
Resource Graphs and Countermodels in

Resource Logics

Didier Galmiche and Daniel Méry 1

LORIA UMR 7503 - Université Henri Poincaré
Campus Scientifique, BP 239

54506 Vandœuvre-les-Nancy, France

Abstract

In this abstract we emphasize the role of a semantic structure called resource graph in order to
study the provability in some resource-sensitive logics, like the Bunched Implications Logic (BI)
or the Non-commutative Logic (NL). Such a semantic structure is appropriate for capturing the
particular interactions between different kinds of connectives (additives and multiplicatives in BI,
commutatives and non-commutatives in NL) that occur during proof-search and is also well-suited
for providing countermodels in case of non-provability. We illustrate the key points with a tableau
method with labels and constraints for BI and then present tools, namely BILL and CheckBI,
which are respectively dedicated to countermodel generation and verification in this logic.

Keywords: resources, proof-search, semantics, labels, countermodels.

1 Introduction

Over the past few years there has been an increasing amount of interest for
resource-sensitive logical systems. The notion of resource is a basic one in
many fields, including in computer science. The location, ownership, access
to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access
memory and manipulate data structures like pointers. Among so-called re-
source logics, we can mention Linear Logic (LL) [11] with its resource con-
sumption interpretation, and Bunched Implications logic (BI) [15,16] with its

1 Email: galmiche@loria.fr, dmery@loria.fr

Electronic Notes in Theoretical Computer Science 125 (2005) 117–135

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.069

mailto:galmiche@loria.fr
mailto:dmery@loria.fr
http://www.elsevier.com/locate/entcs

resource sharing interpretation but also order-aware (non-commutative) logic
(NL) [1]. As specification logics, they can represent features as interaction,
resource distribution and mobility, non-determinism, sequentiality or coordin-
ation of entities. For instance, BI has been recently used as an assertion
language for mutable data structures [12] and in this context it is important
to verify pre- or post-conditions expressed in this logic, mainly to discover non-
theorems and if possible to provide explanation about this non-provability by
generating readable and usable countermodels.

For the above mentioned resource logics, proof search is not trivial mainly
because of the management of context splitting and bunches in the related
sequent calculi. Moreover, the design of semantic-based methods is difficult
because the semantics of such logics (like Grothendieck topological semantics
for BI [16]), even if they are complete, are not always manageable in the
context of proving or disproving formulae. Known methods, like tableaux or
connections, dedicated to classical, intuitionistic or linear logics by using pre-
fixes [13] cannot be easily extended to other resource logics. Therefore, in
order to deal with the particular interactions occuring between connectives,
for instance additive and multiplicative connectives in BI or commutative and
non-commutative connectives in NL, our proposal is to start with a stand-
ard proof-search method (tableau or connection-based) and to define, for each
logic, specific labels and (label) constraints that allow us to capture the in-
teractions at a semantic level. It leads to the design of new calculi with
labelled signed formulæ and constraints from which we define a new charac-
terization of provability from standard notions, such as complementarity and
closure conditions, extended with specific conditions about constraint satis-
faction with respect to a particular set of constraints. This set is built during
the proof-search process (tableau expansions or connection search) and can be
easily represented as a graph, called dependency graph. It arises as the cent-
ral syntactico-semantic structure from which the provability in some resource
logics can be studied and allows us to generate countermodels, for instance,
in Grothendieck topological semantics that is complete for BI. Another in-
teresting point is to consider such a structure, with an appropriate valuation
attached to some nodes, directly as a countermodel.

The relationships between semantics and syntax (labels and constraints)
used to defined labelled calculi can be studied in both directions. For in-
stance, in the case of BI without ⊥, the labels and constraints directly reflect
the elementary Kripke semantics of the logic [8] and thus the relationships
between semantics and dependency graphs is clearly identified. In the case
of BI (with ⊥), the labels and constraints do not reflect the initial Grothen-
dieck topological semantics, but considering the dependency or resource graph

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135118

as the right representation of countermodels we can define a new simple re-
source semantics which is complete for BI [9] and which is a direct reflection
of the labelled calculus. A key point to mention is that these notions of labels,
constraints and resource graphs are not limited to tableaux methods but can
also be considered from the perspective of connection-based proof-methods.
It emphasizes that the semantic knowledge required to analyze provability
is mainly covered by the resource graphs built in parallel with the standard
proof-search methods. As said before, the approach is not only applicable
to BI but also to Non-commutative logic (NL) for which we do not initially
have a useful resource semantics but only a bunched calculus not well adapted
to proof-search. In the case of NL, we are able to define a connection-based
method using appropriate labels and resource graphs that capture its partic-
ular semantics. Knowing that, in linear logics, connection methods and proof
nets (a standard semantic structure) are closely related [6], we then deduce an
algorithm that builds proof nets. In case of non-provability, the partial proof
net under construction and the resource graph both provide some explanations
about the non-validity [10]. Further work will be devoted in this context to
build countermodels in the corresponding phase semantics and also to define
a new semantics in which the resource graph can be seen as a countermodel.

In section 2 we focus on the notions of resource and dependency graph
also called, under some conditions, resource graph. This new semantic struc-
ture is central in the design of proof-search methods for resource logics like BI
and allows us to generate countermodels in order to analyze the non-validity.
In section 3, we emphasize the relationships between a resource logic, its se-
mantics or its particular sequent calculus and the definition and construction
of specific dependency graphs from which provability can be discussed. In
order to illustrate the main ideas and results about labels, constraints and
resource graphs, we consider here the BI logic with an approach based on
tableaux, but similar ideas can be applied to different resource logics such
as MILL or NL and to different proof-search methods such as connections or
natural deduction. In section 4, we describe the BILL system, an automated
theorem prover for propositional BI, that implements the previous results and
builds proofs or countermodels in this logical fragment. We also consider the
possibility of verifying models or countermodels through the description of a
model-checker, called CheckBI. Further work will be devoted to the improve-
ment of proof-search in resource logics by combining theorem-proving and
model-checking approaches. For instance, we could improve the BILL and
CheckBI systems and study how to combine their use to prove or disprove for-
mulæ more efficiently. Moreover, starting from these theoretical and practical
results, we expect to propose similar methods and tools with countermodel

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 119

generation for separation logics [12,17] and spatial logics [2,3].

2 Resources and Resource Graphs

Let us formalize the notion of resource in an elementary way that is sufficient
for our purpose. We start with a set R of resources with some properties that
appear as characteristic: the existence of an initial resource or unit, denoted
1; the existence of a composition operator · that combines two resources x and
y into a new one denoted x · y; the existence of an operator ≤ which compares
two resources x and y. At this level, our notion of resource is elementary
because it does not consider the location or the ownership of a resource.

We may state additional conditions on the comparison of resources, for
instance, reflexivity (x ≤ x) and/or transitivity (x ≤ y and y ≤ z imply x ≤
z). We may also impose particular conditions on resource-composition such as
associativity (x ·(y ·z) = (x ·y) ·z), commutativity (x ·y = y ·x), identity w.r.t.
1 (1 = 1 · x = x) or compatibility with ≤ (x ≤ y implies x · z ≤ y · z). The
compatibility of resource-composition w.r.t. ≤ is a natural property in many
resource-settings. For example, if we consider the resources x and y as files
and we interpret the comparison x ≤ y of two files as “x has shorter length
than y” then, taking the composition x ·y as the concatenation of x and y, the
compatibility condition means that appending any file z to x always results
in a file that has shorter length than the one obtained by appending z to y,
provided that the file x is initially shorter than the file y.

Let us consider now what we call a resource graph. It is a directed graph
G(N, E) with N a set of nodes and E a set of edges between nodes that
satisfies some specific properties. The nodes of the graphs are labels. The
labelling language consists of the following symbols: a unit symbol 1, a binary
function symbol ◦, a binary relation symbol ≤, a countable set of constants
c1, c2, . . . Labels are inductively defined from the unit 1 and the constants as
expressions of the form x ◦ y in which x and y are labels. Atomic labels are
labels which do not contain any ◦, while compound labels contain at least one
◦. A sublabel of a label x is a subterm of x. If we take ◦ to be monoidal then
labels can be interpreted as multi-sets, 1 being the empty-set and ◦ being
multi-set union. We can therefore omit the symbol ◦ when writing labels,
for instance, c2c2c5 represents the multi-set {c2, c2, c5} and the composition
of the labels c1c3c4 and c2c5 is the label c1c2c3c4c5. Moreover, two labels are
equivalent if they contain the same occurrences of constants. For instance,
c1c2c2, c2c1c2, 1c2c1c2, 11c1c2c2 denote the same label (1 is not a constant).
The notion of sublabel simply corresponds to the notion of sub-multi-set : y

is a sublabel of x (notation y ⊆ x) if the multi-set denoted by y is included in

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135120

1 c1

c2 c3c2c3

1 c2 c4c5 c4

c1 c2c3 c3c4c5 c3c4

c3 c3c5 c5

Figure 1. Examples of Resource Graphs

the multi-set denoted by x. For instance, c1c3 is a sublabel of c1c2c3c4. Then,
P(x) represents the set of the sublabels of x.

Let G(N, E) a directed graph, the nodes of N being labelled as explained
above. We denote x → y the oriented edge between the nodes x and y and
x →∗ y a path from x to y.

From now on, we can consider that labels represent resources and edges
represent links between resources. To be a resource graph, a directed graph
G(N, E) must satisfy the following conditions:

(i) (∀x ∈ N)(P(x) ⊆ N) (closure under sublabels);

(ii) yz ∈ N and x → y ∈ E imply xz ∈ N and xz → yz ∈ E

(partial compatibility).

The first condition means that if a label is in the graph, its sublabels also
are. The second condition corresponds to a weak form of compatibility of the
composition of resources w.r.t. the preordering. Figure 1 presents examples
of resource graphs.

A resource graph is a graphical representation of a set of resources which
can be composed and which verifies some particular conditions. In this ab-
stract, we focus on the central role played by the resource graph as a semantic
structure for proving and disproving formulæ in resource-sensitive logics which
provides explanations of non-provability through the generation of counter-
models.

3 Proofs, Resource Graphs and Countermodels

Given a resource-aware logic, having (bunched or not) sequent calculi and
related semantics, the design of proof-search methods is not trivial because of
the management of formulæ as resources (context splitting, interactions). We
aim to illustrate the relationships between the way resources are managed, in
bunched calculi or in resource semantics, and the definition of specific resource
graphs from which proving or disproving can be studied.

In order to illustrate the main ideas and results about labels, constraints

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 121

ax
φ � φ

Γ � φ
∆ ≡ Γ

∆ � φ

Γ(∆) � φ
w

Γ(∆;∆′) � φ

Γ(∆;∆) � φ
c

Γ(∆) � φ

∆ � φ Γ(φ) � ψ
cut

Γ(∆) � ψ

⊥L
Γ(⊥) � φ

Γ(∅m) � φ
IL

Γ(I) � φ
IR∅m � I

Γ(∅a) � φ
�L

Γ(�) � φ
�R∅a � �

Γ(φ,ψ) � χ ∗L

Γ(φ ∗ ψ) � χ

Γ � φ ∆ � ψ ∗R

Γ, ∆ � φ ∗ ψ

∆ � φ Γ(ψ, ∆′) � χ −∗L

Γ(∆, φ −∗ ψ,∆′) � χ

Γ, φ � ψ −∗R
Γ � φ −∗ ψ

Γ(φ; ψ) � χ ∧L

Γ(φ ∧ ψ) � χ

Γ � φ ∆ � ψ ∧R
Γ; ∆ � φ ∧ ψ

∆ � φ Γ(ψ;∆′) � χ →L

Γ(∆; φ → ψ;∆′) � χ

Γ; φ � ψ →R

Γ � φ → ψ

Γ(φ) � χ Γ(ψ) � χ
∨L

Γ(φ ∨ ψ) � χ

Γ � φi (i=1,2) ∨Ri
Γ � φ1 ∨ φ2

Figure 2. The LBI Sequent Calculus

and dependency graphs, we consider the BI logic with a tableau-based proof-
method, but it is important to notice that our approach can also be applied
to other resource logics like MILL or NL and to other proof methods.

3.1 Resources and BI logic

The development of a mathematical theory of resource is one of the objectives
of the programme of study of the logic of bunched implications (BI) [15,16].
The basic idea is to model directly the observed properties of resources and
then to give a logical axiomatization. This logic provides a logical analysis of
a basic notion of resource, quite different from linear logic’s “number-of-uses”
reading, which has proved rich enough to provide “pointer logic” semantics for
programs which manipulate mutable data structures [12,14]. In this context,
proof-search methods are necessary and the generation of countermodels in
order to provide explanations of non-provability is very important.

The propositional language of BI consists of: a multiplicative unit I, the
multiplicative connectives ∗, −∗, the additive units 	, ⊥, the additive con-
nectives ∧, →, ∨, a countable set L = p, q, . . . of propositional letters. P(L),
the collection of BI propositions over L, is given by the following inductive
definition: φ ::= p | I | φ ∗ φ | φ −∗ φ | 	 | ⊥ | φ ∧ φ | φ → φ | φ ∨ φ. The ad-
ditive connectives correspond to those of intuitionistic logic (IL) whereas the
multiplicative connectives correspond to those of multiplicative intuitionistic
linear logic (MILL).

The antecedents of logical consequences are structured as bunches which
are trees representing the two ways (“,” and “;”) of combining BI formulæ to re-
spectively display additive or multiplicative behavior. More formally, bunches

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135122

are given by the grammar: Γ ::= φ | ∅a | Γ ; Γ | ∅m | Γ , Γ. Equivalence of
bunches, ≡, is given by commutative monoid equations for “,” and “;”, whose
units are ∅m and ∅a respectively, together with the evident substitution con-
gruence for subbunches. Γ(∆) denotes a subbunch ∆ of Γ. Judgements are
expressions of the form Γ � φ, where Γ is a “bunch” and φ is a proposition.

The LBI sequent calculus is given on Figure 2. We say that a proposition
φ is a theorem if and only if ∅m � φ is provable in LBI.

BI has a natural Kripke-style semantics (interpretation of formulæ) which
combines Kripke’s semantics for IL and Urquhart’s semantics for MILL [15].
This semantics deals with possible worlds, arranged as a commutative monoid
and justified in terms of “pieces of information”. It provides a way to read
the formulæ as propositions that are true or false relative to a given world.
BI’s Kripke semantics may be adapted to take ⊥ into account by moving
from presheaves (elementary semantics) to sheaves on a topological space,
namely, Grothendieck topological semantics [16]. Such a semantics considers
an inconsistent world at which ⊥ is forced together with the standard so-called
indecomposable treatment of the disjunction, i.e., m |= φ ∨ ψ if and only if
m |= φ or m |= ψ.

3.2 Proof-search and Resource Graphs

F φ ∨ ψ : x

F φ : x
F ψ : x

T φ ∨ ψ : x
�

�
�

�

T φ : x T ψ : x

T φ ∧ ψ : x

T φ : x
T ψ : x

F φ ∧ ψ : x
�

�
�

�

F φ : x F ψ : x

F φ → ψ : x

ass : x ≤ ci

T φ : ci

F ψ : ci

T φ ∗ ψ : x

ass : cicj ≤ x

T φ : ci

T ψ : cj

F φ −∗ ψ : x

T φ : ci

F ψ : xci

T I : x

ass : 1 ≤ x

where ci, cj are new constants

T φ → ψ : x

req : x ≤ y

�
�

�
�

F φ : y T ψ : y

F φ ∗ ψ : x

req : yz ≤ x

�
�

�
�

F φ : y F ψ : z

T φ −∗ ψ : x
�

�
�

�

F φ : y T ψ : xy

where y, z, xy are existing labels

Figure 3. The Tableau Expansion Rules

Having in mind the completeness results for BI’s semantics w.r.t. the LBI

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 123

sequent calculus, we aim to study the proof-theoretical foundations of (pro-
positional) BI in order to propose proof-search methods that build proofs or
countermodels. For that, the challenge is to capture the interactions between
the various kinds of connectives, interactions which are reflected in bunched
sequent calculi by means of structural rules that lead to complex and subtle
transformations of the bunches. Our idea is to capture the interactions at
a semantic level using labels and constraints in the spirit of labelled deduct-
ive systems [4]. A key step in our semantic analysis is the use of so-called
dependency graphs that are in fact particular resource graphs.

Let us illustrate these points with the BI logic. We define labels and
sublabels as in section 2. Label constraints are expressions of the form x ≤ y,
where x and y are labels. We deal with partially defined labelling algebras,
obtained from sets of labels and constraints by reflexive, transitive and partial
compatible closure. We note K the closure of K, where K is a set of labels
and constraints and we say that a constraint x ≤ y is a consequence of (or
satisfied by) K if x ≤ y is in K.

Having defined such labels and constraints, we can define new labelled cal-
culi (sequent, tableaux or connections) such that, in parallel with the standard
proof-search process, one generates a resource graph (set of particular con-
straints), from which we can analyze the provability. We illustrate the main
points with a tableau method that is well-adapted for a direct generation of
countermodels. Compared to the standard method we consider signed for-

mulæ Sg φ : l with Sg (∈ {F, T}) being the sign of the formula φ and l its
label. Then we define a labelled calculus that consists of the expansion rules
of Figure 3. We observe that we have πα rules that introduce constraints
called assertions (including F−∗ for which the assertion ci ≤ ci is implicit)
and πβ rules that introduce constraints called requirements. The set of all the
assertions occuring in a branch B is denoted Ass(B) while the set of all its
requirements is denoted Req(B).

Building a labelled tableau for an initial signed formula F φ : 1, by applic-
ation of the expansion rules of Figure 3, the key problem is to define branch
closure conditions such that, either the tableau is closed and then φ is valid,
or there exists an open branch and then φ is not valid [5]. Moreover, in the
latter case, we aim to build a countermodel for φ from an open branch. To
this end, given a tableau branch B we define its associated resource graph
DG(B) as the directed graph G(N, E) such that there is a node labelled with
x in N if and only if there is a label x in Ass(B) and there is an edge x → y

in E if and only if there is an assertion x ≤ y in Ass(B). Let us note that πα

rules create new (atomic) labels while πβ are supposed to reuse the ones that
already exist in the resource graph associated to a branch. The example of

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135124

√
1 F (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r)) : 1

√
7,5 T p −∗ (q ∨ r) : c1√

2 F (p −∗ q) ∨ (p −∗ r) : c1

√
3 F p −∗ r : c1√
4 F p −∗ q : c1

T p : c2

F r : c1c2

T p : c3

F q : c1c3
����

����

F p : c3

×

√
6 T q ∨ r : c1c3

����
����

T q : c1c3

×

T r : c1c3
����

����

F p : c2

×

√
8 T q ∨ r : c1c2

�
��

�
��

T q : c1c2 T r : c1c2

×

1

1 c1

1 c1 c2

c1c2

1 c1 c2 c3

c1c2 c1c3

Figure 4. Tableau for (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r))

Figure 4 illustrates the parallel construction of a tableau and a resource graph
related to the set of assertions.

In this context we say that two signed formulæ T φ : x, F φ : y are comple-

mentary in a branch B if and only if x ≤ y ∈ Ass(B), i.e., there is a path from
x to y in DG(B). This definition can be seen as an extension of the standard
notion of complementarity in standard labelled deductive systems. We also
need to take care of the units, with a particular difficulty on ⊥, the unit of
the disjunction ∨. For that, we introduce the notion of an inconsistent label
in a tableau branch. We say that a label x is inconsistent in B if there exists
a label y such that y ≤ x ∈ Ass(B) and a sublabel z of y, such that T ⊥ : z

occurs in B. To complete the closure conditions, we impose that each require-
ment x ≤ y occuring in a branch B of a tableau t should be a consequence of
the assertions occuring above it in B (closer to the root of t). More details are
given in [9]. To summarize, a tableau t is closed iff each branch B in t satisfies
the following conditions:

(i) 1. B contains two complementary formulæ T φ : x and F φ : y, or
2. B contains a formula F	 : x, or
3. B contains a formula F I : x with 1 ≤ x ∈ Ass(B), or
4. B contains a formula F φ : x with x inconsistent in B ;

(ii) ∀x ≤ y ∈ Req(B), x ≤ y ∈ Ass(B).

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 125

If we suppress the condition (i).4 in the previous definition, we obtain
closure conditions that fit well with BI without ⊥ and its elementary Kripke
semantics. We can also show that, with this additional condition, we can cope
with BI and its Grothendieck topological semantics.

Coming back to our example of Figure 4, we observe that the tableau has
four branches (marked with a cross ×) which are closed because of comple-
mentary formulæ, but the fourth branch remains open. Thus, we can conclude
that the BI formula is not provable. In the next subsection, we explain how
to generate a countermodel from such an open branch and the associated
resource graph.

3.3 Completeness and Countermodel Generation

First, we can show that the resource tableau method is sound with respect to
the Grothendieck topological semantics.

Theorem 3.1 (soundness) Let φ be a proposition of BI, if there exists a

closed tableau T for φ then φ is valid.

Details of the proof are given in [9]. It is not a simple extension of the
proof of [8] because, with ⊥, we have to deal with Grothendieck topological
semantics.

In order to prove the completeness of the method, we have to define how
to build a countermodel for φ from an open branch in a labelled tableau and
its associated resource graph, which represents the reflexive, transitive and
partial compatible closure of the assertions. Therefore, if a formula φ happens
to be unprovable, we should have enough information in the resource graph to
extract a countermodel for φ. The idea underlying the countermodel construc-
tion is to regard the resource graph itself as the desired countermodel, thereby
considering it as a central semantic structure. For that, we consider the nodes
(labels) of the graph as the elements of a monoid whose multiplication is given
by the composition of labels.

The key point is that, since the closure operator induces a partially defined

labelling algebra, the resource graph only deals with those pieces of inform-
ation (resources) that are relevant for deciding provability. Therefore, the
monoidal product should be completed with suitable values for those compos-
itions which are undefined. The problem of undefinedness is then solved by
the introduction of a particular element, denoted π, to which all undefined
compositions are mapped.

More precisely, in order to transform the resource graph G(N, E) into a

resource monoid 〈R, ·, 1,≤〉, we add a special node π to N , i.e., R
def
= N ∪{π}.

Then, the monoidal product · is given by x · y
def
= xy if xy ∈ N and x · y

def
= π

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135126

otherwise. Notice that any composition with something undefined is itself
undefined. The preordering relation is given by the arrows of the graph as
follows: x ≤ y if and only if x →∗ y or y = π, π being the greatest element.
Finally, the forcing relation simply reflects the signed formulæ of the open
branch.

Theorem 3.2 (completeness) Let φ be a proposition of BI, if φ is valid

then there exists a closed tableau T for φ.

The proof is detailed in [9] in which we also deduce the decidability and
the finite model property for propositional BI as main results.

Returning to our example of Figure 4, we build a countermodel from the
open branch B by considering the signed formulæ of B of the form T At : x

where At is an atom. The set of labels attached to At is considered as its
valuation and we complete the resource graph, at each node or label, with the
corresponding atoms. Thus, we have the valuation v such that v(p) = {c2, c3},
v(q) = {c1c2} and v(r) = {c1c3} and then represent the following resource
graph:

1 c1 c2 c3

c1c2 c1c3

p p

q r

We show that the node labelled with 1 does not force the formula φ, i.e.,
G, 1 �|=v φ. Indeed, both (i) c1 |= p −∗ (q ∨ r) and (ii) c1 �|= (p −∗ q) ∨ (p −∗ r)
hold; therefore, 1 �|= (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r)) follows from 1c1 =
c1 and the definition of −∗. Let us show now (i) and (ii). For (i), we observe
that c1c2 |= q ∨ r since c1c2 |= q and that c1c3 |= q ∨ r since c1c3 |= r. The
nodes c2 and c3 that force p can be combined with c1 to provide c1c2 and
c1c3. As we have c1c2 |= q ∨ r and c1c3 |= q ∨ r, by definition of −∗, we deduce
c1 |= p −∗ (q ∨ r). For (ii), we have c1 �|= p −∗ q since c3 |= p and c1c3 �|= q.
We also have c1 �|= p −∗ r since c2 |= p and c1c2 �|= r. Thus, we have neither
c1 |= p −∗ q, nor c1 |= p −∗ r, i.e., c1 �|= (p −∗ q) ∨ (p −∗ r).

The previous results and examples illustrate the central role played by the
resource graphs for the generation of countermodels. Thus, we can extract,
from the resource graph, a countermodel in the related semantics, i.e., in the
Kripke elementary semantics for BI without ⊥ (our example) but also in the
Grothendieck topological semantics for BI with ⊥ [9]. As said before, for a
resource logic like BI, we can relate a resource graph with a given complete se-
mantics like Grothendieck topological semantics. But an interesting question
arises: is it possible to deduce a new resource semantics from a deeper analysis
of a given resource graph ? In the case of BI, the answer is yes. By consid-

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 127

ering resource graphs directly as countermodels, we have recently proposed
a new semantics based on partially defined monoids (in which the monoidal
operation is partial) that reflects the natural treatment of ⊥ in a resource
graph generated by our approach [9]. The existence of such a semantics that
generalizes the models of BI pointer logic [12] was an open question and it is
clear that the resource graph is the central notion allowing to give a positive
answer.

3.4 A General Methodology for Resource Logics

We have extended the standard tableau method [4] with labels and constraints
related to some resource semantics. The resulting method is based on two par-
allel processes: a syntactic decomposition of the formula to be proved together
with a semantic construction of a resource graph from which provability can be
determined. Thus, we extend standard conditions (here closure of branches)
with label management w.r.t. a resource graph and from this new semantic
structure one can prove or disprove formulæ and generate proofs or counter-
models. A similar approach based on labels, constraints and resource graphs
has been used in order to define a connection-based method for propositional
BI [7]. It emphasizes the fact that we propose a general methodology based
on the construction of resource graphs associated to standard proof-methods
such as tableaux or connections.

But a question arises: is this methodology restricted to BI logic ? A
first answer comes from the fact that BI is conservative over intuitionistic
logic (IL) and multiplicative intuitionistic linear logic (MILL) [15,16], which
implies that our new proof-search methods can be restricted to both logics.
It provides a new method for IL in which prefixes and unification [13] are
replaced by labels and constraint-solving. Moreover, it is well adapted to
the generation of countermodels. Further works will be devoted to deeper
comparisons from the perspectives of proof-search efficiency and countermodel
construction. In addition, we obtain the first tableau (and connection) method
for MILL, which well illustrates the power of resource graphs for such resource
logics. Knowing the relationships between connection-based characterizations
and proof nets in linear logics [6], our results also lead to a new algorithm
for automated construction of MILL proof nets. Moreover, from the semantic
point of view, the impact of these results will be analyzed and compared with
previous proposals for the analysis of models and countermodels.

The previously mentioned resource logics are directly related to BI but we
can also consider other resource logics like Multiplicative Non-commutative
Logic (MNL), which is a conservative extension of both commutative (MLL)
and non-commutative or cyclic (MCyLL) linear logic [1]. Specific labels, con-

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135128

straints and resource graphs can be defined in order to capture the interactions
between commutative and non-commutative connectives (and thus its phase
semantics) in this logic. They give rise to the definition of a connection-based
characterization of provability in MNL [10] and a related proof-search method.
Finally, we aim to extend our results to proof-search and verification in sep-
aration logics [12,17] and spatial logics [2,3].

4 Countermodel Generation and Verification

Let us first consider the proof-search approach implemented in the BILL sys-
tem. In order to illustrate its principles we consider our example formula φ

defined as φ ≡ (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨ (p −∗ r)) and show that is not
valid by generating a countermodel as a resource graph. Then, we complete
the presentation with the model-checking approach and its implementation,
the CheckBI system, that verifies that the resource graph built by the BILL
prover really is a countermodel for the formula φ.

4.1 BILL and Countermodel Generation

BILL is a prover for propositional BI (http://www.loria.fr/˜dmery/BILL),
written in CAML, that is able to decide whether a BI formula is provable or
not and thus to build a countermodel under the form of a particular graph
representation, that is a resource graph. In its current version, BILL can
export the generated countermodels as GDL (Graph Description Language)
files, GDL being a variant of XML adapted to graph descriptions. Thus,
starting with a non-provable BI formula φ, a user can obtain, in a GDL file,
a resource graph that is a countermodel for φ.

Let us describe the BILL prover and its main characteristics. It can
be seen as an interpreter with simple commands. Its main command is
check <formula>, that allows to decide the validity of <formula>. This
<formula> parameter is written with the following syntax: the additive con-
junctive unit is 1; the additive disjunctive unit is 0; the multiplicative unit is
I; the additive connectives are: ^ (and), v (or), -> (implication); the multi-
plicative connectives are * (star), -* (magicwand); the propositional variables
are alphabetic characters, (p,q,...), except I, reserved for the multiplicative
unit, and v, reserved for the additive disjunction.

Figure 5 illustrates the use of the BILL system. The bill command starts
a BILL session and the BILL> prompt indicates that the user can write com-
mands. With the help command we obtain a brief summary of the syntax
of the formulæ and of the available commands. Then, with the command
check, the user asks whether the formula (p−∗ (q∨ r))−∗ ((p−∗ q)∨ (p−∗ r))

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 129

http://www.loria.fr/~{ }dmery/BILL

Figure 5. Example of a BILL Session

given as a parameter is valid. Then, BILL replies that it is not valid and the
stat command displays the time and the number of recursive calls used to
conclude.

The command stat gives informations about proof-search, for instance
the time (in seconds) that is needed to decide the formula and the num-
ber of recursive calls of the proof-search loop. In case of non-validity, BILL
can generate a countermodel with the commands tex cm-<fichier> and
gdl cm-<fich- ier>. The first one generates a LATEX file that describes and
explain the semantic structure of the countermodel. The second one generates
a countermodel as a resource graph with the GDL format. Such a graph can
be exploited by graph manipulation tools such as aiSee ou xvcg.

As the formula is not valid, we aim to generate a countermodel both
as a LATEX file ans as a GDL resource graph. We do so using the com-
mands tex cm-formule and gdl cm-formule that respectively provide the
files cm-formule.tex and cm-formule.gdl. Figure 6 shows what we obtain
after the treatment of cm-formule.tex by LATEX. The document contains
the resource graph that is a countermodel with a list of worlds, and for each
world, the lists of its immediate successors. We can observe that BILL has

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135130

Figure 6. A Countermodel in a Latex file

generated the resource graph described in section 3. Moreover the document
provides the explanations of the non-validity of the formula by describing, for
each subformula, the worlds for which it is verified or falsified. As one can
notice, the proof given in section 3 is recovered.

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 131

4.2 CheckBI and Countermodel Verification

Another tool, called CheckBI and written in Java, implements a dual func-
tionality: verifying whether a resource graph is a countermodel for a given
BI formula under some valuation of atomic formulæ over the nodes of the
graph. More precisely, given a resource graph G(N, E), a valuation v and
a formula φ, CheckBI verifies if the formula φ is true for the graph G un-
der the valuation v, i.e., if G, 1 |=v φ holds true. We see this tool as a first
step towards studying the combination of the model-checking and theorem
proving approaches in BI, i.e., how to combine proof-search and countermodel-
search in order to achieve efficient decision procedures including countermodel
generation facilities. The CheckBI command line has the following syntax:
checkBI <graph> <formula> [<valuation>]. The <graph> parameter cor-
responds to a file containing the GDL specification of the graph. The com-
mand verifies that this specification indeed corresponds to a resource graph,
more precisely, a graph that respects the conditions described in section 2.
The <formula> parameter is a file that contains a BI formula written with
the syntax used in BILL. Finally, the <valuation> parameter describes a par-
ticular distribution of the atoms occuring in the formula <formula> over the
nodes of the graph. The distribution is specified as a list of pairs (node, list of
atoms forced at that node). This parameter is optional and if it is not present,
it means that, for each node, there is no atom forced at that node.

We illustrate the use of this tool with the countermodel generated by
BILL for our example. If this resource graph really is a countermodel, the
CheckBI tool should reply that the graph falsifies the formula. Figure 7 shows
the contents of the cm-formule.gdl file, that is the specification in GDL
of the resource graph. We observe that it is the graph described in section
2. The formule.txt file contains the formula (p −∗ (q ∨ r)) −∗ ((p −∗ q) ∨
(p −∗ r)) and the affec.aff file describes the valuation v(p) = {c2, c3},
v(q) = {c1c2} and v(r) = {c1c3}, already mentioned in section 3. The
checkBI cm-formule.gdl formule.txt affec.aff command provides the
result that was expected, as we can check it in Figure 7.

5 Conclusion and Perspectives

The aim here is to focus on a semantic structure, called resource graph, which
is well adapted to the definition of decision procedures that generate counter-
models for various propositional resource logics. This graph structure, with
an additional valuation of atomic formulæ attached to its nodes, leads to a
nice graphical representation of a countermodel, thus avoiding its explicit rep-
resentation in some resource semantics that are difficult to be dealt with, for

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135132

Figure 7. An Example of GDL Countermodel Verification

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 133

instance, topological semantics. Such a resource graph arises from the defini-
tion of calculi including labels and label constraints that allow to capture the
semantic interactions between connectives. This approach is well adapted to
the treatment of “mixed” resource logics in which connectives of different kinds
cohabit. As BI is used as an assertion logic for mutable data structures [12]
and is the logical kernel of so-called separation logics, our results and their
implementation in the BILL system are important to support the develop-
ment of correct programs with pointers or the verification of properties for
semi-structured data. In a practical perspective, the graphical representation
of countermodels provides helpful and readable information for some kind of
failure analysis that we aim to develop in further work.

Another point to be studied is the combination of the theorem-proving and
model-checking approaches in order to improve the proof-search process for
our resource logics. It involves studying how our tools, BILL and CheckBI,
can be mutually used to devise efficient proof and disproof tactics and also
how they can be extended to deal, for instance, with pointer logic and with
various fragments of separation logics. The relationships between resource
graphs and countermodels in new resource semantics will also be more deeply
explored.

References

[1] M. Abrusci and P. Ruet. Non-commutative logic I : the multiplicative fragment. Annals of
Pure and Applied Logic, 101:29–64, 2000.

[2] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In 4th Int. Symposium
on Theoretical Aspects of Computer Software, TACS 2001, LNCS 2215, pages 1–37, Sendai,
Japan, October 2001.

[3] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In Int. Conference
on Automata, Langages and Programming, ICALP’02, LNCS 2380, pages 597–610, 2002.

[4] M. D’Agostino and D.M. Gabbay. A Generalization of Analytic Deduction via Labelled
Deductive Systems. Part I: Basic substructural logics. Journal of Automated Reasoning,
13:243–281, 1994.

[5] M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Monographs in
Computer Science. Springer Verlag, 1990.

[6] D. Galmiche. Connection Methods in Linear Logic and Proof nets Construction. Theoretical
Computer Science, 232(1-2):231–272, 2000.

[7] D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic. In
18th Int. Conference on Automated Deduction, CADE-18, LNAI 2392, pages 111–128, 2002.
Copenhagen, Danemark.

[8] D. Galmiche and D. Méry. Semantic labelled tableaux for propositional BI without bottom.
Journal of Logic and Computation, 13(5):707–753, 2003.

[9] D. Galmiche, D. Méry, and D. Pym. Resource Tableaux (extended abstract). In 16th Int.
Workshop on Computer Science Logic, CSL 2002, LNCS 2471, pages 183–199, September
2002. Edinburgh, Scotland.

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135134

[10] D. Galmiche and J.M. Notin. Connection-based Proof Construction in Non-commutative Logic.
In 10th Int. Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’03, LNCS 2850, pages 422–436, September 2003. Almaty, Kazakhstan.

[11] J.Y. Girard. Linear Logic: its Syntax and Semantics. In J.Y. Girard, Y. Lafont, and L. Regnier,
editors, Advances in Linear Logic, pages 1–42. Cambridge University Press, 1995.

[12] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In 28th
ACM Symposium on Principles of Programming Languages, POPL 2001, pages 14–26, London,
UK, 2001.

[13] C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical logics.
Journal of Universal Computer Science, 5(3):88–112, 1999.

[14] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In 15th Int. Workshop on Computer Science Logic, CSL 2001, LNCS 2142, pages
1–19, Paris, France, 2001.

[15] P.W. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

[16] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26
of Applied Logic Series. Kluwer Academic Publishers, 2002.

[17] J. Reynolds. Separation logic: A logic for shared mutable data structures. In IEEE Symposium
on Logic in Computer Science, pages 55–74, Copenhagen, Danemark, July 2002.

D. Galmiche, D. Méry / Electronic Notes in Theoretical Computer Science 125 (2005) 117–135 135

	Introduction
	Resources and Resource Graphs
	Proofs, Resource Graphs and Countermodels
	Resources and BI logic
	Proof-search and Resource Graphs
	Completeness and Countermodel Generation
	A General Methodology for Resource Logics

	Countermodel Generation and Verification
	BILL and Countermodel Generation
	CheckBI and Countermodel Verification

	Conclusion and Perspectives
	References

