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y, Fran
eAbstra
t. We give a 
onne
tion-based 
hara
terization of validity inpropositional bi-intuitionisti
 logi
 in terms of spe
i�
 dire
ted graphs
alled R-graphs. Su
h a 
hara
terization is well-suited for deriving la-belled proof-systems with 
ounter-model 
onstru
tion fa
ilities. We �rstde�ne the notion of bi-intuitionisti
 R-graph from whi
h we then obtaina 
onne
tion-based 
hara
terization of propositional bi-intuitionisti
 va-lidity and derive a sound and 
omplete free-variable labelled sequent
al
ulus that admits 
ut-elimination and also variable splitting.1 Introdu
tionBi-intuitionisti
 logi
 BiInt is a 
onservative extension of intuitionisti
 logi
 thatintrodu
es a new 
onne
tive �, 
alled ex
lusion (also 
alled 
o-impli
ation orsubtra
tion), whi
h is dual to the impli
ation 
onne
tive �. It was �rst studiedby Rauszer that gives a Hilbert 
al
ulus with Kripke and algebrai
 semanti
s [11℄and more re
ently by Crolard from the perspe
tive of bi
artesian 
losed 
ate-gories with 
oexponents and the underlying type system with appli
ations totype theory [2,3℄. An interesting aspe
t of BiInt lies in the duality between impli-
ation and ex
lusion whi
h motivates the de�nition of proof systems that work asprogramming languages in whi
h values and 
ontinuations are handled in a sym-metri
 way. From a proof-theoreti
 point of view, a strong fo
us has been put onthe a
hievement of 
ut-free proof-systems sin
e 
ut-elimination in Gentzen-style(shallow) sequent 
al
uli is parti
ularly di�
ult to obtain. In this perspe
tivesome 
ut-free 
al
uli for BiInt have been proposed from sequent stru
tures likenested sequents [6℄ or display inferen
e rules [10℄. Another solution makes useof Negri's general methodology for designing labelled sequent 
al
uli in modallogi
s [7℄ in order to provide a 
ut-free labelled sequent 
al
ulus where labels
orrespond to worlds in Kripke stru
tures [9℄.In this paper we give the �rst 
onne
tion-based 
hara
terization of propo-sitional bi-intuitionisti
 validity in terms of bi-intuitionisti
 R-graphs. Let usnote that similar stru
tures have been de�ned in the 
ase of BI or separationlogi
s [5,4℄ in order to 
hara
terize validity. Our 
hara
terization is well-suitedfor deriving labelled proof-systems with 
ounter-model 
onstru
tion fa
ilitieswhi
h, 
ompared with the existing labelled proof-systems [9℄, easily integrate



free-variables and variable splitting [1℄. The main 
ontributions of this work are:the de�nition of bi-intuitionisti
 R-graphs; a 
onne
tion-based 
hara
terizationof validity in propositional BiInt; a new sound and 
omplete free-variable labelledsequent 
al
ulus that in
ludes variable splitting and has the 
ut-eliminationproperty; an algorithm for solving admissibility 
onstraints and thus derivinga 
onne
tion-based method.2 Bi-intuitionisti
 Propositional Logi
The language of BiInt 
onsists of a 
ountable set V of propositional letters P,Q . . .and the logi
al symbols ⊥, ∨, ∧, � and �. Formulas are indu
tively built frompropositional letters as follows:
A ::= P | ⊥ | A ∨ A | A ∧A | A � A | A � A. We write F to denote the set of all formulas of BiInt. Negation ¬A is de�nedas synta
ti
 sugar for A � ⊥ and is therefore not 
onsidered as primitive in oursetting. Similarly, the 
onjun
tive unit ⊤ is de�ned as a shorthand for P � P.Bi-intuitionisti
 logi
 Kripke semanti
s is a straightforward extension of that ofintuitionisti
 logi
.De�nition 1. A Kripke model is a triple M = 〈M,⊑, J·K〉, where M is a setof worlds, ⊑ is a partial order on M and J·K is a fun
tion from worlds to setsof propositional letters satisfying the following Kripke monotoni
ity 
ondition:if P ∈ JmK and m ⊑ n then P ∈ JnK.The Kripke for
ing relation |= is de�ned as the least relation between worlds andformulas su
h that:� m |= ⊥ never;� m |= P i� P ∈ JmK;� m |= A ∨ B i� m |= A or m |= B;� m |= A ∧ B i� m |= A and m |= B;� m |= A � B i� for all n ∈M su
h that m ⊑ n, n 6|= A or n |= B;� m |= A � B i� for some n ∈M su
h that n ⊑ m, n |= A and n 6|= B.Kripke monotoni
ity lifts from propositional letters to formulas as in intu-itionisti
 logi
. As usual, a formula A is satis�ed in M i� m |= A for all worlds

m in M , satis�able if it is satis�ed in some Kripke model M, and valid if itis satis�ed in all Kripke models. Figure 1 depi
ts the standard (Dragalin-style)multi-
on
lusioned sequent 
al
ulus for BiInt whi
h 
an be found in [9℄. We ob-serve that the rules for the ex
lusion 
onne
tive � simply behave as duals for theones dealing with the in
lusion �. However, the pri
e to pay for the easy dualformulation is that the 
al
ulus does not admit 
ut-elimination.3 Indexing FormulasIn this se
tion, we re
all some basi
 terminology of 
onne
tion-based 
hara
ter-izations of validity as we shall heavily rely on it in the forth
oming se
tions.
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Γ,A � B ⊢ ∆Fig. 1. Dragalin-style sequent 
al
ulus for BiIntA signed formula is a pair (C, S), written CS, where C is a BiInt formula and
S ∈ {+,−} is a sign. Depending on its prin
ipal 
onne
tive and sign, a signedformula is given a prin
ipal type (ptype) α or β. If α (respe
tively β) is theprin
ipal type of a signed formula C, then, its left subformula A is of se
ondarytype (stype) α1 (respe
tively β1) and its right subformula B is of se
ondary type
α2 (respe
tively β2). Signed formulas the prin
ipal 
onne
tive of whi
h belongsto the set {�,�} also admit an additional intuitionisti
 type (itype) φ, φ, ψ or ψ.The following tables des
ribe how signs, prin
ipal, se
ondary and intuitionisti
types are indu
tively determined.

α α1 α2 β β1 β2

(A ∧ B)+ A+ B+ (A ∧ B)− A− B−

(A ∨ B)− A− B− (A ∨ B)+ A+ B+

(A � B)− A+ B− (A � B)+ A− B+

(A � B)+ A+ B− (A � B)− A− B+

itype

(A � B)+ φ
(A � B)− ψ

(A � B)+ ψ

(A � B)− φFor readability, we often simply speak of the type of a signed formula ea
h timethe 
ontext makes it 
lear what type (ptype, stype or itype) is a
tually intended;we also write �t-formula� as a shorthand for �formula of type t�. Moreover, givena (plain) formula C and a subformula A in C, the (prin
ipal, se
ondary orintuitionisti
) type of A in C is de�ned as the type of the signed formula AS in
C− that (synta
ti
ally) 
orresponds to A.Let Φ and Ψ be two disjoint and denumerable sets of symbols respe
tively
alled variable and 
onstant symbols. We shall use the letters ranging from ato d (possibly subs
ripted) to denote 
onstant symbols. Similarly, we shall usethe letters from x to z to denote variable symbols. For 
onvenien
e, let us also
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Fig. 2. Indexed formula treeassume that Ψ always 
ontains the parti
ular symbol ǫ and that if s is a 
onstant(respe
tively variable) symbol, then so is s.Given a formula C, an indexed formula 
an be obtained from C by assigninga unique index (often 
alled �position� in the matrix terminology) to ea
h sub-formula en
ountered along a depth �rst exploration of C− (w.r.t. the synta
ti
stru
ture of C) in su
h a way that ψ- and ψ-subformulas are indexed with 
on-stant symbols in Ψ, φ- and φ-subformulas are indexed with variable symbols in
Φ, all other subformulas being indexed with natural numbers.Assuming stri
t total orders<Φ, <Ψ, <N on Φ,Ψ,N, assignments 
an be madedeterministi
 so as to obtain a one-to-one 
orresponden
e between formulas andindexed formulas. We interpret <Φ and <Ψ as lexi
ographi
 orders and <Nas the usual stri
t order on natural numbers; therefore, ea
h time we have to
hoose an index for a (sub)formula, we always pi
k the �rst symbol in Φ, Ψ or
N (w.r.t. <Φ, <Ψ, <N) that has not already been used as an index. We write
F(C, i) (respe
tively Sf(C, i)) to denote the unique subformula (respe
tivelysigned subformula) asso
iated to the index i in a formula C (or signed formula
CS depending on the 
ontext).For example, indexing C = (((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q) we get theindexed (signed) formula

(((R+

2 ∨+

1 P+

3 ) �+

a
Q−

4 ) ∧
+

0 ¬−

x
P−

5 ) �−

a
((P+

6 �−

b
R−

7 ) �−

x
Q+

8 ). Sin
e indexes are in a one-to-one 
orresponden
e with (signed) formulas, weshall sometimes use indexes in pla
es where (signed) formulas would normallybe expe
ted (and vi
e-versa).A formula tree for a formula C is a representation of its 
orresponding indexedformula as a syntax tree. A formula tree indu
es a stri
t partial ordering ≪ onindexes, 
alled the domination ordering, whi
h is su
h that the index of theroot is the least element and if i ≪ j then i is en
ountered before j on apath from the root to j. If i is a non-atomi
 index in C (i.e., if F(C, i) isa non-atomi
 formula) then the two indexes j and k su
h that F(C, j) and
F(C, k) are the immediate (left and right) subformulas of F(C, i) are 
alled



dual and we write j △ k = i. Figure 2 shows the formula tree asso
iated with
(((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q).In the standard sequent 
al
ulus of Figure 1, 
ontra
tion is internalized bythe repetition of the prin
ipal formula A � B (respe
tively A � B) in the left(respe
tively right) premiss of the �L (respe
tively �R) rule so that there is noneed for an expli
it 
ontra
tion rule. In a 
onne
tion-based setting 
ontra
tionis usually handled via the notion of multipli
ity. Given a formula C of BiInt, amultipli
ity for C is a fun
tion µ() whi
h assigns a natural number to ea
h φ- or
φ-subformula A in C. The formula µ(C) is then de�ned as the formula obtainedfrom C by repla
ing every subformula A in C su
h that µ(A) = n with thesubformula A ∧ A ∧ . . .∧A, where the 
onne
tive ∧ o

urs exa
tly n times. Forexample, if C = (P � Q) � (R � S), µ(P � Q) = 1 and µ(R � S) = 2, then
µ(C) = ((P � Q) ∧ (P � Q)) � ((R � S) ∧ (R � S) ∧ (R � S)). Intuitively, amultipli
ity fun
tion en
odes the number of 
opies that would be allowed (via
ontra
tion) for ea
h φ- or φ-formula in a sequent-style derivation.For 
onvenien
e, when dealing with indexed formulas, we use supers
riptedindexes to distinguish between the 
opies of φ- and φ-formulas. For the previousexample, if we assume that x is the index of R � S in C, then µ(R � S) = 2implies that x1 and x2 should respe
tively be the indexes of the �rst and se
-ond additional 
opies of R � S in µ(C). The previous notions are fairly 
ommonto most 
onne
tion-based 
hara
terizations of validity. If we were to follow thestandard re
ipe for su
h 
hara
terizations, the next step would be the introdu
-tion of the key notions of (atomi
) matrix paths, 
onne
tions and spanning setstogether with admissible substitutions leading to irre�exive redu
tion orderings.However, we shall not follow the standard approa
h for the up
oming se
tionsand rather introdu
e the 
on
ept of R-graphs sin
e it allows us to reformulateall the standard notions on the same graphi
al stru
ture. Moreover, R-graphs
an easily be turned into Kripke models when dealing with non valid formulas.4 Bi-intuitionisti
 R-graphsFrom a very general point of view, R-graphs for a given logi
 are dire
ted graphsin whi
h verti
es are meant to represent worlds in the underlying Kripke se-manti
s of the logi
 [5℄. Let us �rst de�ne the general notion of R-graph beforerestri
ting it to mat
h the bi-intuitionisti
 
ase.De�nition 2 (R-graph). A R-graph (RG) is a dire
ted graph G(V,E) withverti
es V and edges E. The verti
es are named with elements of Ψ ∪Φ. More-over, V is required to 
ontain a distinguished vertex ǫ 
alled the ǫ-vertex, everyvertex u is asso
iated with a set F(G, u) of signed formulas the elements of whi
hare referred to as the tags of u, and every edge e is tagged with a letter T (G, e)from the set T = {ψ, φ, ψ̄, φ̄, σ, κ} of edge-tags.A vertex named with a 
onstant symbol (respe
tively variable symbol) is
alled a ψ-vertex (respe
tively φ-vertex). The set of ψ-verti
es (respe
tively φ-verti
es) is written V Ψ (respe
tively V Φ). We use the letters u, v and w to range
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Fig. 3. Bi-intuitionisti
 R-graphsover arbitrary verti
es and we write u[τ ]v to denote the edge, tagged with theletter τ ∈ T , that goes from u to v; we then 
all this edge a τ -edge and say that
u and v respe
tively are its sour
e and target. Given a subset T ⊆ T , the set ofall τ -edges su
h that τ ∈ T is written ET .De�nition 3 (Bi-intuitionisti
 RG). A R-graph G(V,E) is a bi-intuitionisti
R-graph (biRG) if it satis�es the following stru
tural 
onditions:� every ψ-edge has a ψ-vertex as its target;� every ψ̄-edge has a ψ-vertex as its sour
e;� every φ-edge has a φ-vertex as its target;� every φ̄-edge has a φ-vertex as its sour
e;� every σ-edge indu
es a �bidire
tional� link between a φ-vertex and a ψ-vertex,more formally, u[σ]v ∈ E i� v[σ]u ∈ E, with either u ∈ V Ψ and v ∈ V Φ, or

u ∈ V Φ and v ∈ V Ψ;� every κ-edge u[κ]v is a link between two (arbitrary) verti
es su
h that thereexists at least one formula o

urring positively (with a �+� sign) in F(G, u)and negatively (with a �−� sign) in F(G, v).Figure 3 gives some examples of bi-intuitionisti
 R-graphs. We shall explainin the next se
tion how su
h graphs 
an be asso
iated with formulas and dis
ussthem in more details.
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tion.Fig. 4. Redu
tion rules5 R-graph Redu
tionsStandard matrix 
hara
terizations heavily rely on the notion of (atomi
) matrixpaths through a given formula C. In our setting, su
h atomi
 matrix paths arerepla
ed with the notion of irredu
ible R-graphs.Given a BiInt formula A, a (biRG-)redu
tion through A is a sequen
e R =
R0ρ1 . . . ρi−1ρi . . . in whi
h R0 is a 
olle
tion (of biRGs) 
ontaining the singlebiRG G0(V0, E0), where V0 = {ǫ}, E0 = ∅ and F(G0, ǫ) = {A−}, and ea
h ρi isa redu
tion step that transforms the 
olle
tion Ri−1 inherited from the previousredu
tion step into a new 
olle
tion Ri by applying one of the redu
tion rulesgiven in Fig. 4.In order to apply a redu
tion rule to a biRG G(V,E), one �rst needs to
hoose a vertex u in V and a signed formula AS in F(G, u).� If AS has prin
ipal type α and has no intuitionisti
 type, G(V,E) is redu
edto the new biRG G1(V1, E1) su
h that V1 = V , E1 = E, F(G1, v) = F(G, v)for all v 6= u and F(G1, u) = F(G, u)∪{α1(A

S), α2(A
S)}, where α1(A

S) and
α2(A

S) respe
tively are the �rst and se
ond signed subformulas of AS (ofse
ondary type α1 and α2).� If AS has prin
ipal type β and has no intuitionisti
 type, G(V,E) is redu
edto two new biRGs G1(V1, E1), G2(V2, E2) su
h that for i ∈ {1, 2}, Vi = V ,
Ei = E, F(Gi, v) = F(G, v) for all v 6= u and F(Gi, u) = F(G, u)∪{βi(AS)}.The previous redu
tion rules are the reformulation of the standard α and βmatrix-path redu
tion rules. The next two redu
tion rules are spe
i�
 to BiIntand depend on the index (a, a, x or x) and intuitionisti
 type of the signedformula under redu
tion (prin
ipal formula).� If AS has prin
ipal type α and has intuitionisti
 type ψ (respe
tively ψ),
G(V,E) is redu
ed to the new biRG G1(V1, E1) su
h that V1 = V ∪ {a} and



E1 = E ∪ {u[ψ]a} (respe
tively V1 = V ∪ {a} and E1 = E ∪ {a[ψ̄]u}).Moreover, F(G1, v) = F(G, v) for all v 6= a (respe
tively v 6= a), and
F(G1, a) = {α1(A

S), α2(A
S)} (respe
tively F(G1, a) = {α1(A

S), α2(A
S)}).� If AS has prin
ipal type β and has intuitionisti
 type φ (respe
tively φ),

G(V,E) is redu
ed to two new biRGs G1(V1, E1), G2(V2, E2) su
h that for
i ∈ {1, 2}, Vi = V ∪{x} and Ei = E∪{u[φ]x} (respe
tively Vi = V ∪{x} and
Ei = E ∪ {x[φ̄]u}). Moreover, F(Gi, v) = F(G, v) for all v 6= x (respe
tively
v 6= x) and F(Gi, x) (respe
tively F(Gi, x)) = {AS} ∪ {βi(AS)}.Let us remark that we have 
hosen to prevent the redu
tion rules from dis
ardingtheir prin
ipal formula from the tags of u (although we shall forget about themin graphi
al representations to in
rease readability). This is not a stri
t require-ment but it makes the 
ounter-model 
onstru
tion pro
ess (e.g., the saturationrelation) easier to de�ne.De�nition 4 (irredu
ibility). A biRG is irredu
ible if it is stable under theredu
tion rules; it is redu
ible otherwise. A

ordingly, a 
olle
tion R of biRGsis irredu
ible if and only if all biRGs in R are irredu
ible.Let R be a redu
tion through A, we say that R is �nished if and onlyif for some natural number n, the 
olle
tion Rn in R is irredu
ible and forall Rm in R su
h that m < n, Rm is not irredu
ible. We then say that nis the length of the redu
tion R. Sin
e we 
onsider formulas indexed w.r.t. agiven multipli
ity, an inspe
tion of the redu
tion rules of Figure 4 shows thatall �nished redu
tions through A lead to the same irredu
ible biRG-
olle
tiondenoted Rf and 
alled the �nal biRG-
olle
tion through A. Every biRG in Rfis then 
alled an irredu
ible biRG through A.If one forgets about the σ- and κ-edges, Figure 3 gives examples of irredu
iblebiRGs1 through (((R+
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).6 Validity through R-graphsBefore stating our 
onne
tion-based 
hara
terization of BiInt validity, we needto de�ne the notions of sli
e, 
on
rete path and admissible R-graphs.De�nition 5 (sli
e). Let G(V,E) be a biRG and S be a subset of V , the S-sli
eof G is de�ned as the smallest (w.r.t. the number of verti
es and edges) biRG

GS(V S , ES) su
h that S ⊆ V S and for all verti
es u ∈ V S and v ∈ V ,� if v[τ ]u ∈ E and τ ∈ {ψ, φ, σ}, then v ∈ V S and v[τ ]u ∈ ES;� if u[τ ]v ∈ E and τ ∈ {ψ̄, φ̄, σ}, then v ∈ V S and u[τ ]v ∈ ES.The purpose of a sli
e is to 
apture only the essential information, i.e., theminimal portion of a biRG, that is ne
essary to establish the validity of a BiIntformula. Let us remark that in the 
onstru
tion of a sli
e ψ̄- and φ̄-edges aretraversed forward, from their sour
e to their target, while ψ- and φ-edges aretraversed ba
kward, from their target to their sour
e.1 For readability, non-atomi
 signed formulas are not mentioned in the vertex tags.



De�nition 6 (path). Given two verti
es u, v in a biRG G(V,E), a path in Gfrom u to v is a sequen
e u0τ1u1 . . . up−1τpup su
h that u0 = u, up = v and forall 1 6 i 6 p, ui is a vertex in V , τi is an edge-tag in T and there exists a τi-edge
ui−1[τi]ui in E. A 
y
le is a path su
h that the initial and terminal verti
es arethe same, i.e., u0 = up.Given a subset T of T , a T -path is a path P = u0τ1u1 . . . up−1τpup su
hthat for all 1 6 i 6 p, τi ∈ T . In parti
ular, when T = {ψ, ψ̄, σ}, P is 
alleda 
on
rete path (in the graphi
al representation, a path using only solid edges).
T -
y
les and 
on
rete 
y
les are de�ned a

ordingly. Using the previous notions,we de�ne the relation (__ ◮ _) su
h that Gu ◮ v holds if and only if u = v orthere exists at least one 
on
rete path from u to v in G.De�nition 7 (admissibility). A biRG G(V,E) is admissible if and only if� all 
on
rete 
y
les in G are σ-
y
les that 
ontain at most one ψ-vertex and� for all τ-edges u[τ ]v in E su
h that τ ∈ {φ, φ̄}, Gu ◮ v (in other words,there is a 
on
rete path in G from u to v).De�nition 8 (
onsisten
y). A biRG G(V,E) is in
onsistent if and only if
(∃u ∈ V )(⊥+ ∈ F(G, u)); it is 
onsistent otherwise.De�nition 9 (
omplementarity). A biRG G(V,E) is 
omplementary if andonly if there is at least one κ-edge u[κ]v in E su
h that the sli
e G{u,v} is ad-missible and G{u,v}u ◮ v (there is a 
on
rete path in the sli
e from u to v).A 
olle
tion of biRGs is in
onsistent (respe
tively admissible) if it 
ontains atleast one biRG whi
h is in
onsistent (respe
tively admissible). On the 
ontrary,a 
olle
tion is 
omplementary if all of its biRGs are 
omplementary.6.1 Chara
terization of ValidityStarting with the �nal biRG-
olle
tion Rf through a BiInt formula A, we de�nethe notions of σ- and κ-bindings.A lo
al σ-binding for a biRG G(V,E) is a fun
tion σ that extends G(V,E)by inserting σ-links (bidire
tional σ-edges) in E. More formally, σ(G(V,E)) =
Gσ(Vσ, Eσ) su
h that Vσ = σ(V ) = V and Eσ = σ(E) = E ∪ Σ, where σ is aset of σ-links between verti
es of V Φ and verti
es of V Ψ. Let us remark that alo
al σ-binding is 
ompletely determined by Σ.Given two 
olle
tions R = {G1, . . . , Gn} and S = {σ1, . . . , σn} su
h that forall 1 6 i 6 n, σi is a lo
al σ-binding for the biRG Gi, the global σ-binding σfor R (indu
ed by S) is de�ned as σ(Gi) = σi(Gi) for all 1 6 i 6 n. A global
σ-binding indu
es a relation < on Ψ × Φ su
h that a < x if there is a σ-link
a[σ]x in σ(Gi) for some 1 6 i 6 n. A lo
al σ-binding σ is admissible for a biRG
G if σ(G) is admissible. A global σ-binding σ is admissible for a biRG-
olle
tion
R if for all G in R, σ(G) is admissible. Lo
al and global κ-bindings are de�neda

ordingly w.r.t. the stru
tural 
onditions required for κ-edges in De�nition 3.



De�nition 10 (bi-intuitionisti
 validity). A BiInt formula A is biRG-valid ifand only if there exists some multipli
ity µ, a (global) σ-binding σ and a (global)
κ-binding κ for the �nal biRG-
olle
tion Rf of irredu
ible biRGs through µ(A)su
h that:1. For all (not ne
essarily distin
t) biRGs G1(V1, E1), G2(V2, E2) in σ ◦ κ(Rf )and all φ-verti
es x in V1 ∩ V2, if x[σ]u ∈ E1 and x[σ]v ∈ E2 then u = v.2. For all 
onsistent biRGs G(V,E) in σ ◦ κ(Rf ), G(V,E) is 
omplementary.3. The redu
tion ordering ⊳= (≪ ∪ <)+ indu
ed by σ, where (·)+ stands fortransitive 
losure, is irre�exive.Using the previous de�nition and the irredu
ible biRGs of Figure 3, it is easyto see that (((R2 ∨1 P3) �a Q4) ∧0 ¬xP5) �a ((P6 �b R7) �x Q8) is biRG-valid.Let us now dis
uss the soundness and 
ompleteness of the 
hara
terization.6.2 Soundness and Completeness of the Chara
terizationDe�nition 10 
an be used to extra
t a labelled 
al
ulus the rules of whi
h generatebi-intuitionisti
 R-graphs. Su
h a 
al
ulus is depi
ted in Fig. 5 and generates onebiRG per bran
h in a derivation, whi
h is indu
ed by the edges (written as side
onditions) introdu
ed along that bran
h by the inferen
e rules �L, �R, �Land �R. A labelled formula A[v] on the left- (respe
tively right-) hand side of alabelled sequent simply means that A+ (respe
tively A−) appears in the tags ofthe vertex u.Moreover, the notion of global σ-binding gives rise to the more standard notionof global substitution, i.e., σ(x) = a i� there is a σ-link between x and a in someirredu
ible biRG asso
iated with some irredu
ible initial sequent2 of a derivation.Similarly, there is a κ-edge from u and v in the irredu
ible biRG asso
iated withan irredu
ible initial sequent s of a derivation i� there are some labelled formulas
A[u] and A[v] o

urring on the left-hand and right-hand side of s respe
tively.An example of a derivation in that labelled 
al
ulus is given in Se
t. 8, wherevariable splitting is dis
ussed.Theorem 1. Let A be a BiInt formula. A is biRG-valid i� A is valid in theKripke semanti
s.Proof. The soundness and 
ompleteness proofs rely on the labelled 
al
ulus givenin Fig. 5. The soundness proof follows the standard pattern of proving that everyinferen
e rule of the 
al
ulus preserves a standard notion of realizability in BiIntKripke models. The 
ompleteness proof pro
eeds by 
ounter-model 
onstru
tionfrom any admissible, 
onsistent and saturated R-graph in the �nal 
olle
tion ofa �nished redu
tion through A.2 A sequent that 
ontains only atomi
 formulas.



ax
Γ,A[u] ⊢ A[u],∆

⊥L

Γ,⊥[u] ⊢ ∆

Γ,A[u],B[u] ⊢ ∆
∧L

Γ, (A ∧ B)[u] ⊢ ∆

Γ ⊢ A[u],∆ Γ ⊢ B[u],∆
∧R

Γ ⊢ (A ∧ B)[u],∆

Γ,A[u] ⊢ ∆ Γ,B[u] ⊢ ∆
∨L

Γ, (A ∨ B)[u] ⊢ ∆

Γ ⊢ A[u],B[u],∆
∨R

Γ ⊢ (A ∨ B)[u],∆

Γ ⊢ A[x],∆ Γ,B[x] ⊢ ∆
u[φ]x

Γ, (A � B)[u] ⊢ ∆

Γ,A[a] ⊢ B[a],∆
u[ψ]a

Γ ⊢ (A � B)[u],∆

Γ ⊢ A[x],∆ Γ,B[x] ⊢ ∆
x[φ̄]u

Γ ⊢ (A � B)[u],∆

Γ,A[a] ⊢ B[a],∆
a[ψ̄]u

Γ, (A � B)[u] ⊢ ∆Fig. 5. Labelled 
al
ulus for BiInt6.3 Counter-Model Constru
tionWe �rst need to de�ne a saturation relation whi
h plays the same role for biRGsthat Hintikka 
olle
tions play for sets of formulas in intuitionisti
 logi
.De�nition 11 (saturation). Let G(V,E) be a biRG. The saturation relation(on G(V,E)) is de�ned as the smallest relation between verti
es and signed for-mulas su
h that:� Base 
ase: for all A in {⊥} ∪ V,
• Gu 
 A+ i� (∃v ∈ V )(Gv ◮ u and A+ ∈ F(G, v));
• Gu 
 A− i� (∃v ∈ V )(Gu ◮ v and A− ∈ F(G, v));� Indu
tion:
• Gu 
 (A ∧ B)+ i� Gu 
 A+ and Gu 
 B+;
• Gu 
 (A ∧ B)− i� Gu 
 A− or Gu 
 B−;
• Gu 
 (A ∨ B)+ i� Gu 
 A+ or Gu 
 B+;
• Gu 
 (A ∨ B)− i� Gu 
 A− and Gu 
 B−;
• Gu 
 (A � B)+ i� (∀v ∈ V )(if Gu ◮ v and Gv 
 A+ then Gv 
 B+);
• Gu 
 (A � B)− i� (∃v ∈ V )(Gu ◮ v and Gv 
 A+ and Gv 
 B−);
• Gu 
 (A � B)+ i� (∃v ∈ V )(Gv ◮ u and Gv 
 A+ and Gv 
 B−);
• Gu 
 (A � B)− i� (∀v ∈ V )(if Gv ◮ u and Gv 
 A+ then Gv 
 B+).

G(V,E) is saturated if and only if (∀u ∈ V )(∀CS ∈ F(G, u))(Gu 
 CS).Let us illustrate how to extra
t 
ounter-models from saturated biRGs with ashort example, the formula D = Q � ((¬(P�Q)�P)∨P). Up to σ- and κ-edges,the 
olle
tion of irredu
ible biRGs through D are depi
ted below.



ǫ a x b aψ φ̄ ψ ψ̄

κ

σ

Q+ Q−P+

G00

ǫ a xψ φ̄

κ

σ

P−Q+
P+

G01Both biRGs G00 and G01 are admissible and 
onsistent, but only G00 is not
omplementary. Moreover, it happens that G00 is also saturated. In order toturn G00 into a 
ounter-model of D, we �rst 
al
ulate the quotient of G00 bythe equivalen
e generated by the σ-edges whi
h leads to the following set ofvertex-
lasses: V = {ǫ̇, ȧ, ḃ, ȧ | ǫ̇ = {ǫ}, ȧ = ẋ = {a, x}, ḃ = {b}, ȧ = {a}}. Then,we 
onsider V as a set of worlds and de�ne an a

essibility relation ⊑ betweenworlds of V as follows: (∀m,n ∈ V )(m ⊑ n i� (∃m′ ∈ m)(∃n′ ∈ n)(Gm′ ◮ n′)).Finally, we de�ne the for
ing relation by setting the following interpretation:
(∀P ∈ V)(∀m ∈ V )(P ∈ m i� (∃m′ ∈ m)(P+ ∈ F(G,m′))), whi
h leads tofollowing bi-intuitionisti
 Kripke model:

ǫ̇ ȧ ḃ ȧ

Q PIt is not di�
ult to generalize the previous example so as to extra
t a 
ounter-model from any 
onsistent, admissible and saturated biRG that 
annot be made
omplementary in any way (under any σ- and κ-bindings).7 Solving Admissibility ConstraintsIn plain intuitionisti
 logi
, we 
ould use pre�xes instead of labels and resort toT-string (pre�x) uni�
ation to solve pre�x 
onstraints [8℄. However we 
annot dothat in the 
ase of BiInt be
ause a pre�x essentially is a way to en
ode the pathto a given node in a Kripke tree. Sin
e the Kripke semanti
s of BiInt deals withgraphs instead of trees, there 
an be several distin
t paths to a given node andtaking 
are of that using pre�xes (by en
oding both su

essors and prede
essors)would break the T-string property of su
h pre�xes, whi
h in turns prevents theuse of T-string uni�
ation.Given an admissible σ-binding, it is not di�
ult to 
he
k whether κ-edgesare 
overed by a 
on
rete path or not, the problem is to �nd su
h σ-bindings.A trivial but parti
ularly ine�
ient solution would be to enumerate all possible
σ-bindings and 
he
k whether they are admissible or not. As a �rst step towardmore e�
ient solutions, we now sket
h an algorithm that only enumerates ad-missible σ-bindings for a given biRG (whi
h is a sli
e determined by a κ-edge)that also preserves the a
y
li
ity of the underlying redu
tion ordering ⊳. Forthat, we �rst need the notion of walk through a biRG whi
h is similar to the



notion of path des
ribed in De�nition 6 ex
ept that in a walk φ̄- and ψ̄-edgesmust be 
rossed ba
kward from their target to their sour
e and σ-edges 
an onlybe 
rossed from their ψ-vertex to their φ-vertex. T -walks are de�ned a

ordinglyas walks that only 
ross τ -edges su
h that τ ∈ T and, whenever T = {ψ, ψ̄, σ},a T -walk is 
alled a 
on
rete walk.Let u be an arbitrary vertex in a biRG, we de�ne AnT (u) (resp. BnT (u)) asthe set of all ψ-verti
es that 
an be rea
hed from u (resp. from whi
h u 
an berea
hed) by a T -walk of length n. The two sets SnT (u) and PnT (u) are de�nedanalogously using the notion T -path instead of T -walk. In parti
ular, for all F ∈
{S, P,A,B}, F 0

T (u) = {u} if u is a ψ-vertex and ∅ otherwise. For readability, weforget the T subs
ript whenever T = {φ, φ̄, ψ, ψ̄}. Finally, let F (u) = ⋃
i∈N

F i(u)and let t ∈ {φ, φ} denote an intuitionisti
 type and u, v be two verti
es, we thende�ne the set Mt(u, v) as Mt(u)−A(v) with Mφ = S and Mφ = P .Our solving algorithm relies on two parti
ular obje
ts R(u) and D(u) thatare 
omputed for all φ-verti
es u in the biRG G(V,E) under 
onsideration. In theinitial step, R(u) = B1
t (u) and D(u) = Mt(R(u), u) for all u ∈ V Φ. Intuitively,

D(u) (
alled the domain of u) is meant to represent all suitables instantiationsfor u (i.e., ψ-verti
es that would be suitable targets for a σ-link the sour
e ofwhi
h is u) and R(u) (
alled the root of u) initially is the vertex responsible forthe introdu
tion of u in the biRG redu
tion pro
ess. In a se
ond step, all φ-edgesare partially ordered in a list X = x1, . . . , xn so that if i < j and xi ∝ xj then
xj ∝ xi, where ∝ is the following notion of variable dependen
y : let x and ybe two φ-verti
es, we say that x depends on y, and we write x ∝ y, if and onlyif x ∈ D(y). Intuitively, if x depends on y then y should be bound before xbe
ause some ψ-verti
es may only be
ome admissible for x after y gets bound tosome spe
i�
 ψ-vertex. The third step �nally 
onsists of the a
tual enumeration:for ea
h φ-vertex u=xi in X , sele
t a ψ-vertex c in D(u) (then assuming theaddition of a σ-link u[σ]c) and apply the 
orresponding rule of Figure 6, morepre
isely performapplyRule := sele
tRule(u, c,v) ; R(v), D(v) := applyRule(u, c,v)on all v = xj in X su
h that j > i. If all φ-verti
es in X 
an be bound thenwe have an admissible σ-binding and we just 
he
k whether the κ-edge we areinterested in (i.e., the one that determines the sli
e whi
h 
orresponds to thebiRG we are working on) is 
overed by a 
on
rete path. If so, we are done,otherwise, we must ba
ktra
k and perform a distin
t sele
tion of ψ-verti
es untila solution is found or all possible 
hoi
es have been exhausted.8 Variable SplittingIn this se
tion we brie�y dis
uss how the te
hnique of variable splitting re
entlydeveloped for pre�xes [1℄ 
an be adapted to our R-graph based setting. Letus illustrate the main ideas with a short example. With a multipli
ity µ(x) =
µ((P � P) � P) = 0, it is not possible to prove the validity of the formula for



Rule sele
tRule(u,c,v) applyRule(u,c,v)Bind R(v) = u c, D(v) ∪Mt(c, v)Narrow c ∈ A(v) R(v), D(v)− A(u)Widen c = R(v) ∧ (c 6= R(u) ∨ itype(u) = itype(v) R(v), D(v) ∪Mt(u, v)Fig. 6. Solving rules given that v 6= u and itype(v) = twhi
h a derivation in the labelled 
al
ulus of Figure 5 is given below (indexesare indi
ated as subs
ripts).
ax

P2[d] ⊢ P3[d]

x[ψ]d
⊢ (P2 � P3)d[x]

P4[x],Q6[b] ⊢ P7[b]

a[ψ]b
P4[x] ⊢ (Q6 � P7)b[a]

P4[x],R8[c] ⊢ P9[c]

a[ψ]c
P4[x] ⊢ (R8 � P9)c[a]

∧R

P4[x] ⊢ ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
a[φ]x

((P2 � P3)d � P4)x[a] ⊢ ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
ǫ[ψ]a

(((P2 � P3)d � P4)x � ((Q6 � P7)b ∧ (R8 � P9)c)5)a[ǫ]The �rst initial sequent3 requires σ1 = {x/c} while the se
ond one requires
σ2 = {x/b}. The 
on�i
t on x thus makes it impossible to 
ompute a globalsubstitution from the two lo
al substitutions σ1 and σ2. A �rst solution wouldbe to in
rease multipli
ity in order to have one 
opy x1 of the variable x so asto set σ1 = {x/c} and σ2 = {x1/b}. The pri
e to pay for this solution is anunne
essary longer derivation be
ause, in this example, assigning two distin
tvalues to the variable x would not harm soundness. The problem a
tually lies inthe fa
t that the labelled 
al
ulus is variable sharing : the same φ- or φ-formulao

urring in distin
t bran
hes leads to the introdu
tion of the same variable inall bran
hes sin
e we use the index of that formula as the introdu
ed variable.Variable sharing leads to full permutability of the rules, but also results inpotentially longer derivations. Had we allowed the �L and �R rules to introdu
ea fresh 
opy of the variable asso
iated to its prin
ipal φ- or φ-formula for ea
hof its o

urren
es in distin
t bran
hes of a derivation, expanding the β-formula
(Q � P) ∧ (R � P) before the φ-formula (P � P) � P in our example wouldhave resulted in the introdu
tion of the variable x in the bran
h 
orresponding tothe �rst premiss of ∧L and of a fresh 
opy x1 in the bran
h 
orresponding to these
ond premiss of ∧R. However, su
h a variable pure formulation of our labelled
al
ulus would break full permutability: β-formulas need to be expanded before
φ- and φ-formulas to enable as many 
opies of ea
h variable as possible.Variable splitting is a te
hnique developed for variable sharing 
al
uli thatallows a (shared) variable to be assigned a spe
i�
 value in ea
h distin
t bran
hit o

urs in, whi
h enables the 
omputation of lo
al substitutions and helpskeeping derivations shorter. Let A be a BiInt formula. A splitting set for Ais a set of dual-free indexes of se
ondary type β1 or β2 whi
h is downward3 Indexing initial sequents of the derivation from right to left.




losed w.r.t. the tree ordering ≪. In order to enable variable splitting for ourlabelled 
al
ulus, we need to repla
e variables with 
olored variables, i.e., pairs
xX where x is a variable o

urring as an index in A and X is a splitting set for
A. Substitutions are repla
ed with 
olored substitutions a

ordingly. A 
oloredsubstitution σ indu
es a splitting ordering whi
h is the least relation between
β- and φ- or φ-indexes su
h that if σ(xX) 6= σ(xY ), then there are dual indexes
i ∈ X and j ∈ Y su
h that (i△ j)≺ x. Intuitively, a splitting ordering en
odesthe restri
tion that β-formulas should be expanded before φ- or φ-formulas (ina variable pure setting). The last thing to do is to take into a

ount the newsplitting ordering in the 
hara
terization of biRG-validity of De�nition 10, whi
his done by rede�ning the redu
tion ordering so that ⊳= (≪ ∪ < ∪ ≺)+. The sets
{c} and {b} are splitting sets for the derivation given previously. A

ordingly,the two initial sequents 
an now give rise to two distin
t 
olored substitutions
σ1 = {x{c}/c} and σ2 = {x{b}/b} from whi
h we get (b△ c) = 5, 5 ≺ x, b < xand c < x. The indu
ed redu
tion ordering ⊳= (≪ ∪ < ∪ ≺)+ is irre�exive.Referen
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