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Abstract. In this paper we study proof theory for the first constructiveversion
of hybrid logic calledIHL. In this perspective we propose a sequent-style natu-
ral deduction system and then the first sequent calculus forIHL. In addition to
soundness and completeness, we show that this calculus has the cut-elimination
property. Finally, we give the first decision procedure forIHL, that is based on
this calculus, and therefore we prove its decidability.

1 Introduction

In the standard Kripke semantics for modal logics, a model isa transition system where
the same formula may have different truth values at different worlds [4,9]. The hybrid
logics were mainly introduced in order to express this relativity of truth [3,2] by adding
to modal logics a new kind of propositional symbols callednominals, and also a new
operator, calledsatisfaction operator, that allows one to jump to the world named by a
nominal. There exist many works on hybrid logics, mainly on classical versions, about
calculi, decidability and complexity [1,2,6,19].
In this work we aim at studying an intuitionistic version that is the first constructive ver-
sion of hybrid logic, defined by Braüner and de Paiva in [7] and called hereIHL. It has
been designed from the intuitionistic modal logicIK introduced in [17], knowing that
intuitionistic modal logics have some important applications in computer science, for
instance for formal verification of computer hardware [11] and also definition of pro-
gramming languages [10,14]. There exits a natural deduction system forIHL, extended
with additional inference rules corresponding to conditions on the accessibility relation
but in this logic proof-theory and decidability have not really been explored.
Let us mention another constructive version of hybrid logic[13] that is based on the
intuitionistic modal logicIS5 [17] and later enriched with the disjunctive connective
and the constant denoting absurdity in [8]. However, this logic cannot be seen as a com-
plete hybridization ofIS5 because the nominals (calledplacesin the original paper)
are only used with the satisfaction operator. We have recently studied proof-theory for
this logic by defining sequent calculi dedicated to proof andcountermodel construction
[12]. Thus we have provided an alternative proof of decidability by proof-theoretical
arguments and shown that that sequent calculus formalism can be a good formalism al-
lowing an effective management of nominals in the proof-search process. Even ifIHL is
also an intuitionistic hybrid logic these results cannot bedirectly extended for this logic.



In this paper we consider the intuitionistic hybrid logicIHL for which as said before
there only exists a natural deduction system [7] and decidability is still an open ques-
tion. In order to solve this problem, we mainly propose a sequent calculus forIHL that
is adapted to proof-search but also to the study of decidability. As mentioned before,
there are many works dedicated to classical versions of hybrid logics but they cannot
be directly adapted to propose a sequent calculus allowing to show decidability in such
a constructive or intuitionistic version of hybrid logic. Akey point to prove the decid-
ability of IHL by using the sequent calculus is to solve the problem of the introduction
of new nominals due to some rules. This problem is similar to the introduction of new
labels in the labelled sequent calculi of the intuitionistic modal logics [17]. Let us note
that the introduction of new nominals or labels is not a problem in the case of classical
modal and hybrid logics because we can define proof systems with only invertible rules
allowing terminating proof-search [5,15]. But it is a problem in the case of an intuition-
istic version of hybrid logics and then one needs to introduce appropriate concepts to
deal with it.
In this perspective the main contributions of this work are:the definition of a sequent
calculus forIHL, the proofs of some of its properties like cut-elimination and the first
proof of its decidability that is based this calculus. From these results we will study, in
next works, the complexity ofIHL [1], but also extensions of our sequent calculus with
rules corresponding to conditions on the accessibility relations (geometric theories) like
reflexivity, symmetry and transitivity, in order to obtain amodular system in which each
condition on the accessibility relation has a corresponding rule and each combination
of these rules is complete for the logic with the corresponding conditions.

In this context, Section 2 presents the first constructive version of intuitionistic hybrid
logic IHL [7] and the known related results. In Section 3 we give a natural deduction
system forIHL in a sequent-style in order to deal with validity inIHL. It is derived from
the initial natural deduction systemNIHL [7]. In Section 4 we propose a sequent calculus
for IHL that is calledGIHL and then prove its soundness from the semantics. In Section
5 we prove that the calculus satisfies the cut-elimination property.and shows its com-
pleteness by proving that if a sequent is derivable inGIHL then it is derivable inNSIHL.
In Section 6 we prove the decidability ofIHL by using the sequent calculusG−

IHL
. The

key point of the decision procedure we design is the use of thecut-elimination property
in order to provide a suitable subformula property different from the usual property and
called thequasi-subformula property. In this perspective we introduce a notion ofre-
dundancyon cut-free derivations in our calculus such that that any sequent that is valid
has an irredundant proof. Then, by using the quasi-subformula property, we prove that
there is no infinite proof which is not irredundant and then provide a decision proce-
dure for IHL and then prove the decidability of this logic through proof-search using
our sequent calculus.

2



2 Intuitionistic Hybrid Logic

Hybrid logics are logics obtained by adding to modal logics anew kind of propositional
symbols, callednominals, which are used to refer to specific worlds in a model and also
a new kind of operators called thesatisfaction operatorsthat allow us to jump to the
worlds named by nominals. For more details about hybrid logics see [3]. In this paper,
we study the first constructive version of intuitionistic hybrid logic IHL [7].

Let Prop be a countably set of propositional symbols andNom be a countably set of
nominals that is disjoint fromProp. We usep,q, r, . . . to range overProp; anda,b,c, . . .
to range over nominals. MoreoverNom(S) denotes the set of nominals that appear in
the syntactic objectS.

The formulas ofIHL are given by the following grammar:

F ::= p | a | ⊥ | F ∧F | F ∨F | F ⊃F | �F | ♦F | a : F

Definition 1. A IHL-Kripke modelis a tuple

(W,6,{Dw}w∈W,{∼w}w∈W,{Rw}w∈W,{Vw}w∈W)

with
- W is a non-empty set (of ’worlds’) partially ordered by6;
- for each w∈W, Dw is a non-empty set such that w6 w′ implies Dw ⊆ Dw′ ;
- for each w∈ W, ∼w is an equivalence relation on Dw such that w6 w′ implies
∼w⊆∼w′ ;
- for each w∈W, Rw is a binary relation on Dw such that w6 w′ implies Rw ⊆ Rw′ ;
- for each w∈ W, Vw is a function that to each p∈ Prop assigns a subset of Dw such
that w6 w′ implies Vw(p) ⊆Vw′(p).
It is assumed that if d∼w d′, e∼w e′ and Rw(d,e) then Rw(d′,e′), and similarly, if
d ∼w d′ and d∈Vw(p) then d′ ∈Vw(p).

Given aIHL-Kripke model(W,6,{Dw}w∈W,{∼w}w∈W,{Rw}w∈W,{Vw}w∈W) and an el-
ementw∈W, aw-assignmentis a function which assigns to each nominal an element
of Dw.

Definition 2. LetM = (W,6,{Dw}w∈W,{∼w}w∈W,{Rw}w∈W,{Vw}w∈W) be aIHL-Kri-
pke model, w∈W, g be a w-assignment, d∈ Dw and A be a formula,M ,g,w,d � A is
inductively defined as follows:
- M ,g,w,d � p iff d ∈Vw(p);
- M ,g,w,d � a iff g(a) ∼w d;
- M ,g,w,d � ⊥ never;
- M ,g,w,d � A∧B iff M ,g,w,d � A andM ,g,w,d � B;
- M ,g,w,d � A∨B iff M ,g,w,d � A orM ,g,w,d � B;
- M ,g,w,d � A⊃B iff for all v > w,M ,g,v,d � A impliesM ,g,v,d � B;
- M ,g,w,d � �A iff for all v > w, e∈ Dv, Rv(d,e) impliesM ,g,v,e� A;
- M ,g,w,d � ♦A iff there exists e∈ Dw s. t. Rw(d,e) andM ,g,w,e� A;
- M ,g,w,d � a : A iff M ,g,w,g(a) � A.
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a : A⊃B
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a : A⊃B a : A

a : B
[⊃E]

a : A

c : a : A
[:I ]

c : a : A

a : A
[:E]

e : A a : ♦e
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[♦I ]
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.
.
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[a : ♦c]
.
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c : A

a : �A
[�I ∗∗]

a : �A a : ♦e

e : A
[�E]

a : ⊥
C

[⊥E] a : a [Re f]
a : c a : A

c : A
[Nom]

∗ c does not occur ina : ♦A, in C, or in any undischarged assumption other than the
specified occurrences ofc : A anda : ♦c.
∗∗ c does not occur ina : �A or in any undischarged assumption other than the specified
occurrences ofa : ♦c.

Fig. 1. The Natural Deduction SystemNIHL

Let M = (W,6,{Dw}w∈W,{∼w}w∈W,{Rw}w∈W,{Vw}w∈W) be aIHL-Kripke model, a
formulaA is valid inM , denotedM � A, if and only ifM ,g,w,d � A for everyw∈W,
everyw-assignmentg and everyd ∈ Dw. A formula isvalid in IHL, denotedIHL � A, if
and only ifM � A for everyIHL-Kripke modelM .

4



Moreover, let us note that for any formulaA and any Kripke modelM , M � A if
and only ifM � a : A wherea /∈ Nom(A). Therefore, there is no loss of generality by
considering onlysatisfaction statementsthat are statements of the forma : A.

Proposition 1 (Monotonicity). If M ,g,w,d � A and w6 w′, thenM ,g,w′,d � A.

Proof. By structural induction onA.

Proposition 2 (Equivalence).If M ,g,w,d � A and d∼w d′, thenM ,g,w,d′ � A.

Proof. By structural induction onA.

The first results forIHL deal with some proof-theoretical aspects that are based on a
natural deduction system [7] given in Figure 1. No other alternative calculi like sequent
calculi have been proposed and the decidability ofIHL is an open question.
The main goal of this paper is to study this question and to present the first proof of
decidability forIHL through a decision procedure based on a sequent calculus.

3 A Sequent-style Natural Deduction System forIHL

In this section, we give a new natural deduction system forIHL in a sequent-style. It is
obtained from the natural deduction systemNIHL given in [7] (see Figure 1). Our main
point here consists in defining a new system in order to deal with validity in IHL. It is a
first step towards the new sequent calculus for this logic.

Definition 3 (Sequent).A sequent is a structure of the formΓ⊢C whereΓ is a possibly
empty finite multiset of satisfaction statements and C is a satisfaction statement.

A sequentΓ⊢C corresponds to the formula(
V

Γ)⊃C. We use the notation
V

Γ as a
shorthand fora1 : A1 ∧ . . . ∧ ak : Ak whenΓ = a1 : A1, . . . ,ak : Ak. If Γ is empty, we
identify

V

Γ with ⊤. We noteM ,g,w � Γ if M ,g,w,d �
V

Γ for d ∈ Dw (the choice of
d is not important).

The natural deduction systemNSIHL is given in Figure 2. In factNSIHL is nothing more
than the natural deduction systemNIHL with contexts. The use of the sequent structure
can be seen as a syntactic way to denote particular formulas.Indeed the comma in left-
hand side is interpreted as a conjunction and the symbol⊢ as an implication.
Let us note that, like in the systemNIHL, we use the formulas of the forma : ♦c to rep-
resent the accessibility relation. We can easily see thatM ,g,w,d � a : ♦c if and only if
R(g(a),g(c)).

Let us consider the formulaF = a : ((A∨B⊃ c : C)⊃ (A⊃ c : C)). A proof of this
formula inNSIHL is
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Γ⊢a : a
[Re f]

Γ,a : A⊢a : A
[Id]

Γ⊢a : ⊥

Γ⊢C
[⊥E]

Γ⊢a : c Γ⊢a : A

Γ⊢ c : A
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[∧I ]
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Γ⊢a : A
[∧1

E]
Γ⊢a : A∧B

Γ⊢a : B
[∧2

E]

Γ⊢a : A

Γ⊢a : A∨B
[∨1

I ]
Γ⊢a : B

Γ⊢a : A∨B
[∨1

I ]

Γ⊢a : A∨B Γ,a : A⊢C Γ,a : B⊢C

Γ⊢C
[∨E]

Γ,a : A⊢a : B

Γ⊢a : A⊃B
[⊃I ]

Γ⊢a : A⊃B Γ⊢a : A

Γ⊢a : B
[⊃E]

Γ⊢a : A

Γ⊢c : a : A
[:I ]

Γ⊢c : a : A

Γ⊢a : A
[:E]

Γ⊢ c : A Γ⊢a : ♦c

Γ⊢a : ♦A
[♦I ]

Γ⊢a : ♦A Γ,a : ♦c,c : A⊢C

Γ⊢C
[♦E∗]

Γ,a : ♦c⊢c : A

Γ⊢a : �A
[�I ∗∗]

Γ⊢a : �A Γ⊢a : ♦c

Γ⊢c : A
[�E]

∗ c does not occur ina : ♦A, in C or in any assumption inΓ.
∗∗ c does not occur ina : �A or in any assumption inΓ.

Fig. 2.The Natural Deduction SystemNSIHL

[Id]
a : (A∨B⊃c : C),a : A⊢a : (A∨B⊃c : C)

[Id]
a : (A∨B⊃c : C),a : A⊢a : A

[∨1
I ]

a : (A∨B⊃c : C),a : A⊢a : (A∨B)
[⊃E]

a : (A∨B⊃c : C),a : A⊢a : c : C
[⊃I ]

a : (A∨B⊃c : C)⊢a : (A⊃c : C)
[⊃I ]

⊢a : ((A∨B⊃c : C)⊃ (A⊃c : C))

In order to illustrate the differences with the initial systemNIHL we give the following
proof ofF in NIHL:
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[a : A∨B⊃c : C]

[a : A]
[∨1

I ]
a : A∨B

[⊃E]
c : C

[⊃I ]
a : A⊃c : C

[⊃I ]
a : ((A∨B⊃c : C)⊃ (A⊃c : C))

Let us show now that our new sequent-style natural deductionsystemNSIHL is sound
and complete.

Theorem 1 (Soundness).The systemNSIHL is sound.

Proof. Proceeding contrapositively, for every rule, we suppose that its conclusion is not
valid and prove that one of its premises is not valid. Here, weonly show the case[�I ].
Let S = Γ⊢ a : �A be a sequent that is not valid and letM = (W,6,{Dw}w∈W,{∼w

}w∈W,{Rw}w∈W,{Vw}w∈W) be a countermodel ofS . Then, there existw0 ∈W and aw0-
assignmentg such thatM ,g,w0 � Γ andM ,g,w0 2 a : �A. SinceM ,g,w0 2 a : �A, we
know that there existw1 > w0 andd ∈ Dw1 such thatRw1(g(a),d) andM ,g,w1,d 2 A.
Let c be a nominal not inNom(S). We define thew1-assignmentg′ by g′(c) = d and for
any nominalb, different fromc, g′(b) = g(b). Using Proposition 1,M ,g′,w1 � Γ holds
and asRw1(g(a),d) holds, we haveM ,g′,w1 � a : ♦c. As we haveM ,g,w1,d 2 A and
M ,g,w1 2 c : A, we deduce thatM is a countermodel ofΓ,a : ♦c⊢c : A.

Theorem 2 (Completeness).The systemNSIHL is complete.

Proof. The proof is obtained from the systemNIHL by using the approach proposed
in [18]. Intuitively, the open assumptions in a derivation tree inNIHL are represented
in the left-hand side of the corresponding sequent. We see that if we define a natural
deduction system similar toNSIHL where we only replace thedischargeof only one
assumption with the discharge of all the assumptions of the same form (Complete Dis-
charge Convention), then we obtain a system equivalent toNIHL. For example the rule
[⊃I ] becomes

Γ,a : A⊢a : B

Γ′ ⊢a : A⊃B
[⊃I ]

whereΓ′ = Γ \ {a : A} (there is no occurrence ofa : A in Γ′). Now, to prove the com-
pleteness ofNSIHL, we only have to show that if a sequent has a derivation in the latter
system then it has a derivation inNSIHL.

4 The Sequent CalculusGIHL

In this section, we propose a sequent calculus forIHL, calledGIHL. Its soundness is
proved by using the semantics and its completeness is provedby showing that if a
sequent is derivable inGIHL then it is derivable inNSIHL.
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Γ,a : p⊢a′ : p
[Id](a∼ a′ and p atomic)

Γ,a : ⊥⊢C
[⊥]

Γ⊢a′ : a
[Re f](a∼ a′)

Γ,a : A,a : B⊢C

Γ,a : A∧B⊢C
[∧L]

Γ⊢a : A Γ⊢a : B

Γ⊢a : A∧B
[∧R]

Γ⊢a : A

Γ⊢a : A∨B
[∨R1]

Γ⊢a : B

Γ⊢a : A∨B
[∨R2]

Γ,a : A⊢C Γ,a : B⊢C

Γ,a : A∨B⊢C
[∨L]

Γ,a : A⊃B⊢a : A Γ,a : B⊢C

Γ,a : A⊃B⊢C
[⊃L]

Γ,a : A⊢a : B

Γ⊢a : A⊃B
[⊃R]

Γ,a : A⊢C

Γ,c : a : A⊢C
[:L]

Γ⊢a : A

Γ⊢ c : a : A
[:R]

Γ,a′ : ♦c,a : �A,c : A⊢C

Γ,a′ : ♦c,a : �A⊢C
[�L](a∼ a′)

Γ,a : ♦c⊢ c : A

Γ⊢a : �A
[�R∗∗]

Γ,a : ♦c,c : A⊢C

Γ,a : ♦A⊢C
[♦L∗]

Γ,a′ : ♦c⊢c : A

Γ,a′ : ♦c⊢a : ♦A
[♦R](a∼ a′)

Γ⊢a : A Γ,a : A⊢C

Γ⊢C
[Cut]

∗ c does not occur inΓ,a : ♦A⊢C andA /∈ Nom .
∗∗ c does not occur inΓ⊢a : �A .

Fig. 3. The Sequent CalculusGIHL

We observe that even if there exist works on the design of sequent calculi in some clas-
sical hybrid logics [16] we cannot follow a similar approachin the case of the intuition-
istic IHL logic. In our work we use a sequent structure that contains only satisfaction
statements because it allows easily toabsorbthe structural rules in the axioms, logical
and modal rules. Moreover, as in [7] the premisses and the conclusion of each rule are
formulas of the forma : A, we can relate our calculi construction with the initial systems
provided forIHL. We will see that it facilitates the study of relationships between the
cut-elimination and the normalization like in the case of intuitionistic logic [18]. Let us
recall that a proof of normalization is given in [7].

The principal formulaof an application of a rule is defined to be any formula which
is introduced by that rule except the cases of[⊃L] and[�L] where the principal formu-
las are respectivelya : A⊃B anda : �A. We callderivationof a sequentS in GIHL any
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tree labelled with sequents such that the root node is labelled withS and the labels at
the immediate successors of a noden are the premises of a rule ofGIHL having the label
at n as conclusion.
A sequentS has aproof in GIHL, denoted⊢GIHL

S , if and only if S has a finite derivation
in GIHL where any leaf node is labelled with an axiom. Moreover we write⊢n

GIHL
S if S

has a proof inGIHL of depth smaller or equal ton.

Let S = Γ⊢C be a sequent andRbe the relation onNom(S) defined byaRbif and only
if a : b is an element ofΓ. We note∼ the reflexive, transitive, symmetric closure ofR.
When we associate a condition of the forma ∼ b to a rule, this means that∼ is the
reflexive, transitive, symmetric closure of the relation obtained from the conclusion of
this rule. The problem to verify the conditions of this form is decidable.

The rules and axioms ofGIHL are given in Figure 3. The approach we used to obtain
this calculus is similar to the one used to obtain the calculus G3i for the intuitionistic
logic from the calculusLJ by absorbing weakening and contraction into the axioms and
the logical rules (see [18]). There are conditions of the form a∼ b associated to some
axioms and rules ofGIHL that are due from the absorption of the rules[Nom] of NSIHL.

Let us note thatGIHL is sound and complete without the restriction on[Id] that the prin-
cipal formula must be atomic. However, without this restriction, GIHL fails thedepth-
preserving admissibility of contractionproperty necessary in our approach to prove the
cut-elimination property.

We illustrate the use ofGIHL by giving a proof ofa : �(b⊃c)⊢a : ♦b⊃♦c

[Re f]
a : �(b⊃ c),b : (b⊃c),a : ♦b⊢b : b

[Re f]
a : �(b⊃c),a : ♦b,d : b,b : c⊢b : c

[⊃L]
a : �(b⊃c),b : (b⊃ c),a : ♦b⊢b : c

[♦R]
a : �(b⊃c),b : (b⊃ c),a : ♦b⊢a : ♦c

[�L]
a : �(b⊃c),a : ♦b⊢a : ♦c

[⊃R]
a : �(b⊃ c)⊢a : ♦b⊃♦c

Proposition 3. Let S = Γ ⊢C be a sequent and a,a′ ∈ Nom(S) such that a∼ a′. If
M ,g,w � Γ then g(a) ∼w g(a′).

Proof. It comes from the fact that ifM ,g,w � a : b theng(a) ∼w g(b).

Theorem 3 (Soundness).If ⊢GIHL
S thenS is valid.

Proof. Proceeding contrapositively, for every rule, we suppose that its conclusion is not
valid and prove that one of its premises is not valid.
Here, we only show the case of[�L] rule. The other cases being similar.
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Let us assume thatS = Γ,a′ : ♦c,a : �A⊢C (a ∼ a′) is not valid andM = (W,6
,{Dw}w∈W,{∼w}w∈W,{Rw}w∈W,{Vw}w∈W) be a countermodel ofS . Then, there exist
w0 ∈W and aw0-assignmentg such thatM ,g,w0 � Γ,a′ : ♦c,a : �A andM ,g,w0 2 C.
Sincea ∼ a′, we haveg(a) ∼w0 g(a′) (Proposition 3). Thus, by using Proposition 2,
M ,g,w0 � a′ : �A holds. We know thatM ,g,w0 � a′ : ♦c iff Rw0(g(a′),g(c)). There-
fore, we obtainM ,g,w0 � c : A and we deduce thatM is a countermodel ofΓ,a′ :
♦c,a : �A,c : A⊢C (the premise of[�L]).

We show in the next section thatGIHL has the cut-elimination property. It means that if
a sequentS is provable inGIHL then there exists a proof ofS in GIHL without [Cut].

5 Cut-elimination and Completeness ofGIHL

The cut-elimination is one of the most important property ofa sequent calculus. Indeed,
the cut-elimination generally results in the (quasi-)subformula property: in any proof of
a sequentS , only the (quasi-)subformulas of the formulas ofS appear in this proof.

5.1 Depth-preserving Admissibility

Let us recall the notion ofdepth-preserving admissibility.

A rule [R] is said to beadmissiblefor a calculusC , if for all instances H1 . . . Hk

C
[R]

of [R], if for all i ∈ [1,k] ⊢CHi , then⊢CC.
A rule [R] is said to bedepth-preserving admissiblefor C , if for all n, if for all i ∈ [1,k]
⊢n
CHi , then⊢n

CC.

We noteG−
IHL

the sequent calculusGIHL without the[Cut] rule. The following propo-
sition corresponds to the depth-preserving admissibilityproperty of weakening.

Proposition 4. If ⊢n
G
−
IHL

Γ⊢C then⊢n
G
−
IHL

Γ,a : A⊢C.

Proof. By induction onn.

The following proposition is used to prove the depth-preserving admissibility of con-
traction. It is similar to the inversion lemma given in [18],knowing that for some rules
of G−

IHL
, if the conclusion has a proof of a depthn then some of its premises has a proof

of a depth smaller or equal ton.

Proposition 5.
1. If ⊢n

G
−
IHL

Γ,a : A∧B⊢C then⊢n
G
−
IHL

Γ,a : A,a : B⊢C.

2. If ⊢n
G
−
IHL

Γ,a : A1∨A2⊢C then⊢n
G
−
IHL

Γ,a : Ai ⊢C, for i = 1,2.

3. If ⊢n
G
−
IHL

Γ⊢a : A1∧A2 then⊢n
G
−
IHL

Γ⊢a : Ai , for i = 1,2.

4. If ⊢n
G
−
IHL

Γ⊢a : A⊃B then⊢n
G
−
IHL

Γ,a : A⊢a : B.

5. If ⊢n
G
−
IHL

Γ,a : A⊃B⊢C then⊢n
G
−
IHL

Γ,a : B⊢C.

10



6. If ⊢n
G
−
IHL

Γ,c : a : A⊢C then⊢n
G
−
IHL

Γ,a : A⊢C.

7. If ⊢n
G
−
IHL

Γ⊢c : a : A then⊢n
G
−
IHL

Γ⊢a : A.

8. If ⊢n
G
−
IHL

Γ⊢a : �A then⊢n
G
−
IHL

Γ,a : ♦c⊢c : A (c /∈ Nom(Γ⊢a : �A)).

9. If ⊢n
G
−
IHL

Γ,a : ♦A⊢C then⊢n
G
−
IHL

Γ,a : ♦c,c : A⊢C, c /∈ Nom(Γ,a : ♦A⊢C).

Proof. By induction onn. Here we only develop the case of 8.
- If n = 0 thenΓ⊢a : �A is an axiom. Thus there is a formula of the formd : ⊥ in Γ
and⊢0

G
−
IHL

Γ,a : ♦c⊢c : A holds.

- Let us assume that⊢n+1
G
−
IHL

Γ⊢ a : �A by a derivationD. If a : �A is not principal in

the last rule applied inD, then by applying induction hypothesis to the premise(s) and
using the same rule,⊢n+1

G
−
IHL

Γ,a : ♦c⊢c : A holds. Otherwise,a : �A is principal andD

ends with

Γ,a : ♦c⊢c : A

Γ⊢a : �A
[�⋆

R]

By taking the immediate subdeduction of the premise,⊢n+1
G
−
IHL

Γ,a : ♦c⊢c : A holds.

In order to prove the depth-preserving admissibility of contraction, we need to prove
that if a sequentS has a proof inG−

IHL
of a depthn then the sequent obtained fromS by

renaming some nominals has a proof inG−
IHL

of a depth smaller or equal ton.

Definition 4. A renaming function f is a function from N to M where N,M ⊂ Nom. It
is inductively extended to the formulas having nominals in Nas follows:
- f (p) = p where p∈ Prop∪{⊥}
- f (A◦B) = f (A)◦ f (B) where◦ ∈ {∧,∨,⊃}
- f (©A) = © f (A) where©∈ {�,♦}
- f (a : A) = f (a) : f (A)

We use the notationf (Γ) for f (a1 : A1), . . . , f (ak : Ak) whenΓ = a1 : A1, . . . ,ak : Ak.
Moreover, the notationf (Γ⊢C) corresponds tof (Γ)⊢ f (C).

Proposition 6. Let S be a sequent and f: Nom(S) → M be a renaming function. If
⊢n

G
−
IHL

S then⊢n
G
−
IHL

f (S).

Proof. It is sufficient to prove by induction onn that if⊢n
G
−
IHL

S then⊢n
G
−
IHL

S [c/a] for any

c anda elements ofNom, whereS [c/a] corresponds to the renaming ofa by c in S .

The following propositions correspond to the depth-preserving admissibility of contrac-
tion.

Proposition 7. If ⊢n
G
−
IHL

Γ,a : A,a : A⊢C then⊢n
G
−
IHL

Γ,a : A⊢C.

11



Proof. By induction onn.
If n = 0 thenΓ,a : A,a : A⊢C is an instance of an axiom. Thus, it is easy to see that
Γ,a : A⊢C is also an instance of the same axiom.
Let us assume that⊢n+1

G
−
IHL

Γ,a : A,a : A⊢C by a derivationD. If a : A is not principal in

the last rule applied inD, then by applying induction hypothesis to the premise(s) and
using the same rule, we have⊢n+1

G
−
IHL

Γ,a : A⊢C. Otherwise,a : A is principal in the last

rule applied inD. We have to distinguish the cases of this rule.
Here, we only develop the case of[♦L] (A≡♦B):

Γ,a : ♦B,a : ♦c,c : B⊢C

Γ,a : ♦B,a : ♦B⊢C
[♦L]

Using Proposition 5,⊢n
G
−
IHL

Γ,a : ♦c,a : ♦c′,c : B,c′B⊢C holds. Next, using Proposi-

tion 6, ⊢n
G
−
IHL

Γ,a : ♦c,a : ♦c,c : B,c : B⊢C holds (c and c′ are new nominals). Fi-

nally, using the induction hypothesis twice,⊢n
G
−
IHL

Γ,a : ♦c,c : B⊢C holds and then

⊢n+1
G
−
IHL

Γ,a : ♦B⊢C is obtained using[♦L].

5.2 Cut-elimination of GIHL

Now, we give a proposition stronger than the depth-preserving admissibility of contrac-
tion. However, it does not cover all satisfaction statements. This proposition is useful
for the proof of cut-elimination.

Proposition 8. If ⊢n
G
−
IHL

Γ,a : A,a′ : A⊢C and a∼ a′ in Γ,a : A⊢C, then⊢n
G
−
IHL

Γ,a : A⊢C.

Proof. By induction onn, similarly to the proof of Proposition 7.

The two following propositions are used in the proof of cut-elimination.

Proposition 9. Let S = Γ ⊢C be a sequent and a,a′ ∈ Nom(S) such that a∼ a′. If
⊢n

G
−
IHL

Γ,a′ : a⊢C then⊢n
G
−
IHL

S .

Proof. By induction onn.

Proposition 10. If ⊢n
G
−
IHL

Γ⊢a : A and a∼ a′, then⊢n
G
−
IHL

Γ⊢a′ : A.

Proof. By induction onn.

Let D be a derivation ofΓ⊢C, we denoteD[Γ′] the derivation ofΓ,Γ′ ⊢C obtained
fromD by applying depth-preserving admissibility of weakening.

Theorem 4 (Cut-elimination). Let be aS a sequent, if⊢GIHL
S then⊢

G
−
IHL

S .

12



Proof. To prove the cut-elimination property, we use a variant of Gentzen’s original
proof of this property for classical and intuitionistic logic [18]. This proof consists
in transforming the applications of cut rules to applications of cut rules on smaller
formulae or applications of less height. It suffices to assume that⊢

G
−
IHL

Γ⊢ a : A and
⊢

G
−
IHL

Γ,a : A⊢C and to prove that⊢
G
−
IHL

Γ⊢C by induction on the structure ofA, on the

depth of the derivation ofΓ⊢a : A,D1, and on the depth of the derivation ofΓ,a : A⊢C,
D2. n1 andn2 are respectively the depths ofD1 andD2.
There are four main cases we have to consider:

1. Γ⊢a : A is an axiom;
2. Γ,a : A⊢C is an axiom;
3. Γ⊢a : A andΓ,a : A⊢C are not axioms anda : A is not principal in the last rule of

D1 orD2;
4. a : A is principal of the both last rules ofD1 andD2.

Case 1. Γ⊢a : A is an axiom.

- 1a. If Γ⊢a : A is an instance of[Id], then it is of the formΓ′,a′ : p⊢a : p andΓ,a : A⊢C
is of the formΓ′,a′ : p,a : p⊢C wherea∼ a′ in all these sequents. By using Proposi-
tion 8, we have if⊢n

G
−
IHL

Γ,a′ : p,a : p⊢C with a ∼ a′, then⊢n
G
−
IHL

Γ,a′ : p⊢C. Thus,

⊢n2
G
−
IHL

Γ,a′ : p⊢C holds.

- 1b. If Γ⊢a : A is an instance of[⊥], then it is of the formΓ′,a′ : ⊥⊢a : A. Thus,Γ⊢C
is of the formΓ′,a′ : ⊥⊢C and it is instance of[⊥].
- 1c. If Γ⊢a : A is an instance of[Re f], then it is of the formΓ⊢a : a′ andΓ,a : A⊢C is
of the formΓ,a : a′ ⊢C wherea∼ a′ in these sequents. Using Proposition 9, we obtain
⊢

G
−
IHL

Γ⊢C.

Case 2. Γ,a : A⊢C is an axiom.

- 2a. If Γ,a : A⊢C is an instance of[Id]. If it is of the formΓ,a : p⊢a′ : p, thenΓ⊢a : A is
of the formΓ⊢a : p with a∼ a′. Using Proposition 10, we deduce that⊢

G
−
IHL

Γ⊢a′ : p.

Now, we study the case whenΓ,a : A⊢C is of the formΓ,a : A,a′ : p⊢ a′′ : p with
a′ ∼ a′′. If a′ ∼ a′′ in Γ⊢C, then⊢

G
−
IHL

Γ⊢C holds. Otherwise,a : A is of the forma : c.

If Γ⊢a : c is an axiom, then it is of the formΓ′,d : ⊥⊢a : c and we deduce thatΓ⊢C
is an instance of[⊥]. Now we distinguish the cases where the last rule applied inD1 is
[⊃L] or not. If the last rule applied inD1 is [⊃L] then it is of the form:

D ′
1

Γ⊢e : B
D ′′

1
Γ′,e : D⊢a : c

[⊃L]
Γ′,e : B⊃D⊢a : c

SinceΓ,a : c⊢C is an instance of[Id], we can easily see thatΓ′,e : D,a : c⊢C is also
an instance of[Id]. Using the induction hypothesis, we obtain a derivation ofΓ⊢C as
follows:

13



D ′
1

Γ⊢e : B

D ′′
1

Γ′,e : D⊢a : c
[Id]

Γ′,e : D,a : c⊢C
[Cut]

Γ′,e : D⊢C
[⊃L]

Γ⊢C

[Cut] is where we apply the induction hypothesis.
Otherwise, the last rule applied inD1 is not [⊃L]. We consider only the case where the
last rule ofD1 is a two-premises rule (the case of one-premise rule being simpler):

D ′
1

Γ′ ⊢a : c
D ′′

1
Γ′′ ⊢a : c

[R]
Γ⊢a : c

It is easy to see thatΓ′,a : c⊢C andΓ′′,a : c⊢C are instances of[Id]. By applying the
induction hypothesis, we obtain a derivation ofΓ⊢C as follows:

D ′
1

Γ′ ⊢a : c
[Id]

Γ′,a : c⊢C
[Cut]

Γ′ ⊢C

D ′′
1

Γ′′ ⊢a : c
[Id]

Γ′′,a : c⊢C
[Cut]

Γ′′ ⊢C
[R]

Γ⊢C

The proof in the subcasesΓ,a : A⊢C is an instance of[Re f] andΓ,A@a⊢C is an in-
stance of[⊥] is obtained using arguments similar to these of Subcase 2a.

Case 3. Γ⊢a : A andΓ,a : A⊢C are not axioms anda : A is not principal in the last rule
of D1 orD2.

- 3a. Γ⊢ a : A and Γ,a : A⊢C are not axioms anda : A is not principal in the last
rule ofD1. We consider only the case where the last rule ofD1 is a two-premises rule:

D ′
1

Γ′ ⊢C′
D ′′

1
Γ′′ ⊢a : A

[R]
Γ⊢a : A

If [R] 6= [⊃L] thenC′ ≡ a : A holds. By applying the induction hypothesis and the
depth-preserving admissibility of weakening and contraction (Proposition 4 and Propo-
sition 7), we obtain a derivation ofΓ⊢C as follows:

D ′
1[Γ]

Γ,Γ′ ⊢a : A
D2[Γ′]

Γ,Γ′,a : A⊢C
[Cut]

Γ,Γ′ ⊢C

D ′′
1 [Γ]

Γ,Γ′′ ⊢a : A
D2[Γ′′]

Γ,Γ′′,a : A⊢C
[Cut]

Γ,Γ′′ ⊢C
[R]

Γ,Γ⊢C

If [R] = [⊃L] then a derivation ofΓ⊢C is obtained similarly by applying the induc-
tion hypothesis and the depth-preserving admissibility ofweakening and contraction as
follows:
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D ′
1[Γ]

Γ,Γ′ ⊢C′

D ′′
1 [Γ]

Γ,Γ′′ ⊢a : A
D2[Γ′′]

Γ,Γ′′,a : A⊢C
[Cut]

Γ,Γ′′ ⊢C
[⊃L]

Γ,Γ⊢C

- 3b. Γ⊢a : A andΓ,a : A⊢C are not axioms anda : A is not principal in the last rule of
D2. The proof in this case is similar to Subcase 3a.

Case 4. a : A is principal of the both last rules ofD1 andD2. Here, we only develop the
case ofA≡ �B, The other cases are similar.Γ⊢a : A andΓ,a : A⊢C are respectively
of the formΓ′,a′ : ♦c′⊢a : �B andΓ′,a : �B,a′ : ♦c′⊢C with a∼ a′ in these sequents
and thenD1 andD2 are respectively of the form:

D ′
1

Γ′,a : ♦c,a′ : ♦c′ ⊢c : B
[�R]

Γ′,a′ : ♦c′ ⊢a : �B and

D ′
2

Γ′,a : �B,a′ : ♦c′,c′ : B⊢C
[�L]

Γ′,a : �B,a′ : ♦c′ ⊢C

Using Proposition 8 and Proposition 6 we obtain⊢n1−1
GIHL

Γ′,a′ : ♦c′ ⊢ c′ : B. Thus, a
derivation ofΓ⊢C is obtained by using Proposition 4 and the induction hypothesis
as follows:

Γ′,a′ : ♦c′ ⊢c′ : B

D1[c′ : B]
Γ,a′ : ♦c′,c′ : B⊢a : �B

D ′
2

Γ′,a : �B,a′ : ♦c′,c′ : B⊢C
[Cut]

Γ,a′ : ♦c′,c′ : B⊢C
[Cut]

Γ,a′ : ♦c′ ⊢C

5.3 Completeness ofGIHL

The following propositions allow us to prove the completeness ofGIHL.

Proposition 11. If ⊢n
GIHL

Γ,a : ♦c′,c′ : c⊢C with c′ /∈ Nom(Γ,C)∪{a,c}, then we have
⊢n

GIHL
Γ,a : ♦c⊢C.

Proof. From⊢n
GIHL

Γ,a : ♦c′,c : c⊢C and Proposition 6, we deduce⊢n
GIHL

Γ,a : ♦c,c :
c⊢C. Therefore, from Proposition 9,⊢n

GIHL
Γ,a : ♦c⊢C.

Proposition 12. If ⊢GIHL
Γ⊢a : A then⊢GIHL

Γ,a : c⊢c : A.

Proof. From Proposition 10.

Theorem 5 (Completeness).The sequent calculusGIHL is complete.

Proof. We consider the validity through the natural deduction systemNSIHL (Figure 2).
Let S be a sequent. We suppose thatS has a proofD in NSIHL and we prove by induc-
tion on the structure ofD that⊢GIHL

S . We distinguish the cases of the last rule applied
in D. The cases of the axioms and the introduction rules are trivial.
Now, we develop some cases of the elimination rules and[Nom].

- Case of[♦E]:
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Γ⊢a : ♦A Γ,a : ♦c,c : A⊢C

Γ⊢C
[♦E ]

We have two subcases:
- if A is a nominal, then from⊢GIHL

Γ,a : ♦c,c : A⊢C we deduce⊢GIHL
Γ,a : ♦A⊢C

holds (Proposition 11);
- otherwise, by applying[♦L] to Γ,a : ♦c,c : A⊢C we have⊢GIHL

Γ,a : ♦A⊢C and a
proof ofΓ⊢C is obtained using[Cut].

- Case of[�E]:

Γ⊢a : �A Γ⊢a : ♦c

Γ⊢c : A
[�E ]

A proof of Γ⊢c : A in GIHL is obtained as follows:

Γ⊢a : ♦c

Γ⊢a : �A
[WL]

Γ,a : ♦c⊢a : �A

[Id]
Γ,a : ♦c,a : �A,c : A⊢c : A

[�L]
Γ,a : ♦c,a : �A⊢c : A

[Cut]
Γ,a : ♦c⊢ c : A

[Cut]
Γ⊢c : A

- Case of[Nom]:

Γ⊢a : c Γ⊢a : A

Γ⊢ c : A
[Nom]

Using Proposition 12 and⊢GIHL
Γ⊢a : A, ⊢GIHL

Γ,a : c⊢c : A holds. Thus⊢GIHL
Γ⊢c : A

is obtained using[Cut].

5.4 Another sequent calculusG2

IHL

It is possible to define another sequent calculus without conditions of the forma ∼ b.
We callG2

IHL
the calculus obtained fromGIHL by adding the following structural rule:

Γ[a/c]⊢C[a/c]

Γ,c : a⊢C
[S]

and by replacing[Id], [Re f], [�L] and[♦R] by the following new rules:

Γ,a : A⊢a : A
[Id]

Γ⊢a : a
[Re f]

Γ,a : ♦c,a : �A,c : A⊢C

Γ,a : ♦c,a : �A⊢C
[�L]

Γ,a : ♦c⊢c : A

Γ,a : ♦c⊢a : ♦A
[♦R]

Theorem 6. The sequent calculusG2
IHL

is sound and complete.

Proof. We show that a sequent is derivable inG2
IHL

if and only if it is derivable inGIHL.
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6 Decidability of IHL

In this section, we prove the decidability ofIHL by using the sequent calculusG−
IHL

.
The key point of our decision procedure is the use of the cut-elimination property in
order to provide a suitable subformula property different from the usual one, called the
quasi-subformula property.
We introduce a notion ofredundancysatisfying the fact that any sequent valid inIHL
has anirredundant proof. Then we prove that there is no infinite derivation which is not
irredundant and deduce the decidability result.

Introduction of New Nominals. In order to prove the decidability ofIHL by using
G−

IHL
, we must solve the problem of the introduction of new nominals using[♦L] and

[�R]. This problem is similar to the one of the introduction of newlabels in the labelled
sequent calculi of the intuitionistic modal logics studiedby Simpson in [17]. Let us note
that the introduction of new nominals or labels is not a problem in the case of classical
modal and hybrid logics because we can define proof systems with only invertible rules
allowing terminating proof-search [5,15].
In the case of Simpson’s calculi, the problem of the introduction of new labels was re-
solved using the following property:
for any derivation, there is a positive integer n such that there is no sequent containing
a chainof length greater than n. A chain is a sequence of the form x0Rx1, . . . ,xm−1Rxm
where R represents the accessibility relation, x0 is not a new label and xi+1 is a new
label for i∈ [0,m−1].

We can say that any infinite derivation is redundant because there are necessarly two
sequents where one can be obtained from the other by renamingsome new nominals
(for more details see [17]).
Similarly, for GIHL a chain is a sequence of the forma0 : ♦a1,a1 : ♦a2, . . . ,am−1 : ♦am
wherea0 is not a new nominal andai+1 is a new nominal fori ∈ [0,m−1].

Let us give an example in order to show that the previous property fails in the case
of G−

IHL
:

.

.
a0 : ♦a1, . . . ,ai : ♦ai+1,a1 : a0, . . . ,ai : a0,a2 : p, . . . ,ai+1 : p,a0 : �(a0∧♦p)⊢a0 : ⊥

.

.

.
a0♦a1,a1 : ♦a2,a2 : ♦a3,a1 : a0,a2a0,a2 : p,a3 : p,a0 : �(a0∧♦p)⊢a0 : ⊥

[♦L]
a0 : ♦a1,a1 : ♦a2,a1 : a0,a2 : a0,a2 : p,a2 : ♦p,a0 : �(a0∧♦p)⊢a0 : ⊥

[∧L]
a0 : ♦a1,a1 : ♦a2,a1 : a0,a2 : p,a2 : a0∧♦p,a0�(a0∧♦p)⊢a0 : ⊥

[�L]
a0♦a1,a1♦a2,a1 : a0,a2 : p,a0�(a0∧♦p)⊢a0 : ⊥

[♦L]
a0 : ♦a1,a1 : a0,a1 : ♦p,a0�(a0∧♦p)⊢a0 : ⊥

[∧L]
a0 : ♦a1,a1 : a0∧♦p,a0 : �(a0∧♦p)⊢a0 : ⊥

[�L]
a0 : ♦a1,a0 : �(a0∧♦p)⊢a0 : ⊥
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Moreover, it is easy to see that, in this infinite derivation,there are no two distinct
sequents such that one can be obtained from the other by renaming some new nominals.
To solve this problem, we associate to every sequentS appearing in a given derivation
a particular sequent, called the equivalid sequent ofS , satisfying the previous property
and the fact that a sequent has a proof if and only if its equivalid sequent has a proof of
the same size. The equivalid sequents are obtained by renaming some new nominals.

6.1 Quasi-subformula Property

Let us remind that thesubformulasof a formulaA are inductively defined as follows:
- A is a subformula ofA;
- if B⊗C is a subformula ofA then so areB,C, for ⊗ = ∧,∨,⊃;
- if ⊠B is a subformula ofA the so isB, for ⊠ = �,♦;
- if a : B is a subformula ofA then so isB.

Now, we introduce the notion ofquasi-subformula. It is similar to the weak subformula
notion introduced in [15] and the quasi-subformula notion given in [7].

Definition 5 (Quasi-subformula). Let A be a formula, thequasi-subformulasare in-
ductively defined as follows:
- for every◦ ∈ {∧,∨,⊃}, the quasi-subformulas of a: A◦B are a: A◦B and all the
quasi-subformulas of a: A and a: B;
- the quasi-subformulas of a: ©A for © ∈ {♦,�} are a : ©A and all the quasi-
subformulas of c: A for an arbitrary c.

Theorem 7. LetD be a derivation ofS in G−
IHL

. Any formula occurrence a: A in D is
either a quasi-subformula of a formula inS or of the form a: ♦c, c being a nominal.

Proof. By induction on the depth ofD. We only have to distinguish the cases of the last
rule applied.

We are interested in the size of derivations. Previously, weproved that weakening and
contraction are depth-preserving admissible forG−

IHL
. Weakening and contraction are

also size-preserving admissible forG−
IHL

. Moreover, if a sequentS has a proof inG−
IHL

of sizen, then any sequent obtained fromS by renaming some nominals with others
has a proof of size smaller or equal ton.

Proposition 13. If Γ⊢C has a proof inG−
IHL

of size n, thenΓ,a : A⊢C has a proof of
size smaller or equal to n.

Proof. Similar to the proof of Proposition 4.

Proposition 14. If Γ,a : A,a : A⊢C has a proof inG−
IHL

of size n, thenΓ,a : A⊢C has a
proof of size smaller or equal to n.

Proof. Similar to the proof of Proposition 7.
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Proposition 15. Let Γ⊢C be a sequent and f: Nom(S) → M be a renaming function.
If Γ⊢C has a proof inG−

IHL
of size n, then f(Γ⊢C) has a proof of size smaller or equal

to n.

Proof. Similar to the proof of Proposition 6.

Let S ′ be a sequent appearing in a given derivation ofS , let∼ be its associated equiv-
alence relation and letc be an element ofNom(S ′) such thatc /∈ Nom(S). We denote
N(c,S ′) the set of nominals defined bya∈N(c,S ′) if and only if a∈Nom(S) anda∼ c.

Definition 6. LetS ′ be a sequent appearing in a given derivation ofS and N= Nom(S)
(N is considered as a totally ordered set). We define Eq(S ′) as the sequent f(S ′) where
f is a renaming function defined as follows:

f (c) =

{

c if either c∈ N or N(c,S ′) = /0
c′ otherwise, with c′ = max(N(c,S ′))

where max denotes the maximum.

If the formulas ofS ′ are quasi-subformulas of formulas inS then the formulas ofEq(S ′)
are also quasi-subformulas of formulas inS .

Proposition 16. LetS ′ be a sequent appearing in a given derivation.S ′ has a proof in
G−

IHL
of size n if and only if Eq(S ′) has a proof of size n.

Proof. We only have to prove that for any sequentS and for alla,b∈ Nom(S) such that
a∼ b, S has a proof inG−

IHL
of sizen if and only if S [a/b] has a proof inG−

IHL
of sizen.

The if part is proved by induction onn. Theonly if part comes from Proposition 15.

6.2 N-chains

The nesting degree of a formulaA, denotednest(A), is inductively defined as follows:
- nest(p) = 0; nest(a) = 0; nest(⊥) = 0;
- nest(A◦B) = max(nest(A),nest(B)) where◦ ∈ {∧,∨,⊃};
- nest(a : A) = nest(A);
- nest(©A) = 1+nest(A) where©∈ {�,♦}.
The nesting degree of a sequent is the maximum of the nesting degrees of its formulas.

Now, we introduce the notion ofN-chain. Intuitively, theN-chains correspond to se-
quences of formulas of the forma : ♦c which will allow us to give a description of
the arrangement of the new nominals introduced using the rules [�R] and [♦L]. The
key point is that the length of these sequences, in any sequent equivalid to a sequent
appearing in any derivation ofS in G−

IHL
, is bounded by the nesting degree ofS .

Definition 7 (N-chain). Let S = Γ⊢C be a sequent and N a finite set of nominals. A
N-chain is a sequence of the form a0 : ♦a1,a1 : ♦a2, . . .ak−1 :,♦ak (a0 when k= 0)
where

– ai−1 : ♦ai ∈ Γ for i = 1, . . . ,k;
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– a0 ∈ N;
– ai /∈ N for i = 1, . . . ,k−1;
– if ak ∈ N and k6= 0 then k> 1; and
– if ak /∈ N then there is no nominal a such that ak : ♦a∈ Γ.

Proposition 17. Let S andS ′ be two sequents such thatS ′ is the equivalid sequent of
a sequent appears in a derivation ofS . Then, for all a: ♦b∈ Γ (S ′ = Γ⊢C) such that
either a/∈ Nom(S) or b /∈ Nom(S), a : ♦b belongs to a Nom(S)-chain ofS ′.
Moreover, the length of any Nom(S)-chain inS ′ is smaller or equal to nest(S)+1.

Proof. The first property is obtained from the rules that introduce new nominals, namely
[�L] and[♦R], and also from the definition of the equivalid sequents whereonly some
nominals introduced using the previous two rules are renamed by nominals inNom(S).
The second property holds because if there exists aNom(S)-chain with a length greater
thannest(S) in S ′ then there is a nominalb /∈ Nom(S) in this Nom(S)-chain and an-
other nominala ∈ Nom(S) such thata ∼ b andb is renamed bya in order to build
Eq(S ′) (from the definition of the rules[�L] and[♦R]).

A preorder, denoted.S , on the sequents appearing in the derivations ofS is defined as
follows:S1 .S S2 if and only if there exists a renaming functionf such thatset( f (Γ1))⊆
set(Γ2) and f (C1) = C2 whereEq(S1) = Γ1⊢C1 andEq(S2) = Γ2⊢C2.
Let us recall that we useset(Γ) to denote the set underlying the multisetΓ (the set of
the formulas ofΓ). Moreover, we use the notationset(Γ⊢C) for set(Γ)⊢C.

Proposition 18. LetS1 andS2 be two sequents in a derivation ofS . If S1 .S S2 then if
S1 has a proof of size n thenS2 has a proof of size smaller or equal to n.

Proof. From the size-preserving admissibility of weakening and contraction (see Pro-
position 13 and Proposition 14) and also Proposition 15.

6.3 Trees and Skeletons

Now, we use the notion ofN-chain to represent the equivalid sequents by sets oftrees.
Then we derive from such trees other trees calledskeletons. Next, we prove that the
numbers of nodes of the skeletons obtained from the equivalid sequents of the sequents
in a given derivation are bounded. Using this property, we show that for any deriva-
tion of S having an infinite branch, there are two sequentsS ′ andS ′′, with S ′ strictly
occurring aboveS ′′ in this branch, and such thatS ′ .S S

′′.

Definition 8 (Tree). LetS andS ′ be two sequents such thatS ′ is the equivalid sequent
of a sequent in a derivation ofS and a be an element of Nom(S). We define thetree
associated toa in S ′, denoted T(a,S ′), as follows:

– the nodes are labelled with triples(b,Γ(b),α(b)) where b∈ Nom(S ′); Γ(b) = {A |
b : A∈ Γ}; and

α(b) =

{

C if b = c
ε otherwise

whereε is a symbol not element ofNom andProp andS ′ = Γ⊢c : C.
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– the root node is labelled with(a,Γ(a),α(a)).

– a node labelled with(b′,∆′,α′) is an immediate successor of a node labelled with
(b,∆,α) iff b : ♦b′ belongs to a Nom(S)-chain ofS ′ starting with a. label.

Let us illustrate this notion with the following sequentS ′ = a : p,c1 : q,c2 : q,b : q,a :
♦c1,a :♦c2,c1 :♦b,c2 :♦b⊢b : p which is an equivalid sequent of a sequent appearing
in a derivation ofS such thatNom(S) = {a,b}.
T(a,S ′) is the following tree:

(a, {p}, ǫ)

(c1, {q}, ǫ) (c2, {q}, ǫ)

(b, {q}, p) (b, {q}, p)

We characterize every sequentS ′ = Γ⊢C which is equivalid to a sequent appearing in
a derivation ofS by the set of treesTS ′ = {T(a,S ′) | a∈ Nom(S)}. It is called thetree
set characterizingS ′. From this set we can easily obtain the value ofset(Γ⊢C).

We write∼=N, with N is a finite set of nominals, the equivalence relation on the trees
defined byT1 ∼=N T2 if and only if T1 = f1(T2) andT2 = f2(T1) where f1 and f2 are two
renaming functions satisfying the property that for alla∈N we havef1(a) = f2(a) = a.
Intuitively, two trees are equivalent if and only if each tree can be obtained from the
other by renaming some nominals which is not inN.

We note that any tree can be represented by the expression(r,L) wherer is the root
node andL is a list of trees. The set of thesubtreesof a treeT is inductively defined as
follows: T is a subtree ofT ; if (r,L) is a subtree ofT then so are the elements ofL.
We notedp(T) the depth of the treeT.

Definition 9 (Skeleton).Let S and S ′ be two sequents such thatS ′ is the equivalid
sequent of a sequent in a derivation ofS , T be an element of the tree set characterizing
S ′ and N= Nom(S).
A skeleton ofT , denoted Sk(T ), is a subtree ofT built in a following way:
- Step 0: we initialize Sk(T ) with T .
- Step i+1: for all subtreesST = (r,L) of Sk(T ) of depth equal to(i + 1), we replace
ST in Sk(T ) by (r,L′) where L′ is a sublist of L obtained as follows: we start with
L′ = [ ]; for all T0 ∈ L, if there is no treeT1 in L′ such thatT0 ∼=N T1, then we addT ′ to
L′.

A skeleton of the tree given in the previous example is:
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(a, {p}, ǫ)

(c1, {q}, ǫ)

(b, {q}, p)

We can see that there is not always a single skeleton associated to a tree. However, all
the skeletons associated to any tree are equivalent. If{T1, . . . ,Tk} is the tree set char-
acterizingS = Γ⊢C andS ′ = Γ′ ⊢C is the sequent obtained from{Sk(T1), . . . ,Sk(Tk)}
thenΓ′ ⊆ Γ andset(S ′) can be obtained fromset(S) by renaming some new nominals.

Proposition 19. Let S be a sequent andD be a derivation ofS . Then there exists a
constant K such that for any sequentS ′ equivalid to a sequent appearing inD, if T is
in the tree set characterizingS ′ then the number of nodes of Sk(T ) is smaller or equal
to K.

Proof. We know that the depth ofT is equal to the depth ofT ′ = Sk(T ) and is smaller
or equal tonest(S)+ 1 (Proposition 17). We notedp(T ′) the depth ofT ′. Let Φ be
the set of the subformulas of the formulas ofS andφ its size. The size of the set of the
subsets ofΦ is 2φ. Using the quasi-subformula property (Theorem 7), we provethat for
all n a node ofT ′ of depthdp(T ′)−1, n has at mostK1 = (N+1)×2φ ×2 successors
whereN is the size ofNom(S).
Similarly, the number of the successors of any node inT of depthdp(T ′)−2 is at most
equal toK2 = (N + 1)× 2K1 × 2. We continue until the root node (Kdp(T )). Thus, we
can take the constantK equal to

1+
dp(T )−1

∑
i=0

i

∏
j=0

Kdp(T )− j

.

Proposition 20. Let S be a sequent andD be a derivation ofS . The set of skeletons
obtained from the equivalid sequents of the sequents inD is partitioned into a finite set
of equivalence classes by∼=Nom(S ).

Proposition 21. Let D be a derivation of a sequentS with an infinite branchB =
(S1,S2, . . . ,Sk, . . .). Then, there exist i and j such that i< j andS j .S Si .

Proof. LetB ′ = (S ′
1,S

′
2, . . . ,S

′
1, . . . ) whereS ′

i = Eq(Si) for i = 1,2, . . . . We associate to
every sequent inB ′ the set of treeTS ′i = {Sk(T(a,S ′

i )) | a ∈ Nom(S)}. Using Propo-
sition 20, we deduce that there exist two sequentsS ′

i = Γ′
i ⊢C′

i andS ′
j = Γ′

j ⊢C′
j such

that i < j and for all Tj ∈ TS ′j , there isTi ∈ TS ′i satisfyingTi
∼=Nom(S ) Tj . If Γ′′

i ⊢C′′
i

andΓ′′
j ⊢C′′

j are the two sequents obtained respectively fromTS ′i andTS ′j , then there

is a renaming functionf such thatf (Γ′′
j ) = Γ′′

i and f (C′′
j ) = C′′

i . Moreover, we have
Γ′′

i ⊆ Γ′
i andC′′

i = C′
i . Since there is a renaming functiong such thatset(g(Γ′

j)) = Γ′′
j

andg(C′
j) = C′′

j , set(( f ◦g)(Γ′
j)) ⊆ set(Γ′

i) and( f ◦ g)(C′
j) = C′

i hold. Therefore, we
deduce thatS j .S Si .
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6.4 A Decision Procedure forIHL

Now we introduce a notion ofredundancyon cut-free derivations in our calculus such
that any sequent that is valid has an irredundant proof. Then, by using the quasi-
subformula property, we prove that there is no infinite proofwhich is redundant and
then provide a decision procedure forIHL and then prove the decidability of this logic
through proof-search using our sequent calculus.

Definition 10. A derivation ofS is said to beredundantif it contains two sequentsS ′

andS ′′, with S ′ occurring strictly aboveS ′′ in the same branch, such thatS ′ .S S
′. A

derivation isirredundantif it is not redundant.

Proposition 22. If S is derivable inG−
IHL

then it has an irredundant derivation.

Proof. By induction on the sizesof the derivation ofS .
If s= 1 then it is an irredundant derivation.
Now, assume that for any sequent, if it has a derivation of size smaller or equal ton
(n > 1), then it has an irredundant derivation (the induction hypothesis).
LetD be a derivation ofS of size(n+1). If D is irredundant then we have the result.
Otherwise it has a branch containing two sequentsS1 andS2 such thatS1 occurring
aboveS2 andS1 .S S2. Let n′ be the size of the subderivation ofS1 in D. It is easy
to see that the size of the subderivation ofS2 in D is strictly greater thann′. Using
Proposition 18, we know thatS2 has a derivationD2 of size smaller or equal ton′. So
by replacing inD the subderivation ofS2 with D2 we obtain a derivation ofS of size
smaller or equal ton. Therefore, by applying the induction hypothesis, we deduce that
S has an irredundant derivation.

Now, we provide a decision procedure for the sequents inIHL based on the redundancy
notion similar to this proposed in [17] for the intuitionistic modal logics. It consists of
an exhaustive search for an irredundant derivation.

Let S be a sequent.
- Step1: we start with the derivation containing onlyS which is the unique irredundant
derivation of size 1. If this derivation is a proof then we return it. Otherwise we move
to the next step.
- Step i + 1: we build the set of all the irredundant derivations of sizei + 1. If this set
contains a proof ofS then we return it. Otherwise if this set is empty then the decision
algorithm fails, else we move to the next step.

There are only a finite number of possible rule applications (the choice of the new
nominals introduced by the rules[�R] and [♦L] is not essential). Thus, the set of the
irredundant derivations of sizei + 1 is finite. Moreover, this set can be built in a finite
time because the.S relation is decidable.

Theorem 8. IHL is decidable.

Proof. Using Proposition 21, we know that there is no infinite irredundant derivation.
Thus, we deduce that our algorithm terminates. Therefore,IHL is decidable.
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7 Conclusion

In this work, we provide the first sequent calculus for the hybrid intuitionistic logic
IHL [7] that is appropriate for proof-search thanks to the absence of structural rules.
After proving the main properties of this calculus that are soundness, completeness and
cut-elimination, we define a decision procedure and then we propose the first proof of
decidability of this logic. The study of complexity ofIHL [1] will be the next step de-
veloped in further works but we will also consider extensions of our calculi with rules
corresponding to conditions on the accessibility relations (geometric theories) like re-
flexivity, symmetry and transitivity, in order to obtain a system in which each condition
on the accessibility relation has a corresponding rule and each combination of these
rules is complete for the logic with the corresponding conditions.
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