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Abstract. In this paper we study proof theory for the first constructreesion

of hybrid logic calledIHL. In this perspective we propose a sequent-style natu-
ral deduction system and then the first sequent calculuHfor In addition to
soundness and completeness, we show that this calculubénaattelimination
property. Finally, we give the first decision procedure Hdt, that is based on
this calculus, and therefore we prove its decidability.

1 Introduction

In the standard Kripke semantics for modal logics, a modgkiansition system where
the same formula may have different truth values at diffewearlds [4,9]. The hybrid
logics were mainly introduced in order to express this atstof truth [3,2] by adding
to modal logics a new kind of propositional symbols calfeninals and also a new
operator, calledatisfaction operatgrthat allows one to jump to the world named by a
nominal. There exist many works on hybrid logics, mainly tassical versions, about
calculi, decidability and complexity [1,2,6,19].

In this work we aim at studying an intuitionistic versiontigthe first constructive ver-
sion of hybrid logic, defined by Braliner and de Paiva in [4 aalled herdHL. It has
been designed from the intuitionistic modal logicintroduced in [17], knowing that
intuitionistic modal logics have some important applicas in computer science, for
instance for formal verification of computer hardware [1dfialso definition of pro-
gramming languages [10,14]. There exits a natural dedustistem fotHL, extended
with additional inference rules corresponding to condision the accessibility relation
but in this logic proof-theory and decidability have notlhgleen explored.

Let us mention another constructive version of hybrid Iddi8] that is based on the
intuitionistic modal logiclS5 [17] and later enriched with the disjunctive connective
and the constant denoting absurdity in [8]. However, thisd@annot be seen as a com-
plete hybridization oS5 because the nominals (calltacesin the original paper)
are only used with the satisfaction operator. We have rgcstudied proof-theory for
this logic by defining sequent calculi dedicated to proof emdintermodel construction
[12]. Thus we have provided an alternative proof of decilitgtby proof-theoretical
arguments and shown that that sequent calculus formalierhea good formalism al-
lowing an effective management of nominals in the proofeprocess. Even IHL is
also an intuitionistic hybrid logic these results cannodlivectly extended for this logic.



In this paper we consider the intuitionistic hybrid lodgidL for which as said before
there only exists a natural deduction system [7] and deditlais still an open ques-
tion. In order to solve this problem, we mainly propose a se¢galculus fotHL that
is adapted to proof-search but also to the study of decithabs mentioned before,
there are many works dedicated to classical versions ofithydgics but they cannot
be directly adapted to propose a sequent calculus allowisgaw decidability in such
a constructive or intuitionistic version of hybrid logic. ey point to prove the decid-
ability of IHL by using the sequent calculus is to solve the problem of ttiednction
of new nominals due to some rules. This problem is similah&introduction of new
labels in the labelled sequent calculi of the intuitiomistiodal logics [17]. Let us note
that the introduction of new nominals or labels is not a peabin the case of classical
modal and hybrid logics because we can define proof systeth©wly invertible rules
allowing terminating proof-search [5,15]. But it is a preiy in the case of an intuition-
istic version of hybrid logics and then one needs to intredajgpropriate concepts to
deal with it.

In this perspective the main contributions of this work d@he: definition of a sequent
calculus forlHL, the proofs of some of its properties like cut-eliminatiordahe first
proof of its decidability that is based this calculus. Frdrede results we will study, in
next works, the complexity dHL [1], but also extensions of our sequent calculus with
rules corresponding to conditions on the accessibilityti@hs (geometric theories) like
reflexivity, symmetry and transitivity, in order to obtaimedular system in which each
condition on the accessibility relation has a correspagdie and each combination
of these rules is complete for the logic with the correspogdionditions.

In this context, Section 2 presents the first constructivsiga of intuitionistic hybrid
logic IHL [7] and the known related results. In Section 3 we give a @hturduction
system foHL in a sequent-style in order to deal with validityliiL. It is derived from
the initial natural deduction systelyy. [7]. In Section 4 we propose a sequent calculus
for IHL that is calledG,y. and then prove its soundness from the semantics. In Section
5 we prove that the calculus satisfies the cut-eliminati@perty.and shows its com-
pleteness by proving that if a sequent is derivablé,jn then it is derivable ilNS. .

In Section 6 we prove the decidability 8L by using the sequent calculGs,, . The
key point of the decision procedure we design is the use afdhelimination property

in order to provide a suitable subformula property difféffemm the usual property and
called thequasi-subformula propertyn this perspective we introduce a notionref
dundancyon cut-free derivations in our calculus such that that agyeat that is valid
has an irredundant proof. Then, by using the quasi-subflarproperty, we prove that
there is no infinite proof which is not irredundant and theovje a decision proce-
dure forlHL and then prove the decidability of this logic through prgefrch using
our sequent calculus.



2 Intuitionistic Hybrid Logic

Hybrid logics are logics obtained by adding to modal logioge kind of propositional
symbols, calleshominals which are used to refer to specific worlds in a model and also
a new kind of operators called ttsatisfaction operatorghat allow us to jump to the
worlds named by nominals. For more details about hybridckgee [3]. In this paper,
we study the first constructive version of intuitionistiddnig logic IHL [7].

Let Prop be a countably set of propositional symbols &t be a countably set of
nominals that is disjoint frorRrop. We usep, q,r, ... to range oveProp; anda, b, c, ...

to range over nominals. MoreovBiom(S) denotes the set of nominals that appear in
the syntactic objec$.

The formulas ofHL are given by the following grammar:
Fuo=pla| LIFAF|FVF|IFOF|IOF|OF |arF
Definition 1. A IHL-Kripke modelis a tuple

(W, < {DW}W€W7 {NW}WEWa {RW}WEW7 {Vw}wew)
with
-W is a non-empty set (of 'worlds’) partially ordered ky
- for each we W, Dy, is a non-empty set such that@wv implies By C Dyy;
- for each we W, ~,, is an equivalence relation onsuch that w< w implies
~wC~w
- for each we W, Ry is a binary relation on [, such that w< w implies Ry € Ry;
- for each we W, \{y is a function that to each g Prop assigns a subset ofPsuch
that w< w implies \(p) € Vv (p).
It is assumed that if dvy d’, e~y € and Ry(d,e) then R,(d’,€), and similarly, if
d ~y d" and de Vi (p) then d € Vi (p).

Given alHL-Kripke model(W, <, {Dw }wew, { ~w }wew, { Rw }wew, {Viw }wew) and an el-
ementw € W, aw-assignmenits a function which assigns to each nominal an element
of Dy.

Definition 2. LetM = (W, <, {Dw}wew, { ~w twew, { Rw }wew, {Vw }wew) be alHL-Kri-
pke model, ve W, g be a w-assignment,&D,, and A be a formulad,g,w,d = A is
inductively defined as follows:

- M,g,VV,d F p iffd EVW(p)a

-M,g,w,dFEaiffg(a) ~wd;

-M,g,w,dE L never;

-M,g,w,dE=AABIff M,g,w,dEAandM,g,w,dE B;

-M,g,w,dE=AVBIff M,g,w,dEAor M,g,wdFEB;

-M,g,w,dEADBIffforallv > w, M,g,v,d EAimpliesM,g,v,d F B;

- M,g,w,dE DA iff forall v > w, ec Dy, R/(d,e) impliesM ,g,v,eF A;

- M ,g,w,d = QA iff there exists & Dy s. t. Ry(d,e) and M, g, w,eF A;
-M,g,w,dEa:Aiff M,g,w,g(a) EA.
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Fig. 1. The Natural Deduction SysteNyy

Let M = (W, <, {Dw}wew, {~w}wew, { Rw}wew, {Vw}wew) be alHL-Kripke model, a
formulaAis valid in M, denotedM E A, if and only if M, g, w,d = Afor everyw e W,
everyw-assignmeng and everyd € Dy,. A formula isvalid in IHL, denotedHL F A, if
and only if M E A for everylHL-Kripke models/.



Moreover, let us note that for any formufand any Kripke modelM, M E A if
and only if M E a: Awherea ¢ Nom(A). Therefore, there is no loss of generality by
considering onlysatisfaction statementhat are statements of the foram A.

Proposition 1 (Monotonicity). If M ,g,w,d = A and w< W, thenM ,g,w',d E A.
Proof. By structural induction or\.
Proposition 2 (Equivalence)If 4,g,w,d = A and d~y, d’, thenM ,g,w,d’ F A.
Proof. By structural induction or.

The first results fotHL deal with some proof-theoretical aspects that are based on a
natural deduction system [7] given in Figure 1. No otheraléve calculi like sequent
calculi have been proposed and the decidabilitiHif is an open question.

The main goal of this paper is to study this question and teeethe first proof of
decidability forlHL through a decision procedure based on a sequent calculus.

3 A Sequent-style Natural Deduction System foftHL

In this section, we give a new natural deduction systeniHarin a sequent-style. It is
obtained from the natural deduction systBijy_ given in [7] (see Figure 1). Our main
point here consists in defining a new system in order to deélwailidity in IHL. Itis a
first step towards the new sequent calculus for this logic.

Definition 3 (Sequent).A sequent is a structure of the fofm-C wherel™ is a possibly
empty finite multiset of satisfaction statements and C idiafaation statement.

A sequent” - C corresponds to the formulg\I") > C. We use the notatioAl" as a
shorthand forag : Ay A ... Nag: Ax whenl = ag @ Ag,...,a : Ak If T is empty, we
identify AT with T. We noteM ,g,wk I if M,g,w,d= AT ford e Dy, (the choice of
d is not important).

The natural deduction systelNb,y, is given in Figure 2. In fachS,y, is nothing more
than the natural deduction systedyy with contexts. The use of the sequent structure
can be seen as a syntactic way to denote particular formuotdeed the comma in left-
hand side is interpreted as a conjunction and the symlaglan implication.

Let us note that, like in the systelfiy., we use the formulas of the foren {>c to rep-
resent the accessibility relation. We can easily see#ha, w,d F a: {cif and only if

R(g(a),9(c))-

Let us consider the formule = a: (AvB>c:C)D(ADc:C)). A proof of this
formulainNSy, is
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Fig. 2. The Natural Deduction SysteNS;
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In order to illustrate the differences with the initial sytstN;y. we give the following
proof of F in Ny :



[a:A

Vil
[a:AvBD>c:C] a:AvB
[De]
c:C
— [
a:Abc:C
o]

a:((AvBoc:C)D>(ADc:Q))

Let us show now that our new sequent-style natural dedusgietemNS,, is sound
and complete.

Theorem 1 (Soundness)The systenNSy, is sound.

Proof. Proceeding contrapositively, for every rule, we suppoaeith conclusion is not
valid and prove that one of its premises is not valid. Herepnlg show the casg .
Let S =T Fa: OA be a sequent that is not valid and &t = (W, <, {Dw }wew, { ~w
Fwews { R fwew, {Vw}wew) be a countermodel of. Then, there existp € W and awp-
assignmeng such that\,g,wp E I and9/, g,wp ¥ a: TA. SinceM ,g,wp ¥ a: DA, we
know that there exist; > wg andd € Dy, such thaRy, (g(a),d) andM,g,wi,d # A.
Letc be a nominal notitNom(.s). We define thev,-assignmeng’ by g'(c) = d and for
any nominab, different fromc, g'(b) = g(b). Using Proposition 1) ,¢’,w; E I holds
and asRy, (g(a),d) holds, we haveM ,g',w; F a: {c. As we haveM ,g,w;,d ¥ Aand
M,g,w1 ¥ c: A, we deduce thad/ is a countermodel df,a: $ec: A

Theorem 2 (Completeness)The systenNS,y is complete.

Proof. The proof is obtained from the systeliy. by using the approach proposed
in [18]. Intuitively, the open assumptions in a derivatioeet in Ny are represented
in the left-hand side of the corresponding sequent. We sadftlve define a natural
deduction system similar tNS;y. where we only replace theéischargeof only one
assumption with the discharge of all the assumptions ofdhgesform Complete Dis-
charge Convention then we obtain a system equivalentNg,_ . For example the rule
[D1] becomes

a:AFa:B
M~a:AD>B
wherel” =T\ {a: A} (there is no occurrence af: Ain I’). Now, to prove the com-

pleteness oNSy., we only have to show that if a sequent has a derivation inatterl
system then it has a derivationby, .

4 The Sequent Calculugsy

In this section, we propose a sequent calculusliftir, called Gy.. Its soundness is
proved by using the semantics and its completeness is phoyesthowing that if a
sequent is derivable iG . then it is derivable ilNS;y..
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Fig. 3. The Sequent Calculus;y

We observe that even if there exist works on the design ofesgqualculi in some clas-
sical hybrid logics [16] we cannot follow a similar approachhe case of the intuition-
istic IHL logic. In our work we use a sequent structure that contaimg satisfaction
statements because it allows easilyatisorbthe structural rules in the axioms, logical
and modal rules. Moreover, as in [7] the premisses and thelesion of each rule are
formulas of the forna: A, we can relate our calculi construction with the initialtgyss
provided forlHL. We will see that it facilitates the study of relationshipsveeen the
cut-elimination and the normalization like in the case dfiitionistic logic [18]. Let us
recall that a proof of normalization is given in [7].

The principal formulaof an application of a rule is defined to be any formula which
is introduced by that rule except the case$mf] and[0.] where the principal formu-
las are respectivelg: AD B anda: OA. We callderivationof a sequeng in Gy any



tree labelled with sequents such that the root node is kdb&lith § and the labels at
the immediate successors of a nodire the premises of a rule Gfy,. having the label
atnas conclusion.

A sequents has aproofin Gy, denoted-¢,, S, if and only if § has a finite derivation
in Gy where any leaf node is labelled with an axiom. Moreover W&G/WElHL.S if S
has a proof irG,y. of depth smaller or equal to

Let$S =T+C be a sequent ari@be the relation olNom(S) defined byaRbif and only
if a: bis an element of . We note~ the reflexive, transitive, symmetric closureff
When we associate a condition of the foan- b to a rule, this means that is the
reflexive, transitive, symmetric closure of the relationaded from the conclusion of
this rule. The problem to verify the conditions of this forsndecidable.

The rules and axioms di;y. are given in Figure 3. The approach we used to obtain
this calculus is similar to the one used to obtain the cakGi8i for the intuitionistic
logic from the calculu&J by absorbing weakening and contraction into the axioms and
the logical rules (see [18]). There are conditions of thenfar~ b associated to some
axioms and rules oy, that are due from the absorption of the rule®n] of NS..

Let us note thaGu. is sound and complete without the restriction[tj that the prin-
cipal formula must be atomic. However, without this regimic, G,y fails thedepth-
preserving admissibility of contractiquroperty necessary in our approach to prove the
cut-elimination property.

We illustrate the use di . by giving a proof ofa: O(b>c)ta: $bD dc

[Ref

Re
a:D(bjc),b:(bjc),a:(}bl—b:b[ ! a:D(bjc),a:@b,d:b,b:c}—b:c[ |
oL

a:0O(b>c),b:(b>c),a: Ob-b:c

a:0O(b>c),b: (ch)7a:<>b}—a:<>c[ )
a:0O(b>c),a: Gbra: dc (O]
a:0O(b>c)Fa: b e R

Proposition 3. Let S = I'-C be a sequent and,a € Nom(S) such that a~ &. If
M,g,wkET then da) ~y g(d).

Proof. It comes from the fact that i, g,wE a: b theng(a) ~w g(b).
Theorem 3 (Soundness)f k¢, S thens is valid.

Proof. Proceeding contrapositively, for every rule, we suppoaeith conclusion is not
valid and prove that one of its premises is not valid.
Here, we only show the case [of| | rule. The other cases being similar.



Let us assume tha =TI,a : {c,a: OAFC (a~ &) is not valid andM = (W, <
,{Dw }wew, { ~w}wew, {Rw}wew, {Viw}wew) be a countermodel af. Then, there exist
Wp € W and awg-assignmeng such thatM ,g,wp = I,a : {c,a: DA and M, g,wo ¥ C.
Sincea ~ &, we haveg(a) ~w, 9(&') (Proposition 3). Thus, by using Proposition 2,
M ,g,Wo = @ : OA holds. We know thafM,g,wo = & : {ciff Ry,(g(a'),9(c)). There-
fore, we obtainM,g,wp = ¢ : A and we deduce thal/ is a countermodel of ,a’ :
¢c,a: OA c: A-C (the premise ofL]).

We show in the next section th@ty, has the cut-elimination property. It means that if
a sequens is provable inGiy. then there exists a proof ofin Gy without [Cut].

5 Cut-elimination and Completeness ofs ;4.

The cut-elimination is one of the most important propertg sequent calculus. Indeed,
the cut-elimination generally results in thgu@si)subformula propertyin any proof of
a sequens, only the (quasi-)subformulas of the formulas®©éppear in this proof.

5.1 Depth-preserving Admissibility

Let us recall the notion alepth-preserving admissibility

Arule [R] is said to beadmissiblefor a calculusC, if for all instances 11 -+ k. R
C

of [R], if for all i € [1,Kk] F¢H;, thent~C.
Arule [R] is said to bedepth-preserving admissibfer ¢, if for all n, if for all i € [1,K]
H&-Hi, then-{.C.

We noteG,;,, the sequent calculuSy. without the [Cut] rule. The following propo-
sition corresponds to the depth-preserving admissitpligperty of weakening.

Proposition 4. If F¢_ T+Cthen~__ T a:AFC.
| IHL

HL

Proof. By induction onn.

The following proposition is used to prove the depth-preisgradmissibility of con-
traction. It is similar to the inversion lemma given in [1Bhowing that for some rules
of G, , if the conclusion has a proof of a deptlihen some of its premises has a proof
of a depth smaller or equal to

Proposition 5.
1If I—g, F,a:A/\Bl—Cthenl—g, Nna:Aa:BFC.

IHL IHL
2.1f I—g_ Ma:A VA FCthen-". I a:AFC, fori=1,2.

IHL IHL
3. Ifl—g, r-a:A AAthen-"_ TFa: A, fori=1,2.

IHL

IHL
4. 1fF" T'+a:A>DBthen-"_ T,a:AFa:B.
GHL GIHL
5.1f-2_ Ia:ADBFCthen . T,a:B-C.
L IHL

10



6. If I—“ F c:a: AI—Cthenl—n F a:Ar-C.

7. Ifl—n Fl—c a: Athenl—n Fl—a A

8. Ifl—n Fl—a DAthenl—n F a:ockc:A(c¢ Nom Fa: OA)).

9. If l—gl_ ra: <>A|—Cthenl—“_ Ma:{c,c: AFC, c¢ Nom a: GARC).

Proof. By induction onn. Here we only develop the case of 8.
-If n=0thenl Fa: OA s an axiom. Thus there is a formula of the fodm L in I
andl—(G’_ ra:dckc: Aholds.

IHL

- Let us assume th&tgfl I'-a: OA by a derivationD. If a: OA is not principal in

the last rule applied iril)HLthen by applying induction hypothesis to the premise(s) an
using the same rulti*n+1 IM,a: {$ckc: Aholds. Otherwisea : A is principal andD
I

ends with

Ma:{dckc:A

D*

fraoa R

By taking the immediate subdeduction of the prenﬁ%l Ia:{ckc:Aholds.
IHL

In order to prove the depth-preserving admissibility of tcaction, we need to prove
that if a sequens has a proof irG,;,, of a depttn then the sequent obtained frasrby
renaming some nominals has a proofig, of a depth smaller or equal to

Definition 4. A renaming function f is a function from N to M whereNNC Nom. It
is inductively extended to the formulas having nominals esNollows:
- f(p) = p where pe PropU{L}

- f(AoB) = (A) o f(B) whereo € {A,V,D}

- £(OA) = OF(A) whereO € {0, }

-fa:A)=f(a): f(A)

We use the notatioi (") for f(as : A1),..., f(ak: A) whenl =a; : Aq,...,a : Ak
Moreover, the notatioffi (I -C) corresponds td (") - f (C).

Proposition 6. Let S be a sequent and fNom($) — M be a renaming function. If
n
Gﬁ-iLS thenl—GmL f(S).
Proof. It is sufficient to prove by induction omthat if l—”, 5 thenl—n S[c/a] for any
c anda elements oNom, whereS[c/a] corresponds to the renamlnga)by cin .

The following propositions correspond to the depth-présgradmissibility of contrac-
tion.

Proposition 7. If l—”, F a:Aa: AI—Cthenl—n F,a:AI—C.

11



Proof. By induction onn.

If n=0thenl,a:Aa:AFC is an instance of an axiom. Thus, it is easy to see that
I,a: AFCis also an instance of the same axiom.

Let us assume thafgfl Na:Aa:AFC by aderivationD. If a: Ais not principal in

IHL
the last rule applied irD, then by applying induction hypothesis to the premise(s) an
using the same rule, we hakf%tl I,a: AFC. Otherwisea: Ais principal in the last
IHL

rule applied inD. We have to distinguish the cases of this rule.
Here, we only develop the case[df ] (A= {$B):

Ma:{B,a: {c,c:B-C
Ma:{$B,a: OB-C

[OL]

Using Proposition 57 M,a: {c a: {c,c: B,cB-C holds. Next, using Proposi-
tion 6, I—gmLF,a: <>c,a|?|L<>c,c: B,c: B-C holds ¢ andc’ are new nominals). Fi-
nally, using the induction hypothesis twide“mLF,a : {c,c: B C holds and then
11 a: $BKCis obtained usingdy |.

GiHL
5.2 Cut-elimination of Gy

Now, we give a proposition stronger than the depth-preagraimissibility of contrac-
tion. However, it does not cover all satisfaction statersenhis proposition is useful
for the proof of cut-elimination.

Ma:Aa:AFCanda~a inl,a: A-C, then"

Proposition 8. If F! .
IHL

_ Ia:AFC.
GIHL ’
Proof. By induction onn, similarly to the proof of Proposition 7.

The two following propositions are used in the proof of clitr@ation.

Proposition 9. Let § = I'-C be a sequent and, & € Nom(§) such that a~ &'. If
Fo. @ :a-Cthen-L_ .
IHL IHL

Proof. By induction onn.
Proposition 10. If -_ M~a:Aanda~ &, then-7_ T-a @ A.
IHL IHL

Proof. By induction onn.

Let D be a derivation of - C, we denoteD[l"'] the derivation ofl,["- C obtained
from D by applying depth-preserving admissibility of weakening.

Theorem 4 (Cut-elimination). Let be a$ a sequent, ifg,, S theni—GmLS.
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Proof. To prove the cut-elimination property, we use a variant oh{2en’s original
proof of this property for classical and intuitionistic iod18]. This proof consists
in transforming the applications of cut rules to applicasiof cut rules on smaller
formulae or applications of less height. It suffices to assuhatl—Gf MN-a:Aand
P, @ AFC and to prove th&fcf I =C by induction on the structure @, onthe
depth of the derivationdft-a: A, @1, and on the depth of the derivationlofa: A-C,
D». np andn, are respectively the depths ®f andD».

There are four main cases we have to consider:

1. M'a: Ais an axiom;

2. I',a: AFCis an axiom;

3. Nra:Aandl,a: A-C are not axioms and: A is not principal in the last rule of
Dy or Dy,

4. a: Ais principal of the both last rules a?; andD,.

Case 1l Fa: Ais an axiom.

-la If F'+a:Ais aninstance dld], thenitis of the forni’,a : pt-a: pandl,a: A-C
is of the forml,a : p,a: pl—C wherea ~ &' in all these sequents. By using Proposi-
tion 8, we have if-7 F a:pa:pFCwitha~a,then-? TI.a:p-C. Thus,

IH

GIHL
l—gz, r.a:pk-C holds.
- 1b If FFa: Ais aninstance ofL], thenitis of the fornT’,& : L Fa: A Thus,'-C
is of the forml’,a : L -Cand itis instance ofL].
-lelfr-a:A is an instance ofRef|, thenitis of the fornT -a: & andl',a: A-Cis
of the formlr,a: & - C wherea ~ @ in these sequents. Using Proposition 9, we obtain
I—GMLF FC.

Case 2I,a: A-Cis an axiom.

-2a lfIa: ArCis aninstance dld]. If itis of the forml",a: pi-a': p, thenl-a: Ais
of the forml~a: p with a~ a'. Using Proposition 10, we deduce thastlhl' Fa :p.
Now, we study the case whdha: A-C is of the forml,a: Aja : pka’: p with
a~a'lfa~a'inl-C, then¢_ '-Cholds. Otherwisea : Ais of the forma.: c.
If T~a:cis an axiom, then it is of the forf’.d : LI-a: ¢ and we deduce th&t-C
is an instance of L]. Now we distinguish the cases where the last rule appliethirs
[DL] or not. If the last rule applied it is [DL] then it is of the form:

Dy D/
NN-e:B T’e:DFa:c

p (O]
Me:BODla:c

Sincel,a: c-Cis an instance ofid], we can easily see that,e: D,a: cCis also

an instance ofld]. Using the induction hypothesis, we obtain a derivatiof 6fC as
follows:

13



/!
Dy —  [Id]
, Me:DrFa:c [e:D,a:c-C
Dy [Cut]
MN-e:B e:DFC

r-c

O]

[Cut] is where we apply the induction hypothesis.
Otherwise, the last rule applied iy is not[DL]. We consider only the case where the
last rule of Dy is a two-premises rule (the case of one-premise rule beingler):

Dy Df
Mra:c TIMkFa:c

MN-a:c

(R

Itis easy to see thdt',a: c-C andl'”,a: c-C are instances dfd]. By applying the
induction hypothesis, we obtain a derivationrdf C as follows:

/ /!
D ———qd P ————id]
M~a:c TIa:ckC MFa:c I a:c-C
[Cut] [Cut]
r-c r"-c
Rl
r-c

The proof in the subcasésa: AFC is an instance ofRef] andl',A@atC is an in-
stance of L] is obtained using arguments similar to these of Subcase 2a.

Case 3lta:Aandl,a: A-C are not axioms and: Ais not principal in the last rule
of Dy or Ds.

-3alta:Aandla: A-C are not axioms and : A is not principal in the last
rule of D;. We consider only the case where the last rul®pfs a two-premises rule:
Dy D/
M-C' r"ta:A

R

MN-a:A R
If [R] # [DL] thenC’' = a: A holds. By applying the induction hypothesis and the
depth-preserving admissibility of weakening and contoectProposition 4 and Propo-
sition 7), we obtain a derivation éfl- C as follows:

D[] Do[I"] Dy[r] D[]
rr'ra:A r,r,a:A-C rr'r~a:A r,r’.a:A-C
[Cut] [Cut]
rr'-c rr’-c
(R
rr=c

If [R] = [DL] then a derivation of +C is obtained similarly by applying the induc-
tion hypothesis and the depth-preserving admissibilitwedkening and contraction as
follows:

14



] DI
rr'+~a:A r,r“,a:A-C
D[] [Cut]
r,r'-=c r,r’+~c

(O]

rr=c
-3b.MFa:Aandl,a: A-C are not axioms and: A is not principal in the last rule of
D». The proofin this case is similar to Subcase 3a.

Case 4a: Ais principal of the both last rules @, andD,. Here, we only develop the
case ofA = OB, The other cases are similfir-a: A andl,a: Al-C are respectively
of the forml,a : {c/Fa:OBandl,a: OB,a : {c'+C with a~ & in these sequents
and thenD; and?» are respectively of the form:

Dy D,
.a:dcad:Hdk-c:B - ,a:0B,a:dcd,c :BFC
0Rr
rra:odka: 0B and Ma:0B,a:od-C

Using Proposition 8 and Proposition 6 we obta@:F’,a’ ;O DB, Thus, a
derivation ofl" - C is obtained by using Proposition 4 and the induction hypsithe
as follows:

(O]

@1[0’28] Q)é
ra:od,d:Bra:oB IMa:gB,d:¢dcd,c:B-C
Cut]
rra:{od-cd:B r,a:od,d:B-C (cul
[Cut]
r,a:od-C

5.3 Completeness o6y
The following propositions allow us to prove the comple&nefGy,. .

Proposition 11. If ¢, [,a: ¢c’,¢’ : c-C with ¢ ¢ Nom(I",C) U {a,c}, then we have
F2 Ta:dckC.

GHL

Proof. Fromt-¢ ' a: {c,c: ci-C and Proposition 6, we deduég
ckC. Therefore, from Proposition QEIHLF,a: {Hek-C.

IHLF,a:<>c,c:

Proposition 12. If ¢, '-a: Atheng, I',a:ckc:A.
Proof. From Proposition 10.
Theorem 5 (Completeness)The sequent calculusy is complete.

Proof. We consider the validity through the natural deductionesydtS,y. (Figure 2).
Let.S be a sequent. We suppose tl§atas a proofD in NS,y and we prove by induc-
tion on the structure oD thatl-g,,, 5. We distinguish the cases of the last rule applied
in D. The cases of the axioms and the introduction rules aralrivi

Now, we develop some cases of the elimination rules[Biwar].

- Case of Qg

15



N-a: oA INa:{c,c:A-C
r-c

[Ce]

We have two subcases:

- if A'is a nominal, then frontrg,, ",a: ¢c,c: A-C we deduce-,, IN,a: GAFC
holds (Proposition 11);

- otherwise, by applying ] to I',a: {c,c: A-C we havet-¢,, I',a: QAFC and a
proof of I' -C is obtained usindCut].

- Case ofig]:

Ma:0A MN-a:{c
M=c:A

(D]

A proof of '=c: Ain Gy is obtained as follows:

Id

MN-a:0OA F,a:<>c,a:DA,c:Al—c:A[ ]
— W] (O]
Ma:Ocka: oA IMa:{c,a:0AFC: A

[Cut]
MN-a:<oe Ma:{dckc:A
[Cut]
MFCc:A

- Case ofNom:

N-a:c MFa:A INonj
Mlc:A

Using Proposition 12 anidg,,, MN-a: A, kg, N,a:ckc:Aholds. Thus-¢g, N-c: A
is obtained usindCut].

5.4 Another sequent calculusG3,

It is possible to define another sequent calculus withoutlitimms of the forma ~ b.
We caIIG,2HL the calculus obtained frofay. by adding the following structural rule:

MNa/c]FCla/c]

: [
MNc:akC

and by replacingld], [Ref], [O.] and[{$R] by the following new rules:

— [Id] —— [Ref
[a:AFa:A MNa:a
IMa:<dc,a:0Ac: AFC Ma:dckc: A
: : O . : [OR]
MNa:dc,a:gAFC Ma:ocka: GA

Theorem 6. The sequent calculu&,, is sound and complete.

Proof. We show that a sequent is derivableGfy, if and only if it is derivable inGpy .
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6 Decidability of IHL

In this section, we prove the decidability L by using the sequent calculds,,, .
The key point of our decision procedure is the use of the botkgation property in
order to provide a suitable subformula property differeanf the usual one, called the
quasi-subformula property

We introduce a notion afedundancysatisfying the fact that any sequent validlHL
has arirredundant proof Then we prove that there is no infinite derivation which is no
irredundant and deduce the decidability result.

Introduction of New Nominals. In order to prove the decidability dHL by using
G, we must solve the problem of the introduction of new nonsinaing[{] and
[ORJ. This problem is similar to the one of the introduction of nealels in the labelled
sequent calculi of the intuitionistic modal logics studiBdSimpson in [17]. Let us note
that the introduction of new nominals or labels is not a peabin the case of classical
modal and hybrid logics because we can define proof systeth©wly invertible rules
allowing terminating proof-search [5,15].

In the case of Simpson’s calculi, the problem of the intrdiducof new labels was re-
solved using the following property:

for any derivation, there is a positive integer n such tha&tréhis no sequent containing
a chainof length greater than n. A chain is a sequence of the faiRxX .. . . , Xm—1RXm
where R represents the accessibility relatiogis<not a new label andjx; is a new
label forie [0,m—1].

We can say that any infinite derivation is redundant becewse tare necessarly two
sequents where one can be obtained from the other by renawming new nominals
(for more details see [17]).

Similarly, for Giy. a chain is a sequence of the foem: $ag,a; : Qag,...,an-1: {am
wheregg is not a new nominal and 1 is a new nominal for € [0,m—1].

Let us give an example in order to show that the previous ptpgeails in the case
of G,

ag:¢ay,...,q 1 Ogy1,a1:8g,...,8 80,8 P,..., 841 Pag: O(@A$p)Fag: L

apQay, a1 @ Qag,ap @ Gag,ay ao,azao',az: p,ag: p,ag:O(@Adp)tag: L
a: Qag, a1 1 Qag,aq 180, 180, P,z Op.ag: O(aAOp)Fag: L
a0 Qag,a1: Qag,a1ag, a2 p,agiagAOP,ad(@ AP Fag: L
apQar, a1 Qag,ar tag, a1 p;ad(a A Op)Fag: L
ao: Qag,arag, a1 Op,apd(@AOp)-ag: L
a: Qas,a1 a0 A Op,a:O(@AOP)Fag: L
8 :¥a,a: 0@ A¢p)Fag: L

O
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Moreover, it is easy to see that, in this infinite derivatitmgre are no two distinct
sequents such that one can be obtained from the other by ikmaome new nominals.
To solve this problem, we associate to every sequieajipearing in a given derivation
a particular sequent, called the equivalid sequet, afatisfying the previous property
and the fact that a sequent has a proof if and only if its edjdigaquent has a proof of
the same size. The equivalid sequents are obtained by regamine new nominals.

6.1 Quasi-subformula Property

Let us remind that theubformula®of a formulaA are inductively defined as follows:
- Alis a subformula oA,

- if B@Cis a subformula oA then so ard8,C, for® = A,V,D;

- if XBis a subformula oA the so isB, for X = O, {;

- if a: Bis a subformula oA then so iB.

Now, we introduce the notion @fuasi-subformulalt is similar to the weak subformula
notion introduced in [15] and the quasi-subformula notioveg in [7].

Definition 5 (Quasi-subformula). Let A be a formula, thguasi-subformulaare in-

ductively defined as follows:

- for everyo € {A,V, D}, the quasi-subformulas of:@Ao B are a: Ao B and all the
quasi-subformulas of aA and a: B;

- the quasi-subformulas of aDA for O € {$,0} are a: OA and all the quasi-
subformulas of c A for an arbitrary c.

Theorem 7. Let D be a derivation ofs in G, . Any formula occurrence 2A in D is
either a quasi-subformula of a formula hor of the form a <{)c, ¢ being a nominal.

Proof. By induction on the depth ab. We only have to distinguish the cases of the last
rule applied.

We are interested in the size of derivations. Previouslypreed that weakening and
contraction are depth-preserving admissible @qy, . Weakening and contraction are
also size-preserving admissible 16f,, . Moreover, if a sequent has a proof inG,;,

of sizen, then any sequent obtained frafnby renaming some nominals with others
has a proof of size smaller or equalrto

Proposition 13. If ' =C has a proof inG,;,, of size n, ther,a: A-C has a proof of
size smaller or equal to n.

Proof. Similar to the proof of Proposition 4.

Proposition 14. If I',a: A,a: A-C has a proof inG,;,, of size n, them,a: A-Chasa
proof of size smaller or equal to n.

Proof. Similar to the proof of Proposition 7.
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Proposition 15. Letl -C be a sequent and:fNom($) — M be a renaming function.
If ' +=C has a proof inG,;,, of size n, then (" - C) has a proof of size smaller or equal
ton.

Proof. Similar to the proof of Proposition 6.

Let S’ be a sequent appearing in a given derivatio ofet ~ be its associated equiv-
alence relation and letbe an element dom($’) such thac ¢ Nom(.5). We denote
N(c,.5") the set of nominals defined laye N(c,§’) if and only ifa€ Nom(s) anda ~ c.

Definition 6. LetS’ be a sequent appearing in a given derivatio@nd N=Nom(.5)
(N is considered as a totally ordered set). We defineE)cps the sequent(&’) where
f is a renaming function defined as follows:

f() = c ifeitherce NorN(c,5')=0
~ | ¢ otherwise, with = maxN(c,5"))

where max denotes the maximum.

If the formulas ofS’ are quasi-subformulas of formulasdrthen the formulas dE g(S")
are also quasi-subformulas of formulassin

Proposition 16. Let S’ be a sequent appearing in a given derivatishhas a proof in
G,,_ of size nif and only if EQS’) has a proof of size n.

Proof. We only have to prove that for any sequgrdand for alla,b € Nom(§) such that
a~ b, § has a proof irG,;,, of sizenif and only if $[a/b] has a proof irG,,, of sizen.
Theif part is proved by induction on. Theonly if partcomes from Proposition 15.

6.2 N-chains

The nesting degree of a formuta denoteches{A), is inductively defined as follows:
-nes{p) =0; nes{a) =0; nes{_L) =0;

- nes{Ao B) = maxnesi(A),nes{(B)) whereo € {A,V,D};

-nesia: A) = nes{(A);

-nes{OA) = 1+ nes{A) whereO € {00, }-

The nesting degree of a sequent is the maximum of the nestigigees of its formulas.

Now, we introduce the notion dfi-chain Intuitively, the N-chains correspond to se-
guences of formulas of the forin: {c which will allow us to give a description of
the arrangement of the new nominals introduced using ttes faig] and [ ]. The
key point is that the length of these sequences, in any séggeivalid to a sequent
appearing in any derivation ofin G,;,, , is bounded by the nesting degreesof

Definition 7 (N-chain). Let S =T +C be a sequent and N a finite set of nominals. A
N-chainis a sequence of the formpaas,a; : Qap,...ak 1 :, dak (ap when k= 0)
where

—ag_1:¢ g el fori=1,....k;
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—aeEN;

—a¢Nfori=1,....k—1,

— if ax € N and k# 0 then k> 1; and

— if ax ¢ N then there is no nominal a such thatadacT.

Proposition 17. Let.S and S’ be two sequents such thétis the equivalid sequent of
a sequent appears in a derivation ®f Then, for all a $b e I (§’ = I'+C) such that
either a¢ Nom(§) or b ¢ Nom(5), a: ¢b belongs to a Nofw)-chain of.s’.

Moreover, the length of any Nd)-chain in S’ is smaller or equal to nes) + 1.

Proof. The first property is obtained from the rules that introdue® nominals, namely
[OL] and[$R], and also from the definition of the equivalid sequents wioatg some
nominals introduced using the previous two rules are reddrgerominals ifNom(.s).
The second property holds because if there exibtem($)-chain with a length greater
thannes(.s) in §’ then there is a nomin& ¢ Nom(S) in this Nom($)-chain and an-
other nominala € Nom($) such thata ~ b andb is renamed bya in order to build
Eq(S’) (from the definition of the rulegd, ] and[R]).

A preorder, denoteg s, on the sequents appearing in the derivations isfdefined as
follows: $1 <5 S if and only if there exists a renaming functiésuch thaset(f (1)) C
set(l"2) and f(C1) = C; whereEq(S1) =M1+ Cq andEq(S2) =2 Co.

Let us recall that we usset(") to denote the set underlying the multi§efthe set of
the formulas of"). Moreover, we use the notatiset -C) for set") -C.

Proposition 18. Let.$; and .S, be two sequents in a derivation §fIf $1 <s S then if
S1 has a proof of size n thefp has a proof of size smaller or equal to n.

Proof. From the size-preserving admissibility of weakening andti@ction (see Pro-
position 13 and Proposition 14) and also Proposition 15.

6.3 Trees and Skeletons

Now, we use the notion dfl-chain to represent the equivalid sequents by seteef
Then we derive from such trees other trees calkeletonsNext, we prove that the
numbers of nodes of the skeletons obtained from the eqdigatjuents of the sequents
in a given derivation are bounded. Using this property, wansthat for any deriva-
tion of § having an infinite branch, there are two sequefitand.s”, with S’ strictly
occurring above” in this branch, and such that <; 5.

Definition 8 (Tree). LetS and.$’ be two sequents such thsitis the equivalid sequent
of a sequent in a derivation ¢f and a be an element of N@f). We define théree
associated tain §’, denoted Ta, .s’), as follows:

— the nodes are labelled with triplg®, I (b),a (b)) where be Nom(§’); I'(b) = {A|

b:Aecrl};and
C ifb=c
a(b) = {s otherwise

wheree is a symbol not element 8fom andProp and$S’ =T+c:C.
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— the root node is labelled witte, I (a),a(a)).

— anode labelled witb’,A’, ') is an immediate successor of a node labelled with
(b,A,a) iff b : b belongs to a Noif)-chain of §’ starting with a. label.

Let us illustrate this notion with the following sequesit=a: p,c;:q,c2:q,b:g,a:
{ep,ac $ep, e Ob, e Obb: pwhichis an equivalid sequent of a sequent appearing
in a derivation ofS such thaNom($) = {a, b}.

T(a,S") is the following tree:

(a,{p},€)

(Cla{Q}ae) (C2a {q}’e)

(b, {q},p) (b, {q},p)

We characterize every sequeiit=I' - C which is equivalid to a sequent appearing in
a derivation ofs by the set of tree3y = {T(a,5) | a€ Nom(§)}. It is called thetree
set characterizing’. From this set we can easily obtain the valuseil +C).

We write =2, with N is a finite set of nominals, the equivalence relation on thegr
defined byT; =y T, if and only if Ty = f1(T,) andT, = f2(T1) wheref; and f; are two
renaming functions satisfying the property that forsal N we havef;(a) = fy(a) = a.
Intuitively, two trees are equivalent if and only if eachetrean be obtained from the
other by renaming some nominals which is noNin

We note that any tree can be represented by the expre@signwherer is the root
node and. is a list of trees. The set of tteibtreef a tree7 is inductively defined as
follows: T is a subtree of; if (r,L) is a subtree off” then so are the elementslaf
We noted p(T) the depth of the tre®.

Definition 9 (Skeleton).Let S and $’ be two sequents such thgt is the equivalid
sequent of a sequent in a derivation®fZ be an element of the tree set characterizing
S and N= Nom(s).

A skeleton of7’, denoted SKZ'), is a subtree off” built in a following way:

- Step 0 we initialize SK‘T') with 7.

- Step i+1 for all subtrees$§7 = (r,L) of SK‘T) of depth equal tdi + 1), we replace
ST in SKT) by (r,L") where L is a sublist of L obtained as follows: we start with
L' =[]; forall 7o € L, if there is no treeZy in L’ such thatlp =y 71, then we addl” to

L.

A skeleton of the tree given in the previous example is:
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(a,{p},€)
(Cl» {Q}’ 6)

(b.{a}.p)
We can see that there is not always a single skeleton assd¢@mt tree. However, all
the skeletons associated to any tree are equivalefiTyJf.., T} is the tree set char-
acterizings = ' =C ands’ ="+ C is the sequent obtained frof®kT1),...,SkTq)}
thenl” C T andset(.§’) can be obtained frorset(S) by renaming some new nominals.

Proposition 19. Let § be a sequent an@d be a derivation ofS. Then there exists a
constant K such that for any sequeditequivalid to a sequent appearing i, if 7 is
in the tree set characterizing' then the number of nodes of(8K is smaller or equal
to K.

Proof. We know that the depth df is equal to the depth af’ = SK‘T) and is smaller
or equal tonest.S) + 1 (Proposition 17). We notdp(Z7’) the depth of7’. Let ® be
the set of the subformulas of the formulaso@nd@its size. The size of the set of the
subsets ofp is 2. Using the quasi-subformula property (Theorem 7), we ptbaefor
all nanode of7’ of depthdp(‘7’) — 1, n has at moskK; = (N + 1) x 2 x 2 successors
whereN is the size oNomS).

Similarly, the number of the successors of any nod€ iof depthd p(7”) — 2 is at most
equal toKy = (N + 1) x 2 x 2. We continue until the root nod&{p7))- Thus, we
can take the constaKt equal to

dp(7)-1 i
1+ Kap(7)-j
i; JI:L P(T)—]

Proposition 20. Let S be a sequent an@® be a derivation ofS. The set of skeletons
obtained from the equivalid sequents of the sequentsimpartitioned into a finite set
of equivalence classes B3jonys)-

Proposition 21. Let D be a derivation of a sequet® with an infinite branchB =
(851,82,...,5,---). Then, there exist i and j such thatij and S <s §i.

Proof. Let ' = (81,.55,...,51,...) Wwhere§ =Eq($) fori =1,2,.... We associate to
every sequent irB’ the set of tredly = {SKT(a,5)) | a € Nom(S)}. Using Propo-
sition 20, we deduce that there exist two sequeiits I'{-Cf and.§] =TI I—C)’- such
thati < j and for allT; € TSJ_/, there isT; € Ty satisfyingTi =nons) Tj. If ri=c
andl} =C{ are the two sequents obtained respectively fiymand TSJ_,, then there

is a renaming functiorf such thatf(r'j) = I and f(C{") = C{". Moreover, we have
M C i andC = C/. Since there is a renaming functigrsuch thatset(g(I";)) = 'y
andg(Cj) = Cf, set((f og)(I'})) C setj) and(f og)(Cj) = C/ hold. Therefore, we
deduce thas; <s Si.
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6.4 A Decision Procedure fonHL

Now we introduce a notion aedundancyon cut-free derivations in our calculus such
that any sequent that is valid has an irredundant proof. Thgrusing the quasi-
subformula property, we prove that there is no infinite pravbich is redundant and
then provide a decision procedure fbiL and then prove the decidability of this logic
through proof-search using our sequent calculus.

Definition 10. A derivation ofs is said to beredundantf it contains two sequents’
andS$”, with §’ occurring strictly aboves” in the same branch, such that < §’. A
derivation isirredundantf it is not redundant.

Proposition 22. If § is derivable inG,,, then it has an irredundant derivation.

Proof. By induction on the size of the derivation ofs.

If s=1then itis an irredundant derivation.

Now, assume that for any sequent, if it has a derivation @& simaller or equal to
(n> 1), then it has an irredundant derivation (the inductiondtkipsis).

Let D be a derivation of of size(n+1). If D is irredundant then we have the result.
Otherwise it has a branch containing two sequeitand S, such that$; occurring
aboves, and$1 <5 .. Let i’ be the size of the subderivation &f in D. It is easy
to see that the size of the subderivation%fin D is strictly greater tham'. Using
Proposition 18, we know tha% has a derivatiorD, of size smaller or equal to’. So
by replacing in?D the subderivation of, with D, we obtain a derivation of of size
smaller or equal te. Therefore, by applying the induction hypothesis, we dedhat
S has an irredundant derivation.

Now, we provide a decision procedure for the sequeniidlifbased on the redundancy
notion similar to this proposed in [17] for the intuitioricstnodal logics. It consists of
an exhaustive search for an irredundant derivation.

LetS be a sequent.

- Step1: we start with the derivation containing on$ywhich is the unique irredundant
derivation of size 1. If this derivation is a proof then weurgtit. Otherwise we move
to the next step.

- Stepi + 1: we build the set of all the irredundant derivations of gizel. If this set
contains a proof of then we return it. Otherwise if this set is empty then the sleqi
algorithm fails, else we move to the next step.

There are only a finite number of possible rule applicatidhe ¢hoice of the new
nominals introduced by the rulésig] and[{] is not essential). Thus, the set of the
irredundant derivations of sidet 1 is finite. Moreover, this set can be built in a finite
time because thg s relation is decidable.

Theorem 8. IHL is decidable.

Proof. Using Proposition 21, we know that there is no infinite irnedant derivation.
Thus, we deduce that our algorithm terminates. Therefbllejs decidable.
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7 Conclusion

In this work, we provide the first sequent calculus for the riylintuitionistic logic
IHL [7] that is appropriate for proof-search thanks to the absesf structural rules.
After proving the main properties of this calculus that averglness, completeness and
cut-elimination, we define a decision procedure and thennepgse the first proof of
decidability of this logic. The study of complexity ¢fiL [1] will be the next step de-
veloped in further works but we will also consider extensiofiour calculi with rules
corresponding to conditions on the accessibility relai¢geometric theories) like re-
flexivity, symmetry and transitivity, in order to obtain assgm in which each condition
on the accessibility relation has a corresponding rule @t €ombination of these
rules is complete for the logic with the corresponding ctinds.
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