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Abstract. Hypersequent calculi, that are a generalization of sequent calculi, have
been studied for Gödel-Dummett logics LC and LCn. In this paper we propose a
new characterization of validity in these logics from the construction of particular
bi-colored graphs associated to hypersequents and the search of specific chains in
such graphs. It leads to other contributions that are a new hypersequent calculus
and a related tableau system for LCn. We mainly study the class of so-called basic
hypersequents and then we generalize our approach to hypersequents.

1 Introduction

Gödel-Dummett logic LC and its finitary versions (LCn)n>0 were introduced by Gödel
and later axiomatized by Dummett in [8]. They are intermediate logics (between clas-
sical and intuitionistic logics) with semantics based on linear Kripke models. It has
a Hilbert axiomatic system composed of axioms of intuitionistic logic and the axiom
A→B∨B→A. One of its interests lies in its relationship with fuzzy logics [12] and
recently LCn logics have been characterized as resource use bounding logics for some
particular process calculus [14].
There exist various calculi dedicated to proof-search in LC like sequent calculi [9],
sequent of relations calculi [6], tableau calculi [1], goal-directed calculi [17], decom-
position systems [4] and also based-on bi-colored graphs calculi [16]. Hypersequent
calculi, that generalize sequent calculi, have been also studied [3,5,10]. In order to pro-
pose decision procedures from sequent or hypersequent calculi an interesting approach
consists in defining local and invertible proof rules, in reducing a (hyper)sequent into
a set of irreducible (hyper)sequents and in defining an algorithm to decide such (hy-
per)sequents [13]. For instance [3] presents a decision procedure from a hypersequent
calculus by using particular hypersequents, called basic hypersequents.
In this work we focus on hypersequent calculi mainly with countermodel search that is
not developed in the above-mentioned works. Our alternative approach for deciding hy-
persequents is based on two main steps: the construction of a semantic graph called bi-
colored graph and a characterization of validity based on detection of particular chains
in this graph. The idea to characterize validity in a given logic from a semantic graph
and its analysis has been already studied in non-classical logics, for instance in BI (logic
of Bunched Implications) with resource graphs [11]. The notion of bi-colored graph has
been recently defined to deal with formulae in LC and LCn [13], but its possible use for



hypersequents is a non-trivial question to solve. In fact a hypersequent calculus incor-
porates a sequent calculus as a sub-calculus but adds an additional layer of information
by considering a sequent to live in the context of finite multisets of sequents (called
hypersequents) [5]. It includes rules for exchanging information between sequents that
make it powerful but proof-search methods for sequents are not well-adapted to such
structures.
A first contribution concerns the basic hypersequents [3], for which we define new char-
acterizations of validity for LC and LCn. They are based on the construction of a spe-
cific bi-colored graph associated to a basic hypersequent and on the search of particular
chains in such a graph. The detection of such chains and the generation of countermod-
els can be realized in linear time [13]. Using the result that for every hypersequent G
one can find a set B of basic hypersequents such that G is valid if and only if every
element of B is valid [3] we also provide new decision procedures for hypersequents in
LC and LCn with a focus on countermodel construction. The study of bi-colored graphs
associated to hypersequents leads to other important contributions that complete the re-
sults of [3]: a new hypersequent calculus and a related tableau system for LCn. In the
above mentioned results we start with a particular class of hypersequents but it seems
important to study if we can directly deal with (general) hypersequents and define as-
sociated bi-colored graphs in order to characterize provability. From this perspective
we can apply to a given hypersequent an indexing process defined in [13] and then
associate a so-called indexed flat sequent from which a bi-colored graph can be built.
Then we can define a procedure that decides validity from the detection of particular
chains in all instances of such a graph. The key point is that, if one of these instances
contains no particular chains, then we can extract a countermodel from this instance.
The results are obtained first for mono-conclusioned hypersequents but also hold for
(multi-conclusioned) hypersequents. As a sequent is a specific hypersequent, our pro-
cedure also provides by specialization a new procedure to decide sequents and generate
countermodels in Gödel-Dummett Logics.

2 Gödel-Dummett logics

In this section, we consider the family of propositional Gödel-Dummett logics LCn. The
value n belongs to the set N

∗
= {1,2, . . .}∪{∞} of strictly positive natural numbers with

its natural order 6, augmented with a greatest element ∞. In the case n = ∞, the logic
LC∞ is also denoted by LC: this is the usual Gödel-Dummett logic.
Let us start by reminding the key points about semantics and proof theory. The set
of propositional formulae, denoted Form is defined inductively, starting from a set of
propositional variables denoted by Var with an additional bottom constant ⊥ denoting
absurdity and using the connectives ∧, ∨ and →. IL denotes the set of formulae that
are provable in any intuitionistic propositional calculus and CL denotes the classically
valid formulae. As usual an intermediate propositional logic [1] is a set of formulae
L satisfying IL ⊆ L ⊆ CL and closed under the rule of modus ponens and under arbi-
trary substitution. In the case of LC, the logic has a simple Hilbert axiomatic system:
(A → B)∨ (B → A) added to the axioms of IL but also a based-on sequent formulation.



From the semantic point of view Gödel-Dummett logic is characterized by the linear
Kripke models of size n (see [8].) The following strictly increasing sequence holds:
IL ⊂ LC = LC∞ ⊂ ·· · ⊂ LCn ⊂ ·· · ⊂ LC1 = CL Moreover there exists an algebraic se-
mantics characterization of LCn [3]. Let n ∈ N

∗, the algebraic model is the set [0,n) =
[0, . . . ,n[∪{∞} composed of n+1 elements. An interpretation of propositional variables
[[·]] : Var→ [0,n) is inductively extended to formulae: ⊥ interpreted by 0, the conjunc-
tion ∧ is interpreted by the minimum function denoted ∧, the disjunction ∨ by the max-
imum function ∨ and the implication → by the operator _ defined by a _b = if a 6

b then ∞ else b. Then we have [[A∧B]] = [[A]]∧ [[B]], [[⊥]] = 0, [[A∨B]] = [[A]]∨ [[B]],
[[A → B]] = [[A]]_ [[B]]. A formula D is valid for the interpretation [[·]] if the equality
[[D]] = ∞ holds. This interpretation is complete for LC. A countermodel of a formula D
is an interpretation [[·]] such that [[D]] < ∞.
For a sequent Γ`∆, with Γ,∆ multisets of formulae, and a given interpretation [[·]] we
interpret Γ ≡ A1, . . . ,An and ∆ ≡ B1, . . . ,Bp by: bbΓcc = [[A1]]∧ ·· · ∧ [[Ap]], bb /0cc = ∞
and dd∆ee = [[B1]]∨ ·· ·∨ [[Bq]], dd /0ee = 0. Then a sequent is valid for the interpretation
[[·]] if bbΓcc ≤ dd∆ee. Moreover [[·]] is a countermodel of Γ`∆ if dd∆ee < bbΓcc.

From the proof-theoretic point of view there exist various calculi in LC mainly based on
sequent calculi [6,9] but we consider here hypersequent calculi introduced as a natural
generalization of Gentzen’s sequent calculi [3,17]. A hypersequent calculus is defined
by incorporating a sequent calculus as a sub-calculus and adding an additional layer of
information. It allows to define rules for information exchange between sequents [5].
A hypersequent is a structure Γ1 ` ∆1 | Γ2 ` ∆2 | . . . | Γn ` ∆n in which Γi ` ∆i is a
sequent, called a component of the hypersequent. Let us remark that sequents (resp.
hypersequents) are multisets of formulae (resp. sequents). A hypersequent is mono-
conclusioned if the ∆i’s consist of at most one formula. The symbol | denotes a disjunc-
tion at the meta-level. Hypersequent calculi consists of axioms, structural and logical
rules like in sequent calculi but structural rules are divided into internal and external
rules. The first ones deal with formulae within components and the other manipulate
whole components of a hypersequent.
The hypersequent calculus HG (Figure 1) for LC is an extension of the hypersequent
calculus for intuitionistic logic HIL [9] with the communication rule [com]. A hyper-
sequent can be seen as a multi-processor [2] and from this perspective the (com) rule
fixes the way of exchanging information between processes. As an illustration we prove
the axiom (A → B)∨ (B → A) in HG that is not valid in intuitionistic logic.

A`A B`B
[com]

A`B | B`A
[→R]

`A → B | `B → A
[∨R]

`(A→B)∨ (B→A)

We observe that it is not possible to derive (A → B)∨ (B → A) in HG without using
the [com] rule. Let H = Γ1`∆1 | Γ2`∆2 | . . . | Γm`∆m be a hypersequent and [[·]] : [0,n)
be an interpretation. H is valid for the interpretation [[·]] iff there exists i ∈ [1,m] such
that bbΓicc ≤ dd∆iee. Then [[·]] is a countermodel of H iff ∀i ∈ [1,m], dd∆iee < bbΓicc.



Axioms Cut rule

A`A
G | Γ′ `A G′ | A,Γ`C

G | G′ | Γ,Γ′ `C
[cut]

External structural rules

G

G | Γ`A
[ew]

G | Γ`A | Γ`A

G | Γ`A
[ec]

Internal structural rules

G | Γ`C

G | Γ,A`C
[w, l]

G | Γ,A,A`C

G | Γ,A`C
[c, l]

Logical rules

G | Γ,A,B`C

G | Γ,A∧B`C
[∧L]

G | Γ`A G | Γ`B

G | Γ`A∧B
[∧R]

G | Γ,A`C G | Γ,B`C

G | Γ,A∨B`C
[∨L]

G | Γ`A | Γ`B

G | Γ`A∨B
[∨R]

G | Γ`A G′ | Γ,B`C

G | G′ | Γ,A → B`C
[→L]

G | Γ,A`B

G | Γ`A → B
[→R]

Special structural rule

G | Γ,Γ′ `A G′ | Γ1,Γ′
1 `A′

G | G′ | Γ,Γ′
1 `A | Γ′,Γ1 `A′

[com]

Fig. 1. The Hypersequent Calculus HG for LC

Proof-search in LC and in some intermediate logics is based on different calculi: a
contraction-free calculus derived from intuitionistic logic [1,9], sequent or hyperse-
quent of relations calculi in LC [6,7] and more generally in many-valued logics and hy-
persequent calculi [3,18]. Some refinements, based on local and invertible rules, have
been proposed for sequents or hypersequents with semantic criteria to decide irreducible
sequents or hypersequents [3]. Here we aim at studying validity and proof-search in LC

and LCn with hypersequent calculi in a new perspective based on countermodel con-
struction from so-called bi-colored graph introduced in [13,15].

3 A new procedure for basic hypersequents

Before starting to study a particular class of hypersequents, namely the basic hyperse-
quents [3], let us remind what is a bi-colored graph in this context.

Definition 3.1. A (conditional) bi-colored graph is a finite oriented graph with two
kinds of arrows, the green ones represented by → and the red ones represented by ⇒,



that are indexed by boolean formulae. The boolean variables of these formulae can be
instantiated by {0,1} through a valuation. Moreover an instance of the graph is the
bi-colored graph with only the arrows indexed by an expression e with v(e) = 1.

We use the symbols → and ⇒ to denote the corresponding relation in the graph.
For example →⇒ represents the composition of two relations and u→⇒w means that
there exists a path u→v⇒w in the graph. The relation →? is the reflexive and transitive
closure of →, i.e, the accessibility of the relation →. Moreover →+⇒ is the union of
both relations and x denotes the negation of the boolean expression x.

Definition 3.2. Let G be a bi-colored graph, a ⇒-cycle of G is a chain of the form
u(→+⇒)? ⇒u and a k-alternating chain of G is a chain of the form (→?⇒)k.

Therefore the key point of our approach consists in associating a bi-colored graph
to a given hypersequent and in relating validity in the given logic with the existence of
⇒-cycle or k-alternating chain. Let us start this study with particular hypersequents.

Definition 3.3. A basic hypersequent is a hypersequent such that any component is
either Γ` p where p and any element of Γ are atoms, or p→ q` p where p and q are
atoms and p 6= q, p 6= ⊥.

Let H = S1 | . . . | Sk be a basic hypersequent, the bi-colored graph GH associated
to H is built as follows:
- the nodes are: the variables of H , a node denoted ♦ and a node ⊥ if H contains ⊥.
- the arrows are the union of the set B and arrows Ai∈[1,k] where

B =

{

/0 i f H does not contain ⊥
{⊥→ p, for any p ∈ Var} otherwise

and Ai∈[1,k] associated to the components Si∈[1,k] of H defined as follows: if Si = p→q`
p then Ai = {p→q, p⇒♦}, else if Si = q1, . . . ,qm ` p then Ai = {p⇒q1, . . . , p⇒qm}.

Let us illustrate this construction with the basic hypersequent H1 ≡ A→B`A | A`B.
The bi-colored graph associated to H1 is the following:

A B

♦

Proposition 3.1. Let H be a basic hypersequent and GH be its associated bi-colored
graph. Let [[·]] be a countermodel of H in LCn (extended with [[♦]] = ∞) and X1→ . . . →
Xk ⇒Y be a chain in GH . Then we have [[X1]] 6 . . . 6 [[Xk]] < [[Y ]].

Proof. Let H = S1 | . . . | Sk be a basic hypersequent. As [[·]] is a countermodel of H
then [[·]] is a countermodel of all the components Si∈[1,k] of H . If Y 6= ♦ then there
exists a component Si such that Xk is the conclusion of Si and Y belongs to the multiset



of Si hypotheses. Thus we have [[Xk]] < [[Y ]]. If Y = ♦ then there exists a component Si

having Xk as conclusion. Therefore Xk < [[♦]] = ∞. Moreover for all j ∈ [2,k] we have
X j−1 →X j ∈ GH and there exists a component Si = X j−1 →X j `X j−1 or X j−1 = ⊥.
Then we deduce that [[X j−1]] 6 [[X j]] and [[X1]] 6 . . . 6 [[Xk]] < [[Y ]].

Moreover we can define, from a bi-colored graph G , the notion of bi-height that is
a function h : G →N such that for any u,v ∈ G , if u→ v ∈ G then h(u) ≤ h(v) and if
u⇒ v ∈ G then h(u) < h(v) [13]. Then a countermodel can be generated from G by
using the following results: if a bi-colored graph G does not contain a ⇒-cycle (resp. a
n-alternating chain) then there exists a bi-height h (resp. that satisfies h(v) < n for any
v ∈ G) [13]. Moreover it is known that we can decide if a graph instance contains or not
a ⇒-cycle and also compute the bi-height both in a linear time [15].

Proposition 3.2. Let H be a basic hypersequent containing ⊥. If there exists a bi-
height h for GH then the function h′ defined by: h′(X) = 0 if h(X) = h(⊥) and h′(X) =
h(X) if h(X) 6= h(⊥), is a bi-height for GH .

Proof. From the set of arrows B defined in the construction of the bi-colored graphs
associated to the basic hypersequents.

Theorem 3.1 (n < ∞). A basic hypersequent H has a countermodel in LCn if and only
if its bi-colored graph GH does not contain a (n+1)-alternating chain.

Proof. First we prove the if part. Let H = S1 | . . . | Sk be a basic hypersequent. We
suppose that GH does not contain a chain of the form (→?⇒)n+1. Then there ex-
ists a bi-height h : GH → [0,n]. By Proposition 3.2, we define from h a new bi-height
h′ : GH → [0,n] by: h′(X) = 0 if h(X) = h(⊥) and h′(X) = h(X) if h(X) 6= h(⊥) and
then we define the semantic function [[·]] : Var→ [0,n) by: [[X ]] = h′(X) if h′(X) < n and
[[X ]] = ∞ if h′(X) = n. We prove that [[·]] is a countermodel of H , i.e., a countermodel
of any component Si∈[1,k].
(i) if Si = p→q` p then p→q ∈ GH and p⇒♦ ∈ GH . Thus, we have h′(p) 6 h′(q)
and h′(p) < n. We deduce that [[p]] 6 [[q]] and [[p]] < ∞. Thus we have [[p→q]] = ∞ and
[[p]] < ∞ = [[p→q]]. Consequently [[·]] is a countermodel of Si.
(ii) if Si = q1, . . . ,qm ` p then ∀i ∈ [1,m], p⇒qi ∈ GH and ∀i ∈ [1,m], h′(p) < h′(qi).
We deduce that ∀i ∈ [1,m], [[p]] < [[qi]] and [[·]] is a countermodel of Si.
From (i) and (ii) we deduce that [[·]] is a countermodel of H .
We now prove the only if part. Let [[·]] be a countermodel of H , we define a new
interpretation [[·]]′ by: [[V ]]′ = [[V ]] for any variable V of H and [[♦]]′ = ∞. As [[·]]′

and [[·]] have the same values for H ’s atoms, we deduce that [[·]]′ is a countermodel
of H . We suppose that there exists a chain of the form (→?⇒)n+1 in GH : X0 →?

⇒X1 →? ⇒X2 →? ⇒ . . . →? ⇒Xn →
? ⇒Xn+1. Thus, by Proposition 3.1, the sequence

[[X0]] < [[X1]] < [[X2]] < .. . < [[Xn]] < [[Xn+1]] is a strictly increasing sequence of n + 2
elements in [0,n). As this set does contain only n+1 elements, that is contradictory.

Theorem 3.2 (n = ∞). A basic hypersequent H has a countermodel in LC if and only
if its bi-colored graph GH does not contain a ⇒-cycle.



Proof. For the if part: if GH does not contain a ⇒-cycle, we know that there exists a bi-
height h : GH →N. By Proposition 3.2, we define from h a new bi-height h′ : GH →N

by: h′(X) = 0 if h(X) = h(⊥) and h′(X) = h(X) if h(X) 6= h(⊥). By defining [[X ]] ∈
N∪{∞} by and [[X ]] = h′(X) we obtain a countermodel of H in LC. For the only if part:
the existence of a chain X →?⇒→? . . . →?⇒→?⇒X implies [[X ]] < [[X ]] and then we
have a contradiction.

Coming back to our example we observe that the bi-colored graph associated to H1
contains a ⇒-cycle: A→B⇒A. Then we conclude that H1 has no countermodel in LC.
Let us give another example with the basic hypersequent H2 ≡ `A | A`⊥. The bi-
colored graph associated to H2 is the following:

⊥ A ♦

This graph has one instance and does not contain a ⇒-cycle. In order to extract a
countermodel we modify the previous graph in such a way that red arrows always go
up and greens arrows never go down.

⊥ 0

A

♦

1

∞

Then [[·]] : Var→ [0,n) such that [[A]] = 1 is a countermodel of H2 in LCn for n > 2.

A decision procedure for basic hypersequents has been already provided but only for
LC [3]. It is based on the generation of constraints and some criteria for solving them.
Here we define new criteria, based on bi-colored graphs, to decide the basic hyperse-
quents in LC but also in (LCn)n>0. Moreover, the extraction of countermodels can be
realized from the bi-colored graphs associated to hypersequents.

4 New results for LC and LCn

In order to propose new results for (general) hypersequents from the above results on
basic hypersequents, we can relate them to the system GLC∗ and some results of [3].

4.1 Decision procedures for hypersequents

The main one is that for every hypersequent G one can effectively find a set B of basic
hypersequents, so that G is valid if and only if H is valid for every H ∈ B .



G | Γ,A,B`C

G | Γ,A∧B`C
[∧L]

G | Γ`A G | Γ`B

G | Γ`A∧B
[∧R]

G | Γ,A`C G | Γ,B`C

G | Γ,A∨B`C
[∨L]

G | Γ`A | Γ`B

G | Γ`A∨B
[∨R]

G | Γ,A→B,A→C`D

G | Γ,A→ (B∧C)`D
[→∧L]

G | Γ,A→B`D G | Γ,A→C`D

G | Γ,A→ (B∨C)`D
[→∨L]

G | Γ,A→C`D G | Γ,B→C`D

G | Γ,(A∧B)→C`D
[∧→L]

G | Γ,A→C,B→C`D

G | Γ,(A∨B)→C`D
[∨→L]

G | Γ,A→C`D G | Γ,B→C`D

G | Γ,A→ (B→C)`D
[→(→)L]

G | A`B | Γ,B→C`D G | Γ,C`D

G | Γ,(A→B)→C`D
[(→)→L]

G | Γ` r | p→q` p G | Γ,q` r

G | Γ, p→q` r
[→L]

G | Γ,A`B

G | Γ`A→B
[→R]

Fig. 2. The Rules of GLC∗ for LC

Proposition 4.1. Let [[·]] : Var→ [0,n) be an interpretation,
[[·]] is a countermodel of G | Γ,⊥→ A`B in LCn (resp. LC) iff [[·]] is countermodel of
G | Γ`B in LCn (resp. LC);
[[·]] is countermodel of G | Γ,A → A`B in LCn (resp. LC) iff [[·]] is countermodel of
G | Γ`B in LCn (resp. LC);
[[·]] is countermodel of G | Γ, p → q ` p in LCn (resp.LC) iff [[·]] is countermodel of
G | Γ` p | p → q` p in LCn (resp. LC).

From these results we now consider the GLC∗ system the rules of which are given
in Figure 2. The axioms of GLC∗ are the generalized axioms defined as follows [3]: A
generalized axiom is a basic hypersequent of one of the following forms: a) p1 ≺ p2 |
p2 ≺ p3 | . . . | pn−1 ≺ pn | pn ` p1 where n > 1, p1, . . . , pn are n distinct propositional
variables, and for all 1 ≤ i ≤ n−1, pi ≺ pi+1 is either pi ` pi+1 or (pi+1 → pi)` pi+1;
b) (p1 →⊥)` p1 | (p2 → p1)` p2 | . . . | (pn−1→ pn−2)` pn−1 | pn−1` pn where n > 1,
p1, . . . , pn are n distinct propositional variables (in the case n = 1 we take p0 to be ⊥).

Let us recall some useful definitions. Knowing that a proof rule is composed of premises
Hi with a conclusion C, it is strongly sound if, for any instance of the rule and any in-
terpretation [[·]], if [[·]] is a model of all the Hi then it is a model of C. Moreover it is
strongly invertible if, for any instance of the rule and any interpretation [[·]], if [[·]] is a
countermodel of at least one Hi then it is a countermodel of C.

Theorem 4.1. The rules of GLC∗ are strongly sound for LCn (resp. LC).

Proof. We consider the (→)→ rule. The other cases are similar. Let [[·]] be an in-
terpretation which is a model of both premises. Thus, [[·]] is a model of G or both



bbΓcc∧ [[C]] ≤ [[D]] and either [[A]] ≤ [[B]] or bbΓcc∧ [[B→C]]` [[D]] hold:
- if [[·]] is a model of G then [[·]] is a model of G | Γ,(A→B)→C`D, conclusion of the
(→)→ rule;
- if bbΓcc∧ [[C]] ≤ [[D]] and [[A]] ≤ [[B]]. Since [[A]] ≤ [[B]], we have [[(A→B)→C]] = [[C]]
and we conclude that bbΓcc ∧ [[(A→B)→C]] ≤ [[D]]; - if bbΓcc ≤ D then bbΓcc ∧ [[(A→
B)→C]] ≤ [[D]] holds;
- if [[C]] ≤ [[D]] and [[B→C]] ≤ [[D]] then if [[A]] > [[B]] then [[(A→B)→C]] = [[B→C]]
and bbΓcc∧ [[(A→B)→C]] ≤ [[D]] holds. Else, [[(A→B)→C]] = [[C]] and we deduce that
bbΓcc∧ [[(A→B)→C]] ≤ [[D]].

Theorem 4.2. The rules of GLC∗ are strongly invertible for LCn (resp. LC).

Proof. We consider the (→)→ rule. The other cases are similar. Let [[·]] be a coun-
termodel of G | Γ,C `D (the left premise). Then both [[·]] is a countermodel of G and
bbΓcc ∧ [[C]] > [[D]] hold. Since [[C]] ≤ [[(A → B)→C]], we deduce that [[·]] is a coun-
termodel of G and bbΓcc ∧ [[(A → B)→C]] > [[D]]. Therefore, [[·]] is a countermodel
of the conclusion of the rule (→)→. Let [[·]] be a countermodel of G | Γ,B→C `D
(the right premise). We have [[·]] is a countermodel of G and both [[A]] > [[B]] and
bbΓcc ∧ [[B→C]] > [[D]] hold. Since [[A]] > [[B]], we have [[(A→ B)→C]] = [[B→C]].
Thus bbΓcc∧ [[(A→B)→C]] > [[D]] holds and we conclude that [[·]] is a countermodel of
the (→)→ rule conclusion.

Since all GLC∗ rules are strongly invertible, we obtain, for any H ∈ B , if [[·]] :
Var→ [0,n) is countermodel of H in LCn (resp. LC) then [[·]] is countermodel of G
in LCn (resp. LC) because B is obtained from the GLC∗ rules and Proposition 4.1.
Thus we get a decision procedure for hypersequents in LCn (resp. LC) which builds
countermodels, by using the previous decision procedure in order to decide which ba-
sic hypersequents are valid in LCn (resp. LC) and eventually to build a countermodel.
Moreover we can characterize the axioms of GLC∗ as the basic hypersequents with as-
sociated bi-colored graphs that contain a ⇒-cycle.
Therefore we have provided new decision procedures for LC but also LCn with construc-
tion of countermodels and decision of irreducible hypersequents that can be realized in
linear time. In comparison sequent of relations calculi provide a nice framework for
proof search in LC [6,7] but cannot deal with the finitary versions LCn.

4.2 A new hypersequent calculus and a tableau system for LCn

Having defined a new procedure for hypersequents in LC but mainly for LCn by defin-
ing bi-colored graphs associated to hypersequents. In a dual approach we show how
we can deduce, from our study of bi-colored graphs, a new hypersequent calculus for
LCn similar to system GLC∗, by providing a new class of axioms called n-generalized
axioms.

Definition 4.1 (n-generalized axiom). A n-generalized axiom is either a generalized
axiom or a basic hypersequent of the form:
p1

m1 ` p1
m1−1 | (p2

1 → p2
2)` p2

1 | (p2
2 → p2

3)` p2
2 | . . . | (p2

m2−2 → p2
m2−1)` p2

m2−2 | p2
m2 `

p2
m2−1 | (p3

1 → p3
2)` p3

1 | (p3
2 → p3

3)` p3
2 | . . . | (p3

m3−2 → p3
m3−1)` p3

m3−2 | p3
m3 ` p3

m3−1



. . .

| (pn
1→ pn

2)` pn
1 | (pn

2→ pn
3)` pn

2 | . . . | (pn
mn−2→ pn

mn−1)` pn
mn−2 | pn

mn
` pn

mn−1 | pn
mn

`′ p f

where for all 1 ≤ k ≤ n, mk > 2 and pi
mk

= pi+1
1 . Moreover, for all 2 ≤ i ≤ n and

1 ≤ j ≤ mi, pi
j, p1

m1 , p f are 2+m2 + . . . +mn distinct propositional variable, and p1
m1−1

is either a distinct propositional variable or ⊥ and p`′ q is either q ≺ p or q→ p`q.

From the n-generalized axioms, we can derive all the basic hypersequents the bi-
colored graphs of which contain a (n+1)-alternating chain, by using (internal and ex-
ternal) weakenings and permutations.

As an example H ≡ B`A | C `B | C →D`C is a 2-generalized axiom with the
following bi-colored graph:

A B

♦

C D

Theorem 4.3. A basic hypersequent is valid in LCn iff it is a basic hypersequent derived
from some n-generalized axioms using weakenings and permutations.

Proof. First we prove the if part. Let H be a basic hypersequent. We suppose that H is
derived from a n-generalized axiom using weakenings and permutations. Then the bi-
colored GH contain a n+1-alternating chain. By Theorem 3.1, we have H valid in LCn.
We now prove the only if part. Let H be a basic hypersequent valid in LCn. We suppose
that H is not derived from a n-generalized axiom using weakenings and permutations.
Then the bi-colored GH does not contain a (n+1)-alternating chain. By Theorem 3.1,
we deduce that H is not valid in LCn and then we have a contradiction.
Definition 4.2. We define the GLC∗

n system as the hypersequent calculus having
- basic hypersequents derived from the n-generalized axioms using (internal and exter-
nal) weakenings and permutations, as axioms;
- rules of GLC∗ as rules.

The GLC∗
n axioms are the basic hypersequents whose the bi-colored graphs contain

(n + 1)-alternating chains. Therefore, they are the basic hypersequents valid in LCn.
Since for every hypersequent G , one can find a set of basic hypersequents B , so that G
is valid in LCn if and only if H is valid in LCn for every H ∈ B , we conclude that a
hypersequent G is valid in LCn if and only if G has a proof in GLC∗

n .
Theorem 4.4. A formula F is valid in LCn iff the sequent `F has a proof in GLC∗

n .

A consequence is that a tableau system for finitary versions of Gödel-Dummett
logic (LCn)n>0 based on the hypersequent calculus GLC∗

n can be obtained from the
Avron’s tableau system for LC based on GLC∗ [3]. We only have to change the definition
of closed branchs by using the axioms of GLC∗

n instead of the ones of GLC∗. This
direct extension to LCn is the result of the use of bi-colored graphs to decide the basic
hypersequents. In order to check if a branch is closed, it seems simpler to verify the
existence of a particular chain or cycle in the graph than to verify if a set of signed
formulas (and links) represents or not an instance of an axiom (in GLC∗

n or GLC∗).



5 Bi-colored graphs and hypersequents in LC and LCn

In this section we consider (general) hypersequents and aim at studying if the approach
used in the case of a particular class of hypersequents can be generalized in the general
case by defining adequate bi-colored graphs to to characterize provability.
Our approach consists in applying to a given hypersequent H an indexing process [13]
and then to reduce it to a flat sequent S such that H is valid if and only if S is valid.
Let us precise that H cannot include occurrences of special variables � and ♦ but can
include occurrences of ⊥. Such occurrences are eliminated during the flattening pro-
cess. We remind that a formula is flat if it is implicational, of the form X → (Y ? Z)
or (X ?Y )→Z with X ,Y,Z ∈ Var and ? ∈ {∧,∨,→}. A ♦-context ∆♦ is a non-empty
multiset of implicational formulae such that if A→B ∈ ∆♦ then ♦→B ∈ ∆♦. More-
over Γ`∆♦ is a flat sequent if the context Γ contains only flat formulae and ∆♦ is a
♦-context. A flat hypersequent is such that all its components are flat.
The indexing process is based on the two linear functions δ+ and δ−, that map occur-
rences of subformulae of a given formula D to multisets. They are defined as follows:

δ+(⊥) = X⊥→�

δ+(V ) = XV →V,�→V with V is a variable
δ+(A∗B) = δ+(A),δ+(B),XA∗B → (XA ∗XB) with ∗ ∈ {∧,∨}
δ+(A→B) = δ−(A),δ+(B),XA→B → (XA →XB)

δ−(⊥) = �→X⊥

δ−(V ) = V →XV ,�→V with V is a variable
δ−(A∗B) = δ−(A),δ−(B),(XA ∗XB)→XA∗B with ∗ ∈ {∧,∨}
δ−(A→B) = δ+(A),δ−(B),(XA →XB)→XA→B

The size of a formula is the number of occurrences of its subformulae that is the
number of nodes in its decomposition tree. Let D be a formula of size n, it has been
proved that the cardinals of δ+(D) and δ−(D) are smaller than 2n. Moreover the el-
ements of these multisets are only flat formulae of size less than 5. Then the size of
δ−(D) and δ+(D) are bounded by 5n.

Proposition 5.1. Let D be a formula, if [[·]] is an interpretation such that [[�]] = 0 and
[[XK ]] = [[K]] for any occurrence of subformula K of D then δ+(D) = δ−(D) = ∞.

This proposition has been proved in [15]. The next step consists, using this indexing
process, in transforming a given hypersequent H into an indexed flat sequent S and in
building a bi-colored graph from this sequent. Before to give this construction we study
the preservation of validity and countermodels through such a transformation.

5.1 Hypersequents and flat sequents

For the presentation we consider mono-conclusioned hypersequents but we finally show
how and why results are valid for (multi-conclusioned) hypersequents.
Let H = A1

1, . . . ,A
1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp be a hypersequent of LC. We associate

to H a particular flat sequent S = FS(H ) = δ+(A1
1), . . . ,δ

+(Ap
np), δ−(B1), . . . ,δ−(Bp)



` XA1
1
→XB1 , . . . ,XA1

n1
→ XB1 ,XA2

1
→ XB2 , . . . ,XA2

n2
→XB2 , . . . ,XAp

1
→ XBp , . . . ,XAp

np
→

XBp ,♦→XB1 , . . . ,♦→XBp .

Theorem 5.1. Let H =A1
1, . . . ,A

1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp. If the sequent FS(H ) is

valid in LCn then the hypersequent H is valid in LCn.

Proof. Let [[·]] : Var→ [0,n) be an interpretation. We define a new interpretation [[·]]′ by
[[V ]]′ = [[V ]] for any variable V of H , [[XK ]]′ = [[K]] for any K subformula of H formulae,
[[♦]]′ = ∞ and [[�]]′ = 0. As [[·]]′ and [[·]] have the same values for H ’s atoms , for any
subformula K of H formulae, [[K]]′ = [[K]]. Therefore [[XK ]]′ = [[K]]′ and [[�]]′ = 0. By
Proposition 5.1, we obtain ∀i ∈ [1, p] ∀ j ∈ [1,ni] bbδ+(Ai

j)cc = bbδ−(Bi)cc = ∞. As S is
valid in LCn, [[·]]′ is a model of S and consequently ∃i ∈ [1, p] ∃ j ∈ [1,ni] [[XAi

j
→XBi ]]

′ =

∞ or [[♦→XBi ]]
′ = ∞. But [[♦]] = ∞ and then ∃i ∈ [1, p] ∃ j ∈ [1,ni] [[XAi

j
]]′ 6 [[XBi ]]

′ or
[[XBi ]]

′ = ∞. Thus ∃i∈ [1, p] ∃ j ∈ [1,ni] [[Ai
j]] 6 [[Bi]] or [[Bi]] = ∞. As we have proved that

∃i ∈ [1, p] ∃ j ∈ [1,ni] [[Ai
j]] 6 [[Bi]] or [[Bi]] = ∞, for any interpretation [[·]] : Var→ [0,n),

we deduce that H is valid in LCn.

Let [[·]] : Var→ [0,n) be an interpretation and α ∈ [0,n), we define the translated
interpretation by:

[[X ]]−α =







∞ if [[X ]] = ∞
[[X ]]−α if [[X ]] ≥ α
0 if [[X ]] < α

Theorem 5.2. Let H =A1
1, . . . ,A

1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np ` Bp, if [[·]] : Var→ [0,n) is

a countermodel of the sequent FS(H ) in LCn then [[�]] < ∞ and for α = [[�]], the
translated interpretation [[·]]−α is a countermodel of the hypersequent H in LCn.

Proof. Given in appendix A.

5.2 Bi-colored graphs

Let H be a given hypersequent of LC. As shown in the previous section we can associate
to H an equivalent flat sequent FS(H ) = S = δ+(A1

1), . . . ,δ+(Ap
np),δ−(B1), . . . ,δ−(Bp)`

XA1
1
→XB1 , . . . ,XA1

n1
→XB1 ,XA2

1
→XB2 , . . . ,XA2

n2
→XB2 , . . . ,XAp

1
→XBp , . . . ,XAp

np
→XBp ,

♦→XB1 , . . . ,♦→XBp . Now we define a procedure that builds, from H and the flat se-
quent FS(H ), a particular bi-colored graph GH that is associated to H .

The nodes of GH are defined from the set of the nodes of the decomposition tree of
all the formulae of H (set of the subformulae occurrences).
Moreover we introduce a new variable XF for every occurrence F of subformula of D
in H . It is the corresponding node of F . The nodes are signed as follows: we have − at
the root D− if D is a hypothesis else we have + and we propagate the signs as usual.1

1 The connectors ∧ and ∨ preserve the signs and → preserves the sign on the righthand side and
inverses the sign on the lefthand side.



We can write X +
F or X −

F in order to emphasize the signs.
We also add the node denoted V for all propositional variables of H . Thus several oc-
currences of V generate only one node V and several nodes X +

V or X −
V . Moreover we

add two new nodes denoted ♦ et �.

The arrows of GH are defined as follows: we describe the green and red arrows be-
tween the nodes together with the boolean expressions indexing them.
First we start with the non-indexed arrows introduced independently of the internal
structure of H ’s formulae. We add
- a red arrow X −

D ⇒♦ for any formula D of the multi-set of conclusions of H .
- a red arrow X −

B →X +
A for any formula A and B of H that belong to the same compo-

nent.
- a green arrow V →X −

V for any negative occurrence of variable V and a green arrow
X +

V →V for any positive occurrence of variable V .
- a green arrow �→V for any variable V , a green arrow �→X −

⊥ for any negative
occurrence of ⊥ and a green arrow X +

⊥ →� for any positive occurrence of ⊥.
Secondly we consider the introduction of arrows for the internal nodes. Let us start with
the non-indexed arrows. We add
- two green arrows X +

C →X +
A and X +

C →X +
B for any positive subformula occurrence

C ≡ A∧B.
- two green arrows X −

A →X −
C and X −

B →X −
C for any negative subformula occurrence

C ≡ A∨B.
We now complete with the indexed arrows, i.e., arrows indexed by boolean expressions
of the form x or x with x propositional variable. Then we introduce a new boolean vari-
able for any subformula occurrence. We add
- a new boolean variable x and two green arrows X −

A →x X −
C and X −

B →x X −
C for any

negative subformula occurrence C ≡ A∧B.
- a new boolean variable x and two green arrows X +

C →x X +
A and X +

C →x X +
B for any

positive subformula occurrence C ≡ A∨B.
- a new boolean variable x, two green arrows X −

B →x X −
C and ♦→x X −

C and two red
arrows X −

B ⇒x X +
A and X −

B ⇒x ♦ for any negative subformula occurrence C ≡ A→B.
- a new boolean variable x and two green arrows X +

C →x X +
B and X −

A →x X +
B for any

positive subformula occurrence C ≡ A→B.

We illustrate this construction with the hypersequent H3 = A`B | A→B`B. The
bi-colored graph GH3 associated to H3 is given in Figure 3.
It is clear that the construction of the graph GH for a given hypersequent H is in linear
time because we add at most four arrows for each subformula instance. Now we have
to define a characterization of the validity of H from the associated bi-colored graph.

5.3 A procedure for countermodel search

We have proved, in the previous section, that deciding if a hypersequent H is valid or
has a countermodel in LCn can be reduced to deciding if the flat sequent associated to
H (see Theorem 5.1 and 5.2) is valid or has a countermodel in LCn. Then we focus



A � B
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1 B−

2 A−

4 B+

5

♦ B−

6 →+

3

x

x

Fig. 3. A Bi-colored Graph of a Hypersequent

now on the graph GH and analyze validity of H from it.
First any flat sequent can be reduced or transformed into a set of implicational sequents,
i.e., sequents of the form S = X1→Y1, . . . ,Xk →Yk `A1 →B1, . . . ,Al →Bl . Secondly we
can associate a bi-colored graph GS to such a sequent S as follows: the set of nodes is
the set of the variables of S , namely {Xi}∪{Yi}∪{Ai}∪{Bi} and the set of arrows is
{X1 →Y1, . . . ,Xk →Yk}∪{B1 ⇒A1, . . . ,Bl ⇒Al}. Then an implicational sequent S has
a countermodel in LCn (resp. in LC) if and only if its associated bi-colored graph does
not contain a (n+1)-alternating chain (resp. a ⇒-cycle) [16]. Thus we now study if we
can relate the search of particular chains in an instance of the associated graph GH to
the existence of countermodels.

Theorem 5.3 (n = ∞). Let H be a hypersequent and GH its bi-colored graph, H has a
countermodel in LC if and only if there exists an instance of GH that does not contain
a ⇒-cycle.

Proof. Let H be a hypersequent and S be the associated flat sequent. An interpretation
[[·]] is a countermodel of S if and only if at least it is a countermodel of one of the impli-
cational sequents issued of the transformation of S . The bi-colored graphs associated to
these implicational sequents exactly correspond to the instances of GH . By the above-
mentioned results S has a countermodel if and only if one of the instances of GH does
not contain a ⇒-cycle. Thus, H has a countermodel if and only if one of the instances
of GH does not contain a ⇒-cycle.

Theorem 5.4 (n < ∞). Let H be a hypersequent and GH its associated bi-colored
graph, H has a countermodel in LCn if and only if there exists an instance of GH that
does not contain a (n+1)-alternating chain.

Proof. For LCn with n 6= ∞, the proof is similar by replacing the notion of ⇒-cycle by
the one of (n+1)-alternating chain.

Let us come back to our example with the hypersequent H3 = A`B | A→B`B. If
we consider its associated graph GH3 (see previous subsection) we observe that it has



two instances (x = 0 and x = 1). The first one (x = 0) contains the following ⇒-cycle:
B−

2 ⇒A+
1 →A→A−

4 →B+
5 →B→B−

2 . The second one (x = 1) contains the following
⇒-cycle: B−

6 ⇒→+
3 →B+

5 →B→B−
6 . Then we deduce that H3 does not contain coun-

termodels in LC. An example with countermodel generation is given in appendix B.

These results on mono-conclusioned hypersequents can be easily extended to (multi-
conclusioned) hypersequents.
Let H =A1

1, . . . ,A
1
n1 ` B1

1, . . . ,B
1
m1 | . . . | Ap

1 , . . . ,Ap
np `Bp

1 , . . . ,Bp
mp be a given hyperse-

quent, we build the flat sequent FS(H ) = δ+(A1
1), . . . ,δ

+(Ap
np),δ−(B1

1), . . . ,δ
−(Bp

mp),
(X`1)→XA1

1
, . . . ,(X`1)→XA1

n1
, . . . ,(X`p)→XAp

np
` (X`1)→XB1

1
, . . . ,(X`1)→XB1

m1
, . . . ,

(X`p)→XBp
1
, . . . ,(X`p)→XBp

mp
,♦→XB1

1
, . . . ,♦→XBp

mp
. Then we can prove theorems

similar to Theorem 5.1 and Theorem 5.2 and then directly use the procedure defined for
bi-colored graph construction. In addition our new procedure can be applied to a spe-
cific case of hypersequents that are sequents. Therefore we also provide a new proce-
dure for deciding provability of LC sequents through bi-colored graphs with generation
of countermodels.

6 Conclusion and perspectives

In this paper we propose new characterizations of validity in LC and LCn based on the
construction, from a hypersequent, of a specific bi-colored graph on which the search
of particular chains corresponds to countermodel search. It leads to new decision proce-
dures for hypersequents in Gödel-Dummett logics that is well adapted to countermodel
generation. These results present an alternative approach to works on proof-search with
analytic calculi. Thus we aim at developing it for other logics including substructural
or intermediate logics [18].
Recent works have studied the relationships between parallel dialogue games and hy-
persequents for some intermediate logics including LC [10]. We also aim at relating
bi-colored graphs and such games in such a way that we could generate directly win-
ning strategies from bi-colored graphs associated to sequents or hypersequents. From
preliminary results for graphs associated to implicational sequents we expect to study
how to deal with general sequents or hypersequents.
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15. D. Larchey-Wendling. Gödel-Dummett counter-models through matrix computations. Elec-
tronic Notes in Theoretical Computer Science, 125(3):137–148, 2005.

16. D. Larchey-Wendling. Graph-based decision for Gödel-Dummett logics. Journal of Auto-
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A Proof of Theorem 5.2

To prove the result we need the three following propositions, proved in [16].

Proposition A.1. Let A be a formula without ⊥, α be a value in [0,n) and [[·]] : Var→
[0,n) be an interpretation such that, for any variable X of A, [[X ]] > α. We have [[A]] > α
and if α < ∞ then [[A]]−α = [[A]]−α.

Proposition A.2. Let D be a formula, we have the following properties:
1. For any subformula K of D, the formulae of δ+(K) and δ−(K) are flat and do not
contain the constant ⊥;
2. For any variable V of D, the atomic implication �→V is in δ+(K) and in δ−(K);
3. The size of δ+(K) and δ−(K) is linear in the size of D.

Proposition A.3. Let D be a formula, for any subformula K of D, the two sequents
δ+(K),XK `K� and δ−(K),K� `XK are valid in LCn.



Theorem 5.2
Let H =A1

1, . . . ,A
1
n1 `B1 | . . . | Ap

1 , . . . ,Ap
np `Bp, if [[·]] : Var→ [0,n) is a countermodel of

the sequent FS(H ) in LCn then [[�]] < ∞ and for α = [[�]], the translated interpretation
[[·]]−α is a countermodel of the hypersequent H in LCn.

Proof. Let [[·]] : Var→ [0,n) be a countermodel of the sequent S . The following proper-
ties are satisfied:

1. ∀i, j ∈ [1, p] and ∀k ∈ [1,ni],bbδ+(Ai
k)cc > [[♦→XB j ]];

2. ∀i, j ∈ [1, p], ∀k ∈ [1,ni] and ∀l ∈ [1,n j], bbδ+(Ai
k)cc > [[X

A j
l
→XB j ]];

3. ∀i, j ∈ [1, p], bbδ−(Bi)cc > [[♦→XB j ]];
4. ∀i, j ∈ [1, p] and ∀k ∈ [1,n j], bbδ−(Bi)cc > [[X

A j
k
→XB j ]].

By property 4, we have ∀i ∈ [1, p], bbδ−(Bi)cc > [[♦→ XBi ]] and we deduce that for
any i ∈ [1, p], [[♦→XBi ]] < ∞ and [[XBi ]] = [[♦]]_ [[XBi ]] < ∞. Then, for any i ∈ [1, p],
[[XBi ]] < bbδ−(Bi)cc. By Proposition A.3, ∀i ∈ [1, p], δ−(Bi),(Bi)� `XBi is a valid se-
quent and then ∀i ∈ [1, p], bbδ−(Bi)cc ∧ [[(Bi)�]] 6 [[XBi ]] < bbδ−(Bi)cc. Therefore ∀i ∈
[1, p], bbδ−(Bi)cc ∧ [[(Bi)�]] < bbδ−(Bi)cc and we obtain [[(Bi)�]] < bbδ−(Bi)cc for any
i ∈ [1, p].
- We now prove that, for any variable V of H , [[V ]] > [[�]]. First, if H does not contain
variables, i.e., all its atoms are occurrences of ⊥, then the previous property is trivially
verified. Else, let Bi be one of its conclusion formulae and V0 be a variable of (Bi)� that
realizes the minimal value γ of the non-empty set {[[�→V ]], V variable of Bi�}. Thus
γ = [[�→V0]] and for any variable V of (Bi)�, [[�→V ]] > γ. If V0 is in the variable
set of Bi then, by Proposition A.2, �→V0 ∈ δ−(Bi) and then bbδ−(Bi)cc 6 [[�→V0]] =
γ. Else V0 = � and therefore bbδ−(Bi)cc 6 [[�→V0]] = [[�→�]] = ∞. In both cases
bbδ−(Bi)cc 6 [[�→V0]] = γ.
- We now prove that [[�]] 6 γ. Let us suppose [[�]] > γ = [[�→V0]] and let V be a variable
de (Bi)�: either V = � and [[V ]] = [[�]] > γ or V is a variable of Bi and [[�→V ]] > γ,
and then [[V ]] > γ. By Proposition A.1, as (Bi)� does not contain ⊥, [[(Bi)�]] > γ. We
deduce γ 6 [[(Bi)�]] < bbδ−(Bi)cc 6 [[�→V0]] = γ, that is contradictory and then � 6 γ.
For any variable V of (Bi)�, [[�]] 6 γ 6 [[�→V ]] = [[�]] _ [[V ]]. Then , for any vari-
able V of (Bi)�, [[�]] 6 [[V ]] and by Proposition A.1 [[(Bi)�]] > [[�]]. Thus ∀i ∈ [1, p]
[[(Bi)�]] > [[�]] because we have no hypothesis on Bi.
- We now prove that, for any variable V of H , [[V ]] > [[�]]. We suppose that there exists
a variable V1 such that [[V1]] < [[�]]. By Proposition A.2, �→V1 belongs to the mul-
tiset of hypotheses of S . Then ∀i ∈ [1, p] [[�→V1]] = [[V1]] > XBi . We have ∀i ∈ [1, p]
bbδ−(Bi)cc > [[XBi ]] and by Proposition A.3, δ−(Bi),(Bi)� `XBi is a valid sequent and
then ∀i∈ [1, p] [[(Bi)�]] 6 [[XBi ]]. Thus we have ∀i∈ [1, p] [[�]] 6 [[(Bi)�]] 6 [[XBi ]] < [[V1]]
that is contradictory.
By property 3, ∀i, j ∈ [1, p] ∀k ∈ [1,ni] ∀l ∈ [1,n j] bbδ+(Ai

k)cc> [[X
A j

l
→XB j ]] and we de-

duce that ∀ j ∈ [1, p] ∀l ∈ [1,n j] [[X
A j

l
→XB j ]] < ∞. Then ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[XAi

j
]] >

[[XBi ]] and finally ∀i ∈ [1, p] ∀ j ∈ [1,ni] bbδ+(Ai
j)cc > [[XBi ]] and then bbδ+(Ai

j),XAi
j
cc >

[[XBi ]]. By Proposition A.3, ∀i ∈ [1, p] ∀ j ∈ [1,ni] δ+(Ai
j),(A

i
j)� ` XAi

j
is a valid se-

quent. Thus ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[(Ai
j)�]] > [[XBi ]]. Moreover ∀i ∈ [1, p] ∀ j ∈ [1,ni]



[[(Ai
j)�]] > [[(Bi)�]] because ∀k ∈ [1, p], [[Bk�]] 6 [[XBk ]].

We have proved that ∀i ∈ [1, p] [[(Bi)�]] < bbδ−(Bi)cc. But ∀i ∈ [1, p] [[(Bi)�]] > [[�]] and
then [[�]] < ∞. Let α = [[�]], as [[�]]−α = [[�]]−α = 0 = [[⊥]]−α. We obtain [[D]]−α =
[[D�]]−α, for any formula D of H , and by Proposition A.1, [[D�]]−α = [[D�]]−α. We
have ∀i ∈ [1, p] ∀ j ∈ [1,ni] [[Ai

j�]] > [[(Bi)�]] and α < ∞. Thus ∀i ∈ [1, p] ∀ j ∈ [1,ni]

[[(Ai
j)�]]−α > [[(Bi)�]]−α and then [[Ai

j]]−α > [[Bi]]−α. Then [[·]]−α is a countermodel.

B An example with countermodel generation

The bi-colored graph of the hypersequent H4 ≡`A | A`⊥ is

A−

1
♦

A ⊥−

3

�

A+

2

This graph has only one instance that does not contain ⇒-cycle. Then we deduce
that H4 has a countermodel. In order to extract it we modify the graph as follows: the
red arrows always go up and the green arrows never go down.

A−

1 A A+

2

� ⊥−

3

♦

0

1

∞

Then [[·]] : Var→ [0,n) such that [[A]] = 1 and n > 2, is a countermodel of H4 in LCn.


