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Abstract. We give a connection-based characterization of validity in
propositional bi-intuitionistic logic in terms of specific directed graphs
called R-graphs. Such a characterization is well-suited for deriving la-
belled proof-systems with counter-model construction facilities. We first
define the notion of bi-intuitionistic R-graph from which we then obtain
a connection-based characterization of propositional bi-intuitionistic va-
lidity and derive a sound and complete free-variable labelled sequent
calculus that admits cut-elimination and also variable splitting.

1 Introduction

Bi-intuitionistic logic Bilnt is a conservative extension of intuitionistic logic that
introduces a new connective <, called exclusion (also called co-implication or
subtraction), which is dual to the implication connective —. It was first studied
by Rauszer that gives a Hilbert calculus with Kripke and algebraic semantics [11]
and more recently by Crolard from the perspective of bicartesian closed cate-
gories with coexponents and the underlying type system with applications to
type theory [2,3]. An interesting aspect of Bilnt lies in the duality between impli-
cation and exclusion which motivates the definition of proof systems that work as
programming languages in which values and continuations are handled in a sym-
metric way. From a proof-theoretic point of view, a strong focus has been put on
the achievement of cut-free proof-systems since cut-elimination in Gentzen-style
(shallow) sequent calculi is particularly difficult to obtain. In this perspective
some cut-free calculi for Bilnt have been proposed from sequent structures like
nested sequents [6] or display inference rules [10]. Another solution makes use
of Negri’s general methodology for designing labelled sequent calculi in modal
logics [7] in order to provide a cut-free labelled sequent calculus where labels
correspond to worlds in Kripke structures [9].

In this paper we give the first connection-based characterization of propo-
sitional bi-intuitionistic validity in terms of bi-intuitionistic R-graphs. Let us
note that similar structures have been defined in the case of Bl or separation
logics [5,4] in order to characterize validity. Our characterization is well-suited
for deriving labelled proof-systems with counter-model construction facilities
which, compared with the existing labelled proof-systems [9], easily integrate



free-variables and variable splitting [1]. The main contributions of this work are:
the definition of bi-intuitionistic R-graphs; a connection-based characterization
of validity in propositional Bilnt; a new sound and complete free-variable labelled
sequent calculus that includes variable splitting and has the cut-elimination
property; an algorithm for solving admissibility constraints and thus deriving
a connection-based method.

2 Bi-intuitionistic Propositional Logic

The language of Bilnt consists of a countable set V of propositional letters P, Q . ..
and the logical symbols L, V, A, —» and <. Formulas are inductively built from
propositional letters as follows:

A:=P|L|AVA|ANA|A-A|A<A

. We write F to denote the set of all formulas of Bilnt. Negation —A is defined
as syntactic sugar for A — | and is therefore not considered as primitive in our
setting. Similarly, the conjunctive unit T is defined as a shorthand for P — P.
Bi-intuitionistic logic Kripke semantics is a straightforward extension of that of
intuitionistic logic.

Definition 1. A Kripke model is a triple M = (M,C,[-]), where M is a set
of worlds, C is a partial order on M and [-] is a function from worlds to sets
of propositional letters satisfying the following Kripke monotonicity condition:
if P€[m] and m Cn then P € [n].

The Kripke forcing relation = is defined as the least relation between worlds and
formulas such that:

— m | L never;

- mEPff Pem];

- mEAVBiffmEA ormpEB;

-mEAABiffmEA and m E B;

— mE A - B iff for alln € M such that m Cn, n = A orn | B;

— m = A<B iff for somen € M such that n T m, n = A and n }~= B.

Kripke monotonicity lifts from propositional letters to formulas as in intu-
itionistic logic. As usual, a formula A is satisfied in M iff m | A for all worlds
m in M, satisfiable if it is satisfied in some Kripke model M, and wvalid if it
is satisfied in all Kripke models. Figure 1 depicts the standard (Dragalin-style)
multi-conclusioned sequent calculus for Bilnt which can be found in [9]. We ob-
serve that the rules for the exclusion connective < simply behave as duals for the
ones dealing with the inclusion —. However, the price to pay for the easy dual
formulation is that the calculus does not admit cut-elimination.

3 Indexing Formulas

In this section, we recall some basic terminology of connection-based character-
izations of validity as we shall heavily rely on it in the forthcoming sections.
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Fig. 1. Dragalin-style sequent calculus for Bilnt

A signed formula is a pair (C, S), written C%, where C is a Bilnt formula and
S € {+,—1} is a sign. Depending on its principal connective and sign, a signed
formula is given a principal type (ptype) a or B. If « (respectively () is the
principal type of a signed formula C, then, its left subformula A is of secondary
type (stype) a1 (respectively (1) and its right subformula B is of secondary type
ao (respectively (35). Signed formulas the principal connective of which belongs
to the set {—, <} also admit an additional intuitionistic type (itype) ¢, ¢, 1) or .
The following tables describe how signs, principal, secondary and intuitionistic
types are inductively determined.

o o] Qs B pr B2 itype
(AAB)t A+ Bt (AAB)” A~ B~ (A-B)" ¢
(AVB)- A~ B~ (AVB)* At Bt (A-B)- @
(A - B) A* B~ (A - B)* A~ B (A<B)* %
(A <B)" At B- (A<B)- A~ Bt (A<B)~ ¢

For readability, we often simply speak of the type of a signed formula each time
the context makes it clear what type (ptype, stype or itype) is actually intended;
we also write “t-formula“ as a shorthand for “formula of type ¢’. Moreover, given
a (plain) formula C and a subformula A in C, the (principal, secondary or
intuitionistic) type of A in C is defined as the type of the signed formula A® in
C- that (syntactically) corresponds to A.

Let ® and ¥ be two disjoint and denumerable sets of symbols respectively
called variable and constant symbols. We shall use the letters ranging from a
to d (possibly subscripted) to denote constant symbols. Similarly, we shall use
the letters from z to z to denote variable symbols. For convenience, let us also
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Fig. 2. Indexed formula tree

assume that ¥ always contains the particular symbol € and that if s is a constant
(respectively variable) symbol, then so is s.

Given a formula C, an indezed formula can be obtained from C by assigning
a unique index (often called “position” in the matrix terminology) to each sub-
formula encountered along a depth first exploration of C~ (w.r.t. the syntactic
structure of C) in such a way that 1/- and 1/-subformulas are indexed with con-
stant symbols in ¥, ¢- and ¢-subformulas are indexed with variable symbols in
@, all other subformulas being indexed with natural numbers.

Assuming strict total orders <s, <w, <y on ®, ¥, N, assignments can be made
deterministic so as to obtain a one-to-one correspondence between formulas and
indexed formulas. We interpret <4 and <y as lexicographic orders and <y
as the usual strict order on natural numbers; therefore, each time we have to
choose an index for a (sub)formula, we always pick the first symbol in ®, ¥ or
N (w.r.t. <o¢,<w,<ny) that has not already been used as an index. We write
F(C,i) (respectively Sf(C,i)) to denote the unique subformula (respectively
signed subformula) associated to the index ¢ in a formula C (or signed formula
C® depending on the context).

For example, indexing C = (((RVP)<Q) A —-P) = ((P = R) < Q) we get the
indexed (signed) formula

(R Vi P3) << Q) Ag . Py) =0 (Pg =, R) < Q)

. Since indexes are in a one-to-one correspondence with (signed) formulas, we
shall sometimes use indexes in places where (signed) formulas would normally
be expected (and vice-versa).

A formula tree for a formula C is a representation of its corresponding indexed
formula as a syntax tree. A formula tree induces a strict partial ordering < on
indexes, called the domination ordering, which is such that the index of the
root is the least element and if ¢ <« j then ¢ is encountered before j on a
path from the root to j. If ¢ is a non-atomic index in C (i.e., if F(C,q) is
a non-atomic formula) then the two indexes j and k such that F(C,j) and
F(C,k) are the immediate (left and right) subformulas of F(C,i) are called



dual and we write j A k = i. Figure 2 shows the formula tree associated with
(RVP)<Q) A -P) = (P = R) < Q).

In the standard sequent calculus of Figure 1, contraction is internalized by
the repetition of the principal formula A — B (respectively A < B) in the left
(respectively right) premiss of the —1, (respectively <g) rule so that there is no
need for an explicit contraction rule. In a connection-based setting contraction
is usually handled via the notion of multiplicity. Given a formula C of Bilnt, a
multiplicity for C is a function p() which assigns a natural number to each ¢- or
¢-subformula A in C. The formula x(C) is then defined as the formula obtained
from C by replacing every subformula A in C such that u(A) = n with the
subformula A A A A ... A A, where the connective A occurs exactly n times. For
example, if C = (P - Q) - (R<S), p(P - Q) =1 and u(R < S) = 2, then
1w(C)=(P > Q A(P-Q)) = ((R<S)A(R=<S)A(R=<S)). Intuitively, a
multiplicity function encodes the number of copies that would be allowed (via
contraction) for each ¢- or ¢-formula in a sequent-style derivation.

For convenience, when dealing with indexed formulas, we use superscripted
indexes to distinguish between the copies of ¢- and ¢-formulas. For the previous
example, if we assume that z is the index of R < S in C, then p(R < S) = 2
implies that ! and 2 should respectively be the indexes of the first and sec-
ond additional copies of R < S in u(C). The previous notions are fairly common
to most connection-based characterizations of validity. If we were to follow the
standard recipe for such characterizations, the next step would be the introduc-
tion of the key notions of (atomic) matrix paths, connections and spanning sets
together with admissible substitutions leading to irreflexive reduction orderings.
However, we shall not follow the standard approach for the upcoming sections
and rather introduce the concept of R-graphs since it allows us to reformulate
all the standard notions on the same graphical structure. Moreover, R-graphs
can easily be turned into Kripke models when dealing with non valid formulas.

4 Bi-intuitionistic R-graphs

From a very general point of view, R-graphs for a given logic are directed graphs
in which vertices are meant to represent worlds in the underlying Kripke se-
mantics of the logic [5]. Let us first define the general notion of R-graph before
restricting it to match the bi-intuitionistic case.

Definition 2 (R-graph). A R-graph (RG) is a directed graph G(V, E) with
vertices V' and edges E. The vertices are named with elements of ¥ U ®. More-
over, V' is required to contain a distinguished vertex € called the e-vertex, every
vertex u is associated with a set F(G,u) of signed formulas the elements of which
are referred to as the tags of u, and every edge e is tagged with a letter T (G, e)
from the set T = {1/1, d)a 1/75 d_)v g, H} Of edge'tags'

A vertex named with a constant symbol (respectively variable symbol) is
called a -vertex (respectively ¢-vertex). The set of i-vertices (respectively ¢-
vertices) is written V¥ (respectively V'®). We use the letters u, v and w to range



Fig. 3. Bi-intuitionistic R-graphs

over arbitrary vertices and we write u[7]v to denote the edge, tagged with the
letter 7 € T, that goes from u to v; we then call this edge a T-edge and say that
u and v respectively are its source and target. Given a subset ' C T, the set of
all 7-edges such that 7 € T is written ET.

Definition 3 (Bi-intuitionistic RG). A R-graph G(V, E) is a bi-intuitionistic
R-graph (biRG) if it satisfies the following structural conditions:

— every Y-edge has a Y-vertex as its target;

— every V-edge has a -vertez as its source;

— every ¢-edge has a ¢-vertex as its target;

— every ¢-edge has a p-vertex as its source;

— every o-edge induces a “bidirectional” link between a ¢p-vertex and a -verter,
more formally, u[c)v € E iff vloju € E, with either u € VY and v € V%, or
ueV® andveV?;

— every k-edge ulk|v is a link between two (arbitrary) vertices such that there
exists at least one formula occurring positively (with a “+” sign) in F (G, u)
and negatively (with a “—” sign) in F(G,v).

Figure 3 gives some examples of bi-intuitionistic R-graphs. We shall explain
in the next section how such graphs can be associated with formulas and discuss
them in more details.
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Fig. 4. Reduction rules

5 R-graph Reductions

Standard matrix characterizations heavily rely on the notion of (atomic) matrix
paths through a given formula C. In our setting, such atomic matrix paths are
replaced with the notion of irreducible R-graphs.

Given a Bilnt formula A, a (biRG-)reduction through A is a sequence R =
Rop1...pi—1pi ... in which Ry is a collection (of biRGs) containing the single
biRG Go(Vy, Ep), where Vo = {€}, Ey = 0 and F(Go,€) = {A~}, and each p; is
a reduction step that transforms the collection R;_ inherited from the previous
reduction step into a new collection R; by applying one of the reduction rules
given in Fig. 4.

In order to apply a reduction rule to a biRG G(V, E), one first needs to
choose a vertex v in V and a signed formula A® in F(G,u).

— If AS has principal type « and has no intuitionistic type, G(V, E) is reduced
to the new biRG G;(V4, E1) such that Vi, =V, Ey = E, F(G1,v) = F(G,v)
for all v # uw and F(G1,u) = F(G,u) U{a1(A%), az(A®)}, where a; (A%) and
ao(A®) respectively are the first and second signed subformulas of A® (of
secondary type a1 and as).

— If AS has principal type 5 and has no intuitionistic type, G(V, E) is reduced
to two new biRGs G1(V1, E1), Ga(Va, E2) such that for i € {1,2}, V; =V,
E; = E, F(G;,v) = F(G,v) for all v # v and F(G;,u) = F(G,u)U{B;(A®)}.

The previous reduction rules are the reformulation of the standard o and
matrix-path reduction rules. The next two reduction rules are specific to Bilnt
and depend on the index (a, @,  or T) and intuitionistic type of the signed
formula under reduction (principal formula).

— If AS has principal type o and has intuitionistic type v (respectively 1)),
G(V, E) is reduced to the new biRG G;(V1, E1) such that V3 = VU {a} and



Ey = E U {u¢]a} (respectively Vi = V U {a} and E; = E U {@[¢]u}).
Moreover, F(Gy,v) = F(G,v) for all v # a (respectively v # @), and
F(G1,a) = {a1(A®%), az(A®)} (respectively F(G1,a) = {a1(A%), az(A®)}).
— If A® has principal type 8 and has intuitionistic type ¢ (respectively ¢),
G(V, E) is reduced to two new biRGs G1(V1, E1), G2(Va, E3) such that for
i€{1,2},V; =V U{z} and E; = EU{u[¢]z} (respectively V; = VU{Z} and

E; = EU{Z[#]u}). Moreover, F(G;,v) = F(G,v) for all v # = (respectively
v # T) and F(G;, z) (respectively F(G;, 7)) = {A%} U {B:(A%)}.

Let us remark that we have chosen to prevent the reduction rules from discarding
their principal formula from the tags of u (although we shall forget about them
in graphical representations to increase readability). This is not a strict require-
ment but it makes the counter-model construction process (e.g., the saturation
relation) easier to define.

Definition 4 (irreducibility). A biRG is irreducible if it is stable under the
reduction rules; it is reducible otherwise. Accordingly, a collection R of biRGs
is irreducible if and only if all biRGs in R are irreducible.

Let R be a reduction through A, we say that R is finished if and only
if for some natural number n, the collection R, in R is irreducible and for
all R,, in R such that m < n, R,, is not irreducible. We then say that n
is the length of the reduction R. Since we consider formulas indexed w.r.t. a
given multiplicity, an inspection of the reduction rules of Figure 4 shows that
all finished reductions through A lead to the same irreducible biRG-collection
denoted Ry and called the final biRG-collection through A. Every biRG in Ry
is then called an irreducible biRG through A.

If one forgets about the o- and x-edges, Figure 3 gives examples of irreducible
biRGs' through (((Ry Vi Py) <F Q7)) Ay = P7) =, (P =, Ry) <5 QF).

6 Validity through R-graphs

Before stating our connection-based characterization of Bilnt validity, we need
to define the notions of slice, concrete path and admissible R-graphs.

Definition 5 (slice). Let G(V, E) be a biRG and S be a subset of V', the S-slice
of G is defined as the smallest (w.r.t. the number of vertices and edges) biRG
G3(VS,E®) such that S C V? and for all vertices u € V° and v €V,

— ifv[rlu € E and 7 € {),$,0}, then v € V¥ and v[r|u € E¥;
— ifu[rlv € E and 7 € {1, ¢,0}, then v € V° and u[r]v € ES.

The purpose of a slice is to capture only the essential information, i.e., the
minimal portion of a biRG, that is necessary to establish the validity of a Bilnt
formula. Let us remark that in the construction of a slice ¥~ and ¢-edges are
traversed forward, from their source to their target, while - and ¢-edges are
traversed backward, from their target to their source.

! For readability, non-atomic signed formulas are not mentioned in the vertex tags.



Definition 6 (path). Given two vertices u,v in a biRG G(V, E), a path in G
from u to v is a sequence ugTiU1 . .. Up—1TpUp Such that ug = u, up, = v and for
all1 <1< p, u; is a vertex in 'V, 7; is an edge-tag in T and there exists a ;-edge
ui—1[m|u; in E. A cycle is a path such that the initial and terminal vertices are
the same, i.e., up = up.

Given a subset 17" of 7, a T-path is a path P = ugmiui ... up—17pu, such
that for all 1 < i < p, 7 € T. In particular, when T = {v,%,0}, P is called
a concrete path (in the graphical representation, a path using only solid edges).
T-cycles and concrete cycles are defined accordingly. Using the previous notions,
we define the relation (_ » ) such that Gu » v holds if and only if u = v or

there exists at least one concrete path from u to v in G.
Definition 7 (admissibility). A biRG G(V, E) is admissible if and only if

— all concrete cycles in G are o-cycles that contain at most one -verter and
— for all T-edges ulr]v in E such that 7 € {$, ¢}, Gu » v (in other words,
there is a concrete path in G from u to v).

Definition 8 (consistency). A biRG G(V,E) is inconsistent if and only if
(Fu e V)(LT € F(G,u)); it is consistent otherwise.

Definition 9 (complementarity). A biRG G(V, E) is complementary if and
only if there is at least one k-edge ulk|v in E such that the slice Glwv} s ad-
missible and G1“V}u » v (there is a concrete path in the slice from u to v).

A collection of biRGs is inconsistent (respectively admissible) if it contains at
least one biRG which is inconsistent (respectively admissible). On the contrary,
a collection is complementary if all of its biRGs are complementary.

6.1 Characterization of Validity

Starting with the final biRG-collection Ry through a Bilnt formula A, we define
the notions of o- and k-bindings.

A local o-binding for a biRG G(V, E) is a function o that extends G(V, E)
by inserting o-links (bidirectional o-edges) in E. More formally, o(G(V, E)) =
G5 Vs, Ey) such that V, = o(V) =V and E, = 0(F) = EU X, where 0 is a
set of o-links between vertices of V® and vertices of V'¥. Let us remark that a
local o-binding is completely determined by X.

Given two collections R = {G1,...,Gp} and S = {01, ...,0,} such that for
all 1 < i < n, 0;is a local o-binding for the biRG G, the global o-binding &
for R (induced by S) is defined as 7(G;) = 0;(G;) for all 1 < i < n. A global
o-binding induces a relation C on ¥ x ® such that a T z if there is a o-link
alolz in 7(G;) for some 1 < i < n. A local o-binding o is admissible for a biRG
G if 0(G) is admissible. A global o-binding 7 is admissible for a biRG-collection
R if for all G in R, 5(G) is admissible. Local and global k-bindings are defined
accordingly w.r.t. the structural conditions required for k-edges in Definition 3.



Definition 10 (bi-intuitionistic validity). A Bilnt formula A is biRG-valid if
and only if there exists some multiplicity ., a (global) o-binding T and a (global)
k-binding R for the final biRG-collection Ry of irreducible biRGs through (A)
such that:

1. For all (not necessarily distinct) biRGs G1(V1, Ev), G2(Va, E2) in @ o R(Ry)
and all p-vertices x in V1 N Va, if z[olu € Ey and z[o]v € Es then u = v.

2. For all consistent biRGs G(V, E) in g oR(Ry), G(V, E) is complementary.

3. The reduction ordering <= (<« U )T induced by &, where (-)* stands for
transitive closure, is irreflexive.

Using the previous definition and the irreducible biRGs of Figure 3, it is easy
to see that (((Ry Vi Ps) <z Qu) Ao —.Ps) —=. ((Ps =, R;) <5 Qg) is biRG-valid.
Let us now discuss the soundness and completeness of the characterization.

6.2 Soundness and Completeness of the Characterization

Definition 10 can be used to extract a labelled calculus the rules of which generate
bi-intuitionistic R-graphs. Such a calculus is depicted in Fig. 5 and generates one
biRG per branch in a derivation, which is induced by the edges (written as side
conditions) introduced along that branch by the inference rules —1,, —-r, —L
and —g. A labelled formula Afv] on the left- (respectively right-) hand side of a
labelled sequent simply means that A" (respectively A~) appears in the tags of
the vertex wu.

Moreover, the notion of global o-binding gives rise to the more standard notion
of global substitution, i.e., o(z) = a iff there is a o-link between z and a in some
irreducible biRG associated with some irreducible initial sequent? of a derivation.
Similarly, there is a k-edge from u and v in the irreducible biRG associated with
an irreducible initial sequent s of a derivation iff there are some labelled formulas
Afu] and Afv] occurring on the left-hand and right-hand side of s respectively.
An example of a derivation in that labelled calculus is given in Sect. 8, where
variable splitting is discussed.

Theorem 1. Let A be a Bilnt formula. A is biRG-valid iff A is valid in the
Kripke semantics.

Proof. The soundness and completeness proofs rely on the labelled calculus given
in Fig. 5. The soundness proof follows the standard pattern of proving that every
inference rule of the calculus preserves a standard notion of realizability in Bilnt
Kripke models. The completeness proof proceeds by counter-model construction
from any admissible, consistent and saturated R-graph in the final collection of
a finished reduction through A.

2 A sequent that contains only atomic formulas.
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Fig. 5. Labelled calculus for Bilnt

6.3 Counter-Model Construction

We first need to define a saturation relation which plays the same role for biRGs
that Hintikka collections play for sets of formulas in intuitionistic logic.

Definition 11 (saturation). Let G(V, E) be a biRG. The saturation relation
(on G(V, E)) is defined as the smallest relation between vertices and signed for-
mulas such that:

— Base case: for all A in {L} UV,

o GulF AT iff (v € V)(Gv » u and AT € F(G,v));
o Gulr A~ iff (v e V)(Guw v and A~ € F(G,v));

— Induction:
GulF (AAB)" iff Gulk AT and Gu I Bt;
GulF (AAB) iff GulF A= or GulFB~;
GulF (AVB)* iff Gulk AT or Gul- B*;
)"

(
(
(
GulF (AVB)™ iff Gulk A~ and Gul- B~;

GulF (A - B)" iff (Yo € V)(if Guw» v and Gu IF A* then Gv I- BT);
GulF (A - B)™ iff (v e V)(Guw v and Gv IF A" and Gv I- B7);
GulF (A <B)* iff (v e V)(Gvw» u and Guv IF A" and Guv IF B~);
Gu lF (A <B)~ iff Vv € V)(if Gv» u and Guv Ik AT then Guv I+ BT).

G(V, E) is saturated if and only if (Vu € V)(VC® € F(G, u))(Gu I+ C?).

Let us illustrate how to extract counter-models from saturated biRGs with a
short example, the formula D = Q - ((=(P<Q)<P)VP). Up to o- and x-edges,
the collection of irreducible biRGs through D are depicted below.
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Both biRGs Ggp and Gg; are admissible and consistent, but only Ggg is not
complementary. Moreover, it happens that Gy is also saturated. In order to
turn Ggo into a counter-model of D, we first calculate the quotient of Ggy by
the equivalence generated by the o-edges which leads to the following set of
vertex-classes: V = {¢,a,b,a | ¢ = {e},a =7 = {a,T},b = {b},a = {@}}. Then,
we consider V' as a set of worlds and define an accessibility relation = between
worlds of V' as follows: (Vm,n € V)(m C niff (Im' € m)(In' € n)(Gm' » n’)).
Finally, we define the forcing relation by setting the following interpretation:
(VP € V)(Vm € V)(P € miff (Im' € m)(Pt € F(G,m'))), which leads to
following bi-intuitionistic Kripke model:

O—O—O—O

It is not difficult to generalize the previous example so as to extract a counter-
model from any consistent, admissible and saturated biRG that cannot be made
complementary in any way (under any o- and k-bindings).

7 Solving Admissibility Constraints

In plain intuitionistic logic, we could use prefixes instead of labels and resort to
T-string (prefix) unification to solve prefix constraints [8]. However we cannot do
that in the case of Bilnt because a prefix essentially is a way to encode the path
to a given node in a Kripke tree. Since the Kripke semantics of Bilnt deals with
graphs instead of trees, there can be several distinct paths to a given node and
taking care of that using prefixes (by encoding both successors and predecessors)
would break the T-string property of such prefixes, which in turns prevents the
use of T-string unification.

Given an admissible o-binding, it is not difficult to check whether x-edges
are covered by a concrete path or not, the problem is to find such o-bindings.
A trivial but particularly inefficient solution would be to enumerate all possible
o-bindings and check whether they are admissible or not. As a first step toward
more efficient solutions, we now sketch an algorithm that only enumerates ad-
missible o-bindings for a given biRG (which is a slice determined by a x-edge)
that also preserves the acyclicity of the underlying reduction ordering <. For
that, we first need the notion of walk through a biRG which is similar to the



notion of path described in Definition 6 except that in a walk ¢- and 1-edges
must be crossed backward from their target to their source and o-edges can only
be crossed from their 1)-vertex to their ¢-vertex. T-walks are defined accordingly
as walks that only cross T-edges such that 7 € T and, whenever T = {1, 4, 0},
a T-walk is called a concrete walk.

Let u be an arbitrary vertex in a biRG, we define A% (u) (resp. B (u)) as
the set of all ¢-vertices that can be reached from u (resp. from which u can be
reached) by a T-walk of length n. The two sets S%(u) and P}(u) are defined
analogously using the notion T-path instead of T-walk. In particular, for all F' €
{S, P, A, B}, F2(u) = {u} if u is a ¢-vertex and () otherwise. For readability, we
forget the T subscript whenever T = {¢, ¢, v, 1 }. Finally, let F(u) = Uien Fi(u)
and let t € {¢, ¢} denote an intuitionistic type and u, v be two vertices, we then
define the set M;(u,v) as M¢(u) — A(v) with My = S and Mg = P.

Our solving algorithm relies on two particular objects R(u) and D(u) that
are computed for all ¢-vertices u in the biRG G(V, E) under consideration. In the
initial step, R(u) = B} (u) and D(u) = M;(R(u),u) for all u € V. Intuitively,
D(u) (called the domain of u) is meant to represent all suitables instantiations
for u (i.e., 1-vertices that would be suitable targets for a o-link the source of
which is u) and R(u) (called the root of w) initially is the vertex responsible for
the introduction of u in the biRG reduction process. In a second step, all ¢-edges
are partially ordered in a list X = x1,...,2, so that if i < j and z; o z; then
xj o x;, where oc is the following notion of wariable dependency: let x and y
be two ¢-vertices, we say that x depends on y, and we write x o y, if and only
if x € D(y). Intuitively, if 2 depends on y then y should be bound before x
because some 1)-vertices may only become admissible for x after y gets bound to
some specific ¥-vertex. The third step finally consists of the actual enumeration:
for each ¢-vertex u—x; in X, select a t-vertex ¢ in D(u) (then assuming the
addition of a o-link u[o]c) and apply the corresponding rule of Figure 6, more
precisely perform

applyRule := selectRule(u,c,v) ; R(v),D(v):= applyRule(u,c,v)

on all v = x; in X such that j > . If all ¢-vertices in X can be bound then
we have an admissible o-binding and we just check whether the x-edge we are
interested in (i.e., the one that determines the slice which corresponds to the
biRG we are working on) is covered by a concrete path. If so, we are done,
otherwise, we must backtrack and perform a distinct selection of i-vertices until
a solution is found or all possible choices have been exhausted.

8 Variable Splitting

In this section we briefly discuss how the technique of variable splitting recently
developed for prefixes [1] can be adapted to our R-graph based setting. Let
us illustrate the main ideas with a short example. With a multiplicity u(z) =
p((P - P) - P) =0, it is not possible to prove the validity of the formula for



Rule selectRule(u,c,v) applyRule(u,c,v)
Bind Rv)=wu ¢, D(v) U M¢(c,v)
Narrow c € A(v) R(v), D(v) — A(u)
Widen c¢= R(v) A (¢ # R(u) Vitype(u) = itype(v) R(v), D(v) U M¢(u,v)

Fig. 6. Solving rules given that v # u and itype(v) =t

which a derivation in the labelled calculus of Figure 5 is given below (indexes
are indicated as subscripts).

P4[a:]7 Q6[b] H P7[b] P4[I]7R8[C] H PQ[C]
—ax aly]b a[w]c
P2[d] F PB[d] P4[I] F (Q6 - P7)b[a] P4[I] = (Rs - PQ)C[G.]
— 20 %7 AR
= (Pz - PB)d[I] P4[z] = ((Q6 - P7)b A (RS - P9)c)5[a] [(;5]
alp|x

((P2 - PS)d - P4)I[a] H ((Qe - P7)b A (Rs - P9)a)5[a]
((Py = P3)y = Py)o = ((Qs = Pr)y A (Rs = P9)c)5)a[5]

e[¢]a

The first initial sequent® requires o; = {x/c} while the second one requires
o9 = {z/b}. The conflict on x thus makes it impossible to compute a global
substitution from the two local substitutions o; and oy. A first solution would
be to increase multiplicity in order to have one copy z! of the variable x so as
to set o1 = {x/c} and oo = {x'/b}. The price to pay for this solution is an
unnecessary longer derivation because, in this example, assigning two distinct
values to the variable x would not harm soundness. The problem actually lies in
the fact that the labelled calculus is variable sharing: the same ¢- or ¢-formula,
occurring in distinct branches leads to the introduction of the same variable in
all branches since we use the index of that formula as the introduced variable.

Variable sharing leads to full permutability of the rules, but also results in
potentially longer derivations. Had we allowed the —p, and <g rules to introduce
a fresh copy of the variable associated to its principal ¢- or ¢-formula for each
of its occurrences in distinct branches of a derivation, expanding the g-formula
(Q - P) A (R — P) before the ¢-formula (P - P) — P in our example would
have resulted in the introduction of the variable z in the branch corresponding to
the first premiss of Ay, and of a fresh copy «! in the branch corresponding to the
second premiss of Agr. However, such a variable pure formulation of our labelled
calculus would break full permutability: S-formulas need to be expanded before
¢- and ¢-formulas to enable as many copies of each variable as possible.

Variable splitting is a technique developed for variable sharing calculi that
allows a (shared) variable to be assigned a specific value in each distinct branch
it occurs in, which enables the computation of local substitutions and helps
keeping derivations shorter. Let A be a Bilnt formula. A splitting set for A
is a set of dual-free indexes of secondary type (1 or B2 which is downward

% Indexing initial sequents of the derivation from right to left.



closed w.r.t. the tree ordering <. In order to enable variable splitting for our
labelled calculus, we need to replace variables with colored variables, i.e., pairs
X where z is a variable occurring as an index in A and X is a splitting set for
A. Substitutions are replaced with colored substitutions accordingly. A colored
substitution ¢ induces a splitting ordering which is the least relation between
- and ¢- or ¢-indexes such that if o(2%) # o(x¥), then there are dual indexes
i € X and j € Y such that (i A j) < . Intuitively, a splitting ordering encodes
the restriction that S-formulas should be expanded before ¢- or ¢-formulas (in
a variable pure setting). The last thing to do is to take into account the new
splitting ordering in the characterization of biRG-validity of Definition 10, which
is done by redefining the reduction ordering so that <= (<« U C U <)™T. The sets
{c} and {b} are splitting sets for the derivation given previously. Accordingly,
the two initial sequents can now give rise to two distinct colored substitutions
o1 = {z{/c} and oo = {21} /b} from which we get (b Ac) =5,5 <z, bC
and ¢ C z. The induced reduction ordering <= (< U C U <)* is irreflexive.
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