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Abstract

In this paper we study proof-search in an intuitionistic hybrid modal logic (for places), denoted IHMLP, whose modalities
allow us to validate properties taking into account the notion of place. In this context we propose different sequent calculi
for this logic and also tableau rules in the perspective of proof-search and countermodel generation. As this logic can be
seen as an instance of Hybrid 1S5 we can derive new calculi and procedures for this logic. Finally we define a terminating

calculus for the [J-free fragment of IHMLP and then propose a decision procedure with countermodel generation.
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1 Introduction

In order to model heterogeneous environments, among them distributed systems, recent
works provide logical foundations tuned to programming in such environments, like an
intuitionistic modal logic with an operational interpretation of logical proofs as distributed
programs [9]. Such a logic allows us to deal with systems seen as a set of different nodes,
called places, that may have different properties and may contain different resources. It
has been recently enriched with the disjunctive connective V and the constant L in order
to obtain an intuitionistic hybrid modal logic (for places) [4], denoted here IH MLP, that
is suitable for reasoning about distribution of resources. In this context we can mention
related works based on separation logics [13] and resource logics like BI [12] and their
extensions with modalities [1,11]. Our general aim consists in studying such modal logics
dealing with notions of locations or places in both perspectives of expressiveness and proof
and countermodel search.

Here we aim at focusing on the modal logic IHMLP for which several results have been
proposed in [4]: two semantics, namely a Kripke semantics and a birelational semantics,
both proved sound and complete; the finite model property w.r.t. birelational semantics and
then decidability of the logic. The formulae in this logic include names, called places and
assertions are associated with places and validated in places. A key point is that we are not
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only interested in whether a formula is true but also in where a formula is true. Therefore
modalities allow us to express a property to be validated in a specific place p (@p), or in
a unspecified place (<») or in any place (OJ). As the first modality internalizes the model in
the logic, this modal logic can also be classified as a hybrid logic [2].

In this paper we aim at studying this logic in the perspective of proof and countermodel
search by defining sequent calculi as an alternative to existing natural deduction systems.
A first contribution consists of a sequent calculus for IHMLP and its refinements in which
contraction and weakening rules are absorbed in the axioms and logical rules. We prove the
cut-elimination property and then the soundness and completeness of this calculus. From
these results we derive a multi-conclusioned calculus for IHMLP and then tableaux rules
for this logic in which the so-called COPY rule is absorbed. As this logic can be seen as the
hybridisation of the intuitionistic modal system 1S5 [3] we can deduce, from our results,
new calculi and decision procedures for this logic. Another contribution is the definition of
a terminating calculus for the O-free fragment of IHMLP. Its completeness proof provides
a way to build countermodels in case of non-validity. Moreover we show, for this fragment,
the finite model property w.r.t. the Kripke semantics and thus derive the same result for IS5
without .

2 An Intuitionistic Modal Logic

In this section, we summarize the key notions about an hybrid intuitionistic modal logic
(of places) that we denote IHM LP [4]. Ttis designed to reason about places with assertions
of the form (G at p) meaning that the formula G is valid at place p. In such an assertion
G does not contain any occurrence of the construct at but use modalities @ p, one for
each place, to cast the meta-linguistic at at the language level. The logic also has other
modalities for reasoning about properties valid at different locations. It corresponds to the
logic introduced in [9] enriched with the connectives V and L.

The set of pure formulae, denoted Form(PL), is defined inductively from a set of propo-
sitional variables, denoted Var, with L constant and from a countable set of places PL:
Fo=V|L|FAF|FVF|FOF|F@p|OF | OF whereV € Var and p € PL.
The assertions of the form G at p are called sentences. The sequents are of the following
form: M;AFP G at p. T is a finite multiset of pure formulae called the global context, and
contains assumptions that are valid everywhere; A is a finite multiset of sentences called the
local context, and contains assumptions that are valid locally; G at p is a sentence called
the conclusion and P is a finite set of places.

Let us mention that P+ g denotes the disjoint union of P and {q} and that PL(S) denotes
the set of places that appear in the syntactic object S.

The sequent ;AP G at p is said to be defined iff the set of places PL(I)UPL(A)U
PL(G at p) is a subset of P. It has been proved in [4] that for P = PL(I") UPL(A) U
PL(G at p), if P C P’ then MAFPGat p is valid iff I';AI—P, G at p is valid. Therefore, by
assuming that P is finite, there is no loss of generality.

A birelational semantics, similar to the one proposed in [14], have been defined in [4].
It allows to show the finite model property and the decidability of this logic. In this pa-
per, we focus on the Kripke semantics that is similar to the one given for the intuitionistic
system IS5 knowing that the logic corresponds to 1S5 extended with the @ operator [3].
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(ID] —— [l

AatptPAatp LatpFPGatp
AP Gat p/ | AP Gat p/ s
P / [\NL] P / ML]
MAAatpH Gatp MAAF Gatp
rAAatp,Aat pFPGatp’ rAAAatp-PGatp
P P P [CL] P P [COPY]
rAAatp-PGatp rAAFPGatp
rAFPAatp rAAatp-PGatp rAFPH9Aat g rAAFPG at pf
[cuT|] [CUT,]
rAFPGat p/ rAFPGat p/

Figure 1. Axioms and Structural Rules of SCI@

Definition 2.1 [Kripke model] X = (K, <, {Px }kek; {Ik }kek ) is a Kripke model iff

- K is a non-empty set partially ordered by <;

- for every k € K, Py is a set of places such that for allk < I, Pxc C Py;

- for every k € K, Iy : Var — 2% is such that for all k < and V € Var we have I (V) C (V).
The set of places Uy Pk is denoted by PIs(X).

Definition 2.2 [Kripke semantics] Let K = (K, <, {Px}kek, { Ik }kek ) be a Kripke model,
k € K, p € P and a pure formula A with PL(A) C Py, we define (k, p) E A as follows:
(k,p) E X iff p € Ix(X) for X € Var;
) E L never;

) AABff (k, p) = Aand (k, p)

)EAVBiff (k,p) EAor (k,p) F

) EADBIff forall | >k, if (I, p) F Athen (I,p) F B;
)

)

)

E B;
B

FA@qiffq € P and (k,q) FA;
FOAiff forall | > kand forallq e Py, (1,9) FA;
F QA ff there exists g € Py, (k,q) EA.
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p
p
p
p
p
p
p
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Let us remind that the relation F satisfies the Kripke monotonicity property, i.e., if | > k
then (k,p) E A implies (I,p) E A [4]. We write k F ;A for [ a global context and A a
local context iff for every A € I and p € Py, (k,p) F OA; and for every B at q € A, and
q € P (k,q) F B. The sequent ;A" C at pis valid in the Kripke model X = (K, <
AP Hkek, {Ik fkek ) iff PL(T) UPL(A) UPL(C)U {p} C P; and for every k € K such that
P C Py, if k= M;Athen (k,p) EC. We say that ;AP A at pis valid iff it is valid in every
Kripke model.

3 Sequent Calculi for IHMLP

In this section, we define a first sequent calculus SCI@ for IHMLP. It is obtained by extend-
ing a calculus for the fragment without VV and _L [8]. Axioms and structural rules are given
in Figure 1 and logical rules are given in Figure 2. Let S be a sequent (I;AFP G at p) we
write DSCI@S to express that S is derivable in SC®.

Theorem 3.1 (Soundness) Let S be a sequent, if >gce.S then S is valid.

Proof For every rule, we suppose that its premises are valid in every Kripke model, and
we prove that its conclusion is valid in every Kripke model. Here, we show only the case
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MAAatpBatprPCatp il rAFPAatp rAFPBatp

P A P [/\R]
MAAABat pE-Catp’ MAFTAABatp
rAFPAatp | rAFPBatp | rAAatp-PCat p/ rABatptPCatp
— [VR — |VR
rAFPAVBatp rAFPAVBatp FAAVBat p-PC at pf
rAFPAatp rABatprPCatp o] rAAatptPBatp ]
oL OR
rAA>BatptPCat p/ r:AFPASBatp
rAAat ptPCat p” rAFPAat p
= (@] ————— [@q]
M;AA@p at p'-"C at p” AR A@p at p’
rAAFPCat p/ rAFPHIA at g
= (O] — [OR]
MAOAatp-"Catp MAFT OAatp
MAAatqHP+9C at p/ o r:AFPAatp
L o0 R
A QAat pFPCat p/ rAFP QA at p/

Figure 2. Logical Rules of SCI@

of [Or] rule. Let K=(K,<,{P«}kek,{lk tkek) be a countermodel of I FP DA at p. Then,
ko € K such that P C Py, ko F ;A and (ko, p) # OA. Thus, 3ly > ko and 3py € Ry,
such that (lp, po) F A, and from the Kripke monotonicity, Iy F I;A. Let K'=(K,<,{PxN
{a} Fkek, {1t }kek) where for every A € Var, I (A) = Ik (A) N{q} if po € Ik(A) and I} (A) =
Ix(A) otherwise. In X, the new place q duplicated po. Hence for all formulae F, (I, po) F
F if and only if (lp,q) E F. Itis easy to show that K’ is a Kripke model. Since q duplicating
Po, we have lp E ;A and (lp,q) F A in X'. Therefore, X’ is a countermodel of I'; A -P+a
Aatq. AsT;AFPTIA at q s valid, we get a contradiction and we deduce that [ FPDOAatp
is valid. O

Theorem 3.2 (Completeness) Let .S be a sequent, if S is valid then >gsced.

Proof We consider the validity through the natural deduction system introduced in [8] and

extended in [4]. Let S = ;AP G at p’. We suppose that § is derivable in the natural
deduction system, and we prove by induction on the depth of the given derivation in the
natural deduction system that DSCI@S . We only prove it when the derivation ends with

{-elimination:
rARP GAat p rAAatq-"t9Gat p/

[Oe]
rAFPGat p/

By induction hypothesis, we have derivations for [;AF" $A at p and T;A,A at Pt
G at p’. Then, by using [ ] and [CUT,], we obtain a derivation for [;AF" G at p':
MAAatq-PH9G at p/
HAFP QAatp A, QAatpHPGat p/
r:AFPGat p/

[OL]
[CUT]

d

Theorem 3.3 (Cut-elimination) Let.S be a sequent. If S has a proof in SC® then § has a
proof in SC® without using the cut rules.

Proof See Appendix A. O
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By using the approach of [15], we provide another calculus SCZ@ in which the contraction
and weakening rules are absorbed in the axioms and logical rules. This version allows
us to improve proof-search in our calculus. It is obtained by replacing the axioms by

o] and (1] and the rule [DL] by the following
r:AAatpFPAatp MA LatpFPGatp

rule
rAA>Batp-PAatp rABatp-PCatp
MAA>BatpHPCatp/

D] -

Theorem 3.4 (Soundness) Let $ be a sequent, if DSCZ@S then S is valid.

Proof By using Kripke semantics like in the proof of Theorem 3.1. a
Theorem 3.5 (Completeness) Let S be a sequent, if >sces then >sce .

Proof We start by proving that:

LIf>geelAAat pAat p-P G at p’ then >scel;AAat pHP G at p';

2. 1f >gco AP G at p' then >geo A, Aat pH- G at p/;

It is done by structural induction on both the derivation of the assumption and A. Then,
by structural induction over the given derivation, we can easily prove the result. Here, we
consider for 1. the case when the derivation of the assumption ends with [D|] rule:

Dy Dy
rAADBatp,ADBatprFAatp A ADBatp,BatptPGatp

5 [ou
MAADBat p,ADBatpH-Gatp’

From DSCZ@I';A,A S B at p,ADB at pFF A at p, by induction hypothesis, we have
>sce A, ADB at pFP A at p. Then, we show, by induction on the depth of the given
derivation, that if >gcelA,ADB at pP G at p’ then >scelA,B at pH" G at p'.
Thus, >sce NABat p,Batp FP G at p’ and by induction hypothesis we deduce that
>scel;A,Bat pFP G at p’. Therefore, >scelA,ADBat pFPGatp. O

Let us give the following example of proof in order to illustrate the use of this sequent
calculus.

ADBAAat P Aatqg ADB,AAatgBatq-PWBatq

[ou
ADB,A;Aatq,ADBatq-{PWBatq

[COPY]
ADB,AAatq-PWBatq

[COPY]
ADB,AHPUBat g

ADB,AFPIOBat p

O]
A>SB:DAat pHP OB at p

[OR]
ASB:HP OASOBat p

4 Tableaux Rulesfor HIMLP

In this section, we propose a multi-conclusioned variant of SCZ@ calculus and then derive
from it a tableau rules. A multi-conclusioned sequent has the form ;AP M, where [ and
A are respectively the global and local contexts and I1 is a multiset of sentences.

5
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Definition 4.1 Let K=(K, <, {P«}kek, {Ik }kek) be a Kripke model. The sequent AP M
is valid in X iff PL(I") UPL(A) UPL(M) C P and for every k € K such that P C Py, if
k E ;A then there exists G at p € I such that (k, p) £ G. The sequent M AP M is valid iff
it is valid in every Kripke model.

The multi-conclusioned version scz@fn is obtained by adding a multiset I of sentences to

the right part of the sequents in each rule of SC{¥ except [VR,], [Vr,], [Dr] and [Or]. For
example, the rule [Ag] is transformed into:

r;AFPAat p,M r;AFPBat p,N

[AR]
r:AFPAABat p,N

We replace [Vg,], [VRr,], [Or] and [Or] by the following three rules:

rAFPAat p,Bat p,M ] MAAat p-PBat p o MARPLPa} A gt p .. Aat pp,TT (O
VR DR R
rAFPAVBat p,N r:AFPASBat p,N MARPLP GA Bt p T

Theorem 4.2 (Soundness) If DScz@mF;AI—P M then M;AFP M is valid.

Proof The proof is similar to the one of Theorem 3.1, by using the Kripke semantics and
Definition 4.1. O

Theorem 4.3 (Completeness) If ;AP I is valid then >sce AP

Proof We can see that a multi-conclusioned sequent AP A at P1,...,An at py is valid
iff M;ARP Ai@p, V... VA,@p, at p, where p € P, is valid. Thus, we can show that
if >gce FAFP A @py V... VA,@p, at p then DSCZ@mF;AI—P A; at pi,...,Ay at p,. The
proof is done by structural induction on the given derivation of the assumption. We must
prove the weakening property: if DSCZ@mF;AI—P I then DSCZ@mF;AI—P M,Aatp. O

Having defined this multi-conclusioned calculus we derive a tableau calculus appropri-
ate for proof-search because of the control of the COPY rule.

Definition 4.4 A signed formula is an expression of the form S A where S € {F, T} and A
is a pure formula.

Definition 4.5 A tableau node is an expression of the form M;;M;; PL where My is a mul-
tiset of pure formulae, M, is of the form {(S A, p) | S Ais a signed formula and p is a place}
and PL is a set of places.

A tableau is tree whose nodes are tableau nodes. The rules of branch expansion are dis-
played in Figure 3.

A tableau node M;;M,,VP is said to be closed if M, contains occurrences of both
(TA,p) and (FA, p), or if M, contains (T L, p). A branch is closed if it contains a closed
tableau node. A tableau is closed if it only contains closed branches.

Theorem 4.6 (Soundness and completeness) Let.S = I'; A-P M be a multi-conclusion se-
guent. S is valid iff there is a closed tableau with the initial tableau node I';M;P, where
M={T(A,p)|AatpeA}U{T(B,q)|BclandqeP}U{F(G,p)|Gatpecll}.

6



Mi; Mz, (T(AAB), p);P
MI»M27(TA7 p)7(T87 p)’P

[TA]

M;;Ma2, (T(AVB),p);P
M1;Mz, (TA, p);P [ M1;M2, (TB, p);P
MMz, (T(ADB),p);P
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Mi;Ma, (F(AAB), p);P

Mi:Mz, (T(ADB),p),(FA,p);P | Mi:M2, (TB, p);P

Mi; My, (T(A@p'), p);P
Mi:Ma, (TA,p'):P

[Te]

My; Mz, (T (DA), p);P
M1, A;Ma, (TA, p1),...,(TA,pk):P
Mi; My, (T(OA), p);P
Mi;My, (TMy,9),(TA,Q);P +q

s

mo

[FA
Mi;Mz, (FA, p);P | MMz, (FB, p);P

Mi;Ma, (F(AVB),p);P
Mi;Ma2, (FA, p), (FB, p);P
M;;Mz, (F(ADB),p);P
Mi;(M2)7,(TA, p),(FB,p);P
Mi;Ms, (F(A@p'),p);P
Mi: Mg, (FA, p');P

[FV]

(F2]

[F@]

MMy, (F(DA), p);P
M1;Mz, (TMy,q), (FA,q);P +q
Mi; Mz, (F(OA), p):P
M1, A;M,, (FA, p1),...,(FA, pk):P

(FOI

[FOI

Where {pi,...,pk} =Pand (TM;,q) = {(TF,q) | F e M; }.

Figure 3. The Tableau rules

Proof Soundness and completeness of this tableau method come from SC m System. Intu-
itively, in this method, we associated the application of the COPY rule to the application
of the rules where there is an introduction of a new place, i.e., the [FO] and [T {] rules.
Because of a given pure formula A € " and a given place g, a single copy A at Q, in the
local context, in a derivation is enough. Since we do not use the COPY rule for the places
in P, we copy the pure formulae of the global context with the places in P in the initial
tableau node. O

5 A Terminating Calculusfor the O-free Fragment

In this section, we propose a terminating calculus, called SCT @, for the O-free fragment of
this logic by using the approach used in [6] for intuitionistic logic.

We start by defining a particular class of Kripke models by using a structure called Kripke
trees. For this, we use a similar approach to that given in [7].

Definition 5.1 A node is a set Al = {(pr?\z)’ - (pn,SS\Z)} where Vi € 1..n, pj is a place
and Ss\i[ a finite set of logical variables. We note Var,, the set SS\'[ .U S?\E, PLg the set
{p1,---,Pn} and P;\(C the set {p; | X € S¥ }

Definition 5.2 [Kripke tree] A Kripke tree is a pair 7 = (N, [7],...,Zp]) where N7 is a
node And [71,...,7p] is a finite list of Kripke trees. Moreover, for each i, Var,, CVar,,

and VX € Vary, , P;f& C P;\(&

The concept of subtree is defined inductively by: 7" is a subtree of T = (N, [71,...,Tp])
iff 7/ = T or there exists i € {1,...,p} such that 7’ = T or 7" is a subtree of 7.

Definition 5.3 Let 7 = (Nz, [11,. .. ‘Ip]) be a Kripke tree, the subtree model associated
to 7, denoted Kz, is the quadruple: (7%, <, {PLN Yrreqs, {Io }qreq+) where

- T* is the set of all subtrees of 7;

- < is a partial order on T * where T "< T iff T" is a subtree of T”;

7
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rAPA=P:A Aat pHP G at p/ (T[OA/A@Q,P])T9A,A at q-PHIC at pf

S [COPY] s (L]
I APAAFP G at p/ A QA at pFPCat p/
A X atp,Bat pFFGat p/ o] rAA>(BDC) at pHPGat p/ (Ao
D A)DL
A X at p,X DOBat p-PGat p/ - A, (AAB)DC at pP G at p/
MAA>Catp,BOCatptPGatp rAA>B@p at pHP G at p”
= (V)DL 5 [@D]
A (AvB)DCat pk Gatp/ rAA@p>Batp'H" Gatp”
r,(A>B@p)P;AFP G at p/ r:arPGatp/
= [ODL] = [1LD1]
A, QADBat pH Gat p/ MA, LDAatpH-Gatp

MAAatp,B>Catpt-Batp MACatpFPGatp/
A, (ADB)DCat pFPGat p/

[(2)21]

Figure 4. The SCT @ calculus
-VT' € T*, | : Var — 2P such that for all X € Var we have 7 (X) = P;\(&,.
Proposition 5.4 For every Kripke tree 7 = (N, [7i,...,7p]), the subtree model Xz =
(7%, <,{PLa, rreq+: {lo'} 77eq-) is @ Kripke model.

Proof Let 7 = (Ngz,[71,...,7p]) be a Kripke tree. From Definition 2.1 and Definition 5.3,
to show that (7%, <, {PLMI,}T’GT*7 {lg:}qreq+) is a Kripke model, we have only to show:
1. forall 7/, 7" in T* such that T~ < 7, we have PLNI" C PLMI/;

2. forall T/, 7" in T* such that 7" < T’, we have for all X € Var, P;\(CI C P;f[ .
" {II

These properties can be proved by structural induction on ‘7, namely with induction hy-
pothesis for every subtree of 7. O

In order to define the SCT @ calculus, we replace the rules [COPY] and [D] of the SC{
calculus by the set of rules of Figure 4 in which every formula of the global contexts is
indexed by a set of places AM. By such indexes we limit the use of [COPY]. Let us note
that in the [COPY| rule we have p € Pa. Moreover the expression I [(A/A@(,P] in the
[$L] rule means that one substitutes A@( to A in all formulae of ' and changes the index
with P. In addition (I")™¥ means that one adds q to the indexes of the I" formulae.

Definition 5.5 [Irreducible sequent] An irreducible sequent is a sequent of the form

Xy at py,...,Xm at pm,Y1 DCy at qp,...,Yn DCh at qy FPE at p where " is a multiset
of pure formulae; for all i € {I,...,m} and j € {1,...,n}, if X; =Y; then p; # q;; and
F e VarU{L}andif F € {X;,...,Xn} then p & {py,...,pm}; for all A" in ", ind = 0.

Definition 5.6 [Inv-irreducible sequent] An inv-irreducible sequent is a sequent of the
form ;X at py,..., Xk at px,Y1 DDy atqy,...,Y1 DDy atq, (A; DB;) DCratry,...,(AnD
Bm) DCn at rpF- F at p where I is a multiset of pure formulae; for all i € {1,...,m}
and j € {1,...,n}, if X; = Yj then p; #qj; F € Varu{L}, F=AVB or F = QA; if
Fe{Xq,...,.X} then p ¢ {p1,...,pm}; forall G" in T, ind = 0.

Proposition 5.7 The number of applications of the COPY rule in any derivation in the
SCT @ calculus is finite.

Proof Let.S =I;AFP G at p’ be a sequent and D be a derivation of S in SCT ©. For every
Ain I, the number of applications of the COPY rule is smaller than the size of P and the

8
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number of the new places introduced in D). One can see that the number of the new places
introduced in D is smaller than the number of the subformulae of the form <F in §. Since
the size of P and the set of subformulae of the form F in .S are finite, we deduce that the
number of applications of the COPY rule is finite. O

Proposition 5.8 The application of the SCT © rules to a given sequent terminates with
axioms or irreducible sequents.

Proof See Appendix B. O
Theorem 5.9 (Soundness) The rules of the SCT @ calculus are sound.

Proof We consider the case for rule [(D)D(]. We suppose that [;A A at p,B>C at p+-"
Bat pand ;A,C at p-" G at p are valid. Let K = (K, <, {P« }kek , { Ik }kek ) be a counter-
model of ;A (ADB)DC at p}—PG at p’. Then, 3k € K such that P C P, KE T A, (k, p) F
((ADB)DC)and (k,p’) ¥ G. From (k, p) F O((ADB) DC), we have VI >k, if (I, p) FADB
then (I, p) £ C. We suppose that there exists |y > k such that (lp,p) F A and (I, p) ¥ B.
From |y > k and the Kripke monotonicity, we have ly E I;A. Moreover from (ly, p) F A and
(lo, p) ¥ B, we have (ly, p) F BDC, because for I’ > Iy if (I’, p) & B then (I’,p) F ADB and
we deduce that (1", p) F C. Therefore, X is countermodel of I';A;A at p,BDC at pFPBatp
and this is a contradiction. Thus, VI > k, we have (I, p) F ADB and thus (I, p) EC. Since
(k,p’) ¥ G, K is a countermodel of [;A,C at pHP G at p. From this contradiction we
deduce that ';A,(ADB)DC at p +P G at p’ is valid. Proofs for other rules are similar. O

Let us remind that a proof rule is invertible if, for any instance of the rule, the non-validity of
at least one of its premises entails the non-validity of its conclusion. It is strongly invertible
if, for any instance of the rule and any Kripke model X, if X is a countermodel of at least
one of its premises then it is a countermodel of its conclusion. We can observe that strong
invertibility implies invertibility.

Theorem 5.10 All the rules of the SCT @ calculus, except the [(D).D], [VRr], [{r] rules,
are strongly invertible.

Proof We consider the case for rule [$D]. Let K = (K, <, {Px}kek, {lk }kek ) be a coun-
termodel of I', (ADB@p)P; AP G at p’. Then, 3k € K such that P, C P,k ET;A, (k,q) E
O(ADB@p) for q € P and (k, p’) ¥ G. Thus, from (k,q) F O(ADB@p), we have VI >k
and Vr € Py, if (I,r) E A then (I,p) F B. Therefore, (k,p) F $A D B, because VI > Kk, if
(I,p) E QA then (1, p) E B. We deduce that K is a countermodel of M;A,SADB at pr-F
G at p’. Thus, the rule [{>D_] is strongly invertible. Proofs for other rules are similar. O

A proof-refutation tree is a tree in which the nodes are indexed by sequents. Especially,
the root node is indexed by a sequent in which the pure formulae of the global context are
indexed by the set of all places belonging to this sequent. The rules of branch expansion are
obtained from the rules of SCT ©: if the node is indexed by an inv-irreducible sequent then
its children are indexed by the sequents which correspond to the premises of all rules that
can be applied to its index. Else, the children correspond to premises of one of the strongly
invertible rule which can be applied to its index.

From Proposition 5.8, we can deduce that a proof-refutation tree is finite and its leaf nodes
are indexed by axioms and irreducible sequents. The formal definition is given below.

9
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Definition 5.11 [Proof-refutation tree] A proof-refutation tree is a tree where the nodes are
indexed by sequents and verifying the following properties:

1) The root node is indexed by a sequent of the form I'; AFPG at p where the pure formulae
of [ are indexed by the set P of places.

2) For every internal node n indexed by a sequent .§ which is not an inv-irreducible sequent,
N has a maximum of two children: if n has two children (resp. a single child) indexed by

H, and H, (resp. H) then gh b ] (resp. S [R] ) is an instance of a strongly
S S

invertible rule.

3) For every internal node n indexed by an inv-irreducible sequent ; X at py,...,Xn at Pm,
Y1 DDyatqy,...,Yn DDy at qn,(A1 DBl) OC; at rl,...,(A| :)B|) OCyatrn |—P K at p, the
set of children of n is obtained by: for every i € {1,...,1}, we have two children indexed

respectively by ;A" A C; at P K at p and by A A A at 1, BiDCjatrj P B;j at 1
where A’ = X; at py,...,Xm at pm,Y1 DDy at qi,...,Yn DDy at gn, A" = (A} DBy) D
Cyatry,...,(AIDB)) DCj at rj and A is A" without (Aj D Bj) DC; at rj. Moreover,
if K = AV B then we have two children indexed respectively by [;A’,A” P A at p and
A, A"FP B at p. And if K = {A then for every pl € P, we have a child indexed by
A, A HP A at pl.

4) The leaf nodes are indexed by axioms and irreducible sequents.

Mo +P 6 atp

AP /3 AP 7 a
MA PG at p MA"FP G at p R (resp.
r:AFPGatp rAFPGatp
and VK = (K, <, {P«}kek, { Ik }kek ) @and vk € K such that P C Py (resp. P’ C Py), if (k = 4
or k= A") (resp. k = A) then k E A.

Proposition 5.12 For arule R])

Proof We consider the rules [(D)Dy], [{L] and [(A)Dr]. We start with the rule [(D)Dy].
Let K = (K, <,{P«}kek, {lk }kek ) be a Kripke model and k € K such that P C Py. If k =
A, A at p,BDC at p then by monotonicity Yk’ > k we have k' E A, A at p,BDC at p. Thus,
vk’ >k, if (K',p) E ADB then (k’, p) F B and we have (k’, p) & C. Therefore, kK = A, (AD
B) DC at p. Otherwise, if K E A,C at p then it is easy to see that k F A, (ADB) DC at p.

We now consider the rule [$r]. Let K = (K, <, {P« }kek, {Ik }kek ) be a Kripke model and
k € K such that P+q C Pc. If Kk E A A at g then k E A and there exists pl € P¢ such
that (k, pl) E A. Thus, k F A, $A at p. We now consider the rule [(A)D(]. Let X = (K, <
o {Px }kek , { Ik tkek ) be a Kripke model and k € K such that P C Py. IftkEA,AD(BDC) at p
then VK’ >k, if (k’, p) E A then (K, p) EBDC. Thus, if (k',p) EAAB then (k',p) EBDC
and (k’,p) E C because (k',p) E B. Therefore k = A,(AAB) DC at p. Other cases are
treated by similar arguments. O

Theorem 5.13 (Completeness) Let S = ;AP G at p’ be a sequent where the formulae
of I are indexed by the set of places P. If S does not have a proof in SCT © then it has a
countermodel.

Proof Let.S=T;AF"G at p’ be a sequent where all the formulae of I are indexed by the
set of places P. Let PR be a proof-refutation tree in which the root node is indexed by ..
We suppose that § has not a proof in SCT © and we show how to extract a countermodel of
S from PR See Appendix C. O

First we show how to generate a countermodel for the sequent i} (QOA) DA at p. For this,
we need to build the proof-refutation tree associated to this sequent:

10
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Aatq-PTAatp

OAat pHtPtAatp
— Al

HPIOADAat p - 4

As this logic can be seen as an hybridisation of 1S5, we can provide, from the previous
calculi, a new calculi for 1S5. For example to prove the formula O(ADB) D (OAD OB)
we can prove AD B:-{PYOAD OB at p by using SCT ©:

ADB;Aatq,Batq-{P¥Batq

OR]

ADB;Aatq,ADBatq-{PY $Batp
[COPY]

ADB:AatgHP OBatp

U
ADB;OAat pHP OB atp

DR]
ADB;HPIOAS OB at p

6 Conclusion and Per spectives

In this paper we propose a sequent calculus for IHMLP and its variants that absorb weak-
ening and contraction rules. Moreover tableaux rules are naturally designed from a derived
multi-conclusioned sequent calculus. Knowing that this logic can be seen as an hybridi-
sation of the intuitionistic modal system 1S5, namely it corresponds to 1S5 extended with
a satisfaction operator (@), we can provide, from our calculi, new calculi and decision
procedures for 1S5. Further investigations will be devoted to the comparison with existing
calculi for such a logic [14]. Moreover we define a terminating calculus for the O-free
fragment of IHMLP that allows to build (finite) countermodels in case of non-validity. A
consequence of this study, not developed here, is the proof of the finite model property w.r.t.
the Kripke semantics for this O-free fragment and thus of the same result for IS5 without
0. Next studies will be devoted to the definition of specific rules for the (0 modality and to
the characterization of the logical fragment of the logic, including O, for which the finite
model property w.r.t. the Kripke semantics is verified. Moreover we will focus on seman-
tics and on the design of new tree-based structures allowing to build finite countermodels
w.r.t. birelational semantics. Finally we will consider our approach for the extension of the
logic with nominals in order to deal with a full intuitionistic hybrid logic like in [3].
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Appendix A: Proof of Theorem 3.3

Theorem 3.3. Let S be a sequent. If S has a proof in SC{® then .S has a proof in SC{
without using the cut rules.

Proof We let >gce- ;AR G at p’ denote that ;AFP G at p’ has a derivation in SC® with-
out using the cut rules. To make the proof we use the structural cut-elimination described
in [10], by using a simple structural induction from the admissibility of the cut rules in the
cut-free system.Thus, we have only to show:

() If >geo T3AF"Aat pand >gee [A,Aat pP G at p' then >gce TAFT Gat ',
(ii) If >gco MAFT"9Aat qand >gco [ AIART G at p' then >gco TAFT G at p'.
The proof proceeds by mutual structural induction on the cut formula and the given deriva-

tions. For example, if we are in the case:

Dy Dy D3

rAAatp-PBatp | rAFPAatp T;ABatptPGat p’[ |
DR oL
rAFPASBatp rAA>BatpPGat p/
[cuT|]

rAFPGat p/
It can be replaced by:

Dy Dy

rAFPAatp ;A AatpHPBatp Dy

. [CUT] =
MAF"Batp I;A,Bat pH Gat p'[

_ CUT)]
AR Gat p’/

Since A and B are structurally lower than A D B, we deduce, by the induction hypothesis,
that >gce- MAFT G at p'. O

12
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Appendix B: Proof of Proposition 5.8

Proposition 5.8. The application of the SCT © rules to a given sequent terminates with
axioms or irreducible sequents.

Proof From Proposition 5.7, the number of the applications of the COPY rule in every
derivation of a given sequent in SCT @ is finite. Thus, to prove termination, we have only
to prove that the application of the SCT © rules without the COPY rule to a given sequent
terminates. For this, we will use the technic proposed in [6], by showing that for every rule,
its conclusion is more complex than its premises by using a measures of complexity over
the pure formulae and the sentences. Here, we use the measure o defined by:

a(A)=1 (AeVaru{T,L}),a(AAB)=0a(A)+a(B)+1,a(AVB) =a(A)+a(B)+1,
a(ADB)=2xa(A)+a(B)+1, a(CA) =a(A)+1, a(OA) = a(A) + 1, a(A@p) =
a(A)+1,0(Aat p)=0a(A)+1.

From this definition, the order relation > on pure formulae and sentences, with A > B iff
a(A) > a(b), is well-founded. Now, we define an order relation on multisets of pure formu-
lae and sentences: let M| and M, two multisets of pure formulae and sentences, M| > M;
iff M is obtained form M by replacing one or more pure formulae and sentences by a finite
number of pure formulae and sentences, such that if A is replaced by B then a(A) > a(B).
Since the relation order on pure formulae and sentences is well-fonded, the order relation
>n 1s well-founded [5]. It is the order relation which is used to show that in every rule,
the conclusion is greater than the premises. For example for the rule [(A)D(], we have
FrUAU{(AAB)DC at p}U{G at p'} >n TUAU{AD (BDC) at p} U{G at p'}, be-
cause 0((AAB)DC)=2xa(A)+2+a(B)+a(C)+3 >2xa(A)+2*xa(B)+a(C)+2 =
a(AD(BDC)).

Since there is always a rule for any sequent which is not an axiom or an irreducible sequent,
we deduce that the application of the SCT © rules to a given sequent terminates with axioms
or irreducible sequents. a

Appendix C: Proof of Theorem 5.13

Theorem 5.13. Let S = ; AFP G at p’ be a sequent where all the formulae of I are indexed
by the set of places P. If $ has not a proof in SCT © then it has a countermodel.

Proof Let S =T;AFP G at p’ be a sequent where all the formulae of I are indexed by the
set of places P. Let PR be a proof-refutation tree in which the root node is indexed by ..

We suppose that $ has not a proof in SCT © and we show how to extract a countermodel of
S from PR.

We show how to decide if an index of a given node in PR is valid or not. We start
by the leaf nodes. We know that the leaf nodes of PR are indexed by axioms and irre-
ducible sequents. If a leaf node is indexed by an axiom then its index is valid. Now, we
prove that the irreducible sequents are not valid. Let L= I;X; at py,...,Xm at Pm,Y1 D

Cyatqp,...,YnDCy at qn FPK at p be an irreducible sequent. We denote by VP the set
{X1 at p1,...,Xm at pn}. Let 7 = (A/,0) be a Kripke tree with a single node such that
PLy =P, Vary = {Xi,...,Xn}, Vr € P we have S;\[ = {Xk | Xk atr € VP}. We have Vi €
1...,m, (T,pi) E X, and since Vi € {1,...,m} and Vj € {1,...,n} we have if Xj =Y; then
Pi #Qj, weobtain Vje 1...,n, (7,q;) #Yj,and thus,Vje 1...,n,(7,q;) FY; DCj at qj.
We can see that for every A T and p € P, there exists a derivation with a root sequent
of the form I";A',A at p-F G’ at q where L is one of its leaf sequents. Thus, by using

13
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Proposition 5.12, we have 7 E I'. It is easy to see that (7, p) # K. From Proposition 5.4,
we deduce that X7 is a countermodel of L.

Now, we see how, from the children of a given internal node, we can propagate the validity

or build a countermode]. Let I be an index of an internal node. If I is not an inv-irreducible
sequent then, from I%eﬁmtlon 5.11, this node has a maximum otl two children where 1%1 these

children are indexed by #; and #4 (resp. #) then g b R (resp. S R ) is an
S S

instance of a strongly invertible rule. Thus, if #; and %, (resp. #{) are valid then I is
valid because [R] is a sound rule. Else, from the strong invertibility of [R], I has the same
countermodels of the non-valid premises of [R].

Let us consider the case of the internal nodes indexed by inv-irreducible sequents. Let
I=T;X;atpy,...,Xmat pm,Y1 ODj atqy,...,YnDDpatqn, (A DBy)DCyatry,...,(AID
Bi)DCiatr FPK at p be an inv-irreducible sequent and the index of an internal node. We
define A’ £ X; at py,...,Xm at pm,Y1 DDy at qy,...,Ya D Dpat gnand A” 2 (A; DB;) D
Cyatry,...,(A\DB))DCy at " K at p. Then, we define A” for i € {1,...,1} by A"
without (Aj D Bj) DCj at rj and VP = {X; at py,...,Xn at pm}. Here, we start by studying
the case where k = bF. From Definition 5.11, the children of our internal node are indexed
by the premises of the following rules:

M A" A atri,BiDCiatriFPBjatr MA A .CiatriFP OF at p

k (5)1]
AN (A DBi) DCiatrik QF atp

and
ro A FPF at pl
rA A FPOF at p

where i € {1,...,1} and pl € P. If there exists i € {1,...,1} such that [;A’,A” C; at r; F*
&F at p is not valid, then, it has a countermodel Zc,. Therefore, ¢, is a countermodel
of I because the premiss [;A',A!.C; at I; FP OF at p in [(D)DL] is strongly invertible.
Else, if there exists i € {1,...,1} such that ;A" A’ A; at r;,Bi DCj at r; P B at ri is
valid or there exists pl € P such that I';A’,A” P F at pl is valid, then I is valid because
the rules [(D)D(] and [{L] are sound. Now we deal with the last case, Vi € {1,...,l},
A A A at 1, Bi DG atr; P B; at rj has a countermodel Kgz; and for all pl € P we have
A", A"+PF at pl has a countermodel K, - We define TE(NAT, 5, Doy To })
where P = {ply,...,plk}, PLos = P, Vary = {Xi,...,Xn}, ¥r € P we have 52\5 = {X |
Xg at r € VP}. It is easy to see that 7T is a Kripke tree.

Now we prove that 7 F ;A A" and (7, p) ¥ OF in X7. By using Proposition 5.12, we
have for all i € {1,...,1} and for all j € {1,... k}, T F [ A A" and Ty, F A", A7 We
have for all i € {1,...,1}, 7/ E A and 7 ¥ B. Thus, T; ¥ A D B and by Kripke monotonic-
ity we obtain 7 ¥ ADB. Therefore, T F ;A A” holds. As Vj € {1,...,k} we have
(Zpi;, plj) ¥ F at pl, and we obtain by monotonicity (7, p) # ¢F because in K we have
Pz = P. Thus, % is a countermodel of [;A', A" +P &F at p. For the case K = AV B, the
Kripke model is T 2 (N, {71,...,T,7a, T }) where Ta (resp. Tg) is a countermodel of
MA NP Aatp (resp. ;A" A" +P B at p). For the case K € VarU L, we use the Kripke
model T = (A, {71,...,D}). The proofs of these two cases are similar to the previous
proof. We can see that if § is valid then it has a proof in SCT © and we get a contradiction.
Therefore, § has a countermodel built by the previous method. O

(O]
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