
Connection-based Characterization of Intuitionistic
Logic from Transitive Closure of Label Constraints

Didier Galmiche and Daniel Méry

LORIA - Université Henri Poincaré
Campus Scientifique, BP 239
Vandœuvre-lès-Nancy, France

Abstract. We present a constraint-based calculus for intuitionistic propositional
logic (IPL) which gives rise to a new connection-based characterization of in-
tuitionistic provability. Compared to other free-variable tableaux or connection-
based systems, our calculus replaces so-called prefixes by labels and constraints
derived directly from the standard Kripke semantics for IPL. In order to character-
ize intuitionistic provability, using label constraints instead of prefixes allows to
drop prefix-unification algorithms in favor of a more direct and simple transitive
closure operation on label constraints. We show the soundness and the complete-
ness of the system, give arguments for its termination.

1 Introduction

There exist many works on proof-search in intuitionistic logic (IL), mainly the propo-
sitional fragment (IPL), that can be seen as refinements of proof-search methods dedi-
cated to classical logic (CL). Some are based on calculi (sequents, tableaux or connec-
tions) dealing with so-called prefixes that allow to capture the restrictions about per-
mutabilities of (classical) rules induced by the intuitionistic character of IPL [11,19].
Such an approach has been developed for other substructural logics like linear logic [9]
but we can observe that the definition and use of adequate prefixes for such logics is not
easy to deal with and requires a specialized string-unification process [11].
Recently we have studied the propositional Bunched Implications logic (BI) that freely
combines intuitionistic logic (IL) and multiplicative intuitionistic linear logic (MILL).
BI is a resource-aware logic that captures interferences between resources and it is well-
suited for reasoning about mutable data structures. In order to study decidability and
proof-search in this logic that mixes different kinds of connectives, we have focused on
the capture of semantics and interactions between connectives through the introduction
of labels and label constraints that lead to labelled calculi [6]. For such mixed logics, as
also illustrated in non-commutative logic [7], Using label constraints in order to capture
the properties of the models appears more adequate than using prefixes. In this paper
we aim at studying this general approach based on labels to the case of IPL and then
provide an alternative characterization and also a proof-search method for IPL in which
provability is characterized through a simple transitive closure of constraints. The con-
nections between well-known prefix-based and our constraint-based characterizations
for IPL are studied.

In section 2 we recall some basic notions about IPL from both proof-theoretical and
semantic points of view. Section 3 presents a new labelled calculus RLJ for IPL that is
obtained from the capture of the relational Kripke semantics into particular labels and
label constraints. It instantiates for IPL, in the spirit of labelled systems for proof search
[2,16], our recent study based on relational semantics and related label constraints for
mixed logics [6]. In section 4 we show the soundness and completeness of RLJ with
respect to IPL Kripke semantics. In section 5 we discuss arguments about the termina-
tion of the proof-search based on this labelled calculus and analyze its ability to allow
countermodel construction. Section 6 presents how, starting from our labelled sequent
calculus, we can define a new connection-based characterization for IPL that deals with
labels, constraints and a simple transitive closure operation on such constraints. Section
7 gives some concluding remarks and perspectives and emphasizes the relationship, in
the case of IPL, between label constraints and prefixes used in standard methods. A key
point is that our approach is well adapted not only for IPL but for various substruc-
tural logics. Thus it can be seen as an interesting foundation for a general framework
dedicated to proof-search in such logics with emphasis on countermodel generation.

2 Intuitionistic Propositional Logic

The propositional language of IL consists of a countable set of propositional letters
P,Q, . . . and the logical symbols ∧, →, ∨, ¬. Formulas of IPL are built from proposi-
tional letters using the inductive definition A ::= P | A ∧ A | A → A | A ∨ A | ¬A.
A finite set Γ of formulas is called a context. A sequent Γ ` ∆ is a relation between
two contexts Γ and ∆ where ∆ contains at most one formula. The standard LJ sequent
calculus for IPL is given in Figure 1. We have taken negation as primitive in our setting
so that the units > and ⊥ associated with conjunction and disjunction are respectively
defined as P → P and P ∧ ¬P . It is easy to see that ¬A is equivalent to A→ ⊥.

ax
Γ, A ` A

Γ ` ∆
w

Γ, A ` ∆

Γ, A,A ` ∆
c

Γ, A ` ∆

Γ, A,B ` ∆
∧L

Γ, A ∧B ` ∆

Γ ` A Γ ` B
∧R

Γ ` A ∧B

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨B ` ∆

Γ ` A
∨R1

Γ ` A ∨B

Γ ` B
∨R2

Γ ` A ∨ B

Γ ` A Γ, B ` ∆
→L

Γ, A→ B ` ∆

Γ, A ` B
→R

Γ ` A→ B

Γ ` A
¬L

Γ,¬A ` ∆

Γ, A `
¬R

Γ ` ¬A

Fig. 1. LJ Sequent Calculus for IPL

The LJ sequent calculus is a simple formulation having the subformula property. On
the other hand, it lacks termination and thus implementing this calculus requires some

kind of loop-checking mechanism. A solution is the use of the contraction-free sequent
calculus LJT [3] that has the nice property that backward search does not loop. The
corresponding multi-conclusion calculus is also a good basis for a non-looping method
that builds Kripke trees as countermodels for non-provable formulae of IPL [12].
Another important and fruitful approach consists in studying proof-search in IPL from
proof-search in classical logic (CL) by using so-called prefixes in order to capture the
restrictions about permutabilities of (classical) rules induced by the intuitionistic char-
acter of IPL [19]. The use of prefixes requires a specialized string-unification process
[11] that could potentially lead to difficulties if we aim at extending this approach to
other non-classical logics like intuitionistic linear logic [9] or relevant logics [13]. Be-
sides, there also exist other proposals for proof-search in IL based for instance on reso-
lution [15], constraints [17] or skolemization [14] but we will not focus on these ones.
Here we aim at proposing an alternative approach for IPL based on labels and con-
straints (between labels) which essentially capture properties of Kripke models. Let us
recall the basic notions about IPL Kripke semantics.

Definition 2.1. A Kripke model is a triple M = 〈M, ≤ , J·K 〉, where M is a set of
worlds, ≤ is a partial order onM with least element ω ∈M and J·K is a function from
propositional letters to subsets of worlds satisfying the Kripke monotonicity condition:
if m ∈ JP K and m ≤ n then n ∈ JP K. The Kripke forcing relation |= is the least
relation between worlds and formulas such that:
- m |= P iff m ∈ JP K
- m |= A ∧ B iff m |= A and m |= B
- m |= A ∨ B iff m |= A or m |= B
- m |= A → B iff for all n ∈ M such that m≤ n, n 6|= A or n |= B
- m |= ¬A iff for all n ∈ M such that m≤ n, n 6|= A.

We can show that Kripke monotonicity lifts from propositional letters to arbitrary propo-
sitions. We say that a propositionA is satisfied in M if m |= A for all worlds m in M ,
or equivalently, if ω |= A. A is satisfiable if it is satisfied in some model M and valid
if it is satisfied in all models. The previous definitions extend to sequents by mapping
Γ ` ∆ to the formula ΦΓ → Ψ∆ where ΦΓ is the conjunction

∧
{A | A ∈ Γ } of all

propositions in Γ and Ψ∆ is the disjunction
∨
{A | A ∈ ∆ } of all propositions in ∆,

with the special cases
∧
∅ = > and

∨
∅ = ⊥.

The key idea here consists in reflecting or capturing the Kripke relational semantics
of IPL through labels and constraints and to propose a new labelled (and constrained)
calculus. Then a new connection-based characterization of intuitionistic provability is
derived from this calculus. Such an approach has already been developed in the context
of mixed logics like BI logic [6] and its variants or non-commutative logic [7] in order
to capture the interactions between connectives during proof-search. Our aim here is to
study such an approach in the context of IPL and its relational semantics in compar-
ison with prefix-based existing methods. Then we provide an alternative proof-search
method for IPL in which provability is characterized through a simple transitive closure
of (semantic) constraints.

Γ ` ∆
w

Γ, A[x] ` ∆

Γ, A[x], A[x] ` ∆
c

Γ, A[x] ` ∆

Γ, A[y] ` ∆, xRy
m

Γ, A[x] ` ∆

Γ, A[x], B[x] ` ∆
∧L

Γ, (A ∧B)[x] ` ∆

Γ ` A[x],∆ Γ ` B[x],∆
∧R

Γ ` (A ∧ B)[x],∆

Γ, A[x] ` ∆ Γ, B[x] ` ∆
∨L

Γ, (A ∨B[x] ` ∆)

Γ ` A[x], B[x]
∨R

Γ ` (A ∨B[x])

Γ ` ∆, A[u], xRu Γ, B[u] ` ∆, xRu
→L

Γ, (A→ B[)]x ` ∆

Γ, A[a], xRa ` B[a],∆
→R

Γ ` (A→ B[x],∆)

Γ ` ∆, A[u], xRu
¬L

Γ,¬A[x] ` ∆

Γ, A[a], xRa ` ∆
¬R

Γ ` ¬A[x],∆

Fig. 2. Relational Sequent Calculus RLJ for IPL

3 A Labelled Calculus for IPL

The language we consider for labelling formulas consists of a countable set of variables
and a countable set of parameters. A label is either a variable or a parameter. We use the
letters u, v, w to range over variables, the letters a, b, c to range over parameters and the
letters x, y, z to range over labels. A ground label is a label that contains no variable. As
the labels are a syntactic reflection of the worlds in the Kripke semantics we also reflect
the partial order between worlds by means of relations (constraints) between labels: if
x and y are labels then xRy is a label constraint or relation.

3.1 The RLJ Calculus

Given a label x and a formula A, a labelled formula is a pair (x,A) written A[x]. A
labelled context is a finite set of labelled formulas and labelled relations. For simplic-
ity we omit the “labelled” or “label” qualifiers whenever no confusion may arise. A
(labelled) sequent is a relation Γ ` ∆ between two (labelled) contexts where ∆ is no
longer restricted to contain at most one formula.
Figure 2 presents RLJ, our relational labelled calculus for IPL. The rules →R and ¬R

should obey the eigen-parameter proviso, i.e., parameters introduced by such rules
should be fresh. As we deal with several sequent calculi in the paper, it is useful to
recall some terminology. Given a sequent calculus S and a sequent Γ ` ∆, a derivation
for Γ ` ∆ in S is a tree the root node of which is labelled with Γ ` ∆, called the end
sequent, obtained by applying the rules of S. Similarly, a sequent labelling a leaf node
in a derivation is called an initial sequent. An example of a derivation in RLJ for the
sequent (P → (Q ∧ R))[a] ` ((P → Q) ∨ (P → R))[a] is given below.

P [b], aRb, P [c], aRc ` Q[b], R[c], P [u], aRu

Q[u], R[u], P [b], aRb, P [c], aRc ` Q[b], R[c], aRu

(Q ∧ R)[u], P [b], aRb, P [c], aRc ` Q[b], R[c], aRu

(P → (Q ∧ R))[a], P [b], aRb, P [c], aRc ` Q[b], R[c]

(P → (Q ∧ R))[a], P [b], aRb ` Q[b], (P → R)[a]

(P → (Q ∧ R))[a] ` (P → Q)[a], (P → R)[a]

(P → (Q ∧ R))[a] ` ((P → Q) ∨ (P → R))[a]

3.2 Closure and Admissibility

A substitution is a partial function σ from (label) variables to (label) parameters. Given
a labelled object s, a sequent or a derivation for example, we say that σ is a substitution
for s if and only if the domain of σ is included in the set of variables occurring in s.

Definition 3.1. Let D be a derivation in RLJ and σ be a substitution, σ is closing for
a sequent Γ ` ∆ in D iff there is a formula A such that A[x] ∈ Γ, A[y] ∈ ∆ and
xσ = yσ. We say that σ is closing for D iff it is closing for every initial sequent in D.

For a sequent Γ ` ∆, the set Γ
R

of relations occurring in Γ are called assertions and
the set ∆

R
of relations occurring in ∆ are called requirements. Moreover, we define the

relation w as follows: Γ w ∆ iff for all xRy ∈ ∆, x 6= y implies xRy ∈ Γ. In other
words, Γ w ∆ holds iff all non reflexive relations occurring in ∆ also occur in Γ.

Definition 3.2. Let D be a derivation in RLJ and σ be a substitution, σ is admissible
for a sequent Γ ` ∆ in D iff (Γσ)+ w ∆σ, where (·)+ represents the transitive closure.
We say that σ is admissible for a derivation D iff it is admissible for all sequents in D.

The following lemmas show that the domain, the codomain and the admissibility con-
dition of a substitution σ can be tightened.

Lemma 3.1. If σ is an admissible substitution for a sequent Γ ` ∆ in a derivation D
then σ binds all variables in Γ ` ∆ to parameters in Γ ` ∆.

Proof. Suppose that σ binds a variable u in Γ ` ∆ to a parameter a not occurring
in Γ ` ∆. Since u has been introduced in D by an inference of type →L or ¬L and
since requirements cannot be weakened in a RLJ derivation, xRu occurs in ∆ for some
label x such that x 6= u. Since σ is admissible we have (Γσ)+ w ∆σ. A simple
inspection of RLJ rules shows that if a relation xRy occurs in Γ then y must be a
parameter. Therefore, uσ = a entails that either xRa directly occurs in Γσ, which
implies yRa ∈ Γ for some y such that yσ = x, or xRa follows by transitive closure
on some relations xRz1, . . . , znRa occurring in Γσ, which implies tRa ∈ Γ for some
t such that tσ = zn. Both cases lead to a contradiction since a is supposed not to occur
in Γ ` ∆. Using similar arguments we now show that σ does not leave any variable
u in Γ ` ∆ unbound. Suppose otherwise, then, u was introduced in ∆ together with a
relation xRu. But since the rules of RLJ prevent u from occurring on the right-hand
side of any relation in Γσ, the relation xσRu cannot belong to the transitive closure of
the relations in Γσ, which contradicts the admissibility of σ for Γ ` ∆.

Lemma 3.2. A substitution σ is admissible for a derivation D iff it is admissible for
every initial sequent in D and for every sequent which is a conclusion of an inference
of type →R or ¬R.

Proof. For all rules of RLJ except →R and ¬R, if one premiss is admissible then so
is the conclusion because such rules never introduce in the conclusion any relation
(assertion or requirement) that does not already occur in the admissible premiss.

Definition 3.3. A labelled sequent Γ ` ∆ is provable in RLJ iff there exist a derivation
D for Γ ` ∆ and a substitution σ that is closing and admissible for D. We then say that
〈D, σ 〉 is a proof of Γ ` ∆ in RLJ.

The substitution σ = {u/b } is closing for the derivation given in Subsection 3.1 and
it is admissible since Γ

R
= { aRb, aRc } and ∆

R
= { aRu } imply (Γσ)+ w ∆σ for

both initial sequents and ∆
R

= ∅ for the two sequents which are the conclusion of an
inference of type →R.

4 Soundness and Completeness of the RLJ Calculus

This section presents the proofs of soundness and completeness of RLJ. In order to give
a characterization of IPL-provability in terms of RLJ-provability, we first need some
definitions to relate sequents in LJ to labelled sequents in RLJ.
Given a sequent Γ ` ∆ in LJ, the corresponding labelled sequent in RLJ is Γ[a] ` ∆[a],
where all formulas occurring in Γ and ∆ are labelled with some arbitrary parameter a.
Let us remark that we use the special letter e instead of a whenever the context Γ is
empty. Therefore, a propositionA is provable in RLJ iff ` A[e] is provable in RLJ.
we first show the soundness of the RLJ calculus w.r.t. Kripke semantics using a notion
of realizability that is preserved by the rules of the calculus.

Definition 4.1. Let M= 〈M, ≤ , J·K 〉 be a Kripke model, Γ ` ∆ be a labelled sequent
and σ be substitution for Γ ` ∆. A realization of Γ ` ∆ in M underσ is a total function
ι from the parameters in Γ ` ∆ to the worlds in M such that:
- if A[x] ∈ Γ then ι(xσ) |= A;
- if A[x] ∈ ∆ then ι(xσ) 6|= A;
- if xRy ∈ Γ then ι(xσ) ≤ ι(yσ).
We say that a sequent Γ ` ∆ is realizable under σ if there is a realization of it in some
Kripke model M under σ.

Lemma 4.1. Let D be a derivation in RLJ and Γ ` ∆ be an initial sequent in D. If σ
is a closing substitution for Γ ` ∆ then Γ ` ∆ cannot be realizable under σ.

Proof. Since σ is closing for Γ ` ∆ there are two formulas A[x] ∈ Γ, A[y] ∈ ∆ such
that xσ = yσ. Now suppose that there exists a realization ι of the sequent Γ ` ∆ in a
Kripke model M under σ, then, by definition of a realization, we have both ι(xσ) |= A
and ι(yσ) 6|= A, which is a contradiction. Therefore Γ ` ∆ is not realizable under σ.

Lemma 4.2. Let D be a derivation in RLJ and σ be an admissible substitution for D.
If the end sequent of D is realizable under σ then there exists an initial sequent in D
which is realizable under σ.

Proof. We show that the rules of RLJ preserve realizability under σ (see appendix)

Theorem 4.1 (soundness). IfA is provable in RLJ thenA is valid in Kripke semantics.

Proof. Let us assume that A is provable in RLJ i.e., there is a derivation D for ` A[e]
and a substitution σ that is closing and admissible for D. If A is not valid in Kripke se-
mantics, then there is a Kripke model M = 〈M,ω, ≤ , J·K 〉 for which ω 6|= A. There-
fore, ι(e) = ω is a trivial realization of ` A[e] in M under σ and Lemma 4.2 then
implies that there is at least one initial sequent Γ ` ∆ in D which is realizable under
σ. But Lemma 4.1 then entails that σ is not closing for Γ ` ∆, which contradicts the
assumption that A is provable in RLJ. Hence A is valid in Kripke semantics.

We now show the completeness theorem by reduction of proofs in LJ to proofs in RLJ.
Since LJ is complete w.r.t. Kripke semantics, any IPL proposition valid in the Kripke
semantics is also provable in LJ. Therefore, we only need to prove that if a sequent
Γ ` ∆ is provable in LJ then its corresponding sequent Γ[a] ` ∆[a] is also provable in
RLJ for some arbitrary parameter a. Moreover, the translation of LJ-proofs into RLJ-
proofs is such that the order of the rules in the LJ-proof is preserved in the RLJ-proof.

Theorem 4.2 (completeness). If a sequent Γ ` ∆ is provable in LJ then the labelled
sequent Γ[a] ` ∆[a] is provable in RLJ.

Proof. The proof is by induction on proofs in LJ (see appendix).

5 Termination and Countermodel Construction

Although RLJ admits a contraction rule, the system can be made terminating by using
a semantic argument on Kripke models. Indeed, according to the monotonicity of the
forcing relation, if m 6|= A→ B and there exists a world n such that n≤m and n |= A
then m 6|= B. The following liberalized rules are therefore easily proven sound:

Γ, A[y] ` B[x],∆, yRx
→

′

R

Γ, A[y] ` A→ B[x],∆

Γ, A[y] ` ∆, yRx
¬

′

R

Γ, A[y] ` ¬A[x],∆

The liberalized rules get rid of the need for continuous introduction of fresh parame-
ters and yield derivations in which only a finite number of parameters may occur, thus
entailing finite derivations. A more detailed account and a proof of the previous state-
ments can be found in [5] where a labelled tableau calculus for IPL is presented.
In order to address the problem of countermodel construction we need a precise char-
acterization of initial sequents that are not closing under any admissible substitution,
which are called open sequents. Let D be a derivation in RLJ, σ be an admissible sub-
stitution for D and Γ ` ∆ be an open sequent in D, Γ ` ∆ is said to be fulfilled in D
under σ if all its formulas have been fully analyzed, i.e., if further expansion of the se-
quent do not lead to any additional logical information. A formal definition of a fulfilled

sequent is given in [5].
The countermodel M = 〈M, ≤ , J·K 〉 for a fulfilled sequent Γ ` ∆ is such that:
– M = { a | a is a parameter in D } ∪ {ω };
– ω is least element and for all parameters a, b in M , (Γσ)+ w { bRa } implies b≤ a;
– for all a in M , a ∈ JP K iff for some x, P [x] ∈ Γ, xσ = b and (Γσ)+ w { bRa }.

We can show by induction that all rules of RLJ preserve countermodels. Moreover,
a nice property of RLJ is that a countermodel can directly be obtained from a single
fulfilled initial sequent whereas most other systems require combining models coming
from several branches [4,12].
The derivation D below fails to be a proof in RLJ because its two initial sequents s1

and s2 disagree on variable u. Indeed, the s1 only admits σ1 = {u/b } as a closing
substitution while s2 requires σ2 = {u/c }. Moreover, σ3 = {u/a }, σ1 and σ2 are the
only possible admissible substitutions for D.

P [b], aRb,Q[c], aRc ` P [u], aRu P [b], aRb,Q[c], aRc ` Q[u], aRu

P [b], aRb,Q[c], aRc ` P ∧Q[u], aRu

¬(P ∧Q)[a], P [b], aRb,Q[c], aRc `

¬(P ∧Q)[a], P [b], aRb ` ¬Q[a]

¬(P ∧Q)[a] ` ¬P [a],¬Q[a]

¬(P ∧Q)[a] ` ¬P ∨ ¬Q[a]

Therefore, as s1 is fulfilled under σ2, we can build a countermodel M = 〈M, ≤ , J·K 〉
for the end sequent of D which is such that M = { a, b, c, ω }, ω is the least element,
the relations a≤ b and a≤ c hold and J·K is such that b ∈ JP K and c ∈ JQK.

6 From RLJ to a Connection-based characterization for IPL

In this section we recall the basic notions used in standard connection-based character-
izations of provability [9,19].
Given a formulaA, a connection-based proof-method is usually interested in character-
izing which subformulas of A may eventually lead to axioms (sequents with the same
formula on both sides) in a derivation for ` A. The notion of signed formula is what is
needed in order to keep track of which side of sequent a formula is likely to appear in.

Definition 6.1. A signed formula is a pair (A, p), written Ap, where A is a proposition
and p ∈ {>,⊥} is a polarity.

The previous definition allows us to write sequents as sets of signed formulas or one-
sided sequents called goals: the goal associated to the sequent Γ ` ∆ is the set Γ>∪∆⊥,
also written ` Γ>,∆⊥, where Γ> = {A> |A ∈ Γ } and ∆⊥ = {A⊥ |A ∈ ∆ }.
According to its principal connective and polarity, a signed formula is assigned a prin-
cipal type α or β. If a signed formula is of principal type α (resp. β), its left subformula
has secondary type α1 (resp. β1) and its right subformula has secondary type α2 (resp.
β2). Signed formulas of the form (A → B)

p and (¬A)
p also admit an additional intu-

itionistic type φ or ψ. For readability, we simply speak of the type of a formula each

time the context makes it clear what kind of type is intended. Moreover, formulas of type
t ∈ {α, β, α1, α2, β1, β2, φ, ψ } are simply called t-formulas. Principal, secondary and
intuitionistic types are assigned as prescribed in the tables below.

α α1 α2

(A ∧ B)
>

A> B>

(A ∨ B)
⊥

A⊥ B⊥

(A→ B)⊥ A> B⊥

(¬A)
>

A⊥ A⊥

(¬A)⊥ A> A>

β β1 β2

(A ∧B)
⊥

A⊥ B⊥

(A ∨B)
>

A> B>

(A → B)> A⊥ B>

φ

(A→ B)
>

(¬A)
>

ψ

(A → B)
⊥

(¬A)
⊥

6.1 Contraction vs Multiplicity

The LJ and RLJ calculi presented in Figure 1 and Figure 2 admit a contraction rule
which cannot be dropped without harming completeness, for example, the formula
((((P → Q) → P) → P) → Q) → Q, which is valid in Kripke semantics, can-
not be proved without contraction.
It is well-known that the explicit contraction rule can be made implicit by retaining a
copy of the principal formula of an inference of type →L or ¬L in the left premiss as
shown below:

Γ, A→ B ` A Γ, B ` ∆
→L

Γ, A→ B ` ∆

Γ,¬A ` A
¬L

Γ,¬A ` ∆

Let us mention that contraction free calculi have been devised for IPL [3,4] but they
require a special treatment of the →L rule which is not well-suited for connection-
driven proof-search. In a connection-based setting contraction is handled through the
notion of multiplicity that encodes the number of copies allowed for each φ-formula.

Definition 6.2. Let A be a proposition, a multiplicity for A is a function µ from the set
of φ-subformulas of A to the positive integers.

φ-formulas are called generative formulas as they can generate multiple copies. From
a technical point of view, given a multiplicity µ for a formula A, µA is a copy of A in
which each φ-subformulaB has been replaced by a conjunctionB∧B∧ . . .∧B where
∧ occurs exactly µ(B) times. In this paper, we only consider a multiplicity µ such that
µ(B) = 0 for all φ-subformulaB, i.e., no additional copy is needed.

6.2 Indexed Formula Trees

Let A be a proposition, an indexed formula tree for A is a syntax tree representation
of A⊥ the nodes of which are called indexes (or positions). For example, the indexed
formula tree for (P → (Q ∧ R)) → ((P → Q) ∨ (P → R)) is given in Figure 3.
An index i uniquely identifies a subformula (resp. signed subformula) of A (resp. A⊥)
written Fi (resp. F p

i) and called an indexed formula (resp. indexed signed formula).
An indexed formula tree with root index r induces a strict partial order � on its indexes
which is such that r is the least element and if i � j then i is encountered before j in
a path from r to j. For each index i, we define Φi (resp. Ψi) as the set of all indexes

((P → (Q ∧R)) → ((P → Q) ∨ (P → R)))
⊥
a

(P → (Q ∧R))
>
u

P⊥
1 (Q ∧R)

>
2

Q>
3 R>

4

((P → Q) ∨ (P → R))
⊥
5

(P → Q)
⊥
b

P>
6 Q⊥

7

(P → R)
⊥
c

P>
8 R⊥

9

F p

i
p-type s-type i-type lab rel

((P → (Q ∧R)) → ((P → Q) ∨ (P → R)))⊥
a

α – ψ e eRa

(P → (Q ∧ R))>
u

β α1 φ a aRu

P⊥

1 – β1 – u –
(Q ∧R)>

2
α β2 – u –

Q>

3 – α1 – u –
R>

4 – α1 – u –
((P → Q) ∨ (P → R))⊥

5
α α2 – a –

(P → Q)⊥
b

α α1 ψ a aRb

P>

6 – α1 – b –
Q⊥

7 – α2 – b –
(P → R)⊥

c
α α2 ψ a aRc

P>

8 – β1 – c –
R⊥

9 – β2 – c –

Fig. 3. Indexed formula tree for (P → (Q ∧R)) → ((P → Q) ∨ (P → R))

j such that j � i and Fj is of type φ (resp. ψ). Φ (resp. Ψ) is the set of all indexes i
such that Fi is of type φ (resp. ψ). As we use indexes to label our formulas, we follow
the terminology of Section 3 and take Φ as the set of variables and Ψ as the set of
parameters.
The label lab(Fi) of an indexed formula Fi is defined as the greatest indexm of type φ
or ψ such that m � i. More formally, lab(Fi) = max(Φi ∪ Ψi), with the special case
that max(∅) = e where e is a letter that does not occur as an index in Fi. Let x be the
label of Fi, the corresponding labelled indexed formula is written Fi[x] and if Fi is of
type φ or ψ, rel(Fi) = xRi is the constraint associated with Fi.

6.3 Paths and Reductions

Definition 6.3. LetAr be an indexed formula, the set of paths throughAr is inductively
defined as follows:
1. { r } is a path;
2. if s is a path, i ∈ s and Fi is of type α then s∗ ∪ {α1, α2 } is a path;
3. if s is a path, i ∈ s and Fi is of type β then s∗ ∪ {β1 } and s∗ ∪ {β2 } are paths;
where αi (resp. βi) is the index of the immediate subformula of Fi with (secondary)
type αi (resp. βi) and the set s∗ is such that:

- s∗ = s\{ i } ∪ {xRi } if Fi has label x and is of type φ or ψ;
- s∗ = s\{ i } otherwise.

A path s′ obtained by applying one of the rule of Definition 6.3 to an index i in a path
s is said to be obtained by reduction on i in s. A path is irreducible if it is stable under
reduction. Paths are tightly related to labelled sequents in the following way: given a
path s, the corresponding labelled sequent Γs ` ∆s is such that:
- Fi[x] ∈ Γs iff i ∈ s, Fi has polarity > and has label x;
- xRi ∈ Γs iff xRi ∈ s and Fi is of type ψ (i.e., i is a parameter);
- Fi[x] ∈ ∆s iff i ∈ s, Fi has polarity ⊥ and has label x;
- xRi ∈ ∆s iff xRi ∈ s and Fi is of type φ (i.e., i is a variable).
It follows from the previous definitions that a reduction process from the initial path
{ r } to irreducible paths corresponds to a derivation for the sequent ` A[e] in RLJ. The
formula of Figure 3 leads to two irreducible paths s1 = { 1, 6, 7, 8, 9, aRb, aRc, aRu }
and s2 = { 3, 4, 6, 7, 8, 9, aRb, aRc, aRu }which respectively correspond to the initial
sequents of the derivation in Section 3.1 P [b], aRb, P [c], aRc ` Q[b], R[c], P [u], aRu
and Q[u], R[u], P [b], aRb, P [c], aRc ` Q[b], R[c], aRu.

6.4 Connection-based IPL Provability

Definition 6.4. Given an indexed formula Ar, a connection is a pair 〈 i, j 〉 of indexes
such that Fi = Fj , Fi has polarity > and Fj has polarity ⊥.

Definition 6.5. Let Ar be an indexed formula, a set S of connections is a spanning set
for Ar if every irreducible path throughAr contains a connection from S.

As the correspondence between indexes and indexed signed formulas is bijective the
pair 〈F>

i , F
⊥

j 〉 associated to a connection 〈 i, j 〉 is also called a connection so that we
indifferently assume spanning sets to contain pairs of indexes or pairs of signed indexed
formulas depending on which representation is better suited for the context.
Coming back to our running example, we have four spanning sets:
- S1 = { 〈 1, 6 〉, 〈 3, 7 〉 } = { 〈P>

b , P
⊥

u 〉, 〈Q>

b , Q
⊥

u 〉 };
- S2 = { 〈 1, 6 〉, 〈 4, 9 〉 } = { 〈P>

b , P
⊥

u 〉, 〈R>

c , R
⊥

u 〉 };
- S3 = { 〈 1, 8 〉, 〈 3, 7 〉 } = { 〈P>

c , P
⊥

u 〉, 〈Q>

b , Q
⊥

u 〉 };
- S4 = { 〈 1, 8 〉, 〈 4, 9 〉 } = { 〈P>

c , P
⊥

u 〉, 〈R>

c , R
⊥

u 〉 }.

Definition 6.6. Let Ar be a formula, a substitution for Ar is a partial function σ from
its variables Φ to its parameters Ψ .

Given a formulaAr, a substitution σ for aAr induces a relation @ on the indexes ofAr,
called an intuitionistic ordering, which is such that if uσ = a then a @ u. The intended
meaning of a relation a @ u is that the formula Fa should be expanded before the
formula Fu in order to achieve a proof in LJ (or RLJ). We can then define the reduction
ordering C for Ar as the transitive closure of (� ∪ @).
In order to achieve a complete a connection-based characterization of IPL provability
from the RLJ calculus we must be particularly careful with the monotonicity rule as

illustrated in the following derivations.

P [b], eRa, aRb ` P [u], bRu, aRb
m

P [a], eRa, aRb ` P [u], bRu

P [a], eRa,¬P [b], aRb `

P [a], eRa ` ¬¬P [a]

` P → ¬¬P [e]

P [b], eRa,Q[b], aRb ` P [b], aRb
m

P [a], eRa,Q[b], aRb ` P [b]

P [a], eRa ` (Q→ P)[a]

` P → (Q→ P)[e]

In the left hand side derivation monotonicity is used to make the substitution {u/b }
closing and admissible, which would not have been the case otherwise. Indeed, without
monotonicity, {u/b } is admissible but is not closing and {u/a } is closing but is not
admissible since we do not have ({ eRa, aRb })+ w { bRa }. For the right hand side
derivation, no closing substitution can be found without using the rule of monotonicity
since the derivation does not contain any variable.
The explicit monotonicity rule can be removed from the RLJ calculus if we slightly
modify Definition 3.1 so that a substitution σ is closing for a (labelled) sequent Γ ` ∆
in a derivation D if (Γσ)+ w {xRy }σ for some formulasA[x] ∈ Γ andA[y] ∈ ∆, i.e.,
we no longer require the strict equality xσ = yσ. In terms of connections, the previous
condition gives rise to the following definition.

Definition 6.7. Let Ar be an indexed formula, S be a spanning set for Ar and σ be a
substitution for Ar, we say that σ is closing for S iff all irreducible paths s through Ar

contains a connection 〈 i, j 〉 from S such that (Γsσ)+ w { lab(i)Rlab(j) }σ.

The final step towards the connection-based characterization is to capture the admissi-
bility criterion of RLJ proofs. Let us consider the formula ¬(P ∨ Q) → (¬P ∧ ¬Q),
which is valid in Kripke semantics.

P [b], eRa, aRb ` P [u], Q[u], aRu

P [b], eRa, aRb ` (P ∨Q)[u], aRu

¬(P ∨Q)[a], P [b], eRa, aRb `

¬(P ∨Q)[a], eRa ` ¬P [a]

Q[c], eRa, aRc ` P [u], Q[u], aRu

Q[c], eRa, aRc ` (P ∨Q)[u], aRu

¬(P ∨Q)[a], Q[c], eRa, aRc `

¬(P ∨Q)[a], eRa ` ¬Q[a]

¬(P ∨Q)[a], eRa ` (¬P ∧ ¬Q)[a]

In the previous example the first branch yields u/b while the second yields u/c which
prevents the derivation from being a proof.
A first solution is to make the derivation variable-pure instead of variable-sharing
(see [18] for details), i.e., the formula ¬(P ∨Q)[a] in the second branch should in-
troduce a new variable v instead of sharing the same variable u with the occurrence of
¬(P ∨Q)[a] in the first branch. However, variable-pure derivations are not well suited
for connection-based proof-search since they break the full permutability of RLJ rules
(for example, if ¬(P ∨Q)[a] is expanded before (¬P ∧ ¬Q)[a] we get into the same
situation as with variable-sharing and no proof can be obtained).
A second solution is to make a copy of ¬(P ∨Q)[a] before it is expanded.Then, the first
branch expands one copy of ¬(P ∨Q)[a] with the variable u while the second branch

expands the other copy with the variable u′ leading to the two initial sequents
(1) ¬(P ∨Q)[a], P [b], eRa, aRb ` P [u], Q[u], aRu and
(2) ¬(P ∨Q)[a], Q[c], eRa, aRc ` P [u′], Q[u′], aRu′.
The substitution σ = {u/b, u′/c } is then closing and admissible for (1) and for (2).
Although the previous solution works for RLJ, more attention is needed in a connection-
based setting where one usually deals with irreducible (atomic) paths. Indeed, neither
(1), nor (2) is an atomic sequent. Expanding ¬(P ∨Q)[a] in both (1) and (2) yields
the following atomic sequents:
(3) P [b], eRa, aRb ` P [u], Q[u], aRu, P [u′], Q[u′], aRu′ and
(4) Q[c], eRa, aRc ` P [u], Q[u], aRu, P [u′], Q[u′], aRu′.
The problem is that σ is no longer admissible for (3) since aRc does not follow from
transitive closure on { eRa, aRb } and σ is no longer admissible for (4) since aRb
does not follow from transitive closure on { eRa, aRc }. What happens here is that
we have expanded sequents (1) and (2) too far since only one copy of ¬(P ∨Q)[a]
contributes to the closing of (1), the other contributing to the closing of (2). In terms
of connections, the admissibility criterion must take into account the fact that, for each
atomic path, only those requirements that are relevant to (the pair of positions occuring
in) the connection that has been chosen to cover the path must follow from transitive
closure on the assertions of the path.

Definition 6.8. Let Ar be an indexed formula, S be a spanning set for Ar and σ be
a substitution for Ar, we say that σ is admissible for S iff its reduction ordering C =
(� ∪ @)+ is irreflexive and for all connections 〈 i, j 〉 in S, (Γ〈 i,j 〉σ)+ w ∆〈 i,j 〉σ,
where Γ〈 i,j 〉 = rel(Ψi ∪ Ψj) and ∆〈 i,j 〉 = rel(Φi ∪ Φj).

Let us mention that replacing Γs by Γ〈 i,j 〉 in Definition 6.7 allows us to get rid of
the need to check the reduction ordering and of the need to always enumerate every
irreducible path through µA.

Theorem 6.1. A proposition A is provable in LJ (or valid in the Kripke semantics)
iff there exists a multiplicity µ for A, a spanning set S for the formula µAr and a
substitution σ for µAr such that σ is closing and admissible for S.

Proof. It is a consequence of the completeness of the RLJ calculus and its connections
with the connection-based characterization.

In our example, if we consider the spanning set S1 = { 〈P>

b , P
⊥

u 〉, 〈Q>

b , Q
⊥

u 〉 }, the
substitution σ = {u/b } is closing for S1. Moreover, uσ = b induces the intuitionistic
ordering b @ u, which is represented as a dotted arrow in Figure 4. The reduction
ordering C= (� ∪ @)+ is obtained by considering both solid and dotted arrows.
We now check that σ is admissible. First, the reduction ordering C is irreflexive as the
graph in Figure 4 is acyclic. Second, since Γ〈 1,6 〉 = Γ〈 3,7 〉 = { aRb } and ∆〈 1,6 〉 =
∆〈 3,7 〉 = { aRu }, we have ({ aRb })+σ w { aRu }σ. Therefore, by Theorem 6.1, the
formula (P → (Q ∧ R)) → ((P → Q) ∨ (P → R)) is valid in Kripke semantics and
to obtain a proof of it in LJ one must expand the subformula Fb = P → Q before the
formula Fu = P → (Q ∧ R).

a

u

1 2

3 4

5

b

6 7

c

8 9

Fig. 4. Reduction ordering for (P → (Q ∧R)) → ((P → Q) ∨ (P → R))

To complete this study we comment the tight relationship between our labels and Wallen’s
prefixes. For example, when one writes the prefix aubcv we write the relations aRu,
uRb, bRc, cRv using an explicit relation between labels. A first consequence of the
previous translation is that all the techniques developed for prefixes can directly be
adapted to labels and relations. A variable-splitting technique for a prefix-based system
has been recently proposed in [1]. It provides a branchwise termination condition and
shows how to build finite countermodels from a failed proof search. All their results are
directly available for RLJ. Therefore, using labels and relations instead of prefixes is
harmless in the case of IPL. Moreover we can prove following the approach given in
[16] that proof-search in this new calculus has O(n logn)-space complexity like other
existing calculi [8,4,10].
A key point is that using labels and explicit relations is a more general approach than
using prefixes that mainly encode world paths in a Kripke tree. The transitivity of the
relation between worlds is implicitly coded in the prefix while we use a transitive clo-
sure operation on explicit relations. Although prefixes have been successfully adapted
to various modal logics, mainly because those logics have models similar to Kripke
trees, no prefix-based proof-search method has been proposed so far for resource logics
like, for example BI. Indeed, resource logics have more sophisticated models in which
the worlds are also arranged as a monoidal structure so that worlds can be combined.
The accessibility relation between worlds is therefore not the only thing to take into
account. Keeping the closure properties separate from the shape of the model (the re-
lations between worlds) allows to tackle various resource logics in a uniform setting,
putting the specificities of a particular logic into the closure operation.

7 Conclusion

In this paper we propose a new characterization of intuitionistic provability based on
labels and label constraints. It corresponds to an instantiation of a semantic approach de-
veloped for mixed logics [5,7] that appears more adequate in this context than a prefix-
based approach [9,19]. Our characterization for IPL emphasizes that, in a logic with a
relational semantics like IL, labels and constraints can be used in order to capture its
consequence relation in a simple way. For IPL we can establish the connections be-
tween a characterization with prefixes and a our characterization with label constraints.

The latter has the advantage of being an instance of a more general approach in which
relational semantics of various logics, like BI or fragments of substructural or relevant
logics [13] can be captured with labels and constraints more naturally than with pre-
fixes. This point will be more deeply analyzed but the interest of constraint-based proof
calculi [17] for substructural logics is clearly confirmed.

References

1. R. Antonsen and A. Waaler. A labelled system for IPL with variable splitting. In 21st Int.
Conference on Automated Deduction, CADE-21, Bremen, Germany, July 2007. to appear.

2. V. Balat and D. Galmiche. Labelled Deduction, volume 17 of Applied Logic Series, chapter
Labelled Proof Systems for Intuitionistic Provability. Kluwer Academic Publishers, 2000.

3. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic, 57:795–807, 1992.

4. D. Galmiche and D. Larchey-Wendling. Structural Sharing and Efficient Proof-search in
Propositional Intuitionistic Logic. In Asian Computing Science Conference, ASIAN’99,
LNCS 1742, pages 101–112, Phuket, Thailand, December 1999.

5. D. Galmiche and D. Méry. Semantic labelled tableaux for propositional BI without bottom.
Journal of Logic and Computation, 13(5):707–753, 2003.

6. D. Galmiche, D. Méry, and D.Pym. The semantics of BI and Resource Tableaux. Math.
Struct. in Comp. Science, 15(6):1033–1088, 2005.

7. D. Galmiche and J.M. Notin. Connection-based Proof Construction in Non-commutative
Logic. In 10th Int. Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning, LPAR’03, LNCS 2850, pages 422–436, September 2003. Almaty, Kazakhstan.

8. J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic propositional logic.
Journal of Logic and Computation, 3(1):63–75, 1993.

9. C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical
logics. Journal of Universal Computer Science, 5(3):88–112, 1999.

10. D. Larchey-Wendling, D. Méry, and D. Galmiche. STRIP: Structural sharing for efficient
proof-search. In First International Joint Conference on Automated Reasoning, IJCAR 2001,
LNCS 2083, pages 696–700, Siena, Italy, 2001.

11. J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In 4th
Workshop on Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918,
pages 122–137, St Goar am Rhein, Germany, 1995. Springer Verlag.

12. L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propo-
sitional logic. In Behara and al., editors, Symposia Gaussiana, pages 225–232, 1995.

13. G. Restall. Handbook of the History and Philosophy of Logic, chapter Relevant and Sub-
structural Logics. 2001.

14. N. Shankar. Proof search in the intuitionistic sequent calculus. In 11th Conference on Auto-
mated DEduction, LNAI 607, pages 522–536, Saratoga Springs, June 1992.

15. T. Tammet. A resolution theorem prover for intuitionistic logic. In 13th Conference on
Automated Deduction, LNAI 1104, pages 2–16, NJ, USA, 1996.

16. L. Vigano. An O(n log n)-space decision procedure for the relevance logic B+. Studia
Logica, 66:385–407, 2000.

17. A. Voronkov. Proof-search in intuitionistic logic based on constraint satisfaction. In 5th Int.
Workshop on Theorem Proving with Analytic Tableaux and Related Methods, LNAI 1071,
pages 312–327, Terrasini, Italy, May 1996.

18. A. Waaler. Handbook of Automated Reasoning, chapter Connections in nonclassical logics,
pages 1487–1578. Elsevier Science, 2001.

19. L.A. Wallen. Automated Proof search in Non-Classical Logics. MIT Press, 1990.

A Proof of Lemma 4.2

Lemma
Let D be a derivation in RLJ and σ be an admissible substitution for D. If the end
sequent of D is realizable under σ then there exists an initial sequent in D which is
realizable under σ.

Proof. We show by case analysis that the rules of RLJ preserve realizability under σ.

– Case →R: Suppose that there exists a realization ι of the sequent Γ ` A→ B[x],∆
in a Kripke model M under σ. We show that the sequent Γ, A[a], xRa ` B[a],∆
in also realizable under σ. By definition of a realization, we have ι(xσ) 6|= A→ B.
Therefore, there is a world m in M such that ι(xσ) ≤ m, m |= A and m 6|= B.
Since a is a parameter that does not occur in Γ ` A→ B[x],∆, we can extend ι
into ι′ so that ι′(z) = m if z = a and ι′(z) = ι(z) otherwise in order to make ι′ a
realization of the sequent Γ, A[a], xRa ` B[a],∆ in M under σ.

– Case →L: Suppose that there is a realization ι of the sequent Γ, (A → B)[x] ` ∆
in a Kripke model M under σ. We must show that either Γ ` ∆, A[u], xRu, or
Γ, B[u] ` ∆, xRu is realizable under σ. Since σ is admissible for D, Lemma 3.1
ensures that u is bound to a parameter uσ already occurring in Γ, (A → B[)]x ` ∆
and such that (Γσ)+ w {xσRuσ }. Therefore, ι(uσ) is well defined and such that
ι(xσ) ≤ ι(uσ). Moreover, we have ι(xσ) |= A→ B, i.e., for all worlds m in M,
ι(xσ) ≤ m implies m 6|= A or m |= B. In particular, taking m = ι(uσ) leads to
ι(uσ) 6|= A or ι(uσ) |= B, which makes ι a realization of Γ ` ∆, A[u], xRu or
Γ, B[u] ` ∆, xRu in M under σ.

– Case ¬R: similar to →R

– Case ¬L: similar to →L

– The other cases are much simpler and are left to the reader.

B Proof of Theorem 4.2

Theorem
If a sequent Γ ` ∆ is provable in LJ then the labelled sequent Γ[a] ` ∆[a] is provable
in RLJ.

Proof. The proof is by induction on proofs in LJ.

– Base case: if Γ ` ∆ is the conclusion of an axiom rule then Γ = Γ′, A and ∆ = A
for some propositionA. Clearly, the labelled sequent Γ[a], A[a] ` A[a] is provable
in RLJ since it contains no variable and no relation thus making the empty substi-
tution σ = { } trivially closing and admissible.

– Case →R: By induction hypothesis we have a proof (D1, σ) of Γ[a], A[a] ` B[a]
for some parameter a. We now build a proof (D, σ) of Γ[b] ` (A → B[)]b for a

parameter b not occurring in D1. Let D be the derivation given below, where D′
1 is

obtained from D1 by pasting the relation bRa on both sides of all sequents in D1.

D′
1

Γ[a], A[a], bRa ` B[a], bRa
m

Γ[b], A[a], bRa ` B[a]

Γ[b] ` (A→ B)[b]

The substitution σ used forD1 is also closing and admissible forD since we remove
no labelled formula and the requirement aRb directly occurs as an assertion.

– Case →L: By induction hypothesis we have a proof (D1, σ1) of Γ ` A[a] in RLJ
and a proof (D2, σ2) of Γ, B[a] ` ∆ in RLJ where all formulas in Γ and ∆ are
labelled with the parameter a. We can assume without loss of generality that D1

and D2 share no variable by renaming the variables in D1 and D2 so that σ1 and σ2

have disjoint domains.
Now, we define the substitution σ = σ1 ∪ σ2 ∪ {u/a }, where u is a variable not
occurring in the domain of σ1 ∪ σ2 and we define D as the derivation given below,
where D′

1 is the derivation obtained from D1 by pasting xRu,∆ on the right-hand
side of all sequents in D1 and D′

2 is the derivation obtained from D2 by pasting
xRu on the right-hand side of all sequents in D2.

D′
1

Γ ` A[u],∆, aRu

D′
2

Γ, B[u] ` ∆, aRu

Γ, (A → B)[a] ` ∆

It is clear that σ is closing and admissible for D since (aRu)σ = aRa and thus
(D, σ) is a proof of Γ, (A → B)[a] ` ∆ in RLJ.

– Other cases are similar.

