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Abstract

Robustness problems due to the substitution of the exact computation on real numbers by
the rounded floating point arithmetic are often an obstacle to obtain practical implementation
of geometric algorithms. If the adoption of the exact computation paradigm [1] gives a sat-
isfactory solution to this kind of problems for purely combinatorial algorithms, this solution
does not allow to solve in practice the case of algorithms that cascade the construction of
new geometric objects. In this report, we consider the problem of rounding the intersection
of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two
polygonal regions A and B having their vertices on the integer lattice, the inner and outer
rounding modes construct two polygonal regions A ∩ B and A ∩ B with integer vertices such
that A ∩ B ⊆ A ∩ B ⊆ A ∩ B. We also prove interesting results on the Hausdorff distance,
the size and the convexity of these polygonal regions.

Keywords: high level geometric rounding, finite precision geometry, intersection, poly-
gons

1 Introduction

Many geometric algorithms are designed in the Real RAM model, and the use of rounded floating
point arithmetic is well known to create robustness problems: Numerical rounding errors done
during the evaluation of geometric predicates lead to inconsistent results and cause trouble in
computer data structures. The now classical solution of the exact computation paradigm [1] offers
an attractive solution for algorithms that do not construct new geometric objects such as convex
hulls or triangulations i.e whose results are purely combinatorial (the position of the points is
not the result but the input of the algorithm). The exact computation paradigm approach takes
decisions on an exact basis. To achieve reasonably efficient computation times this requires the
use of well defined exact representations of geometric objects: Typically, the coordinates of a point
are assumed to be fixed size integers.

However, the exact computation paradigm is less satisfactory for algorithms that compute the
geometric embedding of new objects. An intersection point between two line segments is a relevant
example of a construction of a new geometric object. Such a point has rational coordinates and
therefore is generally not representable on the integer lattice. If this point is used by the algorithm
to make a decision, we must have an exact representation of that point e.g. using rational numbers
or implicit representation [2] in order to ensure the exactness of that decision. One drawback of
this approach is that a constructed point does not use the original point representationand thus
in such a framework, algorithms cannot be easily cascaded, i.e. the (rational) output from one
algorithm cannot be used as input for another algorithm designed for usual input.1

An alternative consists in rounding the constructions that is replacing a geometric structure
with arbitrary bit-length coordinates by an approximating structure with (short) fixed bit-length

1In the sequel we will assume integer input for an algorithm using the exact computing paradigm but it could
also be floating point or fixed point number (with fixed size representation)
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coordinates. However, rounding the coordinates of geometric objects like vertices of a polygonal
region is not straightforward since incidence information may be invalidated by small perturbations
of edges and vertices. For instance, a polygonal region may be initially convex or simple and can
loose these properties after a simple rounding of its vertices’ coordinates. Since these properties
might be reused by other algorithms, this loss of information is problematic.

Yet, there exist few published work in this direction, except for rounding line segment arrange-
ments in the plane while preserving the topology of the arrangement [3, 4, 5, 6, 7] (see Section 2)
and for rounding polyhedral subdivisions in three dimensions [8]. In this report, we are concerned
with rounding the result of the intersection of two planar lattice polygonal regions (i.e whose
vertices have integer coordinates). The result will extend trivially to any other set operations on
pairs of lattice polygonal regions. Unlike the arrangement problem, we are interested in inclusion
properties between the exact object and its rounded versions. Previous works on arrangements
can therefore not be used directly. We propose in this report an algorithm which preserves such
properties (see Figure 2).

Section 4 introduces the concept of inner and outer rounding of the intersection of lattice
polygonal regions. Section 5 deals with the practical computation of these approximations. Section
6 proves that a point on the boundary of a rounded version is at distance less than

√
2 from the

exact boundary, and that convexity is somehow preserved. Finally, Sections 7 and 8 generalize
these rounding modes to other set operations and to general polygonal regions.

2 Related Work

Three techniques for rounding line segments arrangements to a finite precision lattice have been
proposed in the literature. All methods proceed by rounding the intersection points between the
input line segments to their nearest lattice point. Each original line segment is then replaced by
a polygonal chain connecting the rounded version of the endpoints and visiting all its rounded
intersection points. The techniques described below differ in the way that the polygonal chains
are constructed in order to guarantee metric and topological properties2.

Greene-Yao perturbation technique The first method by Greene-Yao [3] treats each lattice
point as an obstacle and forbids any segment to go over an obstacle while its intersection points
move to their nearest lattice point. Instead, an obstacle is introduced as a new vertex into the
polygonal chain representing the segment. The authors show that with this technique, edges move

by a distance at most
√

2
2 . This algorithm has the disadvantage that it produces very fragmented

polygonal chains, which has an adverse effect on the efficiency of algorithms and operations that
use these fragmented line segments. Namely, this technique introduces Ω(log |ab|) excess lattice
points onto a segment ab where |ab| denotes the length of the segment ab.

Later papers tried to reduce the number of additional vertices without introducing larger
geometric derivations.

Snap Rounding Paradigm Various researchers [4, 5, 6] have developed the Snap Rounding
technique for rounding line segments to the integer lattice. The idea behind Snap Rounding is as
follows. The plane is partitioned into pixels (i.e. isothetic unit squares) centered at integer lattice
points. A pixel is called hot if it contains a vertex of the original arrangement (that is either
an endpoint or an intersection point of the input segments). The embedding is then rounded as
follows: Each original line segment is replaced by a polygonal chain that connects the centers of
the hot pixels crossed by the segment. This way, the number of vertices on an edge is equal to the
number of hot pixels crossed by the edge.

Guibas and Marimont [5] give a very nice analysis of the properties of Snap Rounding. One
of its main properties is that it does not introduce any extra lattice points. Moreover, it can be

2We refer the reader to [3] for an exhaustive inventory of shortcomings of the use of a simple rounding that maps
each vertex of a line segments arrangement to its nearest representable point.
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a) b)

c) d)

Figure 1: a) A line segment arrangement, b) Its rounded version with the Greene-Yao perturbation
technique, c) Its rounded version with the Snap Rounding technique, and d) Its rounded version
with the Shortest Path Rounding technique.

easily shown that the polygonal chain corresponding to an original segment is contained within
the Minkowski sum of the original segment with a pixel (unit square) centered at the origin.

Shortest Path Rounding technique Shortest Path Rounding has been introduced by Milenkovic
[7, 9] and introduces even fewer additional incidences between the rounded segments than Snap
Rounding. The basic idea is to round each intersection point to its nearest lattice point and
to replace each edge by the shortest path connecting the rounded endpoints that keeps all other
rounded vertices at the correct side. This technique has the advantage that it introduces minimum
geometric and combinatorial error (it gives the same result as the Snap Rounding method in the
worst case). Moreover, unlike other finite precision geometric rounding techniques, Shortest Path
Rounding can be applied to non uniform lattices.

Although these different techniques allow to preserve somehow the topology of the exact ar-
rangement, they do not offer any inclusion or convexity guarantees if they are applied on faces
(and not only edges) of the arrangement. The rounding modes proposed in this report are inspired
from the presented methods however they respond to the demand of such guarantees.

3 Notations and preliminaries

By a lattice point or grid point we mean a point in Z
2. A lattice polygon is a polygon that defines

a well defined interior and exterior (we allow a vertex to coincide with another or to belong to an
edge, e.g. lowest vertex in Figure 2a) and whose vertices are lattice points. A lattice polygonal
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region is a plane figure which can be expressed as a collection of lattice polygons having nested
holes at any level of depth. A lattice polygonal region has a well defined interior and exterior.
Our algorithms take such regions as input and give the output in the same form.

In the following, the complexity of a polygonal region P defined as the number of distinct
vertices of P is denoted by |P |. The interior of a polygonal region P , defined as the biggest open
set contained in P , is denoted by P o. The boundary of P is denoted by ∂P . We will say that a
point p belongs to a polygonal region P , and note p ∈ P , if p belongs either to the interior or to
the boundary of P . Finally, PC will denote the set complement of P .

Given two polygonal regions A and B, the Hausdorff distance dH(A, B) between A and B is
defined as

dH(A, B) = max(dh(A, B), dh(B, A))

where dh(A, B) = maxa∈A minb∈B d(a, b) and d(a, b) denotes the Euclidean distance between these
points.

We will use the following definition of visibility. For two points p and q that belong to a
polygonal region P , we say that q is visible from p within P , if every point of the line segment
pq lies in P . The visibility region, VP (p), of a point p ∈ P is defined as the locus of all points
q ∈ P that are visible from p. The nearest visible lattice point of p, denoted by vP (p), is defined
as the nearest grid point to p that belongs to VP (p) with any tie-breaking rule if p is equidistant
to several lattice points. Finally, for a vertex v ∈ P and an edge e ∈ P , we say that v is vertically
visible from e, if it exists a vertical line segment that connects v to e that is entirely contained in P .

We describe in the next section the scheme used to define the inner and the outer rounding of
a polygonal region and state the properties of the rounding scheme in the case where the input
regions result from the intersection of two lattice polygonal regions. Note that from the application
of de Morgan’s laws, all set operations reduce to the complementary operation (whose computation
is trivial) and to the intersection operation. Section 7 enumerates the properties satisfied when
the exact region to be rounded comes from a union or a set difference operation.

4 Rounding Modes

4.1 Inner Mode

Suppose we start with two input lattice polygonal regions A and B. One can intuitively visualize
the rounding process of the polygonal region corresponding to the intersection of these two regions
using the analogy used by Greene and Yao [3]. Look at the edges of this region as if they were
rubber bands rooted at their two endpoints and let every vertex of the intersection be marked by
a rigid post. These vertices may be vertices of A, B or intersections between edges of A and B.
Each of these rigid post is then treated as an obstacle and we do not allow the rubber bands to go
over an obstacle . Posts at original vertices of A and B are at lattice positions and remain fixed
while posts at intersection of an edge of A with an edge of B move to their nearest visible lattice
point inside A ∩ B. Now, if we release rigid posts that correspond to vertices that have lost their
convexity (vertices that were convex and became concave), then the resulting polygonal region
gives the inner rounded polygonal region.

Theorem 1 states some properties of the obtained rounded region in the case where P corre-
sponds to the intersection of two lattice polygonal regions A and B (the proof is postponed until
the Section 6.1).

Theorem 1 The inner rounding P of P = A ∩ B satisfies the following properties:
1) P is lattice polygonal region,
2) P is contained in P ,
3) dH(PC , (P o)C) <

√
2,
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a) b)

c) d)

Figure 2: a) The two input lattice polygonal regions and their exact intersection region P . b)
The rounded version of P with the Shortest Path Rounding technique. c) The inner rounding P .
d) The outer rounding P .

4) |P | ≤ |P |,
5) A concave vertex of P does always correspond to a concave vertex of P .

From property 5) we have the following corollary:

Corollary 2 If Pi is a convex component of P = A ∩ B and if Pi is not empty then Pi is a
convex component of P .

4.2 Outer Mode

Given two polygonal regions in the plane, the process leading to the computation of the outer
rounding of their exact intersection region can be split in three steps. The idea is to bring the
problem back to an inner intersection computation (cf. Figure 3). To do so, the exact intersection
region P is first computed. Then, for each vertex v = (vx, vy) of P that is not representable on
the integer lattice is associated a pixel (unit square of the grid) having respectively (⌊vx⌋, ⌊vy⌋)
and (⌈vx⌉, ⌈vy⌉) as bottom left and top right vertex.3 The outer rounding P of P is then obtained
from P and the set I of all pixels containing non representable vertices of P by carrying out
the operation ((PC)∩(IC))C . A last pass removes all extraneous reflex vertices of the obtained
polygonal region (see Section 5.3).

Theorem 3 states some properties of the obtained rounded region in the case where P corre-
sponds to the intersection of two lattice polygonal regions A and B (the proof is postponed until
the Section 6.2).

3If one coordinate of v is an integer but not the other, then the pixel degenerates into a unit segment, for
simplicity the term pixel in the sequel will include this kind of degenerate pixels.
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a) b)

c) d)

Figure 3: a) The two input lattice polygonal regions. b) Their exact intersection region P and

the set of pixels I. c) The rounded version obtained by computing (PC∩ IC)
C

. d) The region P

obtained by removing superfluous reflex vertices.

Theorem 3 The outer rounding P of P = A ∩ B satisfies the following properties:
1) P is a lattice polygonal region,
2) P contains P ,
3) dH(P , P ) <

√
2,

4) |P | < |P |+3k +h, where k is the number of non-lattice vertices of P and h is the total number
of intersecting pairs between the edges of P and those of I.

5 Practical Algorithms

From the analogy used in the Section 4.1, it is easy to see that each rigid post that corresponds
to a vertex of P and that causes an edge of the intersection region to be broken during the
movement of all posts corresponds to a reflex vertex of the exact intersection region. Given two
lattice polygonal regions A and B, the only vertices of the polygonal region P = A ∩ B that
are not representable onto the integer lattice (that is the only vertices that need to be rounded)
correspond to the intersection points between an edge of A and an edge of B. From the definition
of the intersection operation, these non representable vertices can only form a convex vertex of P .
Consequently, each reflex vertex of P comes from a reflex vertex of one of the two input regions
and is therefore a lattice vertex.

The algorithm for rounding the intersection of two lattice polygonal regions with the inner
mode is essentially based on the reflex vertical decomposition of the exact intersection region.
The purpose of the construction of this map is twofold: 1) It gives a convex decomposition of the
original region that will permit to avoid complex visibility calculation, 2) It determines for each
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edge of the region a subset of the original vertices that should be snapped in order to avoid the
introduction of extraneous intersections.

5.1 The Reflex Vertical Decomposition

Figure 4: The reflex vertical decomposition of the intersection of two lattice polygonal regions.

The reflex vertical decomposition of a planar polygonal region is constructed by extending
from each reflex vertex of the input region two vertical rays in the interior of the region in both
the upward and downward directions. These rays are the maximal vertical segments such that
their relative interior does not intersect any edge of the polygonal region. The reflex vertical
decomposition of a polygonal region i.e. the subdivision of this region induced by the edges of the
region and by the rays issued from its reflex vertices is a partition of the input region into convex
cells (see Figure 4).

Before detailing the practical algorithm we first prove some properties of this decomposition.

Lemma 4 Given P the exact intersection of planar lattice polygonal regions, p a vertex of P and
C a convex cell of the reflex vertical decomposition of P having p as vertex then vP (p) = vC(p).

Proof: We prove this by contradiction. Suppose that vP (p) 6= vC(p). As vP (p) and vC(p) must be
distinct points vP (p) cannot belong to C. Therefore, the line segment connecting p to vP (p) must
cross the boundary of C (cf. Figure 5). Since vP (p) is visible from p, the crossed boundary can
only be a vertical wall emanating from a reflex vertex. Yet, this is impossible since, in this case,
the two lattice points on the crossed ray immediately above and below the crossing are closer to p

than vP (p). One of these two lattice points is between the crossing and the source of the ray and
thus inside C and visible by convexity of C. This contradicts the fact that vP (p) cannot belong
to C and therefore the claim we made in the proof. �

Lemma 5 Let P be the exact intersection of planar lattice polygonal regions, pq be an edge of P ,
P be the inner rounding of P , and σ(pq) be the polygonal chain connecting vP (p) to vP (q) that
corresponds to the rounded counterpart of pq in P . The set of vertices of σ(pq) between vP (p) and
vP (q) are reflex vertices of P vertically visible from pq in P .

Proof: By construction of the polygonal chain σ(pq), the vertices of σ(pq) between vP (p) and
vP (q) necessarily correspond to reflex vertices of P . We show in the following that these vertices
are vertically visible from pq in P . Here again, we prove this by contradiction. Assume that there
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p

C

P = A ∩ B

vP (p)vC(p)

Figure 5: If p is a vertex of a convex cell C then vP (p) = vC(p).

exists a vertex c of σ(pq) between vP (p) and vP (q) such that c is not vertically visible from pq in
P . Since c belongs to σ(pq) and is not vertically visible from pq in P , c surely lie in one of the
two x-intervals induced by the segments pvP (p) and qvP (q) (cf. Figure 6). Suppose wlog that
c belongs to the x-interval induced by the segment qvP (q) and let i be the point of intersection
between qvP (q) and the vertical line L passing through c. Since c is a reflex vertex of P , c must
lie at a lattice site and L is a lattice vertical line. But this is impossible, since in this case there
exists a lattice point r on L between i and c that is visible from P and closer to q than vP (q),
which contradicts the fact that vP (q) is the nearest visible lattice point from q in P . �

c

p

q

vP (p)

vP (q)
r

i

L

P

σ(pq)

Figure 6: If c is a vertex of σ(pq) between vP (p) and vP (q) then c is vertically visible from pq in
P .

5.2 Inner Intersection Algorithm

Let A and B be two lattice polygonal regions in the plane. The algorithm works in three steps.
The first step constructs the arrangement of the edges of A and B and computes the reflex vertical
decomposition of the intersection region P = A ∩ B by the use of a Bentley-Ottmann-like sweep
line algorithm.

Based on this vertical decomposition, the second step rounds each vertex of P that does not
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lie at lattice site to the nearest visible lattice point that belongs to its incident convex cell in the
vertical decomposition. At the same time, each edge of P is replaced by a polygonal chain that
connects its two rounded endpoints and passes through the set of all its vertically visible reflex
vertices in the order of their vertical projection on the edge.

The last step finally performs a variant of the Graham’s scan algorithm for the convex hull
computation over the set of the resulting polygons (or holes). This procedure removes all the reflex
vertices from each polygon/hole except the ones corresponding to original reflex vertex (that is, it
removes each reflex vertex that corresponds to a rounded intersection point or a visited vertically
visible reflex vertex).

Given a vertex v of P and its associated convex cell C, the computation of the nearest visible
lattice point of v in C can be done using the algorithm described in [10] in time O(m log m log N)
where m = |C| and N × N is the size of the lattice containing C. This algorithm, based on the
continued fraction expansion technique, is inspired from the algorithm developed by H.S.Lee and
R.C.Chang [11] which solves the problem in time O(m + log l), where l is the diameter of the
convex cell. However, this latter needs the use of an exact arithmetic on algebraic numbers to be
implemented robustly (while our algorithm in [10] can be implemented using exact evaluation of
degree 4 polynomials whose entries are integers: the coordinates of alttice points).

Theorem 6 The inner rounding P of a region P = A ∩ B can be computed in time O((n +
k) log n + k|P | log |P | log N) where n is the total number of edges of the two input regions, k is the
number of edges of A and B that intersect and N × N is the size of the lattice.

Proof: Given the two input regions A and B, the reflex vertical decomposition of their intersection
region is a by-product of the trapezoidal map of their edges. Therefore it can be calculated in
time O((n + k) log n) where n is the total number of edges of A and B and k is the number of
intersecting pairs. The second step of the algorithm computes at most k nearest visible lattice
points in convex cells of size at most |P | in time O(|P | log |P | log N) and produces, in the worst
case, a set of polygons/holes having a total of |P | + 2r vertices where r is the number of reflex
vertices of P (each reflex vertices being vertically visible from at most two edges of P ). Given an
edge of the intersection region and its two rounded endpoints, its associated polygonal chain can
be constructed in time linear with the number of intersections between the edge and the vertical
walls of the decomposition and thus can be done in time O(|P |). Putting all together and since
r < |P | and k ≤ |P | we obtain a worst case complexity of O((n + k) log n + k|P | log |P | log N) for
the whole algorithm. �

5.3 Outer Intersection Algorithm

The algorithm for computing the outer rounding of the intersection of two lattice polygonal regions
is essentially based on the algorithm of Section 5.2 and can be directly deduced from the description
given in Section 4.2. However, we discuss here a way to reduce the number of extraneous reflex
vertices of P , namely the extraneous reflex vertices of P issued from the vertices of the pixels of

I, that derive from the straightforward computation of P as (PC∩ IC)
C
.

Contrary to the inner rounding of an intersection region, the outer rounding mode (as described
in Section 4.2) does not offer any guaranty on the convexity/concavity preservation of the exact
region’s vertices. Some reflex vertices of P can disappear in P , in the same manner some extraneous
reflex vertices (that correspond to vertices of I and thus do not appear in P ) can appear in P .
A simple improvement consists in removing all reflex vertices appearing in P if they have no
counterpart in P and if their removing does not produce any topological change. Some precautions
must be taken in order to preserve a maximal distance between the points of P and the points of
P less than

√
2. A solution may consist in removing a reflex vertex r of P only if there exists an

edge e of P such that r, the vertex preceding and the vertex following r on P ’s boundary all lie
at a distance less than

√
2 from e. This kind of simplification permits a reduction of extraneous

reflex vertices of P of a factor O(k) in the best case. Moreover, this additional pass is sufficient
to guarantee as a side-effect the following property: If no components of P are merged in P (that
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is if P and P have exactly the same number of polygons) then a convex component of P remains
convex in P .

Theorem 7 The outer rounding P of a region P = A ∩ B can be computed in time O((n +
h) log n + kp log p log N) where n denotes the total number of vertices of the two input regions, h

denotes the number of intersection points between the edges of A and the edges of B, N ×N is the
size of the lattice, k denotes the number of intersection points between an edge of P and an edge
of the set of pixels I and p = max(|P |, |PC ∩ IC |).

Proof: The computation of the exact intersection region P can be done in time O((n + h) log n)
where h denotes the number of intersection points between the edges of A and the edges of B.
The computation of the reflex vertical decomposition of (PC ∩ IC) can then be computed in time
O((|P |+h+k) log(|P |+h)) where k is the number of intersection points between the edges of P and
the edges of I. Finally, the algorithm computes at most k nearest visible lattice points in convex
cells of size at most equals to m = |PC∩IC | in time O(m log m log N) using the algorithm described
in [10] and produces a set of polygons/holes having a total number of vertices in O(m). The final
step of the algorithm is linear in the number of vertices of each polygons. Since h ≤ |P | and with
p = max(|P |, |PC ∩ IC |), we obtain a worst case complexity of O((n+h) log n+ kp log p logN) for
the whole algorithm. �

6 Proofs of Properties

6.1 Inner Intersection

We now prove that the algorithm of Section 5.2 computes an inner approximation of A ∩ B that
satisfies the properties stated in Theorem 1. We first need the following lemmas:

Lemma 8 The computed polygonal region is a lattice polygonal region.

Proof: We prove that no extraneous intersections are introduced in the final approximation
(though new incidences are permitted). Let Ci=0..p be the set of all convex cells of the verti-
cal decomposition of the exact intersection. For each Ci, let li and ri be the two vertical lines that
pass through respectively the leftmost and the rightmost lattice point of Ci (cf. Figure 7). Now,
if the intersection of Ci with li (resp. ri) is a wall of Ci, let ldown

i and l
up
i (resp. rdown

i and r
up
i ) be

the lower and the upper intersection of li (resp. ri) with Ci and let li (resp. ri) be the point on li
(resp. ri) that corresponds to the reflex vertex from where the wall is stemming from. Otherwise,
let ldown

i = l
up
i (resp. rdown

i = r
up
i ) equal the leftmost (resp. the rightmost) vertex of Ci and let

li = vP (ldown
i ) (resp. ri = vP (rdown

i )).
The rounded counterparts of the polygonal chains connecting ldown

i to rdown
i , respectively r

up
i

to l
up
i ), are convex (by convexity of the original chains), therefore they are guaranteed not to lie

above, respectively below, the edge liri and thus cannot invert in Ci. �

Lemma 9 All vertices of the computed polygonal region lie at lattice point within the exact inter-
section region.

Proof: There actually exist three types of vertices in the final approximation: rounded intersection
points, original input vertices and snapped vertices corresponding to vertically visible input reflex
vertices. Since each intersection point rounds to its nearest visible lattice point, the first type of
vertex is guaranteed to lie at lattice point within the intersection region. The two other types of
vertices correspond to lattice vertices of the exact intersection region. �

Observation 10 Given pq an edge of the exact intersection region, the polygonal chain σ(pq)
that connects vP (p) to vP (q) and corresponds to the rounded counterpart of pq in P is entirely
contained in P by construction.
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li ri

ldown
i

rdown
i

li

ri

Ci

l
up
i

r
up
i

Figure 7: The rounded counterparts of the polygonal chains connecting ldown
i to rdown

i and l
up
i to

r
up
i have opposite convexity and cannot invert in Ci.

Lemma 11 Let p be a vertex of P and L(P ) be the union of all lattice points, unit lattice segments
and unit lattice squares that belong to the interior or to the boundary of P . The segment connecting
p to vP (p) cannot intersect the interior of L(P ).

Proof: To intersect the interior of L(P ), the segment pvP (p) must intersect the interior of a unit
lattice segment s of ∂L(P ) (cf. Figure 8). The two endpoints of s are necessarily closer to p

than vP (p) and therefore cannot be visible from p since they correspond, by definition of L(P ),
to lattice points that lie inside P . Consequently, the relative interior of the segments connecting
p to these endpoints must intersect the boundary of P . But this is impossible since by definition
both segments pvP (p) and s cannot intersect in their interior the boundary of P and there cannot
exist any visible reflex (lattice) vertex of P inside the triangle having p and the two endpoints of
s as vertices since all points of this triangle are closer to p than vP (p). �

p

vP (p)P

s

L(P )

Figure 8: The segment pvP (p) cannot intersect the interior of L.

Lemma 12 Given two lattice polygonal regions A and B of the plane, dH((A ∩ B )C , (Ao ∩
Bo)C) <

√
2.

Proof: From Observation 10, P = A∩B is included in P = A ∩ B and the directional Hausdorff
distance dh((P o)

C
, PC) is zero. We prove in the following that all points of P \P are at a distance

less than
√

2 from ∂P . Let pq be an edge of P and let Epq be the polygon obtained by appending
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the rounded chain σ(pq) to qp. Notice that (
⋃

pq∈P Epq) partitions P \ P except for the polygons
pi of P that do not have any rounded counterpart. The bound is trivially proven for the latter
polygons since they do not contain any lattice point. For the non-trivial case, we conclude that it
is sufficient to prove that dh(Epq, ∂P ) <

√
2 for any edge pq of P .

Let L(P ) be the union of all lattice points, unit lattice segments and unit lattice squares that
belong to the interior or to the boundary of P . By definition of L(P ), all points of P \ L(P )o are
at a distance less than

√
2 of ∂P , we therefore suppose in the following that Epq is not entirely

included in P \ L(P )
o
.

By lemma 11, the segments pvP (p) and qvP (q) cannot intersect the interior of L(P ) thus for
Epq to intersect L(P )

o
, σ(pq) must necessarily intersect L(P )

o
. Moreover, by convexity of the

chain σ(pq), there must exist in this case at least one (lattice) vertex v different from vP (p) and
vP (q) that lies in or on the boundary of Epq. Suppose wlog that pq is oriented from left to right
with a positive or zero slope and that the interior of P lies above pq. Finally, let vl the xy-smallest
point (w.r.t the lexicographic order) of the set S of all lattice points different from vP (p) and vP (q)
that lie in or on the boundary of Epq (cf. Figure 9).

Using the same arguments as in the proof of lemma 5 and since vl is the xy-smallest point of
S, it is easy to show that vl is vertically visible from pq and that the vertical unit lattice segment
having vl as top vertex surely intersects pq in a point ip. Similarly, since pq is oriented from left
to right and has a positive or zero slope and since by lemma 11 the segments pvP (p) and qvP (q)
cannot intersect the interior of L(P ), the horizontal unit lattice segment having vl as right vertex
surely intersects σ(pq) in a point jp. Notice that, by construction, both ip and jp belong to the
boundary of a same unit lattice square so that ‖ipjp‖ <

√
2.

Replacing p by q and applying a symmetry operation on Epq such that qp is oriented from left
to right and has a positive or zero slope with the interior of P above qp, we define similarly two
points iq and jq on pq and σ(pq) such that ‖iqjq‖ <

√
2. We conclude that dh(Epq, ∂P ) <

√
2

since the polygons pipjpvP (p) and jqiqqvP (q) are contained in P \L(P )
o

(by definition of vl) and
the polygon ipiqjqjp is contained in the Minkowski sum of ipiq with the interior of a disc of radius√

2 centered at the origin (cf. Figure 9), and by convexity of σ(pq), the portion of σ(pq) between
jp and jq is included in ipiqjqjp. �

p

vP (p)

P

L(P )

q

vP (q)

vl

ip

jp

iq

jq

Figure 9: The polygons pipjpvP (p) and jqiqqvP (q) are contained in P \Lo and the polygon ipiqjqjp

is at a distance less than
√

2 to pq.

We are now able to prove Theorem 1. Proof of property 1) comes from the combination of
Lemmas 8 and 9. From 1) and by construction of the approximation the proof of Property 2) is
trivial. Property 3) is proven in Lemma 12. Proof of property 4) comes from the fact that each
intersection point rounds to at most one lattice point and that all extra vertices that appear in
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the approximation correspond to original reflex vertices of the exact intersection. The number of
vertices of the final approximation is larger than the number of vertices of the original region only
when a vertex of P is used several times in the approximation. Property 5) is a direct consequence
of the last step of the algorithm since the convex-hull pass guarantees that no extra reflex vertices
are introduced in the final approximation.

6.2 Outer Intersection

In this section, we introduce some lemmas needed for the proof of Theorem 3. Notice that property
3) cannot be deduced from Lemma 12 since we must bound the distance between the points of
P to the exact intersection region P and not only to the region (PC ∩ IC)C . That is, we must
exclude that there exist points of P that are close to a pixel of I but at a distance greater than√

2 from the region P .

Lemma 13 Given two lattice polygonal regions A and B of the plane, dH((A ∩ B ), (A∩B)) <
√

2.

Proof: Since P = (A∩B) is included in P = (A ∩ B ), the (directional) Hausdorff distance from
P to P is zero. Therefore, it is sufficient to show that each point of P \ P is at a distance less
than

√
2 to P .

Note that since no pixel of I contains a lattice point in its interior, the union L(PC ∩ IC) of
all the lattice points, lattice segments and pixels that belong to the interior or to the boundary
of (PC ∩ IC) is also the union of all the lattice points, lattice segments and pixels that belong to
the interior or to the boundary of PC . Therefore, if the polygon Epq (as defined in the proof of
Lemma 12) is contained in (PC ∩ IC) \L(PC ∩ IC)

o
it is also contained in PC \L(PC)

o
, and Epq

surely lies at a distance less than
√

2 to the boundary of P .

p q

(PC
∩ I

C)

v

Figure 10: If pq is issued from an edge of I and at least one of its endpoints is a lattice point then
σ(pq) ⊆ pq (in the example σ(pq) = p) and σ(pq) lies at a distance less than

√
2 to a vertex v of

P .

Otherwise, with the same arguments as in the proof of Lemma 12, we show that the part of
Epq which is intersected by the interior of L(PC)

o
surely lies at a distance less than

√
2 to pq.

Therefore if pq is issued from an edge of P then the bound is trivially proven. Otherwise, that is
if pq is issued from a pixel Q of I, using the same arguments as in the proof of Lemma 12, there
must exist a lattice line passing through vl (as defined in the proof) that intersects pq. This line
cannot intersect the relative interior of pq since the edge pq is included or equals a unit lattice
segment. Moreover, if this line intersects pq in one of its endpoints then the intersected endpoint
is necessarily a lattice point and therefore the rounded counterpart σ(pq) of pq is included in pq

(cf. Figure 10). We conclude in this case that dh(Epq, ∂P ) <
√

2 since there must exist a vertex
of P in the pixel Q (namely, the vertex of P that causes the presence of Q in I). �
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Lemma 14 The rounded region P of P = A∩B has less than |P |+3k+h distinct vertices where
k is the number of non-lattice vertices of P and h is the total number of intersecting pairs between
the edges of P and those of I.

Proof: Since P corresponds to the complementary of the inner rounding PI of PI = (PC ∩ IC),

we have from Theorem 1 that |PI | ≤ |PI |, and the number of vertices of PI is bounded by |PI |. If
P has a total of n vertices and has k vertices which are not representable on the integer lattice,
|I| ≤ 4k and PI has at most (n−k)+4k lattice vertices and h non integer vertices where h denotes
the number of intersection point between P and I edges. �

Although the number of vertices of PI used as an upper bound on the complexity of P can
be in the worst case in O(nk), an additional pass of the algorithm can be used to guarantee a
total number of vertices of P which is linear in the number of vertices of the exact region P .
More precisely, we show in [10] that the removal of all zero-area components (that is polygons or
holes of P that have no interior) from the obtained region allows to bound the worst case number
of distinct vertices of P by 2n + 3k without affecting the geometric error bound. In addition,
experimental results obtained with an implementation of the algorithm using the C++ library
Cgal [12] indicate that the number of additional vertices of P is very small in practice.

From the above lemmas, we are now able to prove Theorem 3. The proof of property 1) and 2)
can be directly deduced by construction of P from Theorem 1. Property 3) is proved in Lemma
13. Property 4) is proved in Lemma 14.

7 Rounding Set Operations

Theorems 15 and 16 enumerate the set of properties satisfied when the exact region U comes from
a union operation i.e. when U = A∪B. These properties can be directly obtained from Theorems
1 and 3 by replacing A and B by their complementary sets.

Theorem 15 The outer rounding U of U = A ∩ B satisfies the following properties:
1) U is a lattice polygonal region,
2) U contains U ,
3) dH(U, U) <

√
2,

4) |U | ≤ |U |,
5) A convex vertex of U does always correspond to a convex vertex of U .

Theorem 16 The inner rounding U of U = A ∪ B satisfies the following properties:
1) U is a lattice polygonal region,
2) U is contained in U ,
3) dH(UC , (Uo)C) <

√
2,

4) |U | ≤ |U | + k + h,where k is the number of non-lattice vertices of U and h is the total number
of intersecting pairs between the edges of U and those of I.

The result for the set difference operation can equally be deduced from Theorems 1, 2, 5 and
6 for each rounding mode.

8 Rounding General Regions

From the lemmas and algorithms presented so far in this report, the inner/outer rounding of a
general polygonal region (for which we do not have any assumption on the representation of its
vertices, for example a region issued from a rotation operation) can be obtained in the following
manner. Let P be a general polygonal region and consider Vc (resp. Vr), the set of its convex
(resp. reflex) vertices that do not lie at lattice sites. Let now Ic (resp. Ir) be the set of unit lattice
squares that contain the vertices of Vc (resp. Vr), i.e. the set of quadrilaterals having respectively
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(⌊vx⌋, ⌊vy⌋) and (⌈vx⌉, ⌈vy⌉) as bottom left and top right vertex where v = (vx, vy) is a vertex of
Ic (resp. Ir).

We define the inner rounding P of P as the result of the rounding with the inner mode of the
intersection of P and Ir , that is P = P ∩ Ir. Similarly, we define the outer rounding P of P as
the complementary of the rounding with the inner mode of the intersection of PC and Ic

C , that
is P = (PC∩ Ic

C)C .
The inner rounded intersection operations used in these definitions can be directly computed

from the algorithm presented in Section 5. We remark indeed that all reflex vertices of the
intersection regions (P ∩ Ir) and (PC ∩ Ic

C)C lie at lattice sites which is a sufficient condition to
satisfy the properties of the reflex vertical decomposition stated in Lemmas 4 and 5 and thus to
prove the correctness of the algorithms.

We notice however that the absence of lattice segments supporting the edges of the input
region P requires the use of a well suited number type and arithmetic in order to evaluate the
numerical primitives that appear in the algorithm. A number type and an arithmetic allowing the
manipulation of algebraic numbers can be necessary for example if the input region P are issued
from a rotation operation.

The properties satisfied by the rounded regions P and P can be directly derived from the
lemmas of the previous sections. More precisely, the inner rounding P is a lattice polygonal region
contained in P such that dH(P C , P oC) <

√
2. Moreover, if it exists, the rounded counterpart of a

convex vertex of P is a convex vertex of P . Finally, P has less than |P | + r + hr distinct vertices
where r is the number of reflex vertices of P and hr is the number of intersections between the
edges of P and the edges of Ir . The outer rounding P of P is a lattice polygonal region that
contains P such that dH(P , P ) <

√
2 and |P | < |P |+ c+hc where c denotes the number of convex

vertices of P and hc denotes the number of intersections between the edges of P and the edges of
Ic.

We finally remark that the number of vertices needed to represent P can be reduced with the
same kind of technique as described at the end of Section 6.2.

9 Conclusion

We have given methods for computing the inner/outer rounding of the result of set operations on
two lattice polygonal regions in the plane. The guarantees that the exact result of such operations
contains (or is contained in) its finite precision approximation allows to introduce the geometric
analogue of interval arithmetic provided by the certified rounding modes of the IEEE 754 norm
for floating point arithmetic operations. The computation of such geometric intervals with respect
to the inclusion relation permits in particular to cascade various geometric constructions as set
operations, convex hulls or rotations with a control on their bit complexity. This result is a first
step towards the definition of a complete system for performing rounded operations on polygonal
and polyhedral objects which would be of great practical interest in many CAD applications.
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