
An Interactive Prover for Bi-intuitionistic Logic

Jean-René Courtault, Didier Galmiche and Daniel Méry

Université de Lorraine - LORIA
Campus Scienti�que BP 239
Vand÷uvre-lès-Nancy, France

Abstract

In this paper we present an interactive prover for deciding formulas in propositional bi-
intuitionistic logic (BiInt). This tool is based on a recent connection-based characterization
of bi-intuitionistic validity through bi-intuitionistic resource graphs (biRG). After giving
the main concepts and principles we illustrate how to use this interactive proof or counter-
model building assistant and emphasize the interest of bi-intuitionistic resource graphs for
proving or refuting BiInt formulas. We complete this work by studying how to make our
tool a fully automated theorem prover.

1 Introduction

Bi-intuitionistic logic (BiInt) is a conservative extension of intuitionistic logic that introduces a
connective �, called co-implication, which acts as a dual to implication. It was �rst studied by
Rauszer who gives a Hilbert calculus with Kripke and algebraic semantics [5] and more recently
by Crolard as a way to de�ne proof systems that work as programming languages in which
values and continuations are handled in a symmetric way [1].

Cut-free calculi for BiInt have been proposed using deep inference, nested sequents [3] or
labelled calculi [4] and a BDD-based approach has been recently developed [6]. In this pa-
per we present an interactive proof-assistant that we view as a privileged way to become
acquainted with our recently proposed connection-based characterization of bi-intuitionistic
validity through R-Graphs [2]. In addition we analyse how to make this tool a fully automated
theorem prover

2 Bi-intuitionistic Propositional Logic

Formulas of BiInt are built from a denumerable set V = {P,Q . . .} of propositional letters
w.r.t.the following grammar:

A ::= V | ⊥ | A ∨ A | A ∧ A | A � A | A � A.

Negation ¬A, co-negation ∼A are respectively de�ned as syntactic sugar for A � ⊥ and >�A,
where > is de�ned as a shorthand for ⊥ � ⊥.

The Kripke semantics of BiInt is a straightforward extension of that of intuitionistic logic. A
Kripke model M is a triple 〈M,v, J·K〉, where M is a non-empty set of worlds, v is a partial
order on M and J·K is a function from worlds to sets of propositional letters satisfying the
following Kripke monotonicity condition:

(∀P ∈ V)(∀m ∈M)(∀n ∈M)(if P ∈ JmK and m v n then P ∈ JnK).

The Kripke forcing relation |= associated with a Kripke modelM is de�ned as the least relation
between the worlds ofM and formulas such that:

1

εa0

x0 a1 x1 a2

ψ

φ ψ̄ φ̄

ψσ

σ

κ

P− Q−P+
P+R−

G1

Figure 1: bi-intuitionistic R-graph

• m |= ⊥ never;

• m |= P i� P ∈ JmK;

• m |= A ∨ B i� m |= A or m |= B;

• m |= A ∧ B i� m |= A and m |= B;

• m |= A � B i� for all n ∈M such that m v n, n 6|= A or n |= B;

• m |= A � B i� for some n ∈M such that n v m, n |= A and n 6|= B.

A formula C is satis�ed inM i� m |= C for all worlds m in M and valid if it is satis�ed in all
Kripke models.

3 Bi-intuitionistic R-graphs

Let us recall some terminology. A signed formula is formula of BiInt paired with either a positive
or negative sign (�+� or �−�).

A bi-intuitionistic R-graph (biRG) is a directed multi-graph G(V,E) with vertices V and
edges E. V is required to contain a distinguished vertex ε called the ε-vertex. Figure 1 gives
an example of a biRG named G1.

All vertices u in a biRG are associated with a set F(G, u) of signed formulas the elements
of which are called the tags of u in G. For example, in the biRG G1 of Figure 1, we have
F(G1, a1) = {P+,Q−} so that P+ and Q− are called tags of a1 in G1. We shall see later how
tags are associated with vertices through the reduction of an initial bi-intuitionistic formula.
Vertices are named with symbols in Ψ ∪ Φ, where Ψ = {ε} ∪ {ai | i ∈ N} and Φ = {xi | i ∈ N}.
We use the letters a and x to denote arbitrary elements of Ψ and Φ. A ψ-vertex (φ-vertex) is
a vertex named after a symbol in Ψ (Φ). V Ψ (V Φ) denotes the set of ψ-vertices (φ-vertices).
ψ- and φ-vertices shall respectively play the role of constants and variables w.r.t. particular
substitutions that are crucial to the forthcoming characterization of bi-intuitionistic validity.

In a biRG, all edges e are tagged with a letter T (G, e) from the set T = {ψ, φ, ψ̄, φ̄, σ, κ}
of edge-tags. We write u[τ]v to denote the edge, tagged with the letter τ ∈ T , that goes from
u to v and call this edge a τ -edge the source and target of which respectively are u and v.
For example, in the biRG G1 of Figure 1, a0[φ]x0 is the φ-edge the source and target of which
respectively are a0 and x0. Let us remark that since biRGs are multi-graphs, we are allowed to
put more than one edge between two vertices as long as all edges have distinct edge-tags.

A biRG is pure if it does not contain any κ- or σ-edges. The pure part of a biRG G is the
biRG obtained from G by removing all of its κ- and σ-edges.

2

Figure 2: bi-intuitionistic R-graphs in IBiS

A biRG is required to satisfy the following structural conditions:

• every ψ-edge (ψ̄-edge) has a ψ-vertex as its target (source);

• every φ-edge (φ̄-edge) has a φ-vertex as its target (source);

• every σ-edge is a �bidirectional� link between a φ-vertex and a ψ-vertex such that either
u ∈ V Ψ and v ∈ V Φ, or u ∈ V Φ and v ∈ V Ψ;

• every κ-edge u[κ]v is a link between two vertices such that there is at least one formula
occurring positively in F(G, u) and negatively in F(G, v).

Figure 2 gives examples of biRGs in IBiS (Interactive Bi-intuitionistic Solver). The name of
a biRG is indicated along with its initial �root� vertex ε on the left hand side of a colon. Edges
of type φ, φ̄ and κ (ψ, ψ̄ and σ) are implemented as dotted (solid) arrows. φ- and ψ-edges
have simple arrow-tips (→), φ̄- and ψ̄-edges have triangle arrow-tips (_), κ-links have circle
arrow-tips (() and σ-links have no arrow-tips.

Although in full generality one could construct arbitrary biRGs, we should restrict ourselves
in this paper to biRGs that are generated by the decomposition of an initial bi-intuitionistic
formula to prove (or disprove) through a reduction process. The details of this reduction process
shall be explained in full details in Section 4.1 but for a quick intuitive understanding of the
ideas underlying the notion, one should think of a biRG as a structure representing an initial
sequent in a sequent-style derivation, or an atomic path in a connection-based setting.

biRGs are structures that convey both syntactic and semantic information and can therefore
be interpreted either syntactically, or semantically. For example, an edge u[τ]v, with τ ∈ {ψ, φ}
(intuitionistic edges) has a double intuitive meaning. From a semantic standpoint, u[τ]v means
that, whenever interpreted in a Kripke model M, the world corresponding to v should be
accessible inM from the world corresponding to u, as prescribed by the Kripke interpretation
of implication. Therefore, in the semantic interpretation, one reasons in terms of Kripke model
accessibility. From a syntactic standpoint, in a sequent-style derivation for example, u[τ]v
means that the formula f(v) that led to the introduction of the vertex v should be introduced

3

Figure 3: initial R-graph for (((R ∨ P) �Q) ∧ (P � ⊥)) � ((P � R) �Q)

before the formula f(u) that led to the introduction of the vertex u. Therefore, in the syntactic
interpretation, one reasons in terms of introduction precedence in sequent-style derivations.

For edges with tags in the set {ψ̄, φ̄} (bi-intuitionistic edges), the same semantic interpre-
tation holds, but the syntactic interpretation breaks down (or, more precisely, needs to be
reversed as indicated by the overbars on the edge-tags). Indeed, although oriented from u to
v, the edge u[ψ̄]v implies that f(u) is a subformula of f(v) and thus has to be introduced after
f(v) in a sequent-style derivation. In order to recover the syntactic interpretation, one has to
cross ψ̄- and φ̄-edges backward (from their target to their source) when reasoning in terms of
introduction precedence.

4 Interactive Bi-intuitionistic Solver (IBiS)

When IBiS1 is started, the initial step consists in choosing the logic to consider in the area
"Choose Logic". Let us choose bi-intuitionistic propositional logic instead of plain intuitionistic
propositional logic. Then, we need to enter the formula we want to prove in the area called
"Sequent or formula to prove". The help button helps us recall the right syntax for
writing formulas. Let us try to prove the formula

C = (((R ∨ P) �Q) ∧ (P � ⊥)) � ((P � R) �Q)

as a �rst example. After pressing the validate button , the area called "Current panel" gets
populated with the initial biRG G0 depicted in Figure 3.

4.1 Reduction Step

Let us now explain how to build biRGs from (signed) formulas. A reduction through a formula A
is a sequence R = R0ρ1 . . . ρi−1ρi . . . in which R0 is a collection (of biRGs) containing the single
biRG G0(V0, E0), where V0 = {ε}, E0 = ∅ and F(G0, ε) = {A−}, and each ρi is a reduction
step that transforms the collection Ri−1 inherited from the previous reduction step into a new

1Available at http://www.loria.fr/~galmiche/TYPES.html

4

http://www.loria.fr/~galmiche/TYPES.html

u

u

α

α1

α2

u

u u

β

β1 β2

u u aαψ
α1

α2

ψ

u u aαψ
α1

α2

ψ̄

u

u

u

x

x

φ

φ

βφ

βφ

βφ

β1

β2

u

u

u

x

x

φ̄

φ̄

βφ

βφ

βφ

β1

β2

α α1 α2 β β1 β2

(A ∧ B)+ A+ B+ (A ∧ B)− A− B−

(A ∨ B)− A− B− (A ∨ B)+ A+ B+

(A � B)− A+ B− (A � B)+ A− B+

(A � B)+ A+ B− (A � B)− A− B+

itype

(A � B)+ φ
(A � B)− ψ

(A � B)+ ψ

(A � B)− φ

Figure 4: Reduction rules w.r.t. principal and intuitionistic types

Figure 5: pure irreducible biRGs through (((R ∨ P) �Q) ∧ (P � ⊥)) � ((P � R) �Q)

collection Ri by applying one of the reduction rules given in Figure 4 to a signed formula tagging
a vertex u of some biRG in Ri−1.

Reduction rules rewrite biRGs according to the principal type (α or β) and intuitionistic
type (φ, φ, ψ or ψ) of the formula under reduction. β-rules split a biRG into two new biRGs,
φ- and φ-rules introduce new φ-vertices, while ψ- and ψ-rules introduce new ψ-vertices. βφ-
and βφ-formulas are special in that they may be reduced as many times as required to decide
validity (duplication is handled through the notion of multiplicity in [2]).

A biRG is irreducible if all of its non atomic formulas have been reduced at least once and
a collection of biRGs is irreducible if all of its biRGs are irreducible. Let R be a reduction
through A, R is �nished if there exists a natural number n such that for all Ri ∈ R, Ri is
irreducible if and only if i ≥ n and we then call Rn a pure irreducible collection of biRGs
through A.

5

In IBiS, starting with the initial biRG G0, we now have two possibilities: either we choose to
apply reduction rules step by step manually by right-clicking on vertices and selecting a formula
to reduce in the combo box "Reduction rules" (only reducible formulas are listed in the box),
or we choose to apply all possible reduction rules automatically in one go by pressing the hat
button . Let us press the hat button, after the reduction is �nished, the current panel gets
populated with the pure irreducible biRGs through (((R∨P) �Q)∧ (P � ⊥)) � ((P � R) �Q)
depicted in Figure 5.

4.2 Binding Step

The next step consists in applying binding rules, i.e., adding σ- and κ-edges to the collection
Rf of irreducible biRGs obtained in the reduction step. To insert a κ-edge into a biRG, one
needs to right-click on the vertex which in supposed to become the source of the κ-edge, then
click on "Binding rules", then select the "Kappa F+ �> F-" action, which unfolds a list of
vertices from which we should select the one that should become the target of the κ-edge.

Selecting the "Sigma xi �> ai" action in the "Binding rules" list allows one to insert
σ-edges in a similar way except that any newly inserted σ-edge is automatically added in all
biRGs in which it can be inserted, i.e., once a variable x is bound to constant a by a σ-edge in
some biRG, it is also bound to that same constant in all biRGs that contains both x and a. Let
us remark that the "History" panel allows one to rollback to any previous state by clicking on
one of the undo buttons .

4.3 Validity Checking Step

Before describing this step in IBiS we need to recall the biRG characterization of BiInt validity [2]
and the notions upon which it relies.

A T -path from u to v in a biRG G(V,E) is a sequence u0τ1u1 . . . up−1τpup such that u0 = u,
up = v and for all 1 6 i 6 p, ui is a vertex in V , τi is an edge-tag in T and E contains a
τi-edge ui−1[τi]ui. A T -path is called a concrete path whenever T = {ψ, ψ̄, σ}. T -cycles and
concrete cycles are de�ned accordingly. Concrete reachability is de�ned as the relation Gu→ v
that holds if and only if u = v or there is a concrete path from u to v in G.

Let G(V,E) be a biRG. G is inconsistent if there is some vertex u in V such that ⊥+ ∈
F(G, u). G is admissible if all concrete cycles in G are σ-cycles that contain at most one ψ-
vertex and for all τ -edges u[τ]v in E such that τ ∈ {φ, φ̄}, Gu→ v. A collection of biRGs is
inconsistent (admissible) if it contains an inconsistent (admissible) biRG. Given a subset S of
V , the S-slice of G is de�ned as the smallest biRG GS(V S , ES) such that S ⊆ V S and for all
u ∈ V S and v ∈ V , if v[τ]u ∈ E and τ ∈ {ψ, φ, σ} then v ∈ V S and v[τ]u ∈ ES , and if u[τ]v ∈ E
and τ ∈ {ψ̄, φ̄, σ} then v ∈ V S and u[τ]v ∈ ES . G is complementary if there is a κ-edge u[κ]v
in E such that the slice G{u,v} is admissible and G{u,v}u→ v. A collection is complementary
if all of its biRGs are complementary.

Let G(V,E) be a biRG. The pure part of G induces a relation � on V × V , called the
domination ordering, de�ned as the least partial ordering such that u � v if u[φ]v ∈ E or
u[ψ]v ∈ E or v[φ̄]u ∈ E or v[ψ̄]u ∈ E. A local σ-binding for G is a function σ that extends G
by adding σ-links (bidirectional σ-edges) in E. Given two collections R = {G1, . . . , Gn} and
S = {σ1, . . . , σn} such that for all 1 6 i 6 n, σi is a local σ-binding for Gi, the global σ-binding
σ for R (induced by S) is de�ned as σ(Gi) = σi(Gi) for all 1 6 i 6 n.

A global σ-binding induces a relation < on Ψ × Φ, called a precedence relation, such that
a < x if there is a σ-link a[σ]x in σ(Gi) for some 1 6 i 6 n. A local σ-binding σ is admissible
for a biRG G if σ(G) is admissible. A global σ-binding σ is admissible for a biRG-collection R

6

if for all G in R, σ(G) is admissible. Local and global κ-bindings are de�ned similarly w.r.t.
κ-edges.

De�nition 1. A BiInt formula A is biRG-valid if and only if there exist a (global) σ-binding σ
and a (global) κ-binding κ for some collection Rf of pure irreducible biRGs through A such
that:

• For all (not necessarily distinct) biRGs G1(V1, E1), G2(V2, E2) in σ ◦ κ(Rf) and all φ-
vertices x in V1 ∩ V2, if x[σ]u ∈ E1 and x[σ]v ∈ E2 then u = v.

• For all consistent biRGs G(V,E) in σ ◦ κ(Rf), G(V,E) is complementary.

• The reduction ordering C = (� ∪ <)+ induced by σ, where (·)+ stands for transitive
closure, is irre�exive.

The binding rules should be used so as to try to make the irreducible collection of biRGs
satisfy either validity, or non-validity criteria. IBiS provides some assistance on that matter
through its green and red player buttons (and). When the green player button is clicked,
IBiS checks the collection of biRG in the current panel for validity, while the red player button
checks it for non-validity and, upon success, returns a counter-model.

It is also possible to check whether a particular biRG in the current panel individually
(or locally) satis�es the validity or non-validity criteria. For that, one needs to right-click on
the biRG that should be checked and select either the "Check validity", or the "Check non

validity" action. Let us remark that De�nition 1 implies that one only needs to consider
consistent biRGs to establish the biRG-validity of a formula. Therefore, inconsistent biRGs are
by default hidden in IBiS, but checking "Show inconsistent graphs" in the "Options" area
makes them visible.

In the collection Rf given in Figure 2, all biRGs in Rf are admissible and complementary.
Moreover, Rf induces the following acyclic reduction ordering:

εa0

x0 a1 x1 a3

a2�

�

�

�

<

<

After we click on the green player button to check the validity criteria on Rf , IBiS concludes
to the validity of the formula C we entered in the initial step.

Figure 6 gives an example of counter-model construction for the formula Q � ((¬(P �Q) �
P)∨P) by clicking on the red player button on a collection of saturated (see [2] for a de�nition
of saturation) biRGs where all possible κ-edges have been inserted.

5 Towards proof-search automation

To make IBiS a fully automated theorem prover one needs to solve two distinct problems. The
�rst one is to provide an algorithm to enumerate all possible global κ-bindings. In a connection-
based or matrix-based setting, this would roughly correspond to a path enumerating algorithm.
The second problem is to provide an algorithm to �nd admissible global σ-binding.

Given an admissible σ-binding, it is not di�cult to check whether κ-edges are covered
by a concrete path or not, the actual problem really is to �nd such σ-bindings. A trivial but

7

Figure 6: counter-model for Q � ((¬(P �Q) � P) ∨ P)

particularly ine�cient solution would be to enumerate all possible σ-bindings and check whether
they are admissible or not.

As a �rst step toward more e�cient solutions, in [2], we brie�y sketched an algorithm
that, given a pure biRG G and a set K of κ-edges, enumerates only those σ-bindings that are
admissible for the slice of G induced by K. The solving algorithm proceeds by preserving the
acyclicity of the underlying reduction ordering C and has been implemented in SWI-Prolog for
a �rst prototype 2.

Figure 10 shows how to run the Prolog prototype in an interactive SWI-Prolog session. We
�rst run the SWI-Prolog interpreter from the terminal with the command swipl. Once in the
Prolog interpreter, we get a question mark prompt from which we load the source code of the
solver prototype contained in a �le called iwil.pl. We are now ready to manipulate resource
graphs. Our �rst predicate (command) is readrg which loads a resource graph description from
a �le the name of which defaults to rg.pl.
The content of the rg.pl �le used in Figure 10 is given in Figure 7 as well as its more pleasant
graphical counterpart. We use a binary predicate rg to de�ne one single resource graph named
iwil by enumerating all edges that should belong to it. This single `global' resource graph is
obtained by merging the pure part of the resource graphs in the collection shown in Figure 2,
keeping exactly one κ-edge in each consistent resource graph of the collection 3.

Since rg.pl may contain more than one resource graph description, we need to indicate
which resource graph should be used as the working resource graph. This is done by issuing the
predicate userg(iwil), which tells the solver to use the resource graph named iwil in rg.pl.
We can check that the working resource graph has been correctly set by issuing the predicate

2Available at http://www.loria.fr/~galmiche/TYPES.html
3In a connection-based setting, this would correspond to a spanning set of connections.

8

http://www.loria.fr/~galmiche/TYPES.html

εa0

x0 a1 x1 a3

a2ψ

φ ψ̄ φ̄

ψ

ψ

κ
κ

κ

Figure 7: Prolog description of the R-graph iwil

εa0

x0 a1 x1 a3

ψ

φ ψ̄ φ̄

ψ

κ
κ

κ

Figure 8: working slice of the R-graph iwil

printrg, which prints the working resource graph.

Since the working graph contains κ-edges, the next step is to compute the slice induced by
the set of κ-edges. This is achieved by issuing the slicerg predicate as illustrated in Figure 11.
We can check that the slice has been computed correctly with the printslice predicate, which
prints the working slice. Computing the working slice tells us that the vertex a2 is not needed
under the κ-binding depicted in Figure 7 and can therefore be safely discarded. The resulting
slice is graphically depicted in Figure 8.

Once we have a working slice, the next step is to ask the solver to enumerate all admissible
σ-bindings. We do so with the solvemap predicate. When the solver outputs a solution, we
can either stop the solving process by typing return or get the next solution (if any) by typing
a semi-colon. In that case, the solvemap predicate fails when all admissible solutions have
been exhausted. In our example, we can see that there exists only one solution which exactly
corresponds to the σ-binding {x1[σ]a1, x0[σ]a0} used as a solution in Figure 2. We can apply this
σ-binding to the working slice with the applymap predicate and see the result with printslice

as illustrated in Figure 11. The resulting slice is depicted in Figure 9. Finally, to convince

9

εa0

x0 a1 x1 a3

ψ

φ ψ̄ φ̄

ψσ

σ

κ
κ

κ

Figure 9: admissible σ-binding for the working slice of the R-graph iwil

ourselves that the solution given by the solver actually is a solution, we check that all non-solid
(virtual) edges are indeed covered by a concrete path using the checkcpath predicate 4 as
illustrated in Figure 12.

6 Future Work

We have explained in the previous section how to �nd σ-bindings using our Prolog solver
prototype. A Java rewrite of this Prolog prototype is currently in progress to enable fully
automated σ-binding resolution in IBiS. The task is not as direct as it may seem at �rst
glance. Indeed, because we merge a whole resource graph collection in which each resource
graph corresponds to an initial sequent in a sequent-style derivation (or an atomic path in
a connection-based setting) into one single global resource graph, the solutions given by the
solvemap predicate should be checked further in order to ensure that they still work on each
local resource graph in the initial resource graph collection. We conjecture that it is possible
to do without this additional check for local correction for resource graph collections generated
by reduction of an initial signed formula as prescribed by the reduction rules of Figure 4.

References

[1] T. Crolard. A formulae-as-types interpretation of substractive logic. Journal of Logic and Com-

putation, 14(4):529�570, 2004.

[2] D. Galmiche and D. Méry. A Connection-based Characterization of Bi-intuitionistic Validity, In
23rd Int. Conference on Automated Deduction, CADE-23, LNAI 6803, pages 268�282, Wroclaw,
Poland, 2011. Springer Verlag.

[3] R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof-search for Bi-intuitionistic logic
using nested sequents. In Advances in Modal Logic 7, pages 43�66, 2008. College Publications,
London.

[4] L. Pinto and T. Uustalu. Proof search and counter-model construction for Bi-intuitionistic propo-
sitional logic with labelled sequents. In Int. Conference on Analytic Tableaux and Related Methods,

TABLEAUX 2009, LNAI 5607, pages 295�309, Oslo, Norway, 2009. Springer Verlag.

[5] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic logic.
Dissertationes Mathematicae, 168, 1980.

[6] R. Goré, and J. Thomson. BDD-Based Automated Reasoning for Propositional Bi-intuitionistic
Tense Logics. In 6th Int. Joint Conference on Automated Reasoning, IJCAR 2012, LNAI 7364,
pages 301�315, Manchester, UK, 2011. Springer Verlag.

4Failure of the checkcpath under a solution given by the solver would expose a bug in the implementation

of the solver.

10

Figure 10: loading an R-graph into the Prolog solver prototype

11

Figure 11: �nding a solution with the Prolog solver prototype

12

Figure 12: checking a solution with the Prolog solver prototype

13

	Introduction
	Bi-intuitionistic Propositional Logic
	Bi-intuitionistic R-graphs
	Interactive Bi-intuitionistic Solver (IBiS)
	Reduction Step
	Binding Step
	Validity Checking Step

	Towards proof-search automation
	Future Work

