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Abstract

In this paper we study proof-search in an intuitionistic hybrid modal logic (for places), denoted IHMLP , whose modalities
allow us to validate properties taking into account the notion of place. In this context we propose different sequent calculi
for this logic and also tableau rules in the perspective of proof-search and countermodel generation. As this logic can be
seen as an instance of Hybrid IS5 we can derive new calculi and procedures for this logic. Finally we define a terminating
calculus for the �-free fragment of IHMLP and then propose a decision procedure with countermodel generation.
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1 Introduction

In order to model heterogeneous environments, among them distributed systems, recent
works provide logical foundations tuned to programming in such environments, like an
intuitionistic modal logic with an operational interpretation of logical proofs as distributed
programs [9]. Such a logic allows us to deal with systems seen as a set of different nodes,
called places, that may have different properties and may contain different resources. It
has been recently enriched with the disjunctive connective ∨ and the constant ⊥ in order
to obtain an intuitionistic hybrid modal logic (for places) [4], denoted here IHMLP, that
is suitable for reasoning about distribution of resources. In this context we can mention
related works based on separation logics [13] and resource logics like BI [12] and their
extensions with modalities [1,11]. Our general aim consists in studying such modal logics
dealing with notions of locations or places in both perspectives of expressiveness and proof
and countermodel search.
Here we aim at focusing on the modal logic IHMLP for which several results have been
proposed in [4]: two semantics, namely a Kripke semantics and a birelational semantics,
both proved sound and complete; the finite model property w.r.t. birelational semantics and
then decidability of the logic. The formulae in this logic include names, called places and
assertions are associated with places and validated in places. A key point is that we are not
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only interested in whether a formula is true but also in where a formula is true. Therefore
modalities allow us to express a property to be validated in a specific place p (@p), or in
a unspecified place (♦) or in any place (�). As the first modality internalizes the model in
the logic, this modal logic can also be classified as a hybrid logic [2].
In this paper we aim at studying this logic in the perspective of proof and countermodel
search by defining sequent calculi as an alternative to existing natural deduction systems.
A first contribution consists of a sequent calculus for IHMLP and its refinements in which
contraction and weakening rules are absorbed in the axioms and logical rules. We prove the
cut-elimination property and then the soundness and completeness of this calculus. From
these results we derive a multi-conclusioned calculus for IHMLP and then tableaux rules
for this logic in which the so-called COPY rule is absorbed. As this logic can be seen as the
hybridisation of the intuitionistic modal system IS5 [3] we can deduce, from our results,
new calculi and decision procedures for this logic. Another contribution is the definition of
a terminating calculus for the �-free fragment of IHMLP. Its completeness proof provides
a way to build countermodels in case of non-validity. Moreover we show, for this fragment,
the finite model property w.r.t. the Kripke semantics and thus derive the same result for IS5
without �.

2 An Intuitionistic Modal Logic

In this section, we summarize the key notions about an hybrid intuitionistic modal logic
(of places) that we denote IHMLP [4]. It is designed to reason about places with assertions
of the form (G at p) meaning that the formula G is valid at place p. In such an assertion
G does not contain any occurrence of the construct at but use modalities @p, one for
each place, to cast the meta-linguistic at at the language level. The logic also has other
modalities for reasoning about properties valid at different locations. It corresponds to the
logic introduced in [9] enriched with the connectives ∨ and ⊥.
The set of pure formulae, denoted Form(PL), is defined inductively from a set of propo-
sitional variables, denoted Var, with ⊥ constant and from a countable set of places PL:
F ::= V | ⊥ | F ∧F | F ∨F | F ⊃F | F @p | �F | ♦F where V ∈ Var and p ∈ PL.
The assertions of the form G at p are called sentences. The sequents are of the following
form: Γ;∆`P G at p. Γ is a finite multiset of pure formulae called the global context, and
contains assumptions that are valid everywhere; ∆ is a finite multiset of sentences called the
local context, and contains assumptions that are valid locally; G at p is a sentence called
the conclusion and P is a finite set of places.
Let us mention that P+ q denotes the disjoint union of P and {q} and that PL(S) denotes
the set of places that appear in the syntactic object S.
The sequent Γ;∆ `P G at p is said to be defined iff the set of places PL(Γ)∪ PL(∆)∪

PL(G at p) is a subset of P. It has been proved in [4] that for P = PL(Γ)∪PL(∆)∪

PL(G at p), if P ⊆ P′ then Γ;∆`P G at p is valid iff Γ;∆`P′

G at p is valid. Therefore, by
assuming that P is finite, there is no loss of generality.

A birelational semantics, similar to the one proposed in [14], have been defined in [4].
It allows to show the finite model property and the decidability of this logic. In this pa-
per, we focus on the Kripke semantics that is similar to the one given for the intuitionistic
system IS5 knowing that the logic corresponds to IS5 extended with the @ operator [3].
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A at p`P A at p
[ID]

⊥ at p`P G at p′
[⊥]

Γ;∆`P G at p′

Γ;∆,A at p`P G at p′
[W 1

L ]
Γ;∆`P G at p′

Γ,A;∆`P G at p′
[W 2

L ]

Γ;∆,A at p,A at p`P G at p′

Γ;∆,A at p`P G at p′
[CL]

Γ,A;∆,A at p`P G at p′

Γ,A;∆`P G at p′
[COPY ]

Γ;∆`P A at p Γ;∆,A at p`P G at p′

Γ;∆`P G at p′
[CUT1]

Γ;∆`P+q A at q Γ,A;∆`P G at p′

Γ;∆`P G at p′
[CUT2]

Figure 1. Axioms and Structural Rules of SC@
1

Definition 2.1 [Kripke model] K ≡ (K,6,{Pk}k∈K ,{Ik}k∈K) is a Kripke model iff
- K is a non-empty set partially ordered by 6;
- for every k ∈ K, Pk is a set of places such that for all k 6 l, Pk ⊆ Pl;
- for every k ∈K, Ik : Var→ 2Pk is such that for all k 6 l and V ∈Var we have Ik(V )⊆ Il(V ).
The set of places

S

k∈K Pk is denoted by Pls(K ).

Definition 2.2 [Kripke semantics] Let K ≡ (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model,
k ∈ K, p ∈ Pk and a pure formula A with PL(A) ⊆ Pk, we define (k, p) � A as follows:
(k, p) � X iff p ∈ Ik(X) for X ∈ Var;
(k, p) � ⊥ never;
(k, p) � A∧B iff (k, p) � A and (k, p) � B;
(k, p) � A∨B iff (k, p) � A or (k, p) � B;
(k, p) � A⊃B iff for all l > k, if (l, p) � A then (l, p) � B;
(k, p) � A@q iff q ∈ Pk and (k,q) � A;
(k, p) � �A iff for all l > k and for all q ∈ Pl , (l,q) � A;
(k, p) � ♦A iff there exists q ∈ Pk, (k,q) � A.

Let us remind that the relation � satisfies the Kripke monotonicity property, i.e., if l > k
then (k, p) � A implies (l, p) � A [4]. We write k � Γ;∆ for Γ a global context and ∆ a
local context iff for every A ∈ Γ and p ∈ Pk, (k, p) � �A; and for every B at q ∈ ∆, and
q ∈ Pk, (k,q) � B. The sequent Γ;∆`P C at p is valid in the Kripke model K = (K,6

,{Pk}k∈K ,{Ik}k∈K) iff PL(Γ)∪PL(∆)∪PL(C)∪{p} ⊆ P; and for every k ∈ K such that
P ⊆ Pk, if k � Γ;∆ then (k, p) � C. We say that Γ;∆`P A at p is valid iff it is valid in every
Kripke model.

3 Sequent Calculi for IHMLP

In this section, we define a first sequent calculus SC@
1 for IHMLP. It is obtained by extend-

ing a calculus for the fragment without ∨ and ⊥ [8]. Axioms and structural rules are given
in Figure 1 and logical rules are given in Figure 2. Let S be a sequent (Γ;∆`P G at p) we
write �SC@

1
S to express that S is derivable in SC@

1 .

Theorem 3.1 (Soundness) Let S be a sequent, if �SC@
1

S then S is valid.

Proof For every rule, we suppose that its premises are valid in every Kripke model, and
we prove that its conclusion is valid in every Kripke model. Here, we show only the case
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Γ;∆,A at p,B at p`P C at p′

Γ;∆,A∧B at p`P C at p′
[∧L]

Γ;∆`P A at p Γ;∆`P B at p

Γ;∆`P A∧B at p
[∧R]

Γ;∆`P A at p

Γ;∆`P A∨B at p
[∨R1 ]

Γ;∆`P B at p

Γ;∆`P A∨B at p
[∨R2 ]

Γ;∆,A at p`P C at p′ Γ;∆,B at p`P C at p′

Γ;∆,A∨B at p`P C at p′
[∨L]

Γ;∆`P A at p Γ;∆,B at p`P C at p′

Γ;∆,A⊃B at p`P C at p′
[⊃L]

Γ;∆,A at p`P B at p

Γ;∆`P A⊃B at p
[⊃R]

Γ;∆,A at p`P C at p′′

Γ;∆,A@p at p′ `P C at p′′
[@L]

Γ;∆`P A at p

Γ;∆`P A@p at p′
[@R]

Γ,A;∆`P C at p′

Γ;∆,�A at p`P C at p′
[�L]

Γ;∆`P+q A at q

Γ;∆`P
�A at p

[�R]

Γ;∆,A at q`P+q C at p′

Γ;∆,♦A at p`P C at p′
[♦L]

Γ;∆`P A at p

Γ;∆`P ♦A at p′
[♦R]

Figure 2. Logical Rules of SC@
1

of [�R] rule. Let K =(K,6,{Pk}k∈K ,{Ik}k∈K ) be a countermodel of Γ`P
�A at p. Then,

∃k0 ∈ K such that P ⊆ Pk0 , k0 � Γ;∆ and (k0, p) 2 �A. Thus, ∃l0 > k0 and ∃p0 ∈ Pl0
such that (l0, p0) � A, and from the Kripke monotonicity, l0 � Γ;∆. Let K ′=(K,6,{Pk ∩

{q}}k∈K ,{I′k}k∈K ) where for every A ∈ Var, I ′k(A) = Ik(A)∩{q} if p0 ∈ Ik(A) and I ′k(A) =

Ik(A) otherwise. In K ′, the new place q duplicated p0. Hence for all formulae F , (l0, p0) �

F if and only if (l0,q) � F . It is easy to show that K ′ is a Kripke model. Since q duplicating
p0, we have l0 � Γ;∆ and (l0,q) � A in K ′. Therefore, K ′ is a countermodel of Γ;∆`P+q

A at q. As Γ;∆`P+q A at q is valid, we get a contradiction and we deduce that Γ`P
�A at p

is valid. 2

Theorem 3.2 (Completeness) Let S be a sequent, if S is valid then �SC@
1

S .

Proof We consider the validity through the natural deduction system introduced in [8] and
extended in [4]. Let S = Γ;∆`P G at p′. We suppose that S is derivable in the natural
deduction system, and we prove by induction on the depth of the given derivation in the
natural deduction system that �SC@

1
S . We only prove it when the derivation ends with

♦-elimination:
Γ;∆`P ♦A at p Γ;∆,A at q`P+q G at p′

Γ;∆`P G at p′
[♦E ]

By induction hypothesis, we have derivations for Γ;∆`P ♦A at p and Γ;∆,A at q`P+q

G at p′. Then, by using [♦L] and [CUT1], we obtain a derivation for Γ;∆`P G at p′:

Γ;∆`P ♦A at p

Γ;∆,A at q`P+q G at p′
[♦L]

Γ;∆,♦A at p`P G at p′
[CUT1]

Γ;∆`P G at p′

2

Theorem 3.3 (Cut-elimination) Let S be a sequent. If S has a proof in SC@
1 then S has a

proof in SC@
1 without using the cut rules.

Proof See Appendix A. 2
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By using the approach of [15], we provide another calculus SC@
2 in which the contraction

and weakening rules are absorbed in the axioms and logical rules. This version allows
us to improve proof-search in our calculus. It is obtained by replacing the axioms by

Γ;∆,A at p`P A at p
[ID] and

Γ;∆,⊥ at p`P G at p′
[⊥] and the rule [⊃L] by the following

rule
Γ;∆,A⊃B at p`P A at p Γ;∆,B at p`P C at p′

Γ;∆,A⊃B at p`P C at p′
[⊃L] .

Theorem 3.4 (Soundness) Let S be a sequent, if �SC@
2

S then S is valid.

Proof By using Kripke semantics like in the proof of Theorem 3.1. 2

Theorem 3.5 (Completeness) Let S be a sequent, if �SC@
1

S then �SC@
2

S .

Proof We start by proving that:
1. If �SC@

2
Γ;∆,A at p,A at p`P G at p′ then �SC@

2
Γ;∆,A at p`P G at p′;

2. If �SC@
2

Γ;∆`P G at p′ then �SC@
2

Γ;∆,A at p`P G at p′;
It is done by structural induction on both the derivation of the assumption and A. Then,
by structural induction over the given derivation, we can easily prove the result. Here, we
consider for 1. the case when the derivation of the assumption ends with [⊃L] rule:

D1

Γ;∆,A⊃B at p,A⊃B at p`P A at p

D2

Γ;∆,A⊃B at p,B at p`P G at p′
[⊃L]

Γ;∆,A⊃B at p,A⊃B at p`P G at p′

From �SC@
2

Γ;∆,A ⊃ B at p,A ⊃ B at p `P A at p, by induction hypothesis, we have
�SC@

2
Γ;∆,A⊃B at p`P A at p. Then, we show, by induction on the depth of the given

derivation, that if �SC@
2

Γ;∆,A ⊃ B at p `P G at p′ then �SC@
2

Γ;∆,B at p `P G at p′.
Thus, �SC@

2
Γ;∆,B at p,B at p `P G at p′ and by induction hypothesis we deduce that

�SC@
2

Γ;∆,B at p`P G at p′. Therefore, �SC@
2

Γ;∆,A⊃B at p`P G at p′. 2

Let us give the following example of proof in order to illustrate the use of this sequent
calculus.

A⊃B,A;A at q`{p,q} A at q A⊃B,A;A at q,B at q`{p,q} B at q
[⊃L]

A⊃B,A;A at q,A⊃B at q`{p,q} B at q
[COPY ]

A⊃B,A;A at q`{p,q} B at q
[COPY ]

A⊃B,A;`{p,q}B at q
[�R]

A⊃B,A;`{p}
�B at p

[�L]
A⊃B;�A at p`{p}

�B at p
[⊃R]

A⊃B;`{p}
�A⊃�B at p

4 Tableaux Rules for HIMLp

In this section, we propose a multi-conclusioned variant of SC@
2 calculus and then derive

from it a tableau rules. A multi-conclusioned sequent has the form Γ;∆`P Π, where Γ and
∆ are respectively the global and local contexts and Π is a multiset of sentences.

5
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Definition 4.1 Let K =(K,6,{Pk}k∈K ,{Ik}k∈K ) be a Kripke model. The sequent Γ;∆`P Π
is valid in K iff PL(Γ)∪PL(∆)∪PL(Π) ⊆ P and for every k ∈ K such that P ⊆ Pk, if
k � Γ;∆ then there exists G at p ∈ Π such that (k, p) � G. The sequent Γ;∆`P Π is valid iff
it is valid in every Kripke model.

The multi-conclusioned version SC@
2m is obtained by adding a multiset Π of sentences to

the right part of the sequents in each rule of SC@
2 except [∨R1 ], [∨R2 ], [⊃R] and [♦R]. For

example, the rule [∧R] is transformed into:

Γ;∆`P A at p,Π Γ;∆`P B at p,Π

Γ;∆`P A∧B at p,Π
[∧R]

We replace [∨R1], [∨R2], [⊃R] and [♦R] by the following three rules:

Γ;∆`P A at p,B at p,Π

Γ;∆`P A∨B at p,Π
[∨R]

Γ;∆,A at p`P B at p

Γ;∆`P A⊃B at p,Π
[⊃R]

Γ;∆`{p1,...,pn} A at p1, . . . ,A at pn,Π

Γ;∆`{p1,...,pn}♦A at p,Π
[♦R]

Theorem 4.2 (Soundness) If �SC@
2m

Γ;∆`P Π then Γ;∆`P Π is valid.

Proof The proof is similar to the one of Theorem 3.1, by using the Kripke semantics and
Definition 4.1. 2

Theorem 4.3 (Completeness) If Γ;∆`P Π is valid then �SC@
2m

Γ;∆`P Π.

Proof We can see that a multi-conclusioned sequent Γ;∆`P A1 at p1, . . . ,An at pn is valid
iff Γ;∆ `P A1@p1 ∨ . . . ∨ An@pn at p, where p ∈ P, is valid. Thus, we can show that
if �SC@

2
Γ;∆`P A1@p1 ∨ . . . ∨An@pn at p then �SC@

2m
Γ;∆`P A1 at p1, . . . ,An at pn. The

proof is done by structural induction on the given derivation of the assumption. We must
prove the weakening property: if �SC@

2m
Γ;∆`P Π then �SC@

2m
Γ;∆`P Π,A at p. 2

Having defined this multi-conclusioned calculus we derive a tableau calculus appropri-
ate for proof-search because of the control of the COPY rule.

Definition 4.4 A signed formula is an expression of the form S A where S ∈ {F,T} and A
is a pure formula.

Definition 4.5 A tableau node is an expression of the form M1;M2;PL where M1 is a mul-
tiset of pure formulae, M2 is of the form {(S A, p) | S A is a signed formula and p is a place}
and PL is a set of places.
A tableau is tree whose nodes are tableau nodes. The rules of branch expansion are dis-
played in Figure 3.

A tableau node M1;M2,VP is said to be closed if M2 contains occurrences of both
(TA, p) and (FA, p), or if M2 contains (T⊥, p). A branch is closed if it contains a closed
tableau node. A tableau is closed if it only contains closed branches.

Theorem 4.6 (Soundness and completeness) Let S = Γ;∆`P Π be a multi-conclusion se-
quent. S is valid iff there is a closed tableau with the initial tableau node Γ;M;P, where
M = {T (A, p) | A at p ∈ ∆}∪{T (B,q) | B ∈ Γ and q ∈ P}∪{F(G, p) | G at p ∈ Π}.

6
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M1;M2,(T (A∧B), p);P

M1;M2 ,(TA, p),(T B, p);P
[T∧]

M1;M2,(F(A∧B), p);P

M1;M2,(FA, p);P | M1;M2,(FB, p);P
[F∧]

M1;M2,(T (A∨B), p);P

M1;M2,(TA, p);P | M1;M2,(T B, p);P
[T∨]

M1;M2,(F(A∨B), p);P

M1;M2,(FA, p),(FB, p);P
[F∨]

M1;M2,(T (A⊃B), p);P

M1;M2,(T (A⊃B), p),(FA, p);P | M1;M2,(T B, p);P
[T⊃]

M1;M2,(F(A⊃B), p);P

M1;(M2)T ,(TA, p),(FB, p);P
[F⊃]

M1;M2 ,(T (A@p′), p);P

M1;M2,(TA, p′);P
[T @]

M1;M2,(F(A@p′), p);P

M1;M2,(FA, p′);P
[F@]

M1;M2,(T (�A), p);P

M1,A;M2 ,(TA, p1), . . . ,(TA, pK );P
[T�]

M1;M2,(F(�A), p);P

M1;M2,(T M1,q),(FA,q);P +q
[F�]

M1;M2,(T (♦A), p);P

M1;M2,(T M1,q),(TA,q);P +q
[T♦]

M1;M2,(F(♦A), p);P

M1,A;M2 ,(FA, p1), . . . ,(FA, pK );P
[F♦]

Where {p1, . . . , pk} = P and (T M1,q) = {(TF,q) | F ∈ M1}.

Figure 3. The Tableau rules

Proof Soundness and completeness of this tableau method come from SC@
2m system. Intu-

itively, in this method, we associated the application of the COPY rule to the application
of the rules where there is an introduction of a new place, i.e., the [F�] and [T♦] rules.
Because of a given pure formula A ∈ Γ and a given place q, a single copy A at q, in the
local context, in a derivation is enough. Since we do not use the COPY rule for the places
in P, we copy the pure formulae of the global context with the places in P in the initial
tableau node. 2

5 A Terminating Calculus for the �-free Fragment

In this section, we propose a terminating calculus, called SCT @, for the �-free fragment of
this logic by using the approach used in [6] for intuitionistic logic.

We start by defining a particular class of Kripke models by using a structure called Kripke
trees. For this, we use a similar approach to that given in [7].

Definition 5.1 A node is a set N = {(p1,S
p1
N ), . . . ,(pn,S

pn

N )} where ∀i ∈ 1..n, pi is a place
and Spi

N a finite set of logical variables. We note VarN the set Sp1
N ∪ . . . ∪ Spn

N , PLN the set
{p1, . . . , pn} and PX

N the set {pi | X ∈ Spi

N }.

Definition 5.2 [Kripke tree] A Kripke tree is a pair T = (NT , [T1, . . . ,Tp]) where NT is a
node And [T1, . . . ,Tp] is a finite list of Kripke trees. Moreover, for each i, VarNT ⊆VarNTi

and ∀X ∈VarNT , PX
NT

⊆ PX
NTi

.

The concept of subtree is defined inductively by: T ′ is a subtree of T =(NT , [T1, . . . ,Tp])

iff T ′ = T or there exists i ∈ {1, . . . , p} such that T ′ = Ti or T ′ is a subtree of Ti.

Definition 5.3 Let T = (NT , [T1, . . . ,Tp]) be a Kripke tree, the subtree model associated
to T , denoted KT , is the quadruple: (T ∗,6,{PLNT ′

}T ′∈T ∗ ,{IT ′}T ′∈T ∗) where
- T ∗ is the set of all subtrees of T ;
- 6 is a partial order on T ∗ where T ′′

6 T ′ iff T ′′ is a subtree of T ′;

7
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Γ,APA−p;∆,A at p`P G at p′

Γ,APA ;∆`P G at p′
[COPY ]

(Γ[♦A/A@q,P])+q;∆,A at q`P+q C at p′

Γ;∆,♦A at p`P C at p′
[♦L]

Γ;∆,X at p,B at p`P G at p′

Γ;∆,X at p,X ⊃B at p`P G at p′
[⊃1

L]
Γ;∆,A⊃ (B⊃C) at p`P G at p′

Γ;∆,(A∧B)⊃C at p`P G at p′
[(∧)⊃L]

Γ;∆,A⊃C at p,B⊃C at p`P G at p′

Γ;∆,(A∨B)⊃C at p`P G at p′
[(∨)⊃L]

Γ;∆,A⊃B@p′ at p`P G at p′′

Γ;∆,A@p⊃B at p′ `P G at p′′
[@⊃]

Γ,(A⊃B@p)P;∆`P G at p′

Γ;∆,♦A⊃B at p`P G at p′
[♦⊃L]

Γ;∆`P G at p′

Γ;∆,⊥⊃A at p`P G at p′
[⊥⊃L]

Γ;∆,A at p,B⊃C at p`P B at p Γ;∆,C at p`P G at p′

Γ;∆,(A⊃B)⊃C at p`P G at p′
[(⊃)⊃L]

Figure 4. The SCT @ calculus

- ∀T ′ ∈ T ∗, IT ′ : Var → 2PLNT ′ such that for all X ∈ Var we have IT ′(X) = PX
NT ′

.

Proposition 5.4 For every Kripke tree T = (NT , [T1, . . . ,Tp]), the subtree model KT =

(T ∗,6,{PLNT ′
}T ′∈T ∗ ,{IT ′}T ′∈T ∗) is a Kripke model.

Proof Let T = (NT , [T1, . . . ,Tp]) be a Kripke tree. From Definition 2.1 and Definition 5.3,
to show that (T ∗,6,{PLNT ′

}T ′∈T ∗ ,{IT ′}T ′∈T ∗) is a Kripke model, we have only to show:
1. for all T ′,T ′′ in T ∗ such that T ′′

6 T ′, we have PLNT ′′
⊆ PLNT ′

;
2. for all T ′,T ′′ in T ∗ such that T ′′

6 T ′, we have for all X ∈ Var, PX
NT ′′

⊆ PX
NT ′

.
These properties can be proved by structural induction on T , namely with induction hy-
pothesis for every subtree of T . 2

In order to define the SCT @ calculus, we replace the rules [COPY ] and [⊃L] of the SC@
2

calculus by the set of rules of Figure 4 in which every formula of the global contexts is
indexed by a set of places Aind . By such indexes we limit the use of [COPY ]. Let us note
that in the [COPY ] rule we have p ∈ PA. Moreover the expression Γ[♦A/A@q,P] in the
[♦L] rule means that one substitutes A@q to ♦A in all formulae of Γ and changes the index
with P. In addition (Γ)+q means that one adds q to the indexes of the Γ formulae.

Definition 5.5 [Irreducible sequent] An irreducible sequent is a sequent of the form
Γ;X1 at p1, . . . ,Xm at pm,Y1 ⊃C1 at q1, . . . ,Yn ⊃Cn at qn `

P F at p where Γ is a multiset
of pure formulae; for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, if Xi ≡ Yj then pi 6= q j; and
F ∈ Var∪{⊥} and if F ∈ {X1, . . . ,Xm} then p /∈ {p1, . . . , pm}; for all Aind in Γ, ind = /0.

Definition 5.6 [Inv-irreducible sequent] An inv-irreducible sequent is a sequent of the
form Γ;X1 at p1, . . . ,Xk at pk,Y1⊃D1 at q1, . . . ,Yl ⊃Dl at ql ,(A1⊃B1)⊃C1 at r1, . . . ,(Am⊃

Bm)⊃Cm at rm `P F at p where Γ is a multiset of pure formulae; for all i ∈ {1, . . . ,m}

and j ∈ {1, . . . ,n}, if Xi ≡ Yj then pi 6= q j; F ∈ Var ∪ {⊥}, F ≡ A∨B or F ≡ ♦A; if
F ∈ {X1, . . . ,Xk} then p /∈ {p1, . . . , pm}; for all Gind in Γ, ind = /0.

Proposition 5.7 The number of applications of the COPY rule in any derivation in the
SCT @ calculus is finite.

Proof Let S ≡ Γ;∆`P G at p′ be a sequent and D be a derivation of S in SCT @. For every
A in Γ, the number of applications of the COPY rule is smaller than the size of P and the

8
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number of the new places introduced in D . One can see that the number of the new places
introduced in D is smaller than the number of the subformulae of the form ♦F in S . Since
the size of P and the set of subformulae of the form ♦F in S are finite, we deduce that the
number of applications of the COPY rule is finite. 2

Proposition 5.8 The application of the SCT @ rules to a given sequent terminates with
axioms or irreducible sequents.

Proof See Appendix B. 2

Theorem 5.9 (Soundness) The rules of the SCT @ calculus are sound.

Proof We consider the case for rule [(⊃)⊃L]. We suppose that Γ;∆,A at p,B⊃C at p`P

B at p and Γ;∆,C at p`P G at p are valid. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a counter-
model of Γ;∆,(A⊃B)⊃C at p`P G at p′. Then, ∃k ∈ K such that P ⊆ Pk, k � Γ;∆, (k, p) �

((A⊃B)⊃C) and (k, p′) 2 G. From (k, p) ��((A⊃B)⊃C), we have ∀l > k, if (l, p) � A⊃B
then (l, p) � C. We suppose that there exists l0 > k such that (l0, p) � A and (l0, p) 2 B.
From l0 > k and the Kripke monotonicity, we have l0 � Γ;∆. Moreover from (l0, p) � A and
(l0, p) 2 B, we have (l0, p) � B⊃C, because for l ′ > l0 if (l′, p) � B then (l ′, p) � A⊃B and
we deduce that (l ′, p) �C. Therefore, K is countermodel of Γ;∆,A at p,B⊃C at p`P B at p
and this is a contradiction. Thus, ∀l > k, we have (l, p) � A⊃B and thus (l, p) � C. Since
(k, p′) 2 G, K is a countermodel of Γ;∆,C at p`P G at p. From this contradiction we
deduce that Γ;∆,(A⊃B)⊃C at p`P G at p′ is valid. Proofs for other rules are similar. 2

Let us remind that a proof rule is invertible if, for any instance of the rule, the non-validity of
at least one of its premises entails the non-validity of its conclusion. It is strongly invertible
if, for any instance of the rule and any Kripke model K , if K is a countermodel of at least
one of its premises then it is a countermodel of its conclusion. We can observe that strong
invertibility implies invertibility.

Theorem 5.10 All the rules of the SCT @ calculus, except the [(⊃)L⊃], [∨R], [♦R] rules,
are strongly invertible.

Proof We consider the case for rule [♦⊃L]. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a coun-
termodel of Γ,(A⊃B@p)P;∆`P G at p′. Then, ∃k ∈ K such that Pk ⊆ P, k � Γ;∆, (k,q) �

�(A⊃B@p) for q ∈ Pk and (k, p′) 2 G. Thus, from (k,q) � �(A⊃B@p), we have ∀l > k
and ∀r ∈ Pl , if (l,r) � A then (l, p) � B. Therefore, (k, p) � ♦A⊃B, because ∀l > k, if
(l, p) � ♦A then (l, p) � B. We deduce that K is a countermodel of Γ;∆,♦A⊃B at p`P

G at p′. Thus, the rule [♦⊃L] is strongly invertible. Proofs for other rules are similar. 2

A proof-refutation tree is a tree in which the nodes are indexed by sequents. Especially,
the root node is indexed by a sequent in which the pure formulae of the global context are
indexed by the set of all places belonging to this sequent. The rules of branch expansion are
obtained from the rules of SCT @: if the node is indexed by an inv-irreducible sequent then
its children are indexed by the sequents which correspond to the premises of all rules that
can be applied to its index. Else, the children correspond to premises of one of the strongly
invertible rule which can be applied to its index.
From Proposition 5.8, we can deduce that a proof-refutation tree is finite and its leaf nodes
are indexed by axioms and irreducible sequents. The formal definition is given below.

9
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Definition 5.11 [Proof-refutation tree] A proof-refutation tree is a tree where the nodes are
indexed by sequents and verifying the following properties:
1) The root node is indexed by a sequent of the form Γ;∆`P G at p where the pure formulae
of Γ are indexed by the set P of places.
2) For every internal node n indexed by a sequent S which is not an inv-irreducible sequent,
n has a maximum of two children: if n has two children (resp. a single child) indexed by
H1 and H2 (resp. H ) then H1 H2

S [R] (resp. H
S [R] ) is an instance of a strongly

invertible rule.
3) For every internal node n indexed by an inv-irreducible sequent Γ;X1 at p1, . . . ,Xm at pm,
Y1 ⊃D1 at q1, . . . ,Yn ⊃Dn at qn,(A1 ⊃B1)⊃C1 at r1, . . . ,(Al ⊃Bl)⊃Cl at rl `

P K at p, the
set of children of n is obtained by: for every i ∈ {1, . . . , l}, we have two children indexed
respectively by Γ;∆′,∆′′

i ,Ci at ri `
P K at p and by Γ;∆′,∆′′

i ,Ai at ri,Bi ⊃Ci at ri `
P Bi at ri

where ∆′ = X1 at p1, . . . ,Xm at pm,Y1 ⊃D1 at q1, . . . ,Yn ⊃Dn at qn, ∆′′ = (A1 ⊃ B1)⊃
C1 at r1, . . . ,(Al ⊃ Bl)⊃Cl at rl and ∆′′

i is ∆′′ without (Ai ⊃ Bi)⊃Ci at ri. Moreover,
if K = A∨B then we have two children indexed respectively by Γ;∆′,∆′′ `P A at p and
Γ;∆′,∆′′ `P B at p. And if K = ♦A then for every pl ∈ P, we have a child indexed by
Γ;∆′,∆′′ `P A at pl.
4) The leaf nodes are indexed by axioms and irreducible sequents.

Proposition 5.12 For a rule Γ;∆′ `P G′
at p Γ;∆′′ `P G′′

at p

Γ;∆`P G at p
[R] (resp. Γ′;∆′ `P′

G′
at p′

Γ;∆`P G at p
[R] )

and ∀K = (K,6,{Pk}k∈K ,{Ik}k∈K) and ∀k ∈ K such that P ⊆ Pk (resp. P′ ⊆ Pk), if (k � ∆′

or k � ∆′′) (resp. k � ∆′) then k � ∆.

Proof We consider the rules [(⊃)⊃L], [♦L] and [(∧)⊃L]. We start with the rule [(⊃)⊃L].
Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and k ∈ K such that P ⊆ Pk. If k �

∆,A at p,B⊃C at p then by monotonicity ∀k′ > k we have k′ � ∆,A at p,B⊃C at p. Thus,
∀k′ > k, if (k′, p) � A⊃B then (k′, p) � B and we have (k′, p) � C. Therefore, k � ∆,(A⊃

B)⊃C at p. Otherwise, if k � ∆,C at p then it is easy to see that k � ∆,(A⊃B)⊃C at p.
We now consider the rule [♦L]. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and
k ∈ K such that P + q ⊆ Pk. If k � ∆,A at q then k � ∆ and there exists pl ∈ Pk such
that (k, pl) � A. Thus, k � ∆,♦A at p. We now consider the rule [(∧)⊃L]. Let K = (K,6

,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and k ∈K such that P⊆ Pk. If k � ∆,A⊃(B⊃C) at p
then ∀k′ > k, if (k′, p) � A then (k′, p) � B⊃C. Thus, if (k′, p) � A∧B then (k′, p) � B⊃C
and (k′, p) � C because (k′, p) � B. Therefore k � ∆,(A∧B)⊃C at p. Other cases are
treated by similar arguments. 2

Theorem 5.13 (Completeness) Let S = Γ;∆`P G at p′ be a sequent where the formulae
of Γ are indexed by the set of places P. If S does not have a proof in SCT @ then it has a
countermodel.

Proof Let S = Γ;∆`P G at p′ be a sequent where all the formulae of Γ are indexed by the
set of places P. Let P R be a proof-refutation tree in which the root node is indexed by S .
We suppose that S has not a proof in SCT @ and we show how to extract a countermodel of
S from P R . See Appendix C. 2

First we show how to generate a countermodel for the sequent `{p}(♦A)⊃A at p. For this,
we need to build the proof-refutation tree associated to this sequent:

10
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A at q`{p,q} A at p
[♦L]

♦A at p`{p} A at p
[⊃R]

`{p}♦A⊃A at p
p q

A

As this logic can be seen as an hybridisation of IS5, we can provide, from the previous
calculi, a new calculi for IS5. For example to prove the formula �(A⊃B)⊃ (♦A⊃♦B)

we can prove A⊃B;`{p}♦A⊃♦B at p by using SCT @:
A⊃B;A at q,B at q`{p,q} B at q

[♦R]
A⊃B;A at q,A⊃B at q`{p,q}♦B at p

[COPY ]
A⊃B;A at q`{p}♦B at p

[♦L]
A⊃B;♦A at p`{p}♦B at p

[⊃R]
A⊃B;`{p}♦A⊃♦B at p

6 Conclusion and Perspectives

In this paper we propose a sequent calculus for IHMLp and its variants that absorb weak-
ening and contraction rules. Moreover tableaux rules are naturally designed from a derived
multi-conclusioned sequent calculus. Knowing that this logic can be seen as an hybridi-
sation of the intuitionistic modal system IS5, namely it corresponds to IS5 extended with
a satisfaction operator (@), we can provide, from our calculi, new calculi and decision
procedures for IS5. Further investigations will be devoted to the comparison with existing
calculi for such a logic [14]. Moreover we define a terminating calculus for the �-free
fragment of IHMLp that allows to build (finite) countermodels in case of non-validity. A
consequence of this study, not developed here, is the proof of the finite model property w.r.t.
the Kripke semantics for this �-free fragment and thus of the same result for IS5 without
�. Next studies will be devoted to the definition of specific rules for the � modality and to
the characterization of the logical fragment of the logic, including �, for which the finite
model property w.r.t. the Kripke semantics is verified. Moreover we will focus on seman-
tics and on the design of new tree-based structures allowing to build finite countermodels
w.r.t. birelational semantics. Finally we will consider our approach for the extension of the
logic with nominals in order to deal with a full intuitionistic hybrid logic like in [3].
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Appendix A: Proof of Theorem 3.3

Theorem 3.3. Let S be a sequent. If S has a proof in SC@
1 then S has a proof in SC@

1
without using the cut rules.

Proof We let �SC@−
1

Γ;∆`P G at p′ denote that Γ;∆`P G at p′ has a derivation in SC@
1 with-

out using the cut rules. To make the proof we use the structural cut-elimination described
in [10], by using a simple structural induction from the admissibility of the cut rules in the
cut-free system.Thus, we have only to show:

(i) If �SC@−
1

Γ;∆`P A at p and �SC@−
1

Γ;∆,A at p`P G at p′ then �SC@−
1

Γ;∆`P G at p′.

(ii) If �SC@−
1

Γ;∆`P+q A at q and �SC@−
1

Γ,A;∆`P G at p′ then �SC@−
1

Γ;∆`P G at p′.

The proof proceeds by mutual structural induction on the cut formula and the given deriva-
tions. For example, if we are in the case:

D1

Γ;∆,A at p`P B at p
[⊃R]

Γ;∆`P A⊃B at p

D2

Γ;∆`P A at p

D3

Γ;∆,B at p`P G at p′
[⊃L]

Γ;∆,A⊃B at p`P G at p′
[CUT1]

Γ;∆`P G at p′

It can be replaced by:

D2

Γ;∆`P A at p

D1

Γ;∆,A at p`P B at p
[CUT1]

Γ;∆`P B at p

D3

Γ;∆,B at p`P G at p′
[CUT1]

Γ;∆`P G at p′

Since A and B are structurally lower than A⊃B, we deduce, by the induction hypothesis,
that �SC@−

1
Γ;∆`P G at p′. 2

12
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Appendix B: Proof of Proposition 5.8

Proposition 5.8. The application of the SCT @ rules to a given sequent terminates with
axioms or irreducible sequents.

Proof From Proposition 5.7, the number of the applications of the COPY rule in every
derivation of a given sequent in SCT @ is finite. Thus, to prove termination, we have only
to prove that the application of the SCT @ rules without the COPY rule to a given sequent
terminates. For this, we will use the technic proposed in [6], by showing that for every rule,
its conclusion is more complex than its premises by using a measures of complexity over
the pure formulae and the sentences. Here, we use the measure α defined by:
α(A) = 1 (A ∈ Var∪{>,⊥}), α(A∧B) = α(A)+α(B)+1, α(A∨B) = α(A)+α(B)+1,
α(A ⊃ B) = 2 ∗ α(A) + α(B) + 1, α(♦A) = α(A) + 1, α(�A) = α(A) + 1, α(A@p) =

α(A)+1, α(A at p) = α(A)+1.
From this definition, the order relation > on pure formulae and sentences, with A > B iff
α(A) > α(b), is well-founded. Now, we define an order relation on multisets of pure formu-
lae and sentences: let M1 and M2 two multisets of pure formulae and sentences, M1 >m M2
iff M2 is obtained form M1 by replacing one or more pure formulae and sentences by a finite
number of pure formulae and sentences, such that if A is replaced by B then α(A) > α(B).
Since the relation order on pure formulae and sentences is well-fonded, the order relation
>m is well-founded [5]. It is the order relation which is used to show that in every rule,
the conclusion is greater than the premises. For example for the rule [(∧)⊃L], we have
Γ∪∆∪{(A∧B)⊃C at p} ∪ {G at p′} >m Γ∪∆∪{A⊃ (B⊃C) at p} ∪ {G at p′}, be-
cause α((A∧B)⊃C) = 2∗α(A)+2∗α(B)+α(C)+3 > 2∗α(A)+2∗α(B)+α(C)+2 =

α(A⊃ (B⊃C)).
Since there is always a rule for any sequent which is not an axiom or an irreducible sequent,
we deduce that the application of the SCT @ rules to a given sequent terminates with axioms
or irreducible sequents. 2

Appendix C: Proof of Theorem 5.13

Theorem 5.13. Let S = Γ;∆`P G at p′ be a sequent where all the formulae of Γ are indexed
by the set of places P. If S has not a proof in SCT @ then it has a countermodel.

Proof Let S = Γ;∆`P G at p′ be a sequent where all the formulae of Γ are indexed by the
set of places P. Let P R be a proof-refutation tree in which the root node is indexed by S .
We suppose that S has not a proof in SCT @ and we show how to extract a countermodel of
S from P R .
We show how to decide if an index of a given node in P R is valid or not. We start
by the leaf nodes. We know that the leaf nodes of P R are indexed by axioms and irre-
ducible sequents. If a leaf node is indexed by an axiom then its index is valid. Now, we
prove that the irreducible sequents are not valid. Let L= Γ;X1 at p1, . . . ,Xm at pm,Y1 ⊃
C1 at q1, . . . ,Yn ⊃Cn at qn `

P K at p be an irreducible sequent. We denote by V P the set
{X1 at p1, . . . ,Xm at pm}. Let T = (N , /0) be a Kripke tree with a single node such that
PLN = P, VarN = {X1, . . . ,Xm}, ∀r ∈ P we have Sr

N = {Xk | Xk at r ∈VP}. We have ∀i ∈
1 . . . ,m, (T , pi) � Xi, and since ∀i ∈ {1, . . . ,m} and ∀ j ∈ {1, . . . ,n} we have if Xi ≡Yj then
pi 6= q j , we obtain ∀ j ∈ 1 . . . ,n, (T ,q j) 2 Yj , and thus, ∀ j ∈ 1 . . . ,n, (T ,q j) �Yj ⊃C j at q j.
We can see that for every A /0 ∈ Γ and p ∈ P, there exists a derivation with a root sequent
of the form Γ′;∆′,A at p`P′

G′
at q where L is one of its leaf sequents. Thus, by using
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Proposition 5.12, we have T � Γ. It is easy to see that (T , p) 2 K. From Proposition 5.4,
we deduce that KT is a countermodel of L .
Now, we see how, from the children of a given internal node, we can propagate the validity
or build a countermodel. Let I be an index of an internal node. If I is not an inv-irreducible
sequent then, from Definition 5.11, this node has a maximum of two children where if these
children are indexed by H1 and H2 (resp. H ) then H1 H2

S [R] (resp. H
S [R] ) is an

instance of a strongly invertible rule. Thus, if H1 and H2 (resp. H ) are valid then I is
valid because [R] is a sound rule. Else, from the strong invertibility of [R], I has the same
countermodels of the non-valid premises of [R].
Let us consider the case of the internal nodes indexed by inv-irreducible sequents. Let
I = Γ;X1 at p1, . . . ,Xm at pm,Y1⊃D1 at q1, . . . ,Yn⊃Dn at qn,(A1⊃B1)⊃C1 at r1, . . . ,(Al ⊃
Bl)⊃Cl at rl `

P K at p be an inv-irreducible sequent and the index of an internal node. We
define ∆′ , X1 at p1, . . . ,Xm at pm,Y1 ⊃D1 at q1, . . . ,Yn ⊃Dn at qn and ∆′′ , (A1 ⊃B1)⊃
C1 at r1, . . . ,(Al ⊃Bl)⊃Cl at rl `

P K at p. Then, we define ∆′′
i for i ∈ {1, . . . , l} by ∆′′

without (Ai ⊃Bi)⊃Ci at ri and V P , {X1 at p1, . . . ,Xm at pm}. Here, we start by studying
the case where k ≡♦F . From Definition 5.11, the children of our internal node are indexed
by the premises of the following rules:

Γ;∆′,∆′′
i ,Ai at ri,Bi ⊃Ci at ri `

P Bi at ri Γ;∆′,∆′′
i ,Ci at ri `

P ♦F at p

Γ;∆′,∆′′
i ,(Ai ⊃Bi)⊃Ci at ri `

P ♦F at p
[(⊃)⊃L]

and
Γ;∆′,∆′′ `P F at pl

Γ;∆′,∆′′ `P ♦F at p
[♦L]

where i ∈ {1, . . . , l} and pl ∈ P. If there exists i ∈ {1, . . . , l} such that Γ;∆′,∆′′
i ,Ci at ri `

P

♦F at p is not valid, then, it has a countermodel TCi . Therefore, TCi is a countermodel
of I because the premiss Γ;∆′,∆′′

i ,Ci at ri `
P ♦F at p in [(⊃)⊃L] is strongly invertible.

Else, if there exists i ∈ {1, . . . , l} such that Γ;∆′,∆′′
i ,Ai at ri,Bi ⊃Ci at ri `

P Bi at ri is
valid or there exists pl ∈ P such that Γ;∆′,∆′′ `P F at pl is valid, then I is valid because
the rules [(⊃)⊃L] and [♦L] are sound. Now we deal with the last case, ∀i ∈ {1, . . . , l},
Γ;∆′,∆′′

i ,Ai at ri,Bi⊃Ci at ri `
P Bi at ri has a countermodel KTi

; and for all pl ∈ P we have
Γ;∆′,∆′′`P F at pl has a countermodel KTpl

. We define T , (N ,{T1, . . . ,Tl ,Tpl1 , . . . ,Tplk})

where P = {pl1, . . . , plk}, PLN = P, VarN = {X1, . . . ,Xm}, ∀r ∈ P we have Sr
N = {Xk |

Xk at r ∈VP}. It is easy to see that T is a Kripke tree.
Now we prove that T � Γ;∆′,∆′′ and (T , p) 2 ♦F in KT . By using Proposition 5.12, we
have for all i ∈ {1, . . . , l} and for all j ∈ {1, . . . ,k}, Ti � Γ;∆′,∆′′ and Tpl j � Γ;∆′,∆′′. We
have for all i ∈ {1, . . . , l}, Ti � A and Ti 2 B. Thus, Ti 2 A⊃B and by Kripke monotonic-
ity we obtain T 2 A⊃ B. Therefore, T � Γ;∆′,∆′′ holds. As ∀ j ∈ {1, . . . ,k} we have
(Tpl j , pl j) 2 F at pl, and we obtain by monotonicity (T , p) 2 ♦F because in KT we have
PT = P. Thus, KT is a countermodel of Γ;∆′,∆′′ `P ♦F at p. For the case K ≡ A∨B, the
Kripke model is T , (N ,{T1, . . . ,Tl ,TA,TB}) where TA (resp. TB) is a countermodel of
Γ;∆′,∆′′ `P A at p (resp. Γ;∆′,∆′′ `P B at p). For the case K ∈ Var∪⊥, we use the Kripke
model T , (N ,{T1, . . . ,Tl}). The proofs of these two cases are similar to the previous
proof. We can see that if S is valid then it has a proof in SCT @ and we get a contradiction.
Therefore, S has a countermodel built by the previous method. 2
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