
A Connetion-based Charaterization ofBi-intuitionisti ValidityDidier Galmihe and Daniel MéryLORIA - Université Henri PoinaréCampus Sienti�que BP 239Vand÷uvre-lès-Nany, FraneAbstrat. We give a onnetion-based haraterization of validity inpropositional bi-intuitionisti logi in terms of spei� direted graphsalled R-graphs. Suh a haraterization is well-suited for deriving la-belled proof-systems with ounter-model onstrution failities. We �rstde�ne the notion of bi-intuitionisti R-graph from whih we then obtaina onnetion-based haraterization of propositional bi-intuitionisti va-lidity and derive a sound and omplete free-variable labelled sequentalulus that admits ut-elimination and also variable splitting.1 IntrodutionBi-intuitionisti logi BiInt is a onservative extension of intuitionisti logi thatintrodues a new onnetive �, alled exlusion (also alled o-impliation orsubtration), whih is dual to the impliation onnetive �. It was �rst studiedby Rauszer that gives a Hilbert alulus with Kripke and algebrai semantis [11℄and more reently by Crolard from the perspetive of biartesian losed ate-gories with oexponents and the underlying type system with appliations totype theory [2,3℄. An interesting aspet of BiInt lies in the duality between impli-ation and exlusion whih motivates the de�nition of proof systems that work asprogramming languages in whih values and ontinuations are handled in a sym-metri way. From a proof-theoreti point of view, a strong fous has been put onthe ahievement of ut-free proof-systems sine ut-elimination in Gentzen-style(shallow) sequent aluli is partiularly di�ult to obtain. In this perspetivesome ut-free aluli for BiInt have been proposed from sequent strutures likenested sequents [6℄ or display inferene rules [10℄. Another solution makes useof Negri's general methodology for designing labelled sequent aluli in modallogis [7℄ in order to provide a ut-free labelled sequent alulus where labelsorrespond to worlds in Kripke strutures [9℄.In this paper we give the �rst onnetion-based haraterization of propo-sitional bi-intuitionisti validity in terms of bi-intuitionisti R-graphs. Let usnote that similar strutures have been de�ned in the ase of BI or separationlogis [5,4℄ in order to haraterize validity. Our haraterization is well-suitedfor deriving labelled proof-systems with ounter-model onstrution failitieswhih, ompared with the existing labelled proof-systems [9℄, easily integrate



free-variables and variable splitting [1℄. The main ontributions of this work are:the de�nition of bi-intuitionisti R-graphs; a onnetion-based haraterizationof validity in propositional BiInt; a new sound and omplete free-variable labelledsequent alulus that inludes variable splitting and has the ut-eliminationproperty; an algorithm for solving admissibility onstraints and thus derivinga onnetion-based method.2 Bi-intuitionisti Propositional LogiThe language of BiInt onsists of a ountable set V of propositional letters P,Q . . .and the logial symbols ⊥, ∨, ∧, � and �. Formulas are indutively built frompropositional letters as follows:
A ::= P | ⊥ | A ∨ A | A ∧A | A � A | A � A. We write F to denote the set of all formulas of BiInt. Negation ¬A is de�nedas syntati sugar for A � ⊥ and is therefore not onsidered as primitive in oursetting. Similarly, the onjuntive unit ⊤ is de�ned as a shorthand for P � P.Bi-intuitionisti logi Kripke semantis is a straightforward extension of that ofintuitionisti logi.De�nition 1. A Kripke model is a triple M = 〈M,⊑, J·K〉, where M is a setof worlds, ⊑ is a partial order on M and J·K is a funtion from worlds to setsof propositional letters satisfying the following Kripke monotoniity ondition:if P ∈ JmK and m ⊑ n then P ∈ JnK.The Kripke foring relation |= is de�ned as the least relation between worlds andformulas suh that:� m |= ⊥ never;� m |= P i� P ∈ JmK;� m |= A ∨ B i� m |= A or m |= B;� m |= A ∧ B i� m |= A and m |= B;� m |= A � B i� for all n ∈M suh that m ⊑ n, n 6|= A or n |= B;� m |= A � B i� for some n ∈M suh that n ⊑ m, n |= A and n 6|= B.Kripke monotoniity lifts from propositional letters to formulas as in intu-itionisti logi. As usual, a formula A is satis�ed in M i� m |= A for all worlds

m in M , satis�able if it is satis�ed in some Kripke model M, and valid if itis satis�ed in all Kripke models. Figure 1 depits the standard (Dragalin-style)multi-onlusioned sequent alulus for BiInt whih an be found in [9℄. We ob-serve that the rules for the exlusion onnetive � simply behave as duals for theones dealing with the inlusion �. However, the prie to pay for the easy dualformulation is that the alulus does not admit ut-elimination.3 Indexing FormulasIn this setion, we reall some basi terminology of onnetion-based harater-izations of validity as we shall heavily rely on it in the forthoming setions.
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Γ,A � B ⊢ ∆Fig. 1. Dragalin-style sequent alulus for BiIntA signed formula is a pair (C, S), written CS, where C is a BiInt formula and
S ∈ {+,−} is a sign. Depending on its prinipal onnetive and sign, a signedformula is given a prinipal type (ptype) α or β. If α (respetively β) is theprinipal type of a signed formula C, then, its left subformula A is of seondarytype (stype) α1 (respetively β1) and its right subformula B is of seondary type
α2 (respetively β2). Signed formulas the prinipal onnetive of whih belongsto the set {�,�} also admit an additional intuitionisti type (itype) φ, φ, ψ or ψ.The following tables desribe how signs, prinipal, seondary and intuitionistitypes are indutively determined.

α α1 α2 β β1 β2

(A ∧ B)+ A+ B+ (A ∧ B)− A− B−

(A ∨ B)− A− B− (A ∨ B)+ A+ B+

(A � B)− A+ B− (A � B)+ A− B+

(A � B)+ A+ B− (A � B)− A− B+

itype

(A � B)+ φ
(A � B)− ψ

(A � B)+ ψ

(A � B)− φFor readability, we often simply speak of the type of a signed formula eah timethe ontext makes it lear what type (ptype, stype or itype) is atually intended;we also write �t-formula� as a shorthand for �formula of type t�. Moreover, givena (plain) formula C and a subformula A in C, the (prinipal, seondary orintuitionisti) type of A in C is de�ned as the type of the signed formula AS in
C− that (syntatially) orresponds to A.Let Φ and Ψ be two disjoint and denumerable sets of symbols respetivelyalled variable and onstant symbols. We shall use the letters ranging from ato d (possibly subsripted) to denote onstant symbols. Similarly, we shall usethe letters from x to z to denote variable symbols. For onveniene, let us also
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Fig. 2. Indexed formula treeassume that Ψ always ontains the partiular symbol ǫ and that if s is a onstant(respetively variable) symbol, then so is s.Given a formula C, an indexed formula an be obtained from C by assigninga unique index (often alled �position� in the matrix terminology) to eah sub-formula enountered along a depth �rst exploration of C− (w.r.t. the syntatistruture of C) in suh a way that ψ- and ψ-subformulas are indexed with on-stant symbols in Ψ, φ- and φ-subformulas are indexed with variable symbols in
Φ, all other subformulas being indexed with natural numbers.Assuming strit total orders<Φ, <Ψ, <N on Φ,Ψ,N, assignments an be madedeterministi so as to obtain a one-to-one orrespondene between formulas andindexed formulas. We interpret <Φ and <Ψ as lexiographi orders and <Nas the usual strit order on natural numbers; therefore, eah time we have tohoose an index for a (sub)formula, we always pik the �rst symbol in Φ, Ψ or
N (w.r.t. <Φ, <Ψ, <N) that has not already been used as an index. We write
F(C, i) (respetively Sf(C, i)) to denote the unique subformula (respetivelysigned subformula) assoiated to the index i in a formula C (or signed formula
CS depending on the ontext).For example, indexing C = (((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q) we get theindexed (signed) formula
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8 ). Sine indexes are in a one-to-one orrespondene with (signed) formulas, weshall sometimes use indexes in plaes where (signed) formulas would normallybe expeted (and vie-versa).A formula tree for a formula C is a representation of its orresponding indexedformula as a syntax tree. A formula tree indues a strit partial ordering ≪ onindexes, alled the domination ordering, whih is suh that the index of theroot is the least element and if i ≪ j then i is enountered before j on apath from the root to j. If i is a non-atomi index in C (i.e., if F(C, i) isa non-atomi formula) then the two indexes j and k suh that F(C, j) and
F(C, k) are the immediate (left and right) subformulas of F(C, i) are alled



dual and we write j △ k = i. Figure 2 shows the formula tree assoiated with
(((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q).In the standard sequent alulus of Figure 1, ontration is internalized bythe repetition of the prinipal formula A � B (respetively A � B) in the left(respetively right) premiss of the �L (respetively �R) rule so that there is noneed for an expliit ontration rule. In a onnetion-based setting ontrationis usually handled via the notion of multipliity. Given a formula C of BiInt, amultipliity for C is a funtion µ() whih assigns a natural number to eah φ- or
φ-subformula A in C. The formula µ(C) is then de�ned as the formula obtainedfrom C by replaing every subformula A in C suh that µ(A) = n with thesubformula A ∧ A ∧ . . .∧A, where the onnetive ∧ ours exatly n times. Forexample, if C = (P � Q) � (R � S), µ(P � Q) = 1 and µ(R � S) = 2, then
µ(C) = ((P � Q) ∧ (P � Q)) � ((R � S) ∧ (R � S) ∧ (R � S)). Intuitively, amultipliity funtion enodes the number of opies that would be allowed (viaontration) for eah φ- or φ-formula in a sequent-style derivation.For onveniene, when dealing with indexed formulas, we use supersriptedindexes to distinguish between the opies of φ- and φ-formulas. For the previousexample, if we assume that x is the index of R � S in C, then µ(R � S) = 2implies that x1 and x2 should respetively be the indexes of the �rst and se-ond additional opies of R � S in µ(C). The previous notions are fairly ommonto most onnetion-based haraterizations of validity. If we were to follow thestandard reipe for suh haraterizations, the next step would be the introdu-tion of the key notions of (atomi) matrix paths, onnetions and spanning setstogether with admissible substitutions leading to irre�exive redution orderings.However, we shall not follow the standard approah for the upoming setionsand rather introdue the onept of R-graphs sine it allows us to reformulateall the standard notions on the same graphial struture. Moreover, R-graphsan easily be turned into Kripke models when dealing with non valid formulas.4 Bi-intuitionisti R-graphsFrom a very general point of view, R-graphs for a given logi are direted graphsin whih verties are meant to represent worlds in the underlying Kripke se-mantis of the logi [5℄. Let us �rst de�ne the general notion of R-graph beforerestriting it to math the bi-intuitionisti ase.De�nition 2 (R-graph). A R-graph (RG) is a direted graph G(V,E) withverties V and edges E. The verties are named with elements of Ψ ∪Φ. More-over, V is required to ontain a distinguished vertex ǫ alled the ǫ-vertex, everyvertex u is assoiated with a set F(G, u) of signed formulas the elements of whihare referred to as the tags of u, and every edge e is tagged with a letter T (G, e)from the set T = {ψ, φ, ψ̄, φ̄, σ, κ} of edge-tags.A vertex named with a onstant symbol (respetively variable symbol) isalled a ψ-vertex (respetively φ-vertex). The set of ψ-verties (respetively φ-verties) is written V Ψ (respetively V Φ). We use the letters u, v and w to range
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Fig. 3. Bi-intuitionisti R-graphsover arbitrary verties and we write u[τ ]v to denote the edge, tagged with theletter τ ∈ T , that goes from u to v; we then all this edge a τ -edge and say that
u and v respetively are its soure and target. Given a subset T ⊆ T , the set ofall τ -edges suh that τ ∈ T is written ET .De�nition 3 (Bi-intuitionisti RG). A R-graph G(V,E) is a bi-intuitionistiR-graph (biRG) if it satis�es the following strutural onditions:� every ψ-edge has a ψ-vertex as its target;� every ψ̄-edge has a ψ-vertex as its soure;� every φ-edge has a φ-vertex as its target;� every φ̄-edge has a φ-vertex as its soure;� every σ-edge indues a �bidiretional� link between a φ-vertex and a ψ-vertex,more formally, u[σ]v ∈ E i� v[σ]u ∈ E, with either u ∈ V Ψ and v ∈ V Φ, or

u ∈ V Φ and v ∈ V Ψ;� every κ-edge u[κ]v is a link between two (arbitrary) verties suh that thereexists at least one formula ourring positively (with a �+� sign) in F(G, u)and negatively (with a �−� sign) in F(G, v).Figure 3 gives some examples of bi-intuitionisti R-graphs. We shall explainin the next setion how suh graphs an be assoiated with formulas and disussthem in more details.
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a (resp. a, x, x) is the index of the αψ- (resp. αψ-, βφ-, βφ-) formula under redution.Fig. 4. Redution rules5 R-graph RedutionsStandard matrix haraterizations heavily rely on the notion of (atomi) matrixpaths through a given formula C. In our setting, suh atomi matrix paths arereplaed with the notion of irreduible R-graphs.Given a BiInt formula A, a (biRG-)redution through A is a sequene R =
R0ρ1 . . . ρi−1ρi . . . in whih R0 is a olletion (of biRGs) ontaining the singlebiRG G0(V0, E0), where V0 = {ǫ}, E0 = ∅ and F(G0, ǫ) = {A−}, and eah ρi isa redution step that transforms the olletion Ri−1 inherited from the previousredution step into a new olletion Ri by applying one of the redution rulesgiven in Fig. 4.In order to apply a redution rule to a biRG G(V,E), one �rst needs tohoose a vertex u in V and a signed formula AS in F(G, u).� If AS has prinipal type α and has no intuitionisti type, G(V,E) is reduedto the new biRG G1(V1, E1) suh that V1 = V , E1 = E, F(G1, v) = F(G, v)for all v 6= u and F(G1, u) = F(G, u)∪{α1(A

S), α2(A
S)}, where α1(A

S) and
α2(A

S) respetively are the �rst and seond signed subformulas of AS (ofseondary type α1 and α2).� If AS has prinipal type β and has no intuitionisti type, G(V,E) is reduedto two new biRGs G1(V1, E1), G2(V2, E2) suh that for i ∈ {1, 2}, Vi = V ,
Ei = E, F(Gi, v) = F(G, v) for all v 6= u and F(Gi, u) = F(G, u)∪{βi(AS)}.The previous redution rules are the reformulation of the standard α and βmatrix-path redution rules. The next two redution rules are spei� to BiIntand depend on the index (a, a, x or x) and intuitionisti type of the signedformula under redution (prinipal formula).� If AS has prinipal type α and has intuitionisti type ψ (respetively ψ),
G(V,E) is redued to the new biRG G1(V1, E1) suh that V1 = V ∪ {a} and



E1 = E ∪ {u[ψ]a} (respetively V1 = V ∪ {a} and E1 = E ∪ {a[ψ̄]u}).Moreover, F(G1, v) = F(G, v) for all v 6= a (respetively v 6= a), and
F(G1, a) = {α1(A

S), α2(A
S)} (respetively F(G1, a) = {α1(A

S), α2(A
S)}).� If AS has prinipal type β and has intuitionisti type φ (respetively φ),

G(V,E) is redued to two new biRGs G1(V1, E1), G2(V2, E2) suh that for
i ∈ {1, 2}, Vi = V ∪{x} and Ei = E∪{u[φ]x} (respetively Vi = V ∪{x} and
Ei = E ∪ {x[φ̄]u}). Moreover, F(Gi, v) = F(G, v) for all v 6= x (respetively
v 6= x) and F(Gi, x) (respetively F(Gi, x)) = {AS} ∪ {βi(AS)}.Let us remark that we have hosen to prevent the redution rules from disardingtheir prinipal formula from the tags of u (although we shall forget about themin graphial representations to inrease readability). This is not a strit require-ment but it makes the ounter-model onstrution proess (e.g., the saturationrelation) easier to de�ne.De�nition 4 (irreduibility). A biRG is irreduible if it is stable under theredution rules; it is reduible otherwise. Aordingly, a olletion R of biRGsis irreduible if and only if all biRGs in R are irreduible.Let R be a redution through A, we say that R is �nished if and onlyif for some natural number n, the olletion Rn in R is irreduible and forall Rm in R suh that m < n, Rm is not irreduible. We then say that nis the length of the redution R. Sine we onsider formulas indexed w.r.t. agiven multipliity, an inspetion of the redution rules of Figure 4 shows thatall �nished redutions through A lead to the same irreduible biRG-olletiondenoted Rf and alled the �nal biRG-olletion through A. Every biRG in Rfis then alled an irreduible biRG through A.If one forgets about the σ- and κ-edges, Figure 3 gives examples of irreduiblebiRGs1 through (((R+
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).6 Validity through R-graphsBefore stating our onnetion-based haraterization of BiInt validity, we needto de�ne the notions of slie, onrete path and admissible R-graphs.De�nition 5 (slie). Let G(V,E) be a biRG and S be a subset of V , the S-slieof G is de�ned as the smallest (w.r.t. the number of verties and edges) biRG

GS(V S , ES) suh that S ⊆ V S and for all verties u ∈ V S and v ∈ V ,� if v[τ ]u ∈ E and τ ∈ {ψ, φ, σ}, then v ∈ V S and v[τ ]u ∈ ES;� if u[τ ]v ∈ E and τ ∈ {ψ̄, φ̄, σ}, then v ∈ V S and u[τ ]v ∈ ES.The purpose of a slie is to apture only the essential information, i.e., theminimal portion of a biRG, that is neessary to establish the validity of a BiIntformula. Let us remark that in the onstrution of a slie ψ̄- and φ̄-edges aretraversed forward, from their soure to their target, while ψ- and φ-edges aretraversed bakward, from their target to their soure.1 For readability, non-atomi signed formulas are not mentioned in the vertex tags.



De�nition 6 (path). Given two verties u, v in a biRG G(V,E), a path in Gfrom u to v is a sequene u0τ1u1 . . . up−1τpup suh that u0 = u, up = v and forall 1 6 i 6 p, ui is a vertex in V , τi is an edge-tag in T and there exists a τi-edge
ui−1[τi]ui in E. A yle is a path suh that the initial and terminal verties arethe same, i.e., u0 = up.Given a subset T of T , a T -path is a path P = u0τ1u1 . . . up−1τpup suhthat for all 1 6 i 6 p, τi ∈ T . In partiular, when T = {ψ, ψ̄, σ}, P is alleda onrete path (in the graphial representation, a path using only solid edges).
T -yles and onrete yles are de�ned aordingly. Using the previous notions,we de�ne the relation (__ ◮ _) suh that Gu ◮ v holds if and only if u = v orthere exists at least one onrete path from u to v in G.De�nition 7 (admissibility). A biRG G(V,E) is admissible if and only if� all onrete yles in G are σ-yles that ontain at most one ψ-vertex and� for all τ-edges u[τ ]v in E suh that τ ∈ {φ, φ̄}, Gu ◮ v (in other words,there is a onrete path in G from u to v).De�nition 8 (onsisteny). A biRG G(V,E) is inonsistent if and only if
(∃u ∈ V )(⊥+ ∈ F(G, u)); it is onsistent otherwise.De�nition 9 (omplementarity). A biRG G(V,E) is omplementary if andonly if there is at least one κ-edge u[κ]v in E suh that the slie G{u,v} is ad-missible and G{u,v}u ◮ v (there is a onrete path in the slie from u to v).A olletion of biRGs is inonsistent (respetively admissible) if it ontains atleast one biRG whih is inonsistent (respetively admissible). On the ontrary,a olletion is omplementary if all of its biRGs are omplementary.6.1 Charaterization of ValidityStarting with the �nal biRG-olletion Rf through a BiInt formula A, we de�nethe notions of σ- and κ-bindings.A loal σ-binding for a biRG G(V,E) is a funtion σ that extends G(V,E)by inserting σ-links (bidiretional σ-edges) in E. More formally, σ(G(V,E)) =
Gσ(Vσ, Eσ) suh that Vσ = σ(V ) = V and Eσ = σ(E) = E ∪ Σ, where σ is aset of σ-links between verties of V Φ and verties of V Ψ. Let us remark that aloal σ-binding is ompletely determined by Σ.Given two olletions R = {G1, . . . , Gn} and S = {σ1, . . . , σn} suh that forall 1 6 i 6 n, σi is a loal σ-binding for the biRG Gi, the global σ-binding σfor R (indued by S) is de�ned as σ(Gi) = σi(Gi) for all 1 6 i 6 n. A global
σ-binding indues a relation < on Ψ × Φ suh that a < x if there is a σ-link
a[σ]x in σ(Gi) for some 1 6 i 6 n. A loal σ-binding σ is admissible for a biRG
G if σ(G) is admissible. A global σ-binding σ is admissible for a biRG-olletion
R if for all G in R, σ(G) is admissible. Loal and global κ-bindings are de�nedaordingly w.r.t. the strutural onditions required for κ-edges in De�nition 3.



De�nition 10 (bi-intuitionisti validity). A BiInt formula A is biRG-valid ifand only if there exists some multipliity µ, a (global) σ-binding σ and a (global)
κ-binding κ for the �nal biRG-olletion Rf of irreduible biRGs through µ(A)suh that:1. For all (not neessarily distint) biRGs G1(V1, E1), G2(V2, E2) in σ ◦ κ(Rf )and all φ-verties x in V1 ∩ V2, if x[σ]u ∈ E1 and x[σ]v ∈ E2 then u = v.2. For all onsistent biRGs G(V,E) in σ ◦ κ(Rf ), G(V,E) is omplementary.3. The redution ordering ⊳= (≪ ∪ <)+ indued by σ, where (·)+ stands fortransitive losure, is irre�exive.Using the previous de�nition and the irreduible biRGs of Figure 3, it is easyto see that (((R2 ∨1 P3) �a Q4) ∧0 ¬xP5) �a ((P6 �b R7) �x Q8) is biRG-valid.Let us now disuss the soundness and ompleteness of the haraterization.6.2 Soundness and Completeness of the CharaterizationDe�nition 10 an be used to extrat a labelled alulus the rules of whih generatebi-intuitionisti R-graphs. Suh a alulus is depited in Fig. 5 and generates onebiRG per branh in a derivation, whih is indued by the edges (written as sideonditions) introdued along that branh by the inferene rules �L, �R, �Land �R. A labelled formula A[v] on the left- (respetively right-) hand side of alabelled sequent simply means that A+ (respetively A−) appears in the tags ofthe vertex u.Moreover, the notion of global σ-binding gives rise to the more standard notionof global substitution, i.e., σ(x) = a i� there is a σ-link between x and a in someirreduible biRG assoiated with some irreduible initial sequent2 of a derivation.Similarly, there is a κ-edge from u and v in the irreduible biRG assoiated withan irreduible initial sequent s of a derivation i� there are some labelled formulas
A[u] and A[v] ourring on the left-hand and right-hand side of s respetively.An example of a derivation in that labelled alulus is given in Set. 8, wherevariable splitting is disussed.Theorem 1. Let A be a BiInt formula. A is biRG-valid i� A is valid in theKripke semantis.Proof. The soundness and ompleteness proofs rely on the labelled alulus givenin Fig. 5. The soundness proof follows the standard pattern of proving that everyinferene rule of the alulus preserves a standard notion of realizability in BiIntKripke models. The ompleteness proof proeeds by ounter-model onstrutionfrom any admissible, onsistent and saturated R-graph in the �nal olletion ofa �nished redution through A.2 A sequent that ontains only atomi formulas.



ax
Γ,A[u] ⊢ A[u],∆

⊥L

Γ,⊥[u] ⊢ ∆

Γ,A[u],B[u] ⊢ ∆
∧L

Γ, (A ∧ B)[u] ⊢ ∆

Γ ⊢ A[u],∆ Γ ⊢ B[u],∆
∧R

Γ ⊢ (A ∧ B)[u],∆

Γ,A[u] ⊢ ∆ Γ,B[u] ⊢ ∆
∨L

Γ, (A ∨ B)[u] ⊢ ∆

Γ ⊢ A[u],B[u],∆
∨R

Γ ⊢ (A ∨ B)[u],∆

Γ ⊢ A[x],∆ Γ,B[x] ⊢ ∆
u[φ]x

Γ, (A � B)[u] ⊢ ∆

Γ,A[a] ⊢ B[a],∆
u[ψ]a

Γ ⊢ (A � B)[u],∆

Γ ⊢ A[x],∆ Γ,B[x] ⊢ ∆
x[φ̄]u

Γ ⊢ (A � B)[u],∆

Γ,A[a] ⊢ B[a],∆
a[ψ̄]u

Γ, (A � B)[u] ⊢ ∆Fig. 5. Labelled alulus for BiInt6.3 Counter-Model ConstrutionWe �rst need to de�ne a saturation relation whih plays the same role for biRGsthat Hintikka olletions play for sets of formulas in intuitionisti logi.De�nition 11 (saturation). Let G(V,E) be a biRG. The saturation relation(on G(V,E)) is de�ned as the smallest relation between verties and signed for-mulas suh that:� Base ase: for all A in {⊥} ∪ V,
• Gu  A+ i� (∃v ∈ V )(Gv ◮ u and A+ ∈ F(G, v));
• Gu  A− i� (∃v ∈ V )(Gu ◮ v and A− ∈ F(G, v));� Indution:
• Gu  (A ∧ B)+ i� Gu  A+ and Gu  B+;
• Gu  (A ∧ B)− i� Gu  A− or Gu  B−;
• Gu  (A ∨ B)+ i� Gu  A+ or Gu  B+;
• Gu  (A ∨ B)− i� Gu  A− and Gu  B−;
• Gu  (A � B)+ i� (∀v ∈ V )(if Gu ◮ v and Gv  A+ then Gv  B+);
• Gu  (A � B)− i� (∃v ∈ V )(Gu ◮ v and Gv  A+ and Gv  B−);
• Gu  (A � B)+ i� (∃v ∈ V )(Gv ◮ u and Gv  A+ and Gv  B−);
• Gu  (A � B)− i� (∀v ∈ V )(if Gv ◮ u and Gv  A+ then Gv  B+).

G(V,E) is saturated if and only if (∀u ∈ V )(∀CS ∈ F(G, u))(Gu  CS).Let us illustrate how to extrat ounter-models from saturated biRGs with ashort example, the formula D = Q � ((¬(P�Q)�P)∨P). Up to σ- and κ-edges,the olletion of irreduible biRGs through D are depited below.



ǫ a x b aψ φ̄ ψ ψ̄

κ

σ

Q+ Q−P+

G00

ǫ a xψ φ̄

κ

σ

P−Q+
P+

G01Both biRGs G00 and G01 are admissible and onsistent, but only G00 is notomplementary. Moreover, it happens that G00 is also saturated. In order toturn G00 into a ounter-model of D, we �rst alulate the quotient of G00 bythe equivalene generated by the σ-edges whih leads to the following set ofvertex-lasses: V = {ǫ̇, ȧ, ḃ, ȧ | ǫ̇ = {ǫ}, ȧ = ẋ = {a, x}, ḃ = {b}, ȧ = {a}}. Then,we onsider V as a set of worlds and de�ne an aessibility relation ⊑ betweenworlds of V as follows: (∀m,n ∈ V )(m ⊑ n i� (∃m′ ∈ m)(∃n′ ∈ n)(Gm′ ◮ n′)).Finally, we de�ne the foring relation by setting the following interpretation:
(∀P ∈ V)(∀m ∈ V )(P ∈ m i� (∃m′ ∈ m)(P+ ∈ F(G,m′))), whih leads tofollowing bi-intuitionisti Kripke model:

ǫ̇ ȧ ḃ ȧ

Q PIt is not di�ult to generalize the previous example so as to extrat a ounter-model from any onsistent, admissible and saturated biRG that annot be madeomplementary in any way (under any σ- and κ-bindings).7 Solving Admissibility ConstraintsIn plain intuitionisti logi, we ould use pre�xes instead of labels and resort toT-string (pre�x) uni�ation to solve pre�x onstraints [8℄. However we annot dothat in the ase of BiInt beause a pre�x essentially is a way to enode the pathto a given node in a Kripke tree. Sine the Kripke semantis of BiInt deals withgraphs instead of trees, there an be several distint paths to a given node andtaking are of that using pre�xes (by enoding both suessors and predeessors)would break the T-string property of suh pre�xes, whih in turns prevents theuse of T-string uni�ation.Given an admissible σ-binding, it is not di�ult to hek whether κ-edgesare overed by a onrete path or not, the problem is to �nd suh σ-bindings.A trivial but partiularly ine�ient solution would be to enumerate all possible
σ-bindings and hek whether they are admissible or not. As a �rst step towardmore e�ient solutions, we now sketh an algorithm that only enumerates ad-missible σ-bindings for a given biRG (whih is a slie determined by a κ-edge)that also preserves the ayliity of the underlying redution ordering ⊳. Forthat, we �rst need the notion of walk through a biRG whih is similar to the



notion of path desribed in De�nition 6 exept that in a walk φ̄- and ψ̄-edgesmust be rossed bakward from their target to their soure and σ-edges an onlybe rossed from their ψ-vertex to their φ-vertex. T -walks are de�ned aordinglyas walks that only ross τ -edges suh that τ ∈ T and, whenever T = {ψ, ψ̄, σ},a T -walk is alled a onrete walk.Let u be an arbitrary vertex in a biRG, we de�ne AnT (u) (resp. BnT (u)) asthe set of all ψ-verties that an be reahed from u (resp. from whih u an bereahed) by a T -walk of length n. The two sets SnT (u) and PnT (u) are de�nedanalogously using the notion T -path instead of T -walk. In partiular, for all F ∈
{S, P,A,B}, F 0

T (u) = {u} if u is a ψ-vertex and ∅ otherwise. For readability, weforget the T subsript whenever T = {φ, φ̄, ψ, ψ̄}. Finally, let F (u) = ⋃
i∈N

F i(u)and let t ∈ {φ, φ} denote an intuitionisti type and u, v be two verties, we thende�ne the set Mt(u, v) as Mt(u)−A(v) with Mφ = S and Mφ = P .Our solving algorithm relies on two partiular objets R(u) and D(u) thatare omputed for all φ-verties u in the biRG G(V,E) under onsideration. In theinitial step, R(u) = B1
t (u) and D(u) = Mt(R(u), u) for all u ∈ V Φ. Intuitively,

D(u) (alled the domain of u) is meant to represent all suitables instantiationsfor u (i.e., ψ-verties that would be suitable targets for a σ-link the soure ofwhih is u) and R(u) (alled the root of u) initially is the vertex responsible forthe introdution of u in the biRG redution proess. In a seond step, all φ-edgesare partially ordered in a list X = x1, . . . , xn so that if i < j and xi ∝ xj then
xj ∝ xi, where ∝ is the following notion of variable dependeny : let x and ybe two φ-verties, we say that x depends on y, and we write x ∝ y, if and onlyif x ∈ D(y). Intuitively, if x depends on y then y should be bound before xbeause some ψ-verties may only beome admissible for x after y gets bound tosome spei� ψ-vertex. The third step �nally onsists of the atual enumeration:for eah φ-vertex u=xi in X , selet a ψ-vertex c in D(u) (then assuming theaddition of a σ-link u[σ]c) and apply the orresponding rule of Figure 6, morepreisely performapplyRule := seletRule(u, c,v) ; R(v), D(v) := applyRule(u, c,v)on all v = xj in X suh that j > i. If all φ-verties in X an be bound thenwe have an admissible σ-binding and we just hek whether the κ-edge we areinterested in (i.e., the one that determines the slie whih orresponds to thebiRG we are working on) is overed by a onrete path. If so, we are done,otherwise, we must baktrak and perform a distint seletion of ψ-verties untila solution is found or all possible hoies have been exhausted.8 Variable SplittingIn this setion we brie�y disuss how the tehnique of variable splitting reentlydeveloped for pre�xes [1℄ an be adapted to our R-graph based setting. Letus illustrate the main ideas with a short example. With a multipliity µ(x) =
µ((P � P) � P) = 0, it is not possible to prove the validity of the formula for



Rule seletRule(u,c,v) applyRule(u,c,v)Bind R(v) = u c, D(v) ∪Mt(c, v)Narrow c ∈ A(v) R(v), D(v)− A(u)Widen c = R(v) ∧ (c 6= R(u) ∨ itype(u) = itype(v) R(v), D(v) ∪Mt(u, v)Fig. 6. Solving rules given that v 6= u and itype(v) = twhih a derivation in the labelled alulus of Figure 5 is given below (indexesare indiated as subsripts).
ax

P2[d] ⊢ P3[d]

x[ψ]d
⊢ (P2 � P3)d[x]

P4[x],Q6[b] ⊢ P7[b]

a[ψ]b
P4[x] ⊢ (Q6 � P7)b[a]

P4[x],R8[c] ⊢ P9[c]

a[ψ]c
P4[x] ⊢ (R8 � P9)c[a]

∧R

P4[x] ⊢ ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
a[φ]x

((P2 � P3)d � P4)x[a] ⊢ ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
ǫ[ψ]a

(((P2 � P3)d � P4)x � ((Q6 � P7)b ∧ (R8 � P9)c)5)a[ǫ]The �rst initial sequent3 requires σ1 = {x/c} while the seond one requires
σ2 = {x/b}. The on�it on x thus makes it impossible to ompute a globalsubstitution from the two loal substitutions σ1 and σ2. A �rst solution wouldbe to inrease multipliity in order to have one opy x1 of the variable x so asto set σ1 = {x/c} and σ2 = {x1/b}. The prie to pay for this solution is anunneessary longer derivation beause, in this example, assigning two distintvalues to the variable x would not harm soundness. The problem atually lies inthe fat that the labelled alulus is variable sharing : the same φ- or φ-formulaourring in distint branhes leads to the introdution of the same variable inall branhes sine we use the index of that formula as the introdued variable.Variable sharing leads to full permutability of the rules, but also results inpotentially longer derivations. Had we allowed the �L and �R rules to introduea fresh opy of the variable assoiated to its prinipal φ- or φ-formula for eahof its ourrenes in distint branhes of a derivation, expanding the β-formula
(Q � P) ∧ (R � P) before the φ-formula (P � P) � P in our example wouldhave resulted in the introdution of the variable x in the branh orresponding tothe �rst premiss of ∧L and of a fresh opy x1 in the branh orresponding to theseond premiss of ∧R. However, suh a variable pure formulation of our labelledalulus would break full permutability: β-formulas need to be expanded before
φ- and φ-formulas to enable as many opies of eah variable as possible.Variable splitting is a tehnique developed for variable sharing aluli thatallows a (shared) variable to be assigned a spei� value in eah distint branhit ours in, whih enables the omputation of loal substitutions and helpskeeping derivations shorter. Let A be a BiInt formula. A splitting set for Ais a set of dual-free indexes of seondary type β1 or β2 whih is downward3 Indexing initial sequents of the derivation from right to left.



losed w.r.t. the tree ordering ≪. In order to enable variable splitting for ourlabelled alulus, we need to replae variables with olored variables, i.e., pairs
xX where x is a variable ourring as an index in A and X is a splitting set for
A. Substitutions are replaed with olored substitutions aordingly. A oloredsubstitution σ indues a splitting ordering whih is the least relation between
β- and φ- or φ-indexes suh that if σ(xX) 6= σ(xY ), then there are dual indexes
i ∈ X and j ∈ Y suh that (i△ j)≺ x. Intuitively, a splitting ordering enodesthe restrition that β-formulas should be expanded before φ- or φ-formulas (ina variable pure setting). The last thing to do is to take into aount the newsplitting ordering in the haraterization of biRG-validity of De�nition 10, whihis done by rede�ning the redution ordering so that ⊳= (≪ ∪ < ∪ ≺)+. The sets
{c} and {b} are splitting sets for the derivation given previously. Aordingly,the two initial sequents an now give rise to two distint olored substitutions
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