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Abstract. In this paper we study natural deduction for the intuititiciand classical modal logics obtained
from the combinations of the axions B, 4 and 5. They are based on a multi-contextual structurkeccake-
sequent, that allows to design simple label-free systengssh@w that they are sound and complete and that
they satisfy the normalization property and also the subfda property in the intuitionistic case.

1 Introduction

Classical modal logics (we are interested in normal modgitk) extend classical logic by two operators, called
modalities, that allow to express notions like necessity@ossibility [4,9]. In the possible world (Kripke) seman-
tics, the modalities are interpreted in a set of worlds witlaacessibility relation. In this context, logics differ by
the properties associated to the accessibility relationiffstance reflexivity T), symmetry B), transitivity (4),
euclidness (5)). Intuitionistic modal logics can be coesid as logics obtained by replacing in classical modal
logics the reasoning principles with intuitionistic oneéz4]. These logics have important applications in computer
science, like formal verification [13] and definition of pragiming languages [12,16].

Our aim in this work consists in defining label-free natueddction systems having good properties for several in-
tuitionistic and classical modal logics. There exist maatunal deduction systems in the classical case [14,20,23],
but they are rare in the intuitionistic case because of tfiewlty to deal with the modality> [24]. As far as we
know, the only approach that provide deduction systemsfgatg normalization for all the intuitionistic modal
logics we consider is the one of A. Simpson [24]. It is basedatrels that explicitly integrate some semantic
information, like the accessibility relation, into the s®s. It allows to define simple systems for large number
of modal logics, but they do not satisfy some properties,irfistance the subformula property, because of the
use of labels that are not in the logic language. Recentlksvbased on a structure, called deep sequent, has
provided label-free sequent calculi for several classitatlal logics in a modular way and with good properties
like cut-elimination and subformula properties [5]. It cha seen as a generalization of the approach based on
the hypersequent structure for the modal Idgfid1]. However, deep sequent and hypersequent structuresare
adapted to deal with natural deduction formalism and alsdrttuitionnistic modal logics. The key idea to solve
this problem consists in defining a multi-contextual stuuetappropriate to deal with the logics we consider. In this
perspective we have recently defined such a multi-contégagaient structure that allows to defined a label-free
natural deduction system and a sequent calculus for th#iamistic modal logiclS5 [15].

In this paper we define new natural deduction systems forrtuitionistic and classical modal logics obtained
from the combinations of the axionds B, 4 and 5 that satisfy the normalization property but alscstitgformula
property in the intuitionistic case. In order to design themfirst define a multi-contextual structure, in the spirit
of our previous work [15], that is adapted to deal with logitcdoth intuitionistic and classical cases. Thus our
first contribution is the definition of a new structure, cdlleree-sequent (T-sequent), that is different from the one
of deep sequent [5]: firstly, in a T-sequent we have an exglifference between some formulas with hypotheses
and a conclusion; secondly, the definition of the formulaeisged to a T-sequent uses both operatoend<).

In fact the absence of inter-definissability betw&eand (one from the other) in the intuitionistic modal logics
(classical case®A = —0O0-A, OA = =<{$—A) makes essential the use of a structure with a correspofiaiingila
using both operators. Intuitively, a T-sequent can be seenraono-conclusion version of a deep sequent. Using
this structure, we first focus on the the intuitionistic logk and define a natural deduction system for this logic,
that is proved sound and complete. Moreover we show thati$fies the normalization property. Then we gener-
alize this work by defining natural deduction systems forittteitionistic modal logics that are obtained from all



the combinations of , B, 4 and 5. We prove that they satisfy the normalization priydaut also the subformula
property. To complete these contributions we naturallyvéenatural deduction systems for the classical modal
logics obtained from the combinationsdf B, 4 and 5 and prove that they satisfy the normalization ptgper

In Section 2 we briefly present the key points about modalkckgind their related deduction systems. In Sec-
tion 3 we introduce our new multi-contextual structure)exhiTree-sequent, that is similar but different from the
deep (or nested) sequent structure [5,6,19]. In Section firatefocus on the intuitionistic modal logik and
define a new natural deduction systBiNk based on Tree-sequents. In order to prove the soundnessrodice

two key notions (predecessor, chain) to express if a Trgaesd has a countermodel or not. The completeness
is proved in a standard way w.r.t. the Hilbert system axidgmatibn. In Section 5 we study the normalization in
the systenDN. For that we define a set of notions and concepts (indexedufla;mdischarging rule, normal
derivation) in order to describe the normalization proeedn a clear and concise way. After this work on the
intuitionistic modal logidK with a sound and complete label-free natural deductioregysatisfying normaliza-
tion as main contributions, we extend these results in @@ &iby defining natural deduction systems, based on
T-sequents, for the intuitionistic modal logics obtainezhfi the combinations of, B, 4 and 5. We prove that all
our systems satisfy normalization but also the subformaothseparation properties. Having first focused on the
intuitionistic modal logics we show, in Section 7, how to defin a simple way natural deduction systems for all
classical modal logics obtained from the combination$ 0B, 4 and 5. For each logic, the system is obtained by
the replacement of the rule associated t@gabsurdity) by a new rule in the corresponding intuitioigistystem.

We prove that they are sound and complete and that theyysatisfalization.

2 Classical and Intuitionistic Modal Logics

The language of modal logics is obtained from the languageagositional logic by adding two unary operators
0O and<. Let Prop be a set of propositional variables, denoted by letfecsr, ... The formulas are defined by
the following grammarA::=p| L | AANA|AVA|ADA|TA| $Awhere the symbal represents the absurdity
(constant false). The negation, denotgctan be defined by using and the operatop as follows:-A£ AD L.
The constant true is defined By= 1 O L.

2.1 Classical Modal Logics

Let us recall some key points about semantics and proofregsiteclassical modal logics. The Kripke semantics,
that is related to the definition of truth w.r.t. possible ldsr includes a relation of accessibility between worlds.
Thus ‘DA s true in a worldw” means that is true in all worlds accessible fromand “A s true in a worldw’
means thaf is true in at least one world accessible fram

Definition 1. A classical modal modes$ a triple (W,R,V) where W is a non-empty set of worlds, R is a binary
relation on worlds, called accessibility relation, and Vaigunction from W t@F™P (the set of subsets Bfop).

We associate to each mod® = (W,R V) a relationk,,, called satisfaction relation, betwedhand the set of
formulas, that is inductively defined as follows:

WEg, piff peV(w);

WEq4, L never;

wE. AABIff wEg, Aandwi=,, B;

wWEq AVBIff wkg Aorwky, B;

wE, ADBIffif wikg, AthenwE,, B;

W E g, OAIff for any w in W, if R(w,w') thenw’ E,, A;

w Eq4, QAff there existsw in W such thaR(w,w') andw 4, A.

The expressiow =4, Ameans that in a modél the formulaA is satisfied in the worlav. A formulaA s valid
in M = (W,RV) if wk,4, Afor any worldw in W. The classical modal models define the validity in the midima
modal logicK: a formulaA is valid in K iff Ais valid in all classical modal models [10]. The other modsgits
built from combinations of the axionis, B, 4 and 5 are defined by classes of classical modal models.axamm
corresponds to a property of the accessibility relatioreichemodel:



(T) Reflexivity: Yw.R(w,w); (B) Symmetry:vYw,w .R(w,w') D R(W,w); (4) Transitivity: Yw,w,w’.(R(w,w) A
RW,w")) D R(w,w’); (5) Euclidnessyw,w ,w".(R(w,w) AR(w,w")) D R(W,w").

ForTh C {T,B,4,5} the class of models defining the logik3 h, denotedCr,, corresponds to models in which
the accessibility relations satisfies the properties aattto axioms it h.

Let us note that the logik{T,4} (resp.K{T,5}) is the classical modal logic denot8d (resp.S5).

Theorem 1. A formula A is valid inKTh iff A is valid in all models inCr,.
Proof. See [10].

Each logicKTh satisfies the finite model property w.r.t. the Kripke senm@anénd thus are decidable [4]. About
proof systems for such a logic we recall the Hilbert systenttfe classical minimal modal logk, called#, that
is given by the following axioms:

1. Tautologies of propositional classical logic.
2. O(ADB) D> (DADDOB).
3. <>A <~ —O-A

and the following rules:

A28 A mg L2 Ineg

Hilbert systems for other classical modal logics are oletdiby adding ta#« axioms among the following
ones: T) OADA; (B) ADOGA; (4) OAD OOA; (5) SAD OQA. For any subseth of {T,B,4,5} we callKTh
the logic corresponding to the Hilbert systeffq, obtained by adding axioms ifih to #.

2.2 Intuitionistic Modal Logics

Intuitionistic modal logics that we consider are the iruiistic versions of the classical modal logics [24]. They
have important applications in computer science like fdwesification [13] and definition of programming lan-
guages [12,16]. For anyh C {T,B, 4,5} we calllKTh the intuitionistic modal logic corresponding to the claasi
modal logicKTh. In this case the semantics and proof systems are differiémkey points summarized here. Let
us note that we use the nam&s|B4, IS4 andIS5 for the intuitionistic versions of respectively, K{B, 4}, S4, S5.

Definition 2. A modal intuitionistic modeis a quadrupleW, <, {Dw }wew, { Rw }wew, {Vw }wew) where

— W is a non-empty set #fripke worlds

— < is a partial order relation on W

— for any we W, D, is a non-empty set ehodal worldssuch that if w< w' then Oy, C Dyy;

— foranywe W, Ry is a binary relation on [, called waccessibility relationsuch that if w< w' then Ry C Ry;
— forany we W, \fy is a function from [ to 277 such that if w< w' then \j,(p) € Vi (p).

Let us note that there are two kinds of worlds: the Kripke @sithat correspond to the intuitionistic basis and
the modal worlds that capture the modal aspects. As in tissicl case, we associate to each modal intuitionistic
logic a satisfaction (or forcing) relation.

Definition 3. Let M = (W, <, {Dw }wew, { Rw}wew, {Vw}wew) be a modal intuitionistic model, w W, d € Dy,
and F be a formula, thércing relation denoted wd F,, F, is inductively defined as follows:

— w,dEy, piffdeVa(p);

— w,d 4, L never,;

— w,dEg4 AABIiffw,d kg Aand wd 4, B;

- wdF, AVBiffwdEg AorwdE, B;

w,dE4 ADBiffforall w > w, if w,dF, Athenw,d E4, B;

w,d 4, DA iff if for all w’ > w and for all d € D, if Ry (d,d’) then W, d’' £,/ A;
— w,d F,4, QA iff there exists e Dy such that R(d,d’) and wd’ £,/ A.



AformulaAis valid in a modetM = (W, <, {Dw }wew, {Rwtwew, {Mw}wew) if and only ifw,d =4, Afor allwe W
and for alld € Dy. ForTh C {T,B,4,5}, a modelW, <, {Dw }wew, {Rw}wew, {Vw}wew) is in the class of models
ICty if and only if for allw € W, Ry, satisfies the properties associated to the axioni$hin

Theorem 2. A formula A is valid inKTh if and only if A is valid in all the models iiCy,.
Proof. See [24].
The satisfaction relation verifies the property of Kripkermtonicity like in intuitionistic logic.
Proposition 1 (Monotonicity). If w,d F,, A and w< w' then we have d F,, A.
Proof. By structural induction or.

Let us note that these logics do not satisfy the finite modgberty w.r.t. Kripke semantics [17,24]. But some
of them satisfy the property w.r.t. other semantics. Theerty has been proved ft$5 [21] w.r.t. the algebraic
semantics proposed in [7]. For the logi&s IK{B} andIK{T,B} the finite model property has been proved w.r.t.
the bi-relational semantics [24]. Concerning the prootesys we can mention a Hilbert system f&;, denoted
Hk, that is given by

— Tautologies of propositional intuitionistic logic.
- O(AD>B)D>(OADOB).

- O(ADB) D (CADOB).

- oLl

- O(AVB) D (QAVOB).

- (¢ADOB) D O(ADB).

with the rules

ADB A A
S [mp ~ Ineg

It has been first proposed in [18] and another one can be fauf#Pi. For anyTh C {T,B,4,5}, a Hilbert
system for the logidKTh, denoted# kT, is obtained by the addition té4x of axioms corresponding to the
elements ofTh among the following axioms [24]T) (OAD A) A (AD $A); (B) (COADA) A (ADTOOA); (4)
(ODADOOA) A (COAD OA); (B) (COADTA) A (CADOOA).
Let us consider the axiorfi used in classical modal logic thatisA > A. Then we havel-AD —A. As we have
OA <+ -$—-Aand——A <+ A, we obtainr-AD —Athat is the contraposition &> {A. But the addition oAD $A
to the axiomT in the intuitionistic case comes from the fact that the tweraporsa and<> are independent.

Before to consider natural deduction systems we give theitlefis of two useful notions:
Let A be a formula, theomplexity measuref a formulaA, denoted A |, is defined as follows:
-lpl=lL=1

-|A®B|=|A|+|B|+1where® € {A,V,D};

- | KA |=| A| +1whereX € {0, {}.

Let A be a formula, thaesting degreef a formulaA, denotechesi(A), is defined as follows:
-nes{p) =nes{ L) =0;

- nes{A® B) = maxnes{A),nes{B)) where® € {A,V,D};

- nes{XA) = 1+ nes{A) whereX € {0, }.

2.3 Natural Deduction Systems and Modal Logics

Natural deduction systems have been defined for the I&gi@ndS5 and their intuitionistic versions [20]. Other
formulations improve these systems for the classical andtionistic versions 064 [3,11]. Let us note that the
Prawitz approach is difficult to extend to other modal log&]s for instance for the logi& [2]. Moreover, using
Fitch’s approach, natural deduction systems have beerndaior several classical modal logics [14,23]. Unlike



Gentzen-style where the derivations have a tree form, ahBiapproach the derivations are linear and thus, in this
case, the accessibility relation is implicitly integratetb systems by a nesting of derivations.

Natural deduction systems for intuitionistic modal logéze rare because of the difficulty to deal with the modal-
ity <> [24]. As far as we know, the only approach allowing to prov&ystems satisfying normalization for all
the intuitionistic modal logics we consider is the one of AmBson [24]. It explicitly integrates some semantic
information, like the accessibility relation, into the s®s by using labels. It allows to define simple systems for
large number of modal logics, but they do not satisfy the subtila property.

In this paper we focus on the proof theory in the classicaliandtionistic modal logics obtained from the combi-
nations of the axiom$, B, 4 and 5 via the natural deduction formalism. Here we aim fibuhg label-free systems
that satisfy normalization and also subformula propertyrder to solve this key question we need to introduce
a multi-contextual structure in the spirit of [5,15] but iagzdone for the sequent calculus formalism and only for
classical modal logics. In the next section we present @e-sequent structure that is central in this work.

3 The Tree-sequent Structure

In this section we introduce a new structure, called Trepiset, denoted T-sequent, that can be seen as a kind of
mono-conclusion version of a deep (or nested) sequentlf,&ut it is clearly different. In a deep sequent the
formulas are not explicitely considered as hypothesesoclasion and the definition of the formula correspond-
ing to a deep sequent only uses the modal oper@tdn the T-sequent structure all formulas are considered as
hypotheses except one that is called a conclusion and thatabefiof the formula corresponding to a T-sequent
uses the two modal operatajpsand.

Definition 4 (T-context). A T-contextis a structure of the form A..., A, (l1),..., () where{Aq,..., A} is a
multiset of formulas andll1, ..., 'k} is a multiset of T-contexts.

A marked formulas of the formA”™ whereA is a formula.
Definition 5 (T-sequent).A T-sequents a structure inductively defined as follows:

— If I is a T-context and Ais a marked formula theR, A" is a T-sequent.
— If Sis a T-sequent anf is a T-context thef, ($) is a T-sequent.

A T-sequent has the same form as a T-context,Ag....,Ax, (F1),..., () and it can be seen as a T-context
with in addition only one occurrence of a marked formulaf thaalled the conclusion. T-sequents can be presented
graphically as follows:

Alu"'uAk

Tree(I'y) Tree(T'y) Tree(T';—1) Tree(I)

whereTregl1),..., Tregly) are the trees respectively correspondingio. ., k.

Let us note that we do not distinguish the T-sequents andnfegts and their associated trees. Then when we
mention theroot, theleaf, the depthor a subtreeof a T-sequent or a T-context, we refer to its associated knee
order to illustrate this point we give the tree associatetiéoT-sequend, B(C, (D)), (E,F"):

A B

T

C E,F"
D



Definition 6 (nT-context). A nT-context with n> 0, is a T-context or a T-sequent with n occurrences of the
symbol{}, that is called a T-hole.

n times

ThenT-contexts are denotdd{} - --{} by considering that there is a bijection that maps an ocougef{}
in the nT-context to each occurrence of the symlyplfollowing this notation. The structueé{A;}---{An} is
obtained by the substitution of the T-hole associated tatitheccurrence of } in ' {}---{} by 4;, foralli € [1,n].
For instance, any T-sequent has the fdiiC"} wherel {} is a IT-context. From now we call the T-context of
r{C"} the T-contexf {0}. In general the T-holes are substituted by T-contexts glisats onT-contexts.

The T-sequenti(AD B), $A, (A B7). It corresponds t6 {B™} such thaf {} = O(ADB), OA, (A {}).

The T-sequent structure can be seen as a multi-contextuatate because the truth value of a T-sequent can
change w.r.t. the position (context) of its conclusion ie tiee associated to its T-context.

Definition 7 (Depth). The depth of 4T -context { }, denoted dept(fi { }), is defined as follows:

— deptHl,{})=0;
— deptHl, (A{})) = 1+ deptHA{}).

Let .S be a T-sequensp(S) is a relation that is satisfied if and only if the depth of treetcorresponding ts is
greater than 0. We defimest(S) by nes{(.§) = max{nes{A) | A€ S} wheremaxmeans the maximum ams{A)
the nesting degree @f previously defined.

The ¥ fonction that associates a formula to each T-context is défas follows:

O =T,
— F(AL .. AG(T1), - (T)) =AA L AANO(F(T)) AL AO(F(Tk)).

It is extended to T-sequents in the following way:

- F(I,A") = F(I)DA(I is a T-context);
— F(M(8)) =F(M)>DO(F(S)) (Iis a T-context and is a T-sequent).

Thus for example we havg (0(AD B), OA, (A,BY)) = (O(ADB) A (GA)) DO(ADB).

We note that the validity of a T-sequefiin a modal logid_ is defined by the validity off () in L.

4 A Natural Deduction System forIK

In this section we define a natural deduction systenKoicalledDNk, that is based on the T-sequent structure
and we prove the key properties of soundness and complstenes

4.1 TheDNyk System

The natural deduction systeDNik is given in Figure 1. We observe that its rules are all of tHie¥ang form:

r{ad}-{ag) - T{a) B,
M{Ad}---{}

It means that each premisse is obtained by the transformafisome subtrees of the conclusion. Let us comment
now the rules oDNi. The rules for the intuitionistic operators are defined asahes oDNp_ (the natural de-
duction system for intuitionistic logic [25]) by taking mtaccount the existence of several contexts. For instance
the rule[ Lg] expresses that if the hypotheses of the premisse imply dibgthien they also imply any formula, in
any context. This idea is captured by the use oT ac@ntext.

Let us focus now on the modal rules. We say that a conféig accessible from a contegtin a T-sequeng if

} R



F1o
— r{L }{F} Le]
r{AA™} r{oH{A"}
r{A"} r{B"} r{AAB™} L r{AAB™} 5
A E Ag]
r{AAB™} r{A™} r{8"}
r{A™} r{8"} F{AVB 0} T{AH{C"} Tr{BHC"}
\G vE VE]
r{AvB~} r{AvB~} r{o}{ch
r{AB"} r{A>B"} r{A™}
— 7 el
r{A>B"} r{B}
r{(n,A" r{OAHO r{(A}{C"
{«( >E ] {OA {0} F{< )HC } O]
r{(a),0A™} r{oH{cC"}
F{(A")} r{(a),0A™}
——— [O] ————— [Oe]
r{oA™} r{(a,A")}

Fig. 1. The Natural Deduction SysteBiNk

C'is a son ofC in the T-context ofS. The rule[Og] means that if a formula is true in an empty context that is
accessible from a contegt, then the formulaiAis true in the context’. The rule[d);] means that if a formulaA

is true in a context” and(’ is a context accessible from it then the formAlés true inC’. The rule[{|] means
that if a formulaA is true in a context” accessible front, then the formul&)A is true inw. Finally the rule[g]

is similar to a cut rule. If the formul&@A is true in a context", we cannot necessarily know in which context,
accessible front, the formulaA is true.

In the case of an application of an elimination rule we cadljor premissehe premisse that contains the elim-
inated operator and the other premisses are calliedr premissesLet us introduce two relations, denoteel,

et —m, that allow us to capture the notions w&akeningand mergeon the T-sequents. They correspond to the
following structural rules on T-sequents:

F{C:}{(’)} Wi M{(A1), (82)} M
r{C HA} M{(01,02)}

We define the relations,, on the T-sequents by{C"}{0} — I {C"}{Z} whereX is a T-context and we
denote—;, its reflexive and transitive closure.

Definition 8. Let.S and.S’ be two T-sequents such thét+y, S’ and D be a proof ofS in DNik. The proofD[S’|w
of §" is defined by inductiom as follows:

Dy[M{AL} - {AHZHw DAL} - {8 H{ZHw
DS w = Mot} A6z - T{A) A

r{ad}{aHz}

wheres’ =T {A%}---{A%}{=} and

Dy D
p={ TG {830} - T{a}- {8 }{0} R

r{ag}---{af}{o}




We can extend this definition to the relaties(,. Let.S andS’ be two T-sequents such th&t—, S and D be
a proof of S in DNik. The treeD[S']w is defined as follows:
-if n=0thenD[S'|w = D;
- otherwiseS —w 5" =0t 8" and D[S \w = (D[S"|w)[S w-

Let us consider the following example:

Id Id

D(AgB),DA,(),D(ADB)F[ } D(ADB),DA,Q,DAF[ ]

B Oe [CE]
D=3 0(A>B),0A (ADB") O(ADB),0A, (A") o
2E

O(ADB),0A, (B™)

We haved(AD B),0A, (B™) —i C,0(ADB),0A,(D,B") and the proofd[C,0(AD B),0A, (D,B" )]y is the
following:

Id Id
C,D(AgB),DA,(D),D(ADB)F[ } C,D(ADB),DA,<D>,DAF[ ]

Ue
C,0(ADB),0A, (D,ADB") C,0(ADB),0A, (D,A")
C,0(ADB),TA, (D,B")

=3

Similarly we define the relatior>y, on T-sequents by {(A1), (A2)} —m M{(A1,A2)} and we denote-, its
reflexive and transitive closure.

Definition 9. LetS and.$’ be two T-sequents such th@t+m S’ and D a proof ofSp in DNik. The proofD[S’|m is
defined by induction o as follows:

DA (BHELDNm DAY {AH (T, 2 Hn
DS |m = r{ad}---{AbH{(E1,20)} r{a} - {al (= b))
r{af) - {ARH (0. 23)}

wheres’ =T {A%} - {A%}{(29,%9)} and
Dy D
p— T{AD - {8HED.(Z3)} - T{AL - {A(ED, (25)}
M{af}--{a3H(ED). (D)}

We can extend this definition to the relatiesf, as it is previously done fors,.
Let us consider the following example:

R

————[ld]  ————ld]
(A A7), (B) (A),(B,B")

D=1 (A, (BLOA  (A)(B).0B"
(A, (B), OAN OB

We have(A), (B), OAAOB™ —m (A B), GAA OB™. The proofD[(, A, B), GAA OB mis

—[id] —[1d]
(A,B,A") (A,B,B")

(A, B), OA" ' (A,B), OB

(A,B), OAN OB (]

Now we will consider some properties that are important taivpthe completeness BiNik.

Proposition 2. F{AD B} is provable in DN if and only if T {A, B} is provable in DNk



Proof. From the rulg>;] we know that iff {A,B"} is provable inDNik thenl {A>B"} is provable inDNik.
Let us assume th&t{A> B"} is provable inDNix. We havel {ADB"} —, T{A,ADB"} and them {A, ADB"}
is also provable iDNk. Thusl {A, BF} is provable inDNk:

[1d]

r{AADB"} T{AA"} |
OE

r{A B}

Proposition 3. I {A"} is provable in DNk if and only if{(A7)} is provable in DN.

Proof. From the rulg; ] we know that ifr { (A7)} is provable inDNik thenl { A"} is provable inDNik.
Let us assume th&t{ DA™ } is provable inDNik. We havel { (A7)} —, T {(),0A" } and ther™ {{ ),0A"} is also
provable inDNik. By using the ruldCig] we show thaf {(A")} is provable inDNik:

r{(),0A}
F{(A")}

Proposition 4. If T{AAB}{C"} is provable in DNk thenl {A B}{C'} is provable in DN.

(O]

Proof. By structural induction on the proof 6f{AAB}.

We only develop the case whdr¢ AA B} is an instance ofid].

1. There exist§’{}{} such that" {AAB}{C"} = I"{AAB}{C,C"}. We see thal {A,B}{C"} is an instance of
[1d].

2.C=AABandr {AAB}{C"} =T {AAB,AAB"}{0}. A proof of [ {A B,AAB"}{0} is given by:

1] ]
M{A, B,AF}{O} r{AB, B%}{Q)}

r{A,AB,AAB {0}

AY

In the other cases the proof is obtained by induction.
Proposition 5. If F{{)A}{C"} is provable in DN then {A}{C"} is provable in DNk.

Proof. By structural induction on the proof &f{ A} {C"}. It is similar to the proof of Proposition 4.

4.2 Soundness oDNk

The soundness of the systéMD i is proved by using the semanticsléf. The idea here consists in proving, for
each rule, that if the conclusion is not valid (has a countefal) then at least one premisse is not valid (has a
countermodel). We introduce two notionsedecessoand of (w,k)-chainthat we use in order to express the
fact that a T-sequent has a countermodel. Then we propose papositions in order to simplify the soundness
proof.

Definition 10 (Predecessor)Let '{} be a 1T-context without marked formulas. The value of {gfeg ), with
i € [0,deptiI"{})], is defined by induction as follows:

— pred®(F{}) = A such thatp, {} is a subtree of {} (unique becausg{} has only one occurrence é}).
— IfdepthT{}) > 0and0 < j < depthT{}), then pred™*(r {}) = pred (I{}) such that™ {} = "{(A,{})}.

This notion of predecessor can be described with the foligvigure:

I = Ans (Ana s (o (A (A, )

7
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Definition 11 ((w,k)-chain). Let M = (W, <, {Dw }wew, { Rw}wew, {Viw}wew) be a Kripke model and v& W. A
(w, k)-chainin M is a sequence of the forng &> d1 — - -- — di, where for all me [0,k— 1], we have R(dm,dm+1).

Let M = (W, <, {Dw}wew, { Rw}wew, {Vw}wew) be a Kripke modelv € W, I'{} un 1T-context without marked
formulas and = dy — --- — dk be a(w, k)-chain ina with k =deptHT" {}). We notew,c =T {} if for all i € [0,K],
w,di E F(pred(r{})).

Proposition 6 (Monotonicity). Let M = (W, <, {Dw }wew, {Rw }wew, {Vw}wew) be a Kripke model, ve W, d e
Dw, I'{} be a 1T-context without marked formulas and c kgvg)-chain such that k= depthT'{}). If w,cE [ {}
and w< W, thenvi,cE I{}.

Proof. By induction on the length af.

Proposition 7. Let M = (W, <, {Dw}wew; { Rw}wew, {Vw}wew) be a Kripke model, ve W, de Dy, '{} be a
1T-context without marked formulas. We have W F (I {0}) if and only if there exists éw,k)-chain c=d —
d; — -+ — dg such that k= deptiT'{}) and wcE ' {}.

Proof. We prove the “if part” by induction oR.

- If k=0 thenc = d and there existA such thal’ = A, {}. Asw,d F F(A) (F{0} = A), we havew,ck I'{}.

- If k=n+1 with n > 0, then there exist’{} andA such that” = A, (I"'{}) anddepth’{}) = n. As we have
w,dE F (F{0}), there existsl’ € Dy such thaRy(d,d") andw,d’ £ 7 (I''{0}). By induction hypothesis there exists
a(w,n)-chainc=d" —d; — --- —df, such thaw,c '{}. Thus thgw,n+1)-chaind =d - d' —d; — --- —d}
satisfies the property,c’ £ A, (I'{}). Then we havev,c’ =T {}.

We prove the “only if part” by induction ok, by using the definition off (I {0}).

Proposition 8. Let M = (W, <, {Dw }wew, {Rw twew, {Viv}wew) be a Kripke model; {C"} be a T-sequent, @ W
and c=do — d; — --- — di be a(w,k)-chain in M such that k= deptHT{}). If w,c E'{} and wdy ¥ C then
w,do # F (F{C"}).

Proof. By induction onk.

- If k = 0 then there existA such that™ {C"} = A,C™ andc = do. By usingw,c = I'{} andw,dy ¥ C, we have
w,do = F (A) andw,dg # C. Thenw,do # F (F{C"}).

- If k=n+ 1 with n > 0 then there exist’{} andA such that" {C"} = A, (I"'{C"}) anddeptHI"{}) = n. We
suppose that,c = I'{} andw,dn1 # C. Knowing thatw,c = I {} andl {C"} = A, (I"{C"}), we havew,c’ F I'{}

andw,do F Awith ¢ = dy — --- — dn.1 (@(w,n)-chain). By induction hypothesis we hawed; # F (I''{C"}). As

w,do F A, we obtainw, dg # F (A) >D0(F (I'{C"})). Thus we havev,do # F (M {C"}).

Proposition 9. Let M = (W, <, {Dw}wew; { Rw}wew, {Vw}wew) be a Kripke model, ve W, &, € Dy, andl{C"}
be a T-sequent. If o # F (T {C"}) then there exist = W and a(w',k)-chain c=do — d; — --- — d such that
w<wW, k=deptHr{}),w,cET{}and w,dx#C.

Proof. By induction onk.

- If k = 0 then there exista such thal {C"} = A,C". Then we havev,d = F (A) andw,dg ¥ C. Thusw,c = I'{}
andw, dp ¥ C hold withc = dp.

- If k=n+1 avecn > 0 then there exist’{} andA such that {C"} = A, (I'"{C"}) anddeptH{I’{}) = n. Let
us suppose that,do ¥ 7 (A, (I'{C"})). Then there existv; € W andd; € Dy, such thatw < wi, Ry, (do,d1),
wi,do E F (A) andws, dy # F (I'{A,C"}). By induction hypothesis and with dy # F (I’ {C"}), there existV € W
and a(w,n)-chainc’ =d; — d; — --- — dpy1 such thatv, <w, w,c ET'{} andw/,dn1 ¥ C. By the Kripke
monotonicity andwvy,do F F (A), we deduce that/,dg = F (A). Thus we havev,c = I'{} andw,dn.1 ¥ C with
C=d0—>d1—> —>dn+1.

Theorem 3 (Soundness)f a T-sequent is provable in DNthen it is valid inlK.

Proof. We give the cases concerningand the modal operators, the other cases being similar.

- Case[ L]. We suppose thdt{0} {A"} is not valid inlK. By Proposition 9, there exist a Kripke mod#f, w € W
and a(w, k)-chainc=dy — d; — --- — di such thak = deptHT {0}{}) andw,c = '{0}{}. By Proposition 7 we
havew,dp F ¥ (F{0}{0}) and we know that there exist§= dp — d; — --- — d| such thal = depthl'{}{0})
andw,c F {}{0}. By Proposition 8 ane\,d/ ¥ L, we obtainw,do ¥ F (I { L"}{0}).
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- Cas€[$]. We suppose that{ (A), A"} is not valid inlK. By Proposition 9 there exist a Kripke mod#f, w € W
and a(w,k)-chainc=dp —d; — - -- — dx such thak=depti {(A),{}}),w,cET{(A),{}} andw,di ¥ $A. Then
there existglg, 1 € Dy, such thaRy(dk, dk:1), W,dir1 F F (A) andw, dg, 1 # A. Thus we obtaiw,c’ ET{(A, {})}
andw, dy 1 # Awherec is the(w,k+ 1)-chain defined by’ =dp — di — --- — dx — di.1. By Proposition 8 we
havew,do ¥ F (M {(A,A7)}).

- Case[{g]. We suppose thdt{0}{C"} is not valid inIK. By Proposition 9 there exist a Kripke mod@{,
w e W and a(w,k)-chainc =dp — di — --- — di such thak = deptH{0}{}), w,cE r'{0}{} andw,dy ¥ C. If
w,c ¥ T{OAY ) then is a countermodel of { GA™}{0}. We havew,c = M {$A}{} and therw,c = T{(A)}{}.
By Proposition 8 anal, d¢ ¥ C we deduce that,do ¥ F (T {(A)}{C™}).

- Case|0)]. We suppose thdt{JA"} is not valid inlK. By Proposition 9 there exists a Kripke model, w ¢ W
and a(w,k)-chainc=dp — di1 — --- — di such thak =deptiT'{}), w,c E '{} andw,dx ¥ OA. Fromw, di ¥ OA
we deduce that there exist € W anddy. 1 € Dy such thatv < W', Ry (dk,dk1) andw/, dy, 1 # A. Let ¢’ be the
(W,k+ 1)-chain defined by’ =dg — di — --- — dx — dis1. Fromw,c = I'{} we obtainw,c¢’ F F'{{{})}. By
Proposition 8 we havey, do # F (T {(A7)}).

- Case[Jg]. We suppose thdt{(A,A™)} is not valid inIK. By Proposition 9 there exist a Kripke mod@f,
w e W and a(w,k+ 1)-chainc =dy — di — --- — di;1 such thatk = deptHl{}), w,c £ F'{(A,{})} and
w,dir1 ¥ A Moreoverw,dy.1 ¥ A entailsw,dg # OA andw,c = T{(A,{})} entailsw,c’ F I'{(A),{}} where
¢ =dg —d; — --- — dk. By Proposition 8 we have,do ¥ F (M {(A), DA™ }).

4.3 Completeness oDNik

We prove the completeness of the systeik from the Hilbert axiomatisation previously mentioned. Wistfi
show that the axioms are provableDiNk and that the rules (modus ponens, necessity) are admiasibie k.
We can see that the rules of natural deduction for intuisboiogic (systenDNp. ) are particular cases of some
rules ofDNik. Moreover they are admissible DNk and we obtain the following proposition:

Proposition 10. If A is a theorem of propositional intuitionistic logic théf has a proof in D.

Let us consider, for instance, the proofAH (B> (AAB)) in DNp,:

(1d] (1d]
ABFA A BB
A

ABHAAB
—[Di]
AFBO (AAB)

FAS (BS (AAB)) o1

It can be translated iPN,k as follows:

[Id] [1d]
A B,A" A, B,B"

[A]

[D1]

A,B,AAB"
ABD(AAB)"

AD(BD(AAB))™ 1=

Proposition 11. The following T-sequents are provable in RN
1. O(ADB) D> (OADOB)"
)D

2. O(ADB) D (GADOB)"
3. O0Lolh
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4. H(AVB) D (OAVOB)T
5. (CADOB)DO(ADB)"

Proof. 1. (O(ADB)>(DADOB))"

Id Id
D(AgB),DA,(),D(ADB)F[ ] D(ADB),DA,Q,DAF[ ]
O [DE]

O(ADB),0A, (ADB") O(AD B),DA,(AF)[ |
OE

O(ADB),0A, (B™)
0

=)
=)}

O(ADB),0A, OB"

O(ADB),0ADOB"
O(ADB) D (DADOB)™

2. O(ADB) D (GADOB)"

O(ADB),OA, (A),0(ADB)" d]
O(ADB), QA (AL ADB) ) O(ADB), OA, (A A7)
- O(ADB),OA, (A, B")
O(ADB), OA A O(ADB), A, (A), OB
O(ADB), A, OB
O(ADB),0AD OB"
O(ADB) D (GADOB)"

(id]

[DE]

3

[D1]

B

3. 011"

4. H(AVB) D (OAVOB)T

d
y <>(AvB),<AvB,AvBF>“] D Dy
<>(AvB),<>(AvB)F[ ) O(AVB), (AVB), GAV OB- [vel
O(AVB), AV OB

S(AVB) D (GAV OB)”

QE]

=]

with

f1d] (id]
O(AVB), (AVB,AA") ¢(AVB),(AVB,B,B") o
|
7]

Vi

Dy = O(AVB), (AVB,A), OA [ ) Dr= O(AVB), (AVB,B), OB
O(AVB), (AVB,A), GAV OB- ] O(AVB), (AVB,B), GAV OB-

Vi
5. (CADOB)D>O(ADB)"
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——[Id]
GAD OB, (A AT

GAD OB, (A), GAD OB ! GAD OB, (A), GA”
SGAD OB, (A), OB

GAD OB, (A BT)
OADOBH, (,ADB")
GADOB,O(ADB)"
(GADOB)DO(ADB)"

1]

[De]
[OE]
[>1]
(O]

=)

We can easily show that the ruteodus ponenis admissible irDNik as it is a particular case of the rJleg]. In
the next proposition we show the admissibility of the neitgsale.

Proposition 12. If A" is provable in DNk thenTA™ is provable in DNk.

Proof. We first show that if a T-sequerstis provable inDNik then() is provable irDNk, by structural induction
on the proof ofs. Then from the proof ofA"™) we apply the rulém; ] and thus we obtain a proof ofA".

Theorem 4. If Ais valid in IK then A is provable in DNk.

Proof. The validity inIK is given through the axiomatisation and the proof is by $tmad induction on the proof
of A. By Propositions 10 and 11 Xis an axiom thes®\™ has a proof irNDik.
Then we consider the two cases of the last rule applied, neimgl and[ned.

- If the last rule igmp: ADB A then by induction hypothesfso BT andA™ are provable ifDNk. By the
B

rule [Dg] we deduce thaB™ is provable inDNk.
- If the last rule is[ned: _A_ then by induction hypothesis we haie provable inDNk. By Proposition 12,
OA

DA is also provable DNk .
Theorem 5 (Completeness)f a T-sequent is valid ifK then it is provable in DI\.

Proof. Let S be a T-sequent. If is valid in IK, then its associated formula(.S) is valid in IK. By Theorem 4
F(S)" is a T-sequent provable DNk. Then by Propositions 2, 3, 4 and 5 we deduce ghistprovable inDNik.

5 Normalization in DNk

Having proved that the natural deduction systeMy is sound and complete we now study the property of nor-
malization in this system and the related properties. Witesstdefine a set of notions and concepts in order to
describe the normalization procedure in a clear and conase Then we prove the normalization theorem, i.e.,
any derivation can be transformed in a derivation in norroahf

5.1 Indexed Formulas

Let us note that the T-context of a T-sequent can contairrakwecurrences of the same formula and one needs to
differenciate these ones. In this perspective each formedarrence in a T-context is indexed by a variable such
that if x: Aandy : B are two different occurrences in a T-context tikeA y. We noteVar(S) the set of variables in
the T-sequens. Let us mention some problems related to this indexation.

LetS=ADA" ands’ =x:B,ADA" be two T-sequents anf! be the following proof ofs:

(1d]
[D1]

x: A A"
ADA"

13



The proofD[S']w is given by:

[1d]

x:B,x: A A"
—— [

x:B,ADA"

We remark thatD[5'],, contains a T-sequent with a T-context having two differentfula occurrences indexed
by the same variabbe Then in order to avoid this problem we associate a renanoingtion to the weakening.

Let.§ and.s’ be two T-sequents such thfit=, $" andD be a proof ofS. We noteD[S’]; any proof ofsS obtained
from D by renaming all variables &far(S")\Var(S) by fresh variables knowing that one cannot rename two dif-
ferent variables with the same variable. Thus we defim€&]. as being any proof corresponding(t®[.S']; ) [’ |w-

Let us illustrate this point with the previous example:

x: A A d] CA AT o] x:B,y:AA o]
D= L0R s = VBT ol = BB R
ADA" ADA" X:B,ADA"
Let D be a proof of {A}{C"}. We denoteD — {A} the tree obtained fror by arisingA from all T-sequents
of D. Such a tree is a proof 6f{0} {C"} when its leaves are labelled by instances of the aXidin

Let © and 2’ be proofs of respectively = '{x: A}{C"} and§’ = [{A"}{0}. We observe that any leaf of
D is labelled by a T-sequent that is either of the fdiix: A, A"} such thaf {A"}{0} —, '{A"}, or of the form
r'{x:A}{y:D,D"}. We denoteD[7Y /x] the tree built as follows:

(i) replace all the leaves labelled by a T-sequent of the forfw: A, A"} by the deductior®’ [ {A™ }w;

(i) suppress: Ain all T-sequents of the resulting tree.

We can show tha®[?' /x| is a proof of {0} {C"}. It comes from the fact that the instancesidf of the form
r{x:A}{y:C,C"} remain axioms even after that A is suppressed.

5.2 Discharging Rules

From now we use the expressidischarging rulesn order to refer to the rule;], [Ve] and[{g]. There is no
discharge of hypotheses like in standard natural dedusiistems but the rulds,], [Ve] and[{g] internalize
hypothesis discharges such that a rule application digelsdhe T-sequents that are concerned by the introduction
of formulas appearing in T-contexts of some premisses bitribe T-context of the conclusion.

Definition 12. LetD be a proof inlK, f be a leaf ofD, § be the T-sequent labelling f armdbe an application of
a discharging rule inD. The T-sequens is discharged by if § is not discharged by another rule applied before
a, f and the conclusion af being in the same branch and one of the following propertesatisfied:

1. ais an application of D] and there exist twaT -contexts {} andl’{}, two formulas A and B, and a variable
x such thats = "{x: A A"}, [ {x: A B"} is the premisse ai and {A>B"} is the conclusion odr.

2. o is an application of Vg] and there exist &T -context™ { }{}, a 1T -context™'{}, three formulas A, B and
C, and a variable x such that = "{x: A/A"}, T {F"}{0} is the main premiss af with F equal to A/ B or
BV A andr{x: A}{C"} is one of the minor premisses{(it belongs to the same branch as f).

3. ais an application of {g] and there exist &T -context { }{}, a 1T -context™’{}, two formulas A and C, and
a variable x such thag = "{x: A/A"}, T{OA }{0} is the major premisse af and T {(x: A)}{C"} is the
minor premisse of (it belongs to the same branch as f).

We illustrate this definition with an example. L#tbe the following proof:
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x:O(ADB),y: OA, (z: A),0(ADB)" ta]

O] [Id]
x:O(ADB),y: OA (z: AADB") x:O(ADB),y: OA, (z: AAY)
y x:O(ADB),y: OA, (z: A B") (el
x:O(ADB),y: OA, OA he x:O(ADB),y: OA, (z: A),OB" (<]

X:O(ADB),y: OA OB" e)

)
x:O(ADB),OAD OB

)
O(ADB) D (OAD OB

The T-sequent: O(ADB),y: OA, QA" is discharged by the first applicationaf|]. The T-sequent: O(AD
B),y: OA, (z: A),0(ADB)" is discharged by the second application/of]. Moreover the application df>g]
discharges the T-sequent(ADB),y: OA, (z: A A7),

5.3 Normalization

Let us recall that a detour in a natural deduction proof gpoads to an application of a rule that introduces a
logical operator followed by an application of a rule thatéhates it. The main goal of the normalization property
is the elimination of all detours in a proof. In order to prawé property for the systelNk we consider an
approach similar to the one of Prawitz [20,25].

We introduce first the notion of segment for this system, tiverdefine the notion of cut that is a particular case
of segment and propose the rules of our normalization prureedrinally we prove the normalization theorem.

Definition 13. A segmentf length n in a proofD in DN is a sequenc&1{A"},...,Ih{A"} of consecutive
occurrences of T-sequentsdhsuch that:

- for n > 1 and n> i, I {A"} is a minor premisse of an application pfg] or [(g] in D with the conclusion
Fia{A},

- T1{A"} is not the conclusion of an application pfg] or of [Og],

- Tn{A"} is not a minor premisse of an application[ofg] or [g].

We note that the T-sequents of a segnmeiave the same conclusion, called the conclusion of the setamel
denotedC(o). A segment is a premisse (resp. the conclusion) of a ruldagtion if its last element (resp. first
element) is a premisse (resp. the conclusion) of this aagdic. A segment is a subformula of a segmeat if
C(0) is a subformula o€(c").

Definition 14. A segment is &utif [h{A"} is the main premisse of the application of an eliminatiorerénd
either n> 1or n=1landl1{A"} is the conclusion of an introduction rule or of the rule].

Thecutranko, denoted cfo), is defined by the complexity of its conclusj@{o) | .

Thecutrankof a proofD, denoted cfD), is the maximum of the cutranks4n (0 if D does not contain a cut).
A critical cutin a proof D is a cut the cutrank of which is the cutrank©f

A proof isin normal formif it does not contain a cut.

Now we give the rules used to prove the normalization prgpEitst we present theeductionrules that allow
to eliminate the cuts of length 1 (detours) and pleemutationandsimplificationrules.

Reduction rules:

— A-reduction:

Dy Dy
AL TR
TR e e SRS
ol T A

r{A}
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— V-reduction:

D
},
RLTIUNY D »,
r{ALvA;}{0} r{x:A}{C"} r{x:Az}{cF}[ }
v
r{oy{c} e %[}x{/?} fori e {1,2).
— D-reduction:
D
r{x:AB} D
sy Y ridy
[De]
r{8"}
— [»-reduction:
D
D ) oy
T P 7 -
r{(a,A)}
— <{-reduction:
Dy
r{a,A")}{o}
[0 D2 Dy[x/ D]
F{@).0A30)  T{ALCAHCT)  ~ rrdich
. [Oe]
r{)HC }
with D4 = DI {{A,x: A }HC }Hm
Permutation rules:
— V-permutation:
D Dy Dy
F{AVB HOH0} T{x:A}HC H{o} T{y:BH{C }{0} el
r{o}{c }{0} Yo
. (Re]
r{o}{o}{D"}

™’ Do
» r{x :AHC {0} @/lR r{y :BHC o} 2,

- - - [Re] . -
r{AvB }{0}{0} M{x':AHOHD"} r{y :B}{o}D }[v
~ r{o}{0}{D"}

where[Rg] is an elimination rule?’ is a sequence of proofs (possibly empty) ad (resp.?’;) is the se-
guence of proofs obtained by addingf A (resp.y’ : B) to proofs of D’ wherex’ (resp.y) is a fresh variable
that is not in?’.

E

— {-permutation:

Dy Do Do
F{OAT Mooy T{(x:A}HC Ho} Dy M{(x:AHCHoy 2" Rel
E E
r{o}{c }{o} ' R F{OAHo}{0} r{(x: A)}{o}{D"} o
E E
r{o}{0}{D"} ~ r{o}{0}{D"}

where[Rg] is an elimination rule?’ is a sequence of proofs (possibly empty) abitiis the sequence of proofs
obtained by adding’ : Ato proofs of D’ wherex' is a fresh variable that is not i’
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— | -permutation:

@ L r{r}%}{o}
r{oH{A {0} ' Rel . TN O | i
r{o}{o}{c"}
where[Re] is an elimination rule.
Simplification rules:
— V-simplification:
D Dy Dy
F{ALVA IO}  T{x:A}{C"} T{x:A}{C"}

where there is no T-sequent discharged\ay] in 25. The absence of discharged T-sequents reflectxthat
is not necessary in the T-sequentIyf

— {-simplification:

D U
MOA Oy T{(x:A)HC"}
Qe D —{(x:A)}

r{o}c } ™~ r{oych)

where there is no T-sequentf that contains a subtree of the foxnA, A 0 A # 0. In the case of disjunction
the simplification rule only eliminates a formula occurrerut in the case of it eliminates the T-context
(x: A). The previous condition o@d in order to apply simplification expresses that the formweusrence
x: Aand also the T-contexk : A) are not necessary.

Theorem 6 (Normalization).Any proof? in DNk can be reduced to a proof in normal form.

Proof. By induction on the value of the pain,m) wheren = cr(D) andm are the sum of the lengths of all critical
cuts ofD. We say that the paiin’,m) is less thar{n, m) if eithern’ < n, orn’ = nandm’ < m. This proof is similar
to the one of Prawitz.

Let o be the rightmost critical cut having no other critical cubadit in D. The application of a rule of reduction,
permutation or simplification t@ in D gives a proof?’ where eithercr(?D’) < n or the sum of the lengths of
all critical cuts of 2’ is less tharm. If o is the unique critical cut ifD of length 1, then by application of the
corresponding reduction rule we obtain a proof of rank Ikasm. Else the application of a permutation or simpli-
fication rule too in D gives a proof in which the sum of the lengths of all critical<is less tham.

For instance we illustrate the case{dfreduction:

Dy

F{A) 0} ,

Fmon o i ANey o
: . gl BT

r{@)}c"}
with D4 = D[ {(A,x: A)}{C" }m.
As o is the mostright critical cut them, does not contain a critical cut and consequently a%o Moreover,
Dy has no critical cut because there is no critical cut abmvd/e also observe that if a cut is introduced by ap-

plication of a{>-reduction then this one ha@sas conclusion. Then the value of its cutranks is less th&ie then
deduce that,[x/ D] does not contain any cutrank greater or equal. to
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oA} A}y
r{A'} (Cel F{OA ) (o
r{@aoA))y o r{@.A}y o
Ay raony
raoLoN ) ARy
Ty [Ogl(depthA{}) > 1) TB0oA ] [O7](deptiA{}) > 1)

oA Hop .

oA [O](deptir{}{0}) >0 et depthT{0}{}) > 0)

oA}

TR 0] [OF](deptHT{}{0}) >0 et depthl {0}{}) >0)
HOAHO s : HOHAT e :
T (O I(spM{OA™}{0})) A1 (0) [Or1(spT{0}{A™}))

oA HO o r{o} A"} 5
oAy oAy

Fig. 2. Modal Rules

6 Quasi-modular Natural Deduction Systems

In this section we propose quasi-modular natural dedudystems for the intuitionistic modal logics obtained
by combinations of the axiomB, B, 4 and 5. The modularity is based on the association of speuifs to the
axioms. A system is modular if we have a systemlf¢isuch that for any subséth of {T,B, 4,5}, the addition

of rules associated to axioms irh leads to a system for the logi&Th. For instance, in the case of classical
modal logics based on these axioms, a modular calculusdimasdeep sequents, has been recently defined [5].
Our system is said quasi-modular because the ldgi€andIS5 are separately studied.

We associate to each logdisTh, with Th C {T,B,4,5}, the natural deduction systeDNikr, obtained by using
the rules described in Figure 2 as follows:

— if IKTh is IS5 thenDNkh is obtained fronDNik by replacing the rulegig] and[$] by the rule§02°] and
[0©°;
— if IKTh is IB4 thenDNik Ty is obtained fromDNik by replacing the rulegag] and[<] by the ruledi#4] and
[OF4);
— otherwiseDNik Ty is obtained by adding tBNik the rulesg] and[{] for anyx € Th.

The six rulesiog], [OF], [T2], [O7], [DE4] and [(|B*] can be applied only if some conditions are satisfied. For
instance we can only apply the ryte[f] if it satisfies the conditiosp(m {0} {A"}).

In the case ofK we consider that a context’ is accessible from another contetin a sequengs if ' is a
son of C in the T-context ofs. The modal rules of Figure 2 internalize the properties efahcessibility relation
associated to the axioni T, B, 4 and 5. For instance the pair of rulgsg] and[<{] internalize the transitivity
property. If a context” is the son of a contexf in a T-context of a T-sequetd, then all contexts being in the
subtreeStwith ¢’ as root are accessible from If a formuladA is true inC then, from the rulegTe] and[Og],
the formulaA is true in any context it Moreover, by using the rulds) ] and[Of], if a formulaA is true in any
context ofSt, then{Ais true inC.
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6.1 Soundness and Completeness

Let us note that, for any subséh de{T,B, 4,5}, the system obtained by adding@iNk the rules[Cg ] and [

for all x € This a sound and complete system for the ldgid h. But all the systems defined in such a way does
not verifiy the normalization property and then the systeon$B4 andIS5 are built in a different way.

For instance let us consider the following proof with = {T,5}:

OA, (OA,OA), () d]
(O8]
OA, (OA), ((A7))

OA, OA" DA, (OA), (OA") o1
— ] ————— O
OA, OOA™ DA, (OA), DDA"

OA OOA” el

— >
OADOOA™

We remark that there exists an application of an introduatide (<[ ]) having as conclusion the main premisse
of an application of an elimination rulég]). In the previous proof we cannot eliminate it by using otlg tules
associated to axioms and 5.

Theorem 7 (Soundness)f a T-sequent has a proof in DRy, then it is valid inlKTh.

Proof. The sound rules itK are sound in all logicéKTh with Th C {T,B,4,5}. Then it sufficient to prove the
soundness of the other rules with the same approach usetiéordm 3. We only develop the cases of rite§
and[g]. LetL be one of the logick Th verifying the axiom (4). We observe that Propositions 7,8 @are also
true for all logics based on combinations of axiomd, 4 and 5.

- Case[Of].

We suppose thalf {A{0},OA"} (depthA{}) > 1) is not valid inL. There exist a modef/, w € W and a
(w,k)-chainc = dp — di — ...dx such thatk = deptH {A{0},{}}), w,c E T{A{0},{}} andw,dy ¥ OA. If
w,c E M{A{0},{}} thenw,dk = F(A{0}). Then there exists &w,1)-chainc’ = dx — dk;1 — ...dky such that
| = depthA{}) andw,c’ E A{}. Thus we havev,c’ = {A{}} wherec” =dy — d1 — ...dx,. Given a transitive
relationR, we havew,dx | # A becausev, di ¥ ¢A. Then we deduce,dg # F (T {A{A"}}).

- Case[O].

We suppose thdt{A{A"}} (deptH{A{}) > 1) is not valid inL. There exist a modeM, w € W and a(w,k+1)-
chainc=dy — di — ...dk; such thakk = depthT'{}), | = deptHA{}), w,c = T{A{}} andw,di ¥ A. Given
a transitive relatiomRy if w,di.| ¥ A thenw,dy ¥ OA. Moreover ifw,c E T{A{}} thenw,c’ E T{A{0},{}} where
¢ =dg —d; — ...dx. Thus we havev,do ¥ F (T {A{0},0A}).

Theorem 8 (Completeness)f a T-sequent is valid ifKTh, then it has a proof in DMy

Proof. As for the systenDNk this proof of completeness @Nkt, can be obtained from the validity iKTh
through its Hilbert system. Let us note that the riai¢#*] (resp.[¢|B4)) is a generalization of the rulésig], [OE],
(O8], [O8] (resp.[¢1], [OF], [Of], [©F]). Moreover the rulesS°] and [{>°°] generalize all the other rules that
eliminatets and introduce). Then for allTh C {T,B, 4,5}, if a T-sequent has a proof in the system obtained by
adding toDNk the rules|Tf] and[{] for all x € Th then it has a proof iDNkt». Then we do not consider the
cases of the systeni¥\;ss andDNg4.

- (ODADA)A(AD QA
oA, OA” td] A A ta]
AN [OF] A <>N[ 1]
OADA (=] ADOA =1
(OASA) A (AD A ]
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- (OOADA A (ADOOA)™:

—  id] (Id]
| GOA, (DA, DAY 5 A(),A .
<>DA,<>DAF[ OOA, (OA), A (o] A (OA") or]
GOA A" el A OGA -
— D — D
OSOADA™ ADOOA"
A\
(COADA)A (ADOOA)" 3
- (DADOOA) A (OOAD GA): "
DA DA (),
————— [O]
oA, ((A7)) o
DA, (DA
OA, O0OA"
— D
OADOOA™
A
(OASO0A) A (GOAD GA) |
with 4]
1d] OOA, (OA, (A A7) o
OOA, (OA, OAT) OOA, (OA, (A)), OAT !
D= - [ F [<>E
COAOOA OOA, (OA), OA -
COAOA -
COASOA
- (ODADOA) A (CADOGA):
(Id] —[Id]
OOA, (DA OA"), () o) OA (AAD) () o9
QDA (OA), (A7) F g AR !
SOA GOA™ OOA, (OA), DA <>A,<>AF[ ] OA, (A), DOA” [2']
SOA, OA™ : OA,OOA™ (el
- D] - 5
SOADOA™ SADOOA”
A
(GOADDOA) A (CADOOA)" ol

6.2 Normalization and Properties

As DNk andDNTy, contain the same rulés, ], [Vg] and[{g], we consider the notions of discharging rules and
of discharged T-sequent in the caseDM k1, that are the same in the caselfx (Definition 12). Concerning
the notions of segment and of cut and the other related reotloay are defined in the caseD@~N kT, like in the
case oDN. The rules of Figure 2 are introduction and elimination stdad we have to define reduction rules in
order to eliminate the detours due to these rules. Here wegivi the reduction rules for the systdbiNig4 (the

other cases are developed in Annexe A).

We define the relatiorgs asT{(A)}{0} —ga T{0}{A} wheresp(lT'{0}{A}) and we denote~3, its reflex-
ive and transitive closure. Let us show now how to build th@oprD[S']iz4 of S’ from a proofD of § where
S — S’. The definition of D[] g4 is extended to the relatior?, by induction om, as follows:
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— if n=0thenD[S']|gs = D;
— elseD[Siga = (D]S"]w)[S]iga SUch thats —w S” =5t S

Like for relations—, and—n, the construction of0[S’] z4 is done by structural induction aop:

Dy Dy
o= TAD- (BDUAYHOL - T8h)(B)(BIHO  hen
r{a9) - {A0H{(8)}{0)
Dy (AL} - {ALH{O}{A ea DM {A}) - (A} {0} ) ies
Dl =] TAD - {aD{o}{a o r{ah)--{ah{0){a)

r{ag})---{ogH{0}{A}
with 8" =T {Al} .- {Al}{0}{A}.

Let us introduce the reduction rules used in case of detawesalapplications oft1{24] and[{|B4]:

— O'®4-reduction:

D
r{(A") Hoy al J———
- |
r{OA }Ho} OlB4] e r{Q)}{AF}IB4
r{oHA} F
— $'B4-reduction:
Dy
},
%[OM r{o Q-)ZA (o ~ DR/ D]
{0H{OA HOo} {o{x:AH }[<>E] r{o}{0}{C"}
r{o}{o}{c"}

with D) = DI {x: A}{0}{C }iga
Theorem 9 (Normalization).Any proof in DNk, can be reduced to a proof in normal form.

Proof. The proof is similar to the one of Theorem 6, by induction omhlue of(n,m) wheren is the rank of the
proof andmis the sum of lengths of all critical cuts.

We now study the structure of proofs in normal form. It leaglptove the subformula property, namely all
formulas in a normal proof are subformulas of the root of pizof

First we define the notion gfath that is a particular sequence of T-sequents belonging t@aefpfhe idea is
that any T-sequent in a proof belongs to at least one path amshaw that any path in a proof in a normal form
can be decomposed in three particular parts. Such a dec@mp@dlows to prove that all formulas of a path in a
proof in normal form are subformulas of the formulas of thetrand then to prove the subformula property. Then
we prove some interesting properties of the system.

Definition 15 (Path).A pathin a proof? in DN is a sequence of occurrences of T-sequégits ., S, such that:

— Sois the label of a leaf ofD that is not discharged by an application ofg] or [$g];
— i fori < nis nota minor premisse of an instancg o] and
(i) S is not a major premisse of an instance[ot] or [Og] and Si11 is the T-sequent that is directly below
Si, or
(i) Siis a major premisse of an instance[of] or [¢g] andSis1 is an occurrence of a T-sequent discharged
by this instance;
— Snis a minor premisse dbHe|, the root of D, or a major premisse of an application pfg] or [(g] that does
not discharge a T-sequent.

Proposition 13. Any T-sequent of a proa® in DN\ belongs to a path ob.
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Proof. By structural induction orD.
If D is an axiom (an instance @fd]), then the T-sequent belongs to the path that only contains i
Let us consider the cases of the last rule applie®in

— If the rule is different of[Dg], [Ve] and[{g], then its conclusion added to any path ending with one of its
premisses (existence of such a path due to the inductionthggig) is a path.

— Ifthe rule is[Dg], then its conclusion added to a path ending by its major meeniinduction hypothesis) is a
path.

— Ifthe rule is[Vgl:

D Do s
F{AIVASHO}  T{x:A}{C} T{x:A}{C"}
r{oHC | Ve

By induction hypothesis there exists a pathin D, ending withl" {x : A;}{C"}. If this path does not begin
with an occurrence of a T-sequent discharged by the apjolicaf this rule therrp, [ {0}{C"} is a path in
D. Otherwise by induction hypothesis there exists a patm 2 ending withl {A; v A5 }{0}. In this case
T, T, M {0}{C"} is a path inD.

— The case of rulg)g] is similar to the one ofvg].

In the next proposition we describe some characteristiggtifs in a proof in normal form.

Proposition 14. Let D be a proof in normal form in D) and t= 0o, ...,0n be a path inD. There exists a
segment; in T, called the minimal segment, splittingin two parts, called E-part and I-part, verifying the
following properties:

— for eachoj in the E-part (j< i), gj is the major premisse of an elimination rule;(.1 is a subformula ob;);
— for eachoj in the I-part (i< j), if j # n thena;j is the premisse of an introduction rulej(is a subformula of
Oj+1);

— Ifi # ntheng;j is a premisse of an introduction rule or a premissé _of (a; is a subformula 06y).
Proof. Let g; be the first segment that is not a premisse of an applicati@ndlimination rule. Ifi = n then
we can see that the proposition is true. Othervaises an application of an introduction rule or the premisse of
an application of L]. If o; is a premisse ofL], then eithei +1 = n or g; is a premisse of an application of an
introduction rule (_-reduction). Moreover we know thatdoes not contain a segment that is the conclusion of an
application of an introduction rule and the premisse of gpliaation of an elimination rule or ofL] (reduction
and permutation rules). Thus for @l j < n, g; is a premisse of an application of an introduction rule. Thsec
whereg;j is a premisse of an application of an introduction rule isyprbin a similar way.

Now we define the notion adrder of a paththat will be used to make a proof by induction on the paths of a
normal proof.

Definition 16. A pathin a proof in normal form® is of order Oif it satisfies the two following properties:

— it ends with the conclusion @,
— it begins with a T-sequent that is not discharged by any rakends with the major premisse of an application

of [<>E]

A pathin a proof in normal formD is of ordern + 1 if it satisfies one of the following properties:

— it ends with the minor premisse of an applicatiorjot], with a major premisse in a path of order n;
— it ends with the major premisse of an applicatiorj©&] and its begins with a T-sequent that is discharged by
an application of O] belonging to a path of order n.

We show now that if all conclusions of T-sequents in a proefsaubformulas of the formulas of the root then
all the formulas of the proof are subformulas are subforsafahe formulas of the root.

Proposition 15. Let D be a proof of§ = '{C"} dans DNk. For any T-sequerft’{C" } dans®, if A is a formula
in {0}, then A is inl {0} or there exists a T-sequeRt {C""} in D such that A is a subformula of'C
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Proof. By structural induction orD.

Theorem 10 (Subformula property).Let.S be a T-sequent an® be a proof in normal form aof. Any formula
of D is a subformula of a formula of.

Proof. We show by induction on that for all paths of ordem the conclusions of its segments are subformulas of
formulas ofS. By Proposition 15 we can extend this property to all forrsudé.

Lett= 0g,...,0k a path of ordenin D anda; the minimal segment af.

- Casen=0.

We know thatoy ends either withs or with the major premisse of an application[¢fz].

- If ok ends withs thenC(ay) is a subformula of a formula of. By Proposition 14, for alj € [i +1,k], C(oj) is

a subformula of a formul&. Moreover we know thatip begins with either a T-sequent that is not discharged or
a T-sequent discharged by an applicatiofimf] of the I-part ofrt. ThenC(oy) is a subformula of a formula of.

By Proposition 14 we deduce that for lE [0,i], C(0j) is a subformula of a formula .

- If oy ends with the major premisse of an applicatiori®g]. Then for allj € [0,K], o} is the main premisse of
an elimination rule (Proposition 14). We know tlmf begins with a T-sequent that is not discharged. TO({c)

is a subformula of a formula of. By Proposition 14 we deduce that for lE [0,k], C(0j) is a subformula of a
formula of S.

-Casen=m+1(m> 0).

We know thatox ends with either the minor premisses of an applicatiofizaf], or the major premisse of an
application of[$g].

- If ox ends with the minor premisse of an applicatio0&] then by induction hypothesis and Proposition 14,
forall j € [i+1,k], C(0j) is a subformula of a formula of. Moreoverag begins with either a T-sequent that is
not discharged by an application [af;] of the I-part ofrtor a path of order less or equal thanWe deduce that,
forall j € [0,i], C(gj) is a subformula of a formula of.

- If oy is the major premisse of an application [@fg] then, for all j € [0,k], o} is the main premisse of an
elimination rule (Proposition 14). We know thag begins with a T-sequent that is discharged by an application
of [D] that is in a path of ordem. By induction hypothesis and Proposition 14, we deduceftrall j € [0,k],
C(oj) is a subformula of a formula .

A direct consequence of the subformula property is the ptgpé separation.

Proposition 16 (Separation Property).A proof of a T-sequent only uses rules associated to the tgsraf the
T-sequent.

In the case oDNith for Th € {0,{T},{B},{T,B}} another important property that can be deduced from the
subformula property concerns the depth of the T-sequeragioof in a normal form.

Proposition 17 (Depth Property).Let .S be a T-sequent an@ a proof in normal form ofS in DNk + Th for
The{0,{T} {B},{T,B}}.If & is a T-sequent irD then its depth is less or equal to depsht nest(.s).

Proof. By structural induction orD.

The only rules having premisses with a depth greater thadehth of conclusion arigy;] and[{g]. If the depth of
S’ is greater than the depth sfplusnes{(S) then? contains a formula withhes{A) > nes(.5). It is contradictory
because all the formulas @ are subformulas of formulas ¢f.

This property is not satisfied in deduction systems i¢ss because of the elimination rule ofand the introduc-
tion rule of <> for which there is no value bounding the differences of depigtween the position of the formula
marked in the premisse and its position in the conclusiohukdllustrate this point with the following proof of
the T-sequens = OQA, GA” dansDN;ss:

OOA, (A, (A (A)), DOA” [idu]ss

Og”]
@1 D<>A7 <Aa <A7 <A>>> ) <>'A‘F
Dy OOA, (A, (A)), GAT :
[CE]
Ds OOA, (A), OA”
OOA, GA” e)
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where

A, (A (A A" il A, (A A" ] A OOA™ il
@l{uo A ) DOA %{mo (R.O0A %{DO Do

1S5 DE 1S5
OOA, (A, (A, OAT)) OOA, (A, OAT) OOA, GA"

This proof is in normal form. We havees(S) = 2 and the depth of the T-sequem$A, (A, (A, (A))), OOA™ is
equal to 3. It is a counter-example of the depth property.

7 T-sequents and Classical Modal Logics

In this section we propose natural deduction systems fatadkical modal logics obtained by combinations of the
axiomsT, B, 4 and 5. For each logic the system is obtained by the repleceoif the ruld L] by a new rule in the
corresponding intuitionistic system. Then for @ah C {T,B, 4,5} we define the natural deducti@Nkr, as the
system obtained bpNkr, from the replacement of the rule.] by the following rule:

r{-AH 1"}
r{A"Ho}
We see that this rule is a generalization of the fulg if F{0}{ L"} has a proof DNk, thenl {A”}{0} has also

a proof. By adding-Ato all the T-sequents of a proof 6{0} { L™} dansDNk, we obtain a proof of {-A}{ L"}.
Then we apply the rulgL] in order to have a proof di{A"}{0}.

[Le]

Theorem 11 (Soundness)f a T-sequent has a proof in O, then it is valid inKTh.

Proof. We know that any rule that is soundlidTh is sound inrKTh. Thus all common rules O Nxr, andDNTh
are sound irKTh. Let us prove now the soundnessag] in KTh.

As the rule[ L] is sound inDNikTy, it is also sound irKTh. Let D be a proof off {—A}{_L"}. By using the rules
[L] and[>)], we obtain fromD a proof of [ { —~—A"}{0}:

D
F{-AHL"

r{-AL"}{0}
—[D
r{—-AHop
—-—A being equivalent té\ in KTh, we deduce that the T-sequéitA” } {0} is valid in KTh.

Theorem 12 (Completeness)f a T-sequent is valid ilKTh, then it has a proof in Dr,.

Proof. In order to show the completeness@fxr, we observe that adding the axiorA D A to IKTh gives
KTh. As the rule[ L] is a generalization dfL ] it is sufficient to prove that—A D> A has a proof irDNkh:

) it
_‘_|A7 _|A7 _|_‘A _‘_|A7 _|A7 _|A
A -A, LT 1]
?N[[J_]C]
— [
-—ADA"

About the normalization the main problems were related éotwo rules|\VVg] and[{g]. In the classical case
they can be solved with the De Morgan laws. As the operatoaad<> can be expressed with the operators
D andO we can only consider deduction systems with rules assaciatthese ones. A key point in the proof of
normalization in the classical case is the restrictiohlef to atomic formulas:
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r{-pHL"}
r{p }{0}

For all Th C {T,B,4,5} we denoteDN;, the deduction system composed by the rfulg] and the rules
associated to the operators> and] in DNkr,. To show the completeness BN, 1, it is sufficient to show the
admissibility of the ruld_L¢]. For that we need to prove the admissibility of the cut rule:

[Le](pis atomic)

Proposition 18. The following rule is admissible in ON, :

r{AHoy  r{AHC}
r{o}{c"}

[Cut]

Proof. Let Dy be a proof off {A"}{0} and D, be a proof ofl {x: A}{C"}. A proof of F{0}{C"} is given by
Do[x/D1] whereDy[x/ D4 is defined like in the case @NikTh.

Theorem 13. If T {-~A}{_L"} has a proof in DNy, thenl {A"}{0} has a proof in DN/y,,.

Proof. By structural induction or.

If Ais an atomic formula then a proof 6f A"} {0} is obtained by the application ¢f .| to ' {-A}{ L"}.
Let us consider the other cases:

— CaseA = BAC. By using weakening the two T-sequeft§-~(BAC),-B}{L"} andl {—(BAC),-C}{L"}
have proofs irDNy., . The proof off {B"}{0} is obtained as follows:

id

id) r{BAc,ﬁB,B/\CF}{m}[
[
r{BAC,-B,-B"}{0} r{BAC,-B,B"}{0}
r{BAC,-B, 1"}{0}
D
r{-B.~(BAC) HO} r{-(BAC),~B}{1"}
r{-B}{L"
{(-B}{1} H]
r{e"Ho}
where[H.I] corresponds to the application of the induction hypothesisroof of ' {C"}{0} is obtained in a

similar way. Then by application of the rule,] to the premisseg{B" }{0} andr {C" }{0} we obtain a proof
of T{BAC™}{0}.

Ag]

DE]

[Cuf

— CaseA = BDC. By using weakening the T-sequéni—~(B>C),B,~C}{ "} has a proof irDN}1, . A proof
of F{B>C"}{0} is obtained as follows:

. { (858 -CB5C 10 " T{B5C.B-C.B (0] E]E]
r{B>5C,B,-C,C }{0}
r{Bo>C,B,-C,-C }{0} & D
r{B5C,B,—C, " {0} (el
F{B.-C.+(BoC) {0} F{~(B>C),B,~C}{ 1"} u
r{Bo-C,B,-C, L }{0} )
r{BSC }{0}
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— CaseA = OB. By using weakening the T-sequenf-0B, (-B)}{L"} has a proof inDN/,. A proof of
r{OB"}{0} is obtained as follows:

. r{oB,(-B),0B",-1}{0} id]
- lid] - [OE]
r{OB,(~B,-B"),~L}{0} r{OB,(-B,B"), L }{0}
D= r{oB,(-B, 1"),~1}{0}
r{oB, (-B), L"}{0}
r{(-B),08 (0]

D r{-oB,(-B)}{L"}

DE]

[Le]

. F
H{=B)HL }[H-I]
r{(8")}{0}
—— (0]
r{oB }{0}

[Og] corresponds to the application(ofig], [DF4] or [0f%] depending on the one BN/,
Theorem 14 (Normalization).Any proof of DN, can be reduced into a proof in normal form.

Proof. Let D be a proof inrDN;1,,. As DNy, does not contain the rul¢ge| and[{g], all cuts inD are of length

1. The restriction on application of rule.¢] allows to deduce that all these cuts are detours. Then tha#f pfo
normalization is similar to the one of Theorem 6 by inductorthe value of the pain, m) wheren = cr(9) and
mis the sum of lengths of all critical cuts. In the casdd 1, , the sum of lengths of all critical cuts corresponds
to their number. The used rules are only the reduction ridss@ated to the operators D andO.

Let us note that the normalization does not allow here toiolitee subformula property. But we have the
following property:if D is a proof in normal form of a T-sequesitthan any formula in? is a subformula of a
formula ofS, L or a formula of the form-A such that A is a subformula of a formulaf

8 Conclusions and Perspectives

In this paper we have defined new natural deduction systentisdantuitionistic and classical modal logics based
on the combinations of axiomB, B, 4 and 5. They satisfy the normalization property but alsogtbformula
property in the intuitionistic case. Compared to existingrke on natural deduction in the intuitionistic modal
logics we provide new label-free systems that are uniforchfzawve important properties w.r.t. proof theory, i.e.,
normalization and subformula properties. The centrabmyton which these results are based, is a multi-contextual
structure, called T-sequent, that is appropriate to dethl suich logics in both intuitionistic and classical cases.

A similar work can be done in the framework of sequent calsw@od will provide uniform label-free sequent
calculi for intuitionistic modal logics with the cut-elimation property. Further work will be also dedicated to
the design of term calculi associated to these logics, tiaysif their properties and their impact on applications
involving deductions in these logics.
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A Normalization rules

First we introduce the following relations on the T-seqsent

. —7 defined byl {{A)} —1 T{A};

. —g defined byl {(A, (A))} —g T{(A),A'};

. —4 defined byl {"{0},(A)} —a T{I"{A} }with deptiT'{}) > 1;

. —s defined by {(A) } {0} —5s T {0}{A} with depthT{}{0}) > 1 anddepthT{0}{}) > 1;
. —iss defined byl {(A) }{0} —1s5 T{0}{A}.

a b~ wNPF

Now we show that for any € {T,4,B,5,I1S5}, if § —x.$’ and.$ has a proof in a systel@Nk 1, including
[OF] and[O]], thens’ has also a proof iDNik. 4. For that we show how to rewrite a progf of . into a proof
of &', denoted[S']x.

We built D[$']x by structural induction oD as follows:

Construction of D[S']r:

— Case 1:

g DM{AA YT
fo={ T{BA)} ] thenD[S']r = r{a,A7} )
r{(a).0A ) raony
with § =T {A, QA ).
— Case 2:
g DA, OA T
If D= r{<A>’Df‘F} e thenD[S']r = {4, DAF} [DE]
r{(a,A™)} r{a,A™}
with 8" =T {A, A7}
— Case 3:
g DA A YT
if p={ T{{),A} o then?[s'}r = r{a,A"} oT
r{o,on)) raony
with & =T {A, OA}.
— Case 4:
7 D'r{A0A T
If D= r{<A’ DA%>} B then@[S’]T = r{A’ DA%}
r{a),A) ° r{aA} (Oe]
with &' =T {A, A"},
— Case5:
{(a g A} @/E”]T
if p={ M{{ls (Lo, 4 thenD[s]r = !
F(n B) OA ] (O] 5 (1]

wheres’ is equal td” { (A1, A2), OA } or T{Ag, (A2), A"} with if ' =T {(A1,A2), OA™} thenS” =T {(A1,02,A7)}
elses” =T {Aq, (A2, A7)}
— Case 6:
Q)I @/[5//]1_
it o= T8 (82),0A7} ey then sl = S
r{(o (B A )} s
wheresS’ is equal td { (A1, A2, A7)} or T {Ag, (A2, A7)} with if &' =T {(A1,42,A7)} thens” =T {(A1,42), 0A}
elses” =T {Ag, (A2), OA}.
— Case 7:
This case captures all cases not previously considered.

(O]
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o)

D
{BHED} iy then

Dy
If D= { r{ag}--{a{Eh}
r{ad}---{a{(=)}

D[l {B1} - {BHZ
r{ag} - {a3H{z"

D[St = {

with 8" =T {A% ... {A%}{=}.

Construction of D[$']g:

— Case 1:
Q)/
F{(A, @A)}

If D= { ] thenD[S'|g = {
r{B,0A @)}
wheres’ =T {(A, OAT), A},

— Case 2:

Q)/
F{(0,0A", (1))}
F{(a, @A)}
whereS’ =T {(A),A, A"},

— Case 3:

If D= ] thenD[S'|g =

@/
Ifﬂ){ FAALW)) o thenD[s')s =
F{, 0, 0A N}
wheres’ =T {(A),&, OA}.
— Case 4:
Q)/
fp={ T ®OA)} thenD|s']s =
MA@} -

wheres’ =T {(A,A7),A'}.
— Case5:

r{ad} - {a0Hz}

D {({8),&,A }g
r{a),n A}
F{(a,OA7), A}

|

[OF]

DH{(A,DOA),AYp
r{(A,0A7), A}

r{(a),0 A7}

Dr{(a,A7),0'} s
F{(AA7), AN

M), &, oA}

@/[r{<A>7A/7 DAF}]B
r{(a),A,0A™}

F{(AA7), A}

This case captures all the case not previously considered.

Dy

if o= T{d1) - {H(E1,(25)}

r{ny

D
F oA (ZLL (2)

then

R

r{a} - {ARH (21, (%2))}

[M{21} {83 {(21), 5} ]e

Dy
Q)[S/]B = { r{A%}{A&}{<Z%>aZ%}

M{A%} - {A0{(21), 52}

with §" = T {A%} - {A0}{(51), 52}

Construction of D[$5']4:

— Case 1:
@l
r{r{o},,A")}

M{r'{oy, (@), oA™}
with §' = T {T"{A}, A,

If D=

l thenD[S']s =

D[F{r'{A,A"}}a
r{r{a,Aj

r{r'{a}, oA’}

|
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— Case 2:

ng DH{r'{a},0A }a
if o= T{I'{0}(8),0A} thenls] { r{r'{a}, oA} "
r{r'{o},(a.A"} r{r{a,Ay  °

with 8" =T {I"{A,A"}}.
— Case 3:
This case captures all the case not previously considered.

Dy
D= { r{af}--{apHr (=t (ZhHoL N} - T{a) - {aHT {Z b A{ZmHo} ()} R

{9} {ARHI {22} ... {(Zn}{0}, ()}

@1[5} fﬂl[S']
DISla= r{ady - {aeHr = {zhHa ) - r{a A ) iz HA ) R

r{a} - {aRHr'{=3} .. {ZhHa}
wheres’ =T {A%}- - {AR{{=2}.. {3 }{A}} and, for anyi € [1,1], S'=T{A}}---{Al}
{r'{za}.. {Zn A}

Construction of D[S]s:

— Case 1:
o4 D'[M{0}{A,A}s

if p—{ T{H{AA)HO} ]thenﬂ)[.s’]s{ r{oy{aA"}
r{(a),0A}{0} r{OA o}

with §' = F{OAF}{A}.
— Case 2:

D D'[M{oA }HaYs
If D— r{<A>,mAF}{0}D]men@[s/]s{ r{oAHA} .
r{(8,A")}{0} r{opaAy —°F
with §' =T {0}{A,A"}.

— Case 3:
g DM{r'{0}}{a,A"}]
If - { H{I{OADHOY thend[s']s — { r{r{o}}{a,A}
r{r'{(?}, oA {0} r{r'{o}, oA }{a}

whereS’ = {I'{0}, OA"}{A}, depthT{}{0}) > 1 anddepth™'{}) > 1.
— Case 4:

U D'[M{r'{0},0A }{A}]
it D — { TT®L oA O, thenpis's - { r{r'{0},0A }{A)
r{r'{(a,A")} o} r{r'{o}{a,A%}
with 8" =T {r'{0} }{A,A"}, depthT{}{0}) > 1 anddepth’{}) > 1.

— Case 5:
This case captures all the cases not previously considered.

[O7]

Dy
D= {F{A} Ao @hHor - T{A} - {ny }{<A'>}{0} -
F{a9} - {ARH{(8) {0}

D[ {A7} - {AH{OHAY]s DT {B1} - {8 HOHA s
Dlsls=1{ O ANHOHAY - T{AT) - {AHOHA)
r{ad}-{aHoHa}

with §' = F{Al} .. {AL}{0}{A}.
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Construction of D[5']ss:

D

D
|fa){r{A%}~~{A

1
G {@ah oy o r{a} - (A HA) Hoy -
r{ad}-- {aH{(a)}{o}

Do[T{By} - {DHOHA Hiss DT {AY} - {BHOHA s
thenD[S]is5 = M{af} - {AH0HAY r{ag) - {8{0H{a')
r{ag} - {agH{oHa}

with §' = M {AL} - {ALH{O}{A}.

For anyx € {T,B,4,5,I1S5}, we denote—; the reflexive and transitive closure efx. Let S and.S’ be two T-
sequents such that—¥% 5. We extend the definition aD[$']x to the relation—; by induction omn as follows:

— If n=0alorsD[S'|x = D;
— elseD[S']x = (D]S"]x)[S']x such thats —, S"” —0-1 5.

Reduction rules:

— OT-reduction:

r{(A")} ol oy
r{oA™} A T
r{A}
— O T-reduction:
{ ?}%{0}
MA
riomyin T rieayey |~ el
r{o}(c) el
with D4 = DI {x: AH{C" }]1
— OP-reduction :
D

ew F
raoay ) 2rie A

r{A-
@Ay
— {B-reduction:
Dy

r{(a),A }{o}

e <>B Do /

r{<A,<>AF>}{®}[ L r{(,(x:A)HC} [<>5]M F%A[;({?Cll}
r{()H{C"}

with D) = D[ {(A),x: AH{C s

— O*reduction:
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D
r{r{o}, (A"}

iy ony ! PN

4 r{A~}
rrayy F
— {4reduction:
Dy
M{r{A"}}{0}
, [O4] / @2 Dhx/ 1]
r{r {0},OAF}{OF}{F/{O}}::[}{O},<x.A>}{CF} o T (roc
with D% = D[F{I"{x: A}}{C }]4
— O°-reduction:
D
M[m] Dr {0} {A
roAyo o~ gl
r{o}{A"}
— {S-reduction:
Dy
r{A"}{0}{0}
e [0F] > Dy|x/ D]
r{o}{w}{@i{o}{m}{rg}} (AN )™ rofoHe )
with D, = D[l {x: A}{0}{C"}]s
— [0'5-reduction:
D
TUA )30} (O] DM {0} {A"}]
AEL U TS o
r{o}{A"}
— {'S5-reduction:
Dy
A oo} D,
—[OPY] . - @é[X/@l]
r{o}{w}{o}r{@}{@}{3«;}{@.A>}{Cf} we] | T{OHO}HC)

with D) = D[ {x: AH{O}C" }]iss
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