKTh for Th ∈ { /0,{T},{B},{T,B}} another important property that can be deduced from the
subformula property concerns the depth of the T-sequents ina proof in a normal form.

Proposition 17 (Depth Property).Let S be a T-sequent andD a proof in normal form ofS in DNIK +Th for
Th ∈ { /0,{T},{B},{T,B}}. If S ′ is a T-sequent inD then its depth is less or equal to depth(S )+ nest(S).

Proof. By structural induction onD.
The only rules having premisses with a depth greater than thedepth of conclusion are[�I ] and[♦E]. If the depth of
S ′ is greater than the depth ofS plusnest(S) thenD contains a formula withnest(A)> nest(S). It is contradictory
because all the formulas inD are subformulas of formulas ofS .

This property is not satisfied in deduction systems likeDNIS5 because of the elimination rule of� and the introduc-
tion rule of♦ for which there is no value bounding the differences of depths between the position of the formula
marked in the premisse and its position in the conclusion. Let us illustrate this point with the following proof of
the T-sequentS = �♦A,♦A⊢ dansDNIS5:

D3

D2

D1

[id]
�♦A,〈A,〈A,〈A〉〉〉,�♦A⊢

[�IS5
E ]

�♦A,〈A,〈A,〈A〉〉〉,♦A⊢

[♦E]
�♦A,〈A,〈A〉〉,♦A⊢

[♦E]
�♦A,〈A〉,♦A⊢

[♦E]
�♦A,♦A⊢
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where

D1 =







[id]
�♦A,〈A,〈A〉〉,�♦A⊢

[�IS5
E ]

�♦A,〈A,〈A,♦A⊢〉〉
D2 =







[id]
�♦A,〈A〉,�♦A⊢

[�IS5
E ]

�♦A,〈A,♦A⊢〉
D3 =







[id]
�♦A,�♦A⊢

[�IS5
E ]

�♦A,♦A⊢

This proof is in normal form. We havenest(S) = 2 and the depth of the T-sequents�♦A,〈A,〈A,〈A〉〉〉,�♦A⊢ is
equal to 3. It is a counter-example of the depth property.

7 T-sequents and Classical Modal Logics

In this section we propose natural deduction systems for allclassical modal logics obtained by combinations of the
axiomsT, B, 4 and 5. For each logic the system is obtained by the replacement of the rule[⊥] by a new rule in the
corresponding intuitionistic system. Then for allTh ⊆ {T,B,4,5} we define the natural deductionDNKTh as the
system obtained byDNIKTh from the replacement of the rule[⊥] by the following rule:

Γ{¬A}{⊥⊢}

Γ{A⊢}{ /0}
[⊥c]

We see that this rule is a generalization of the rule[⊥]: if Γ{ /0}{⊥⊢} has a proof inDNKTh, thenΓ{A⊢}{ /0} has also
a proof. By adding¬A to all the T-sequents of a proof ofΓ{ /0}{⊥⊢} dansDNKTh we obtain a proof ofΓ{¬A}{⊥⊢}.
Then we apply the rule[⊥c] in order to have a proof ofΓ{A⊢}{ /0}.

Theorem 11 (Soundness).If a T-sequent has a proof in DNKTh then it is valid inKTh.

Proof. We know that any rule that is sound inIKTh is sound inKTh. Thus all common rules toDNKTh andDNIKTh

are sound inKTh. Let us prove now the soundness of[⊥c] in KTh.
As the rule[⊥] is sound inDNIKTh it is also sound inKTh. LetD be a proof ofΓ{¬A}{⊥⊢}. By using the rules
[⊥] and[⊃I ], we obtain fromD a proof ofΓ{¬¬A⊢}{ /0}:

D

Γ{¬A}{⊥⊢}
[⊥]

Γ{¬A,⊥⊢}{ /0}
[⊃I ]

Γ{¬¬A⊢}{ /0}

¬¬A being equivalent toA in KTh, we deduce that the T-sequentΓ{A⊢}{ /0} is valid inKTh.

Theorem 12 (Completeness).If a T-sequent is valid inKTh, then it has a proof in DNKTh.

Proof. In order to show the completeness ofDNKTh we observe that adding the axiom¬¬A⊃A to IKTh gives
KTh. As the rule[⊥c] is a generalization of[⊥] it is sufficient to prove that¬¬A⊃A has a proof inDNKTh:

[id]
¬¬A,¬A,¬¬A⊢

[id]
¬¬A,¬A,¬A⊢

[⊃E]
¬¬A,¬A,⊥⊢

[⊥c]
¬¬A,A⊢

[⊃I ]
¬¬A⊃A⊢

About the normalization the main problems were related to the two rules[∨E] and[♦E]. In the classical case
they can be solved with the De Morgan laws. As the operators∨ and♦ can be expressed with the operators∧,
⊃ and� we can only consider deduction systems with rules associated to these ones. A key point in the proof of
normalization in the classical case is the restriction of[⊥c] to atomic formulas:
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Γ{¬p}{⊥⊢}

Γ{p⊢}{ /0}
[⊥′

c](p is atomic)

For all Th ⊆ {T,B,4,5} we denoteDN′
KTh the deduction system composed by the rule[⊥′

c] and the rules
associated to the operators∧, ⊃ and� in DNKTh. To show the completeness ofDN′

KTh it is sufficient to show the
admissibility of the rule[⊥c]. For that we need to prove the admissibility of the cut rule:

Proposition 18. The following rule is admissible in DN′KTh:

Γ{A⊢}{ /0} Γ{A}{C⊢}

Γ{ /0}{C⊢}
[Cut]

Proof. Let D1 be a proof ofΓ{A⊢}{ /0} andD2 be a proof ofΓ{x : A}{C⊢}. A proof of Γ{ /0}{C⊢} is given by
D2[x/D1] whereD2[x/D1] is defined like in the case ofDNIKTh.

Theorem 13. If Γ{¬A}{⊥⊢} has a proof in DN′KTh thenΓ{A⊢}{ /0} has a proof in DN′KTh.

Proof. By structural induction onA.
If A is an atomic formula then a proof ofΓ{A⊢}{ /0} is obtained by the application of[⊥′

c] to Γ{¬A}{⊥⊢}.
Let us consider the other cases:

– CaseA= B∧C. By using weakening the two T-sequentsΓ{¬(B∧C),¬B}{⊥⊢} andΓ{¬(B∧C),¬C}{⊥⊢}
have proofs inDN′

KTh. The proof ofΓ{B⊢}{ /0} is obtained as follows:

[id]
Γ{B∧C,¬B,¬B⊢}{ /0}

[id]
Γ{B∧C,¬B,B∧C⊢}{ /0}

[∧1
E]Γ{B∧C,¬B,B⊢}{ /0}

[⊃E]
Γ{B∧C,¬B,⊥⊢}{ /0}

[⊃I ]
Γ{¬B,¬(B∧C)⊢}{ /0} Γ{¬(B∧C),¬B}{⊥⊢}

[Cut]
Γ{¬B}{⊥⊢}

[H.I ]
Γ{B⊢}{ /0}

where[H.I ] corresponds to the application of the induction hypothesis. A proof of Γ{C⊢}{ /0} is obtained in a
similar way. Then by application of the rule[∧I ] to the premissesΓ{B⊢}{ /0} andΓ{C⊢}{ /0} we obtain a proof
of Γ{B∧C⊢}{ /0}.

– CaseA= B⊃C. By using weakening the T-sequentΓ{¬(B⊃C),B,¬C}{⊥⊢} has a proof inDN′
KTh. A proof

of Γ{B⊃C⊢}{ /0} is obtained as follows:

D =







[id]
Γ{B⊃C,B,¬C,B⊃C⊢}{ /0}

[id]
Γ{B⊃C,B,¬C,B⊢}{ /0}

[⊃E]
Γ{B⊃C,B,¬C,C⊢}{ /0}

[id]
Γ{B⊃C,B,¬C,¬C⊢}{ /0} D

[⊃E]
Γ{B⊃C,B,¬C,⊥⊢}{ /0}

[⊃I ]
Γ{B,¬C,¬(B⊃C)⊢}{ /0} Γ{¬(B⊃C),B,¬C}{⊥⊢}

[Cut]
Γ{B⊃C,B,¬C,⊥⊢}{ /0}

[H.I ]
Γ{B⊃C⊢}{ /0}
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– CaseA = �B. By using weakening the T-sequentΓ{¬�B,〈¬B〉}{⊥⊢} has a proof inDN′
KTh. A proof of

Γ{�B⊢}{ /0} is obtained as follows:

D =







[id]
Γ{�B,〈¬B,¬B⊢〉,¬⊥}{ /0}

[id]
Γ{�B,〈¬B〉,�B⊢,¬⊥}{ /0}

[�∗
E]Γ{�B,〈¬B,B⊢〉,¬⊥}{ /0}

[⊃E]
Γ{�B,〈¬B,⊥⊢〉,¬⊥}{ /0}

[⊥′
c]

Γ{�B,〈¬B〉,⊥⊢}{ /0}
[⊃I ]

Γ{〈¬B〉,�B⊢}{ /0}

D Γ{¬�B,〈¬B〉}{⊥⊢}
[Cut]

Γ{〈¬B〉}{⊥⊢}
[H.I ]

Γ{〈B⊢〉}{ /0}
[�I ]

Γ{�B⊢}{ /0}

[�∗
E] corresponds to the application of[�E], [�IB4

E ] or [�IS5
E ] depending on the one inDN′

KTh.

Theorem 14 (Normalization).Any proof of DN′KTh can be reduced into a proof in normal form.

Proof. LetD be a proof inDN′
KTh. As DN′

KTh does not contain the rules[∨E] and[♦E], all cuts inD are of length
1. The restriction on application of rule[⊥′

c] allows to deduce that all these cuts are detours. Then the proof of
normalization is similar to the one of Theorem 6 by inductionon the value of the pair(n,m) wheren= cr(D) and
m is the sum of lengths of all critical cuts. In the case ofDN′

KTh, the sum of lengths of all critical cuts corresponds
to their number. The used rules are only the reduction rules associated to the operators∧, ⊃ and�.

Let us note that the normalization does not allow here to obtain the subformula property. But we have the
following property:if D is a proof in normal form of a T-sequentS than any formula inD is a subformula of a
formula ofS , ⊥ or a formula of the form¬A such that A is a subformula of a formula ofS .

8 Conclusions and Perspectives

In this paper we have defined new natural deduction systems for the intuitionistic and classical modal logics based
on the combinations of axiomsT, B, 4 and 5. They satisfy the normalization property but also the subformula
property in the intuitionistic case. Compared to existing works on natural deduction in the intuitionistic modal
logics we provide new label-free systems that are uniform and have important properties w.r.t. proof theory, i.e.,
normalization and subformula properties. The central notion, on which these results are based, is a multi-contextual
structure, called T-sequent, that is appropriate to deal with such logics in both intuitionistic and classical cases.
A similar work can be done in the framework of sequent calculus and will provide uniform label-free sequent
calculi for intuitionistic modal logics with the cut-elimination property. Further work will be also dedicated to
the design of term calculi associated to these logics, the study of their properties and their impact on applications
involving deductions in these logics.
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A Normalization rules

First we introduce the following relations on the T-sequents:

1. →T defined byΓ{〈∆〉}→T Γ{∆};
2. →B defined byΓ{〈∆,〈∆′〉〉} →B Γ{〈∆〉,∆′};
3. →4 defined byΓ{Γ′{ /0},〈∆〉}→4 Γ{Γ′{∆}}with depth(Γ′{})> 1;
4. →5 defined byΓ{〈∆〉}{ /0}→5 Γ{ /0}{∆} with depth(Γ{}{ /0})> 1 anddepth(Γ{ /0}{})> 1;
5. →IS5 defined byΓ{〈∆〉}{ /0}→IS5 Γ{ /0}{∆}.

Now we show that for anyx ∈ {T,4,B,5, IS5}, if S →x S
′ andS has a proof in a systemDNIK+Th including

[�x
E] and[♦x

I ], thenS ′ has also a proof inDNIK+Th. For that we show how to rewrite a proofD of S into a proof
of S ′, denotedD[S ′]x.
We builtD[S ′]x by structural induction onD as follows:

Construction of D[S ′]T :

– Case 1:

If D =







D ′

Γ{〈∆,A⊢〉}
[♦I ]

Γ{〈∆〉,♦A⊢}

thenD[S ′]T =







D ′[Γ{∆,A⊢}]T
Γ{∆,A⊢}

[♦T
I ]Γ{∆,♦A⊢}

with S ′ = Γ{∆,♦A⊢}.
– Case 2:

If D =







D ′

Γ{〈∆〉,�A⊢}
[�E]

Γ{〈∆,A⊢〉}

thenD[S ′]T =







D ′[Γ{∆,�A⊢}]T
Γ{∆,�A⊢}

[�T
E]Γ{∆,A⊢}

with S ′ = Γ{∆,A⊢}.
– Case 3:

If D =







D ′

Γ{〈∆〉,A⊢}
[♦B

I ]Γ{〈∆,♦A⊢〉}

thenD[S ′]T =







D ′[Γ{∆,A⊢}]T
Γ{∆,A⊢}

[♦T
I ]Γ{∆,♦A⊢}

with S ′ = Γ{∆,♦A⊢}.
– Case 4:

If D =







D ′

Γ{〈∆,�A⊢〉}
[�B

E]Γ{〈∆〉,A⊢}

thenD[S ′]T =







D ′[Γ{∆,�A⊢}]T
Γ{∆,�A⊢}

[�T
E]Γ{∆,A⊢}

with S ′ = Γ{∆,A⊢}.
– Case 5:

If D =







D ′

Γ{〈∆1,〈∆2,A⊢〉〉}
[♦4

I ]Γ{〈∆1,〈∆2〉〉,♦A⊢}

thenD[S ′]T =







D ′[S ′′]T
S ′′

[♦I ]
S ′

whereS ′ is equal toΓ{〈∆1,∆2〉,♦A⊢} orΓ{∆1,〈∆2〉,♦A⊢}with if S ′ =Γ{〈∆1,∆2〉,♦A⊢} thenS ′′ =Γ{〈∆1,∆2,A⊢〉}
elseS ′′ = Γ{∆1,〈∆2,A⊢〉}.

– Case 6:

If D =







D ′

Γ{〈∆1,〈∆2〉〉,�A⊢}
[�4

E]Γ{〈∆1,〈∆2,A⊢〉〉}

thenD[S ′]T =







D ′[S ′′]T
S ′′

[�E]
S ′

whereS ′ is equal toΓ{〈∆1,∆2,A⊢〉} orΓ{∆1,〈∆2,A⊢〉}with if S ′ =Γ{〈∆1,∆2,A⊢〉} thenS ′′=Γ{〈∆1,∆2〉,�A⊢}
elseS ′′ = Γ{∆1,〈∆2〉,�A⊢}.

– Case 7:
This case captures all cases not previously considered.
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If D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈Σ
1〉} · · ·

Dl

Γ{∆l
1}· · ·{∆l

k}{〈Σ
l 〉}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈Σ〉}

then

D[S ′]T =







D1[Γ{∆1
1}· · ·{∆1

k}{Σ1}]T
Γ{∆1

1}· · ·{∆1
k}{Σ1} · · ·

Dl [Γ{∆l
1}· · ·{∆l

k}{Σl}]T
Γ{∆l

1}· · ·{∆l
k}{Σl}

[R]
Γ{∆0

1}· · ·{∆0
k}{Σ}

with S ′ = Γ{∆0
1}· · ·{∆0

k}{Σ}.

Construction of D[S ′]B:

– Case 1:

If D =







D ′

Γ{〈∆,〈∆′,A⊢〉〉}
[♦I ]

Γ{〈∆,♦A,〈∆′〉〉}

thenD[S ′]B =







D ′[Γ{〈∆〉,∆′,A⊢}]B
Γ{〈∆〉,∆′,A⊢}

[♦B
I ]Γ{〈∆,♦A⊢〉,∆′}

whereS ′ = Γ{〈∆,♦A⊢〉,∆′}.
– Case 2:

If D =







D ′

Γ{〈∆,�A⊢,〈∆′〉〉}
[�E]

Γ{〈∆,〈∆′,A⊢〉〉}

thenD[S ′]B =







D ′[Γ{〈∆,�A⊢〉,∆′}]B
Γ{〈∆,�A⊢〉,∆′}

[�B
E]Γ{〈∆〉,∆′,A⊢}

whereS ′ = Γ{〈∆〉,∆′,A⊢}.
– Case 3:

If D =







D ′

Γ{〈∆,A⊢,〈∆′〉〉}
[♦B

I ]Γ{〈∆,〈∆′,♦A⊢〉〉}

thenD[S ′]B =







D ′[Γ{〈∆,A⊢〉,∆′}]B
Γ{〈∆,A⊢〉,∆′}

[♦I ]
Γ{〈∆〉,∆′,♦A⊢}

whereS ′ = Γ{〈∆〉,∆′,♦A⊢}.
– Case 4:

If D =







D ′

Γ{〈∆,〈∆′,�A⊢〉〉}
[�B

E]Γ{〈∆,A⊢,〈∆′〉〉}

thenD[S ′]B =







D ′[Γ{〈∆〉,∆′,�A⊢}]B
Γ{〈∆〉,∆′,�A⊢}

[�E]
Γ{〈∆,A⊢〉,∆′}

whereS ′ = Γ{〈∆,A⊢〉,∆′}.
– Case 5:

This case captures all the case not previously considered.

If D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1,〈Σ1

2〉} · · ·
Dl

Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1,〈Σ

l
2〉〉}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈Σ1,〈Σ2〉〉}

then

D[S ′]B =







D1[Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1〉,Σ

1
2}]B

Γ{∆1
1}· · ·{∆1

k}{〈Σ
1
1〉,Σ

1
2} · · ·

Dl [Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1〉,Σ

l
2}]B

Γ{∆l
1}· · ·{∆l

k}{〈Σ
l
1〉,Σ

l
2}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈Σ1〉,Σ2}

with S ′ = Γ{∆0
1}· · ·{∆0

k}{〈Σ1〉,Σ2}.

Construction of D[S ′]4:

– Case 1:

If D =







D ′

Γ{Γ′{ /0},〈∆,A⊢〉}
[♦I ]

Γ{Γ′{ /0},〈∆〉,♦A⊢}

thenD[S ′]4 =







D ′[Γ{Γ′{∆,A⊢}}]4
Γ{Γ′{∆,A⊢}}

[♦4
I ]Γ{Γ′{∆},♦A⊢}

with S ′ = Γ{Γ′{∆},♦A⊢}.
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– Case 2:

If D =







D ′

Γ{Γ′{ /0},〈∆〉,�A⊢}
[�E]

Γ{Γ′{ /0},〈∆,A⊢〉}

thenD[S ′]4 =







D ′[Γ{Γ′{∆},�A⊢}]4
Γ{Γ′{∆},�A⊢}

[�4
E]Γ{Γ′{∆,A⊢}}

with S ′ = Γ{Γ′{∆,A⊢}}.
– Case 3:

This case captures all the case not previously considered.

D =







D1
Γ{∆1

1}· · ·{∆1
k}{Γ′{Σ1

1} . . .{Σ1
m}{ /0},〈∆1〉} · · ·

Dl

Γ{∆l
1}· · · {∆l

k}{Γ′{Σl
1} . . .{Σl

m}{ /0},〈∆l 〉}
[R]

Γ{∆0
1}· · · {∆0

k}{Γ′{Σ0
1} . . .{Σ0

m}{ /0},〈∆〉}

D [S ′]4 =







D1[S
1]4

Γ{∆1
1}· · ·{∆1

k}{Γ′{Σ1
1} . . .{Σ1

m}{∆1}} · · ·

Dl [S
l ]4

Γ{∆l
1}· · · {∆l

k}{Γ′{Σl
1} . . .{Σl

m}{∆l}}
[R]

Γ{∆0
1}· · · {∆0

k}{Γ′{Σ0
1} . . .{Σ0

m}{∆}}

whereS ′ = Γ{∆0
1}· · ·{∆0

k}{Γ′{Σ0
1} . . .{Σ0

m}{∆}} and, for anyi ∈ [1, l ], S i = Γ{∆i
1}· · ·{∆i

k}
{Γ′{Σi

1} . . .{Σi
m}{∆i}}.

Construction of D[S ]5:

– Case 1:

If D =







D ′

Γ{〈∆,A⊢〉}{ /0}
[♦I ]

Γ{〈∆〉,♦A⊢}{ /0}
thenD[S ′]5 =







D ′[Γ{ /0}{∆,A⊢}]5
Γ{ /0}{∆,A⊢}

[♦5
I ]Γ{♦A⊢}{∆}

with S ′ = Γ{♦A⊢}{∆}.
– Case 2:

If D =







D ′

Γ{〈∆〉,�A⊢}{ /0}
[�E]

Γ{〈∆,A⊢〉}{ /0}
thenD[S ′]5 =







D ′[Γ{�A⊢}{∆}]5
Γ{�A}{∆}

[�5
E]Γ{ /0}{∆,A⊢}

with S ′ = Γ{ /0}{∆,A⊢}.
– Case 3:

If D =







D ′

Γ{Γ′{〈∆,A⊢〉}}{ /0}
[♦4

I ]Γ{Γ′{〈∆〉},♦A⊢}{ /0}
thenD[S ′]5 =







D ′[Γ{Γ′{ /0}}{∆,A⊢}]5
Γ{Γ′{ /0}}{∆,A⊢}

[♦5
I ]Γ{Γ′{ /0},♦A⊢}{∆}

whereS ′ = Γ{Γ′{ /0},♦A⊢}{∆}, depth(Γ{}{ /0})> 1 anddepth(Γ′{})> 1.
– Case 4:

If D =







D ′

Γ{Γ′{〈∆〉},�A⊢}{ /0}
[�4

E]Γ{Γ′{〈∆,A⊢〉}}{ /0}
thenD[S ′]5 =







D ′[Γ{Γ′{ /0},�A⊢}{∆}]5
Γ{Γ′{ /0},�A⊢}{∆}

[�5
E]Γ{Γ′{ /0}}{∆,A⊢}

with S ′ = Γ{Γ′{ /0}}{∆,A⊢}, depth(Γ{}{ /0})> 1 anddepth(Γ′{})> 1.
– Case 5:

This case captures all the cases not previously considered.

D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈∆
1〉}{ /0} · · ·

Dl

Γ{∆l
1}· · ·{∆l

k}{〈∆
l 〉}{ /0}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈∆〉}{ /0}

D[S ′]5 =







D1[Γ{∆1
1}· · ·{∆1

k}{ /0}{∆1}]5
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆1} · · ·

Dl [Γ{∆1
1}· · ·{∆1

k}{ /0}{∆l}]5
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆l}

[R]
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆}

with S ′ = Γ{∆1
1}· · ·{∆1

k}{ /0}{∆}.
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Construction of D[S ′]IS5:

If D =







D1

Γ{∆1
1}· · ·{∆1

k}{〈∆
1〉}{ /0} · · ·

Dl

Γ{∆l
1}· · ·{∆l

k}{〈∆
l〉}{ /0}

[R]
Γ{∆0

1}· · ·{∆0
k}{〈∆〉}{ /0}

thenD[S ′]IS5 =







D1[Γ{∆1
1}· · ·{∆1

k}{ /0}{∆1}]IS5
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆1} · · ·

Dl [Γ{∆1
1}· · ·{∆1

k}{ /0}{∆l}]IS5
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆l}

[R]
Γ{∆1

1}· · ·{∆1
k}{ /0}{∆}

with S ′ = Γ{∆1
1}· · ·{∆1

k}{ /0}{∆}.

For anyx ∈ {T,B,4,5, IS5}, we denote→∗
x the reflexive and transitive closure of→x. Let S andS ′ be two T-

sequents such thatS →n
x S

′. We extend the definition ofD[S ′]x to the relation→∗
x by induction onn as follows:

– If n= 0 alorsD[S ′]x =D;
– elseD[S ′]x = (D[S ′′]x)[S

′]x such thatS →w S ′′ →n−1
w S ′.

Reduction rules:

– �
T -reduction:

D

Γ{〈A⊢〉}
[�I ]

Γ{�A⊢}
[�T

E]Γ{A⊢}

;

D[Γ{A⊢}]T
Γ{A⊢}

– ♦T-reduction:

D1

Γ{A⊢}{ /0}
[♦T

I ]Γ{♦A⊢}{ /0}
D2

Γ{〈x : A〉}{C⊢}
[♦E]

Γ{ /0}{C⊢}

;

D ′
2[x/D1]

Γ{ /0}{C⊢}

with D ′
2 =D[Γ{x : A}{C⊢}]T

– �
B-reduction :

D

Γ{〈∆,〈A⊢〉〉}
[�I ]

Γ{〈∆,�A⊢〉}
[�B

E]Γ{〈∆〉,A⊢}

;

D[Γ{〈∆〉,A⊢}]B
Γ{A⊢}

– ♦B-reduction:

D1

Γ{〈∆〉,A⊢}{ /0}
[♦B

I ]Γ{〈∆,♦A⊢〉}{ /0}
D2

Γ{〈∆,〈x : A〉〉}{C⊢}
[♦E]

Γ{〈∆〉}{C⊢}

;

D ′
2[x/D1]

Γ{〈∆〉}{C⊢}

with D ′
2 =D[Γ{〈∆〉,x : A}{C⊢}]B

– �
4-reduction:
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D

Γ{Γ′{ /0},〈A⊢〉}
[�I ]

Γ{Γ′{ /0},�A⊢}
[�4

E]Γ{Γ′{A⊢}}

;

D[Γ{Γ′{A⊢}}]4
Γ{A⊢}

– ♦4-reduction:

D1

Γ{Γ{A⊢}}{ /0}
[♦4

I ]Γ{Γ′{ /0},♦A⊢}{ /0}
D2

Γ{Γ′{ /0},〈x : A〉}{C⊢}
[♦E]

Γ{Γ′{ /0}}{C⊢}

;

D ′
2[x/D1]

Γ{Γ′{ /0}}{C⊢}

with D ′
2 =D[Γ{Γ′{x : A}}{C⊢}]4

– �
5-reduction:

D

Γ{〈A⊢〉}{ /0}
[�I ]

Γ{�A⊢}{ /0}
[�5

E]Γ{ /0}{A⊢}

;

D[Γ{ /0}{A⊢}]5
Γ{ /0}{A⊢}

– ♦5-reduction:

D1

Γ{A⊢}{ /0}{ /0}
[♦5

I ]Γ{ /0}{♦A⊢}{ /0}
D2

Γ{ /0}{〈x : A〉}{C⊢}
[♦E]

Γ{ /0}{ /0}{C⊢}

;

D ′
2[x/D1]

Γ{ /0}{ /0}{C⊢}

with D ′
2 =D[Γ{x : A}{ /0}{C⊢}]5

– �
IS5-reduction:

D

Γ{〈A⊢〉}{ /0}
[�I ]

Γ{�A⊢}{ /0}
[�IS5

E ]
Γ{ /0}{A⊢}

;

D[Γ{ /0}{A⊢}]IS5
Γ{ /0}{A⊢}

– ♦IS5-reduction:

D1

Γ{A⊢}{ /0}{ /0}
[♦IS5

I ]
Γ{ /0}{♦A⊢}{ /0}

D2

Γ{ /0}{〈x : A〉}{C⊢}
[♦E]

Γ{ /0}{ /0}{C⊢}

;

D ′
2[x/D1]

Γ{ /0}{ /0}{C⊢}

with D ′
2 =D[Γ{x : A}{ /0}{C⊢}]IS5
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