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1 IntroductionAn assembly is described by a geometric model of its parts and their relative placement.The goal of assembly sequencing is to plan a partial ordering of operations to construct thisproduct from its parts. Each operation generates a new subassembly by merging individ-ual parts and/or subassemblies constructed by previous operations. It is speci�ed by thesubassemblies it merges and their relative motions.There has been considerable research in assembly sequencing during the past decade(e.g., [5, 10, 18, 19, 20, 25, 28, 40, 41, 43, 44]). Early assembly sequencers were mainlyinteractive sequence editors; geometric reasoning was supplied by a human who answeredquestions asked by the system [10]. Automated geometric reasoning was then added to an-swer these questions automatically [5, 20, 44]. This development �rst resulted in generate-and-test sequencers, with a module guessing candidate sequences and geometric reasoningmodules checking their feasibility [20, 40]. More e�cient techniques were later proposed toreplace time-consuming generate-and-test [4, 41]. Research on \separability problems" inComputational Geometry is also related to assembly sequencing [8, 32, 35, 37].Assembly sequencing has been shown to be intractable [21, 22, 23, 29, 44], leading researchersto consider restricted, but still interesting subsets of assembly sequences, e.g.: monotonesequences, where each operation generates a �nal subassembly, and two-handed sequences,where every operation merges exactly two subassemblies. Often motions are also limitedto translations. Though restrictions vary slightly among the assembly sequencers proposedso far, one is made in all of them: parts are uniquely de�ned by their nominal geometry.In this paper we depart from this assumption by investigating assembly sequencing whenparts have toleranced geometry. This work has been motivated by the fact that for manyproducts, tolerances have crucial e�ect on assembly sequences and manufacturing costs.Part tolerancing addresses the fact that manufacturing processes are inherently impreciseand produce parts of variable shapes [34, 38]. A large body of work has been devoted to thedevelopment of tolerance languages (e.g., Y14.5 [1, 39]) providing designers with symbolicmeans to specify acceptable variations. One important goal is to guarantee part interchange-ability in an assembly product [38]: given any set of parts manufactured according to thespeci�ed tolerances, they should assemble satisfactorily. The basic tolerance analysis prob-lem { determining where the boundary of a part might be located in a given coordinatesystem { has attracted considerable interest (e.g., [7, 12, 16, 31]). But verifying part in-terchangeability is much harder, and previous work has focused on checking the geometricfeasibility of the assembled state (i.e.: Does there exist an assembled state in which no twoparts overlap?), using stack-up, optimization, constraint propagation, statistical analysis,and/or Monte Carlo techniques [3, 9, 11, 13, 31].In this paper we go beyond the mere existence of an assembled state. We propose an e�cientprocedure that decides whether a product made of toleranced parts admits a guaranteed as-sembly sequence, i.e., a sequence that is feasible for all possible instances of the parts. This2



procedure can also generate all such sequences. The existence of an assembled state is notexplicitly tested, but is implied by the existence of an assembly sequence. For the caseswhere no guaranteed assembly sequence exists, we also propose another procedure that gen-erates non-guaranteed assembly sequences, i.e., sequences that are only feasible for someinstances of the parts. This procedure returns no such sequence if and only if the productis never assemblable. Our procedures assume a simple, but non-trivial tolerance languagewhich does not model some important imperfections of manufacturing processes. The workreported in this paper is therefore only one limited step toward assembly sequencing withtoleranced parts. Nevertheless, we believe it contributes to the much-needed understandingof what sort of tolerance language is suitable for assembly sequencing. Such understandingis of major interest to the community of researchers who are trying to improve the mathe-matical foundations of tolerancing [33, 36]. As of today, we have only implemented the �rstprocedure, for polygonal assemblies.Section 2 describes the assembly-description language accepted by our algorithms. Section 3gives technical background for the rest of the paper. It summarizes results previously re-ported in [41, 42], including the concept of the non-directional blocking graph (ndbg) of anominal product, an algorithm to compute ndbgs, and a procedure to generate assemblysequences from an ndbg. Section 4 develops the concept of a strong ndbg for products madeof toleranced parts; this ndbg represents all blocking interferences between parts when theirdimensions span the tolerance zones. It is used in the same way as a \classical" ndbg togenerate guaranteed assembly sequences. Section 5 describes in detail the algorithm enablingthe construction of the strong ndbg. The main di�culty faced here is that variations in thedimensions of the parts also cause the relative positions of the parts in the products to vary.Section 6 proposes the concept of a weak ndbg, which represents necessary blocking interfer-ences between parts; this ndbg can be used to generate non-guaranteed assembly sequences.Section 7 generalizes the algorithms of Section 4 and 5 (presented for planar polygonal as-semblies) to polyhedral assemblies. Section 8 analyzes some subtle aspects of the relationbetween assembly and disassembly sequences when parts have toleranced geometry.2 Description of an AssemblyWe consider a planar assembly product A made of N parts P1; : : : ; PN . It is described by ageometric model of the parts and spatial relations de�ning their relative placements.We assume that each part Pi is a polygon manufactured such that all instances of Pi haveperfectly straight edges, the same topology, i.e., the same sequence of edges, and the sameangles between edges; but each edge may have di�erent lengths in the various instances. Thegeometry of Pi is de�ned by its sequence of edges, with each edge speci�ed by the orientationof its supporting line relative to a unique coordinate system and the interval of acceptabledistances from the origin of this system to the supporting line.3
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Figure 1: Part descriptionWe will refer to the coordinate system used to specify the geometry of Pi as the coordinatesystem of Pi. We denote its origin by pi. The distance between pi and the line supportingan edge of Pi is called a variational parameter and the interval of acceptable values for thisdistance a tolerance zone. The tolerance zones of the variational parameters of each partPi should be small enough to guarantee that all instances of Pi have the same topology. Asu�cient condition is that no vertex falls into the intersection of more than two stripes sweptby edge-supporting lines when the variational parameters span the tolerance zones.Fig. 1 illustrates the description of a part with seven edges. It shows a particular instanceof the part, the variational parameters d1; : : : ; d7, and the extreme positions of the edge-supporting lines.The orientation of an edge-supporting line is de�ned by its angle in [0; �) with the x-axis ofPi's coordinate system. The distance from pi to this line is a real whose sign is set as follows:if the outer normal to the corresponding edge points in the direction of pi, the distance isnegative; otherwise it is positive. For example, in Fig. 1 all variational parameters, exceptd5, are positive. This convention has two advantages:- It allows pi to lie without ambiguity in the stripe swept by an edge-supporting line whenthe corresponding variational parameter spans its tolerance zone.- There is one instance of Pi that contains all other (called mmp, for Maximal Material Part).With our convention, it is obtained when all variational parameters are maximal.The relative placement of the N parts in A is de�ned by a set of spatial relations. Eachrelation R uniquely de�nes the relative placement of two particular parts. This means thatfor every possible geometry of these two parts, a single relative position of their coordinate4
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//Figure 2: Spatial relation between two partssystems achieves R. We assume that R consists of two more elementary relations: onestates that two edges, one from each part, are parallel, with their outer normals pointing ineither the same or opposite directions and a signed distance between the lines supportingthe two edges; the other states that a vertex of one part is at some signed distance of theline supporting an edge of the other part. (In addition, the three edges involved in R mustnot be parallel.) This de�nition of spatial relations subsumes normal contact relationshipsbetween parts: one speci�es a contact between two edges by setting the distance betweenthem to zero. For simplifying our presentation, we assume zero tolerances in the distancevalues of the spatial relations; removing this assumption in our algorithms is straighforward.Fig. 2 illustrates a spatial relation between two parts Pi and Pj . Edges e and f are parallel,with their normals pointing in the same direction, at some distance of each other (thedistance, not given in the �gure, is negative to indicate that e is ahead of f along thedirection of the outer normals). The vertex v is at some distance of the edge g (again, thevalue of this distance has been omitted in the �gure).The set of relations in the description of A must be complete and non-redundant. Bycomplete, we mean that if one randomly picks a geometry for every component of A, therelations determine a unique geometry for A (such an assembly is said to be \static" [31]). Bynon-redundant, we mean that removing any one of the relations makes the set incomplete. Inorder for the set of relations to be complete and non-redundant, it is necessary and su�cientthat the undirected graph whose nodes are the components of A and whose links are thespatial relations be connected and without cycles. We call this graph the relation graph ofA.For any two parts, Pi and Pj, in their relative placement in A, we refer to the position of pj5
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(a) (b)Figure 3: Part with imperfect edgesin the coordinate system of Pi as the position of Pj relative to Pi. This relative position mayvary over several instances of A, due to variations in the geometry of the parts composingA. On the other hand, the relative orientation of the two coordinate systems is �xed.Let qi designate the number of edges of Pi (i = 1 to N). Q = q1 + : : : + qN is the totalnumber of edges in the parts of A. The geometry of any particular instance of A is de�nedby a single value of the tuple (d1; : : : ; dQ) of variational parameters. The space spannedby this tuple is a Q-dimensional hyper-parallelepiped V, the Cartesian cross-product of thetolerance zones. We call V the variational space of A. In the following, the same notationPi (resp. A) will be used to designate both the variational class of parts (resp. assemblies)determined by V and any instance in that class. Whenever some ambiguity may arise, wewill explicitly mention to which we refer.There is no requirement that an assembly product speci�ed as above be feasible.Discussion: We now briey discuss some of the shortcomings of our assembly-descriptionlanguage. We focus on tolerancing, since this is the main theme of this paper.First, let us remark that the assembly sequencing problem depends intimately on how wedescribe an assembly A. We noticed before that each part admits an mmp. Suppose that,instead of using spatial relations, we had de�ned the relative placement of every two partsin A by the relative position of their coordinate systems. Then assembly sequencing wouldtrivially reduce to assembly planning with mmps. This does not seem to make much sense,however. Indeed, contacts and/or clearances between parts are crucial in assemblies. Whenthe relative positions of the coordinate systems are directly provided in the description ofthe product, contacts can only be achieved at the ends of tolerance zones (otherwise partscould overlap); similarly clearance constraints are only met for some values of the variationalparameters.The most blatant assumption in our language is that edges are perfectly straight. Such edgesare impossible to manufacture. However, the assumption is not really needed. Consider apart with imperfectly shaped edges as illustrated in Fig. 3.a. We can bring a straight line,6



called a datum [31], into two-point contact with each edge and replace the imperfect edgesby the perfect ones de�ned by the datums (Fig. 3.b). Our algorithms apply to the partsde�ned by these virtual edges and the vertices created by these edges.In the Y14.5 standard, specifying a distance between two edges e and f leads to associatinga datum with one edge, say e. The tolerance zone de�nes the region (a stripe in 2D) withinwhich the other edge, f , should lie. In our case, the tolerance zone de�nes the locus of thevirtual edge. The constraint expressed in Y14.5 entails ours, but the converse is not true.Although the relative weakness of our constraint would matter if we wanted to ensure thatparts be interchangeable in function, it does not a�ect their interchangeability in assembly,which is our only concern in this paper. Said otherwise, the constraint expressed in Y14.5can be translated into our language without a�ecting part interchangeability in assembly.Another important limitation is that edges are cut with perfect angles between them (whichnow only means that the virtual edges make perfect angles). Perfect angles are not possiblein practice, even between datums, and this assumption is the main limitation of our language.See, however, the conclusion for a discussion of how it could be removed.The coordinate system of a part Pi can be located anywhere. In practice, dimensions arespeci�ed relative to datums associated with edges. Then we could choose Pi's coordinatesystem such that one of its axes is aligned with an edge and its origin coincides with oneextremity of that edge. But using a single \central" coordinate system may be a limitation,since it often happens that datums in a single part are \chained" by distance speci�cations.In [26] we show that a simple preprocessing allows our algorithms to handle multiple coordi-nate systems per part. This consists of partitioning a part into a collection of subparts andassigning a distinct coordinate system to each part. The relative placements of the subpartsin the part are de�ned by spatial relations having the same form as above. Our assemblysequencing algorithms then treats subparts as parts with a single coordinate system, exceptthat they cannot be separated from one another.The fact that we only consider planar assemblies is one important limitation not directlyrelated to tolerancing. In Section 7 we show that the algorithms of Sections 4 and 5 areeasily generalized to 3D polyhedral assemblies.Another generalization of our algorithms discussed in [26] is the use of spatial relationslinking more than two parts.3 BackgroundLet the assembly A be described as above, but with zero-length tolerance zones. Hence,all parts and subassemblies are nominal. In this section we review previous techniquesthat generate monotone two-handed assembly sequences for A. We present the ndbg of Afor in�nite translations, i.e., translations that can be extended arbitrarily far along a �xeddirection. 7
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t2Figure 4: Examples of directional blocking graphsAn assembly sequence is a partial ordering on operations of the form: \Merge S1 and S2 intoS by translating S1 along t." Its inverse, a disassembly sequence, is obtained by reversingthe ordering and replacing each operation, such as the above, by: \Break S into S1 andS2 by translating S1 along t + �." When parts are rigid, this inverse map is a bijectionbetween assembly and disassembly sequences. Any assembly sequence can thus be producedby �rst generating a disassembly sequence and then inverting it. A disassembly sequence isintuitively easier to produce since it starts from the highly constrained assembled state, inwhich spatial relations may directly suggest candidate disassembly motions.Let partition be a procedure that takes the description of an assembly S as input andgenerates two subassemblies S1 and S2 (S1 [ S2 = S), along with a direction t such thatS1 can be removed from S and translated arbitrarily far along t without colliding withS2. Whenever such subassemblies and direction don't exist, the procedure returns failure.Disassembly sequences are generated by applying partition to A and, recursively, to thegenerated subassemblies that are not individual parts. Let disassemble designate thisrecursive procedure.In early sequence planners, partition was based on generate-and-test: given S, enumerateall candidate partitions fS1; S2g of S, until a direction t is found that separates S2 fromS1 without disturbing S1. Finding t often consists of inferring it from spatial relationsbetween parts (mainly from contacts), computing the region that will be swept by S2, andchecking that this region does not intersect S1. But the number of candidate partitions isexponential in the number of parts in S, while the number of feasible partitions is usuallymuch smaller. The ndbg was introduced to avoid this combinatorial trap [41, 42]. The ideais to precompute a structure, the ndbg, that represents all blocking interferences among theparts in A, and to query this structure to generate one, several, or all disassembly sequences.Consider two parts Pi and Pj in their relative position in A. Ignore all other parts. Thedirection t is a feasible in�nite translation for Pi relative to Pj if one can translate Pi toin�nity along t without colliding with Pj . Now consider the full assembly A and a directiont. The directional blocking graph, or dbg, of A for t is the directed graph whose nodes are the8
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CFigure 5: Construction of a cone of feasible in�nite translationsparts of A and whose arcs are all pairs of parts (Pi; Pj) such that t is not a feasible in�nitetranslation of Pi relative to Pj. Fig. 4 shows dbgs of a simple assembly for two directions t1and t2.In two dimensions the set of all directions is represented by the unit circle S1. The set offeasible in�nite translations of Pi relative to Pj is a cone Cij that determines an arc in S1.Hence, all the cones Cij, i; j 2 [1; N ], i 6= j, partition S1 into O(N2) arcs such that thedbg of A remains constant over each arc. The sequence of arcs and their dbgs form thenon-directional blocking graph of A.Assume that there are no tight insertions in A. Each cone Cij can be constructed by erectingthe two extreme rays originating at pi (the origin of the coordinate system of Pi) and tangentto Pj 	 Pi (the Minkowski di�erence1 of Pj and Pi). See Fig. 5, where the polygon in boldcontour is Pj 	 Pi. If Pi and Pj touch each other, then pi lies in the contour of Pj 	 Pi. Ifthey overlap (in which case, A is not a possible assembly), pi lies in the interior of Pj 	 Pi.(If we allowed Pi to be tightly inserted into Pj , we would have to be more careful, since theset of positions where Pi touches Pj would then be a superset of the boundary of Pj 	 Pi.)If Pi and Pj are non-convex polygons with qi and qj edges, we decompose them into convexcomponents denoted by P ki and P lj (k; l = 1; 2; : : :), respectively. We have: Pj 	 Pi =Sk;l P lj 	 P ki . A trapezoidalization of Pi and Pj yields O(qi) and O(qj) components, each ofconstant complexity, in timesO(qi log qi) and O(qj log qj) [30]. Each region P lj	P ki is a convexpolygon of constant complexity that takes constant time to compute. Let Cklij be the coneformed by the two rays stemming from pi and tangent to P lj	P ki . We have: Cij = Tk;lCklij . Allcones Cklij are computed in timeO(qiqj). They determineO(qiqj) arcs in S1. The computationof the arc where Cij intersects S1 is thus done in total time O(qiqj + qi log qi + qj log qj).1Given two sets of points, X and Y , we have: X 	 Y = fx� yjx 2 X; y 2 Y g and X � Y = fx + yjx 2X; y 2 Y g. 9



Let q be the maximal number of edges in a single part of A. The O(N2) cones Cij arecomputed in time O((Nq)2). They determine O(N2) points in S1 that are sorted in timeO(N2 logN). The dbg in any arc can be obtained in time O(N2). However, between anytwo adjacent arcs, the dbg undergoes a small number of changes that can be computed inconstant time. Thus, once a dbg has been computed, all other dbgs can be computed intotal time O(N2) by scanning the sequence of arcs in S1 and, for each arc, modifying thedbg constructed for the previous arc [41]. The complete ndbg takes time O(N2(logN+q2))to compute.Consider now the dbg G of A for some direction t. A can be partitioned into two subassem-blies S1 and S2 by translating S1 along t if and only if there exists no arc in G connecting apart of S1 to a part of S2. Hence, A can be partitioned by a translation along t if and onlyif G is not strongly connected.2 The strong components of G yield all possible partitioningsof A. Notice also that the ndbg of any subassembly S of A is obtained by restricting everydbg to the parts of S and merging adjacent arcs of S1 having the same dbgs. Hence, giventhe ndbg of A, partition can be implemented as follows:procedure partition(S);for every arc c in the ndbg of S do:if the dbg associated with c is not strongly connectedthen return c and a feasible partition of S;return failure;Computing the strong components of a dbg takes time O(N2). (A better bound, O(N1:46),can be obtained by taking advantage of the fact that any two successive dbgs di�er by asmall amount [24].) Hence, partition runs in time O(N4) and disassemble generates anassembly sequence in time O(N5).The procedures partition and disassemble can easily be modi�ed to generate all feasibleassembly sequences [41]. In the worst case, however, the number of these sequences isexponential in N .Remark: The above presentation has focused on planar assemblies and in�nite translations.However, ndbgs have been successfully extended both to deal with 3D assemblies and togenerate more complicated motions (e.g., rotational motions [14, 42] and multiple extendedtranslations [17, 43]). This requires adapting the de�nition of a feasible motion of Pi relativeto Pj . Another planning approach, based on \monotone paths," has been proposed to avoidthe combinatorial trap of generate-and-test for assemblies of polygons in the plane [4]. But,so far, this approach has only been introduced to generate translational assembly sequencesfor planar polygonal assemblies. Attempts to e�ciently generalize it to 3D assemblies and/orrotational motions have failed.2A strongly connected component (or strong component) of a directed graph is a maximal subset of nodessuch that for any pair of nodes in this subset there exists a path connecting them in the graph. A directedgraph is strongly connected if it has only one strong component.10
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Figure 6: Multi-valued ndbg for two parts4 Strong NDBGFrom now on let the assembly A be made of toleranced parts, as described in Section 2.While the question \Does there exist an assembly sequence to construct A?" had only twopossible answers, \yes" and \no", when parts in A had unique geometry, it now has threepossible answers, \yes", \no" and \maybe". Moreover, if the answer is \yes", two cases arepossible: there may, or may not exist an assembly sequence that is feasible for all valuesof the variational parameters. We call such a sequence a guaranteed assembly sequence,and a sequence that is only feasible in a non-empty subset of the variational space V anon-guaranteed sequence.In this section we focus on guaranteed assembly sequences. We extend the ndbg conceptto represent all blocking interferences among parts of A for in�nite translations, when thevariational parameters span V. We call this extension the strong ndbg. The procedurespartition and disassemble apply to this ndbg without modi�cation. The proceduredisassemble now produces guaranteed assembly sequences, whenever such sequences exist;it returns failure otherwise.Consider any two parts in A. Due to possible variations in their geometry and relativeposition, the cone of feasible in�nite translations of one part relative to the other is notconstant. Therefore, at each point in the variational space V, one may compute a distinctndbg. To be sure that A can be partitioned into two subassemblies by translating one toin�nity along some direction, this partitioning must be feasible in all ndbgs over V.11
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d3Figure 11: Parameters inuencing the relative position of two partsif they are not, parts 4, 1, and 3 will then have to be appropriately �xtured.Finally, in case (3), the ndbg contains no guaranteed sequence. As can easily be observed,parts 4 and 6 can then overlap each other, which means that even the assembly state maynot exist.5 Computation of Small ConesWe now describe an algorithm to compute the small cone SCij of feasible in�nite translationsof Pi relative to Pj. Recall from Section 3 that, if the geometry and relative position of Piand Pj are uniquely de�ned, then the cone of feasible in�nite translations of Pi relative toPj is identical to the cone of feasible translations of the point pi (the origin of the coordinatesystem of Pi) relative to Pj 	 Pi. Here, both the geometry and the relative position of Piand Pj are functions of the variational parameters d1; : : : ; dQ. Thus, the small cone SCij isthe cone of feasible translations of pi relative to the region SV(Pj 	 Pi) swept by Pj 	 Piwhen (d1; : : : ; dQ) spans the variational space V.To compute SV(Pj 	 Pi), we �rst remark that it only depends on a subset of variationalparameters. Indeed, the geometries of Pi and Pj depend on qi and qj parameters, respectively.On the other hand, recall that the spatial relation between two parts consists of two moreelementary relations: one states that two edges, one in each part, are parallel at a givendistance; the other states that a vertex of one part is at some distance from an edge of theother part. Hence, the relative position of two parts linked by a spatial relation depends onat most 5 variational parameters: 2 are contributed by the distance between two paralleledges, and are the variational parameters of these two edges; the other 3 are contributed by16



the distance between an edge and a vertex, and are the variational parameters of this edgeand the two edges intersecting at this vertex. For example, in Fig. 11, the relative positionof P1 and P2 depends on d1; : : : ; d5. The relative position of Pi and Pj thus depends on 5rijvariational parameters, at most, where rij is the number of spatial relations de�ning therelative placement of Pi and Pj (i.e., rij is the length of the path between Pi and Pj in therelation graph of A). Moreover, among the rij relations, one de�nes the relative placement ofPi and another part. Out of the 5 (or less) variational parameters that inuence the relativeposition of these two parts, 2 or 3 also a�ect the geometry of Pi. The same remark holds forPj . Therefore, a maximum of qi + qj + 5rij � 4 variational parameters inuence the cone offeasible translations of Pi relative to Pj.We divide these remaining parameters into three disjoint subsets, J , K, and L:- J (shape parameters) contains the variational parameters of Pi and Pj that do not inuencethe relative position of the two parts.- K (position parameters) contains all parameters that are not variational parameters of Pior Pj; hence, they only a�ect the relative position of Pi and Pj .- L (shape-position parameters) contains the variational parameters of Pi and Pj that doinuence the relative position of the two parts; it contains at most 6 parameters.We now consider these three sets in sequence:Shape parameters (J): Assume that we �x the parameters in K [ L to some arbitraryvalue in their tolerance zones, while we let the parameters in J span their domains. LetSJ(Pj 	 Pi) denote the region swept by Pj 	 Pi.The value of the parameters in J a�ects the shapes of Pi and Pj , but not their relativeposition. Let Pi and Pj stand for the regions swept by Pi and Pj , respectively, in thecoordinate systems of Pi and Pj . Pi (resp. Pj) is exactly equal to Pi (resp. Pj) when theparameters in J have their maximal values, the parameters in K [ L being set as above.Thus, we have: SJ (Pj 	 Pi) = Pj 	Pi:Position parameters (K): Now let the parameters in J [ K span their domains, whilethe parameters in L keep the arbitrary value given above. SJ;K(Pj 	 Pi) denotes the regionswept by SJ (Pj 	 Pi) as the parameters in K vary.By de�nition, the parameters in K do not a�ect the shapes of Pi and Pj . However, when theparameters in K vary, the origin pj of the coordinate system of Pj spans a region W ji in thecoordinate system of Pi. The geometry of W ji is independent of the values of the parametersin J [ L. If rij = 1, K is empty and W ji reduces to a single point. If rij = 2, W ji is a convexpolygon of constant complexity, which may degenerate to a point or a line segment; Fig. 12shows two examples: in the left example,W ji is a polygon, while in the right example, it is aline segment. W ji then takes constant time to compute. If rij > 2, W ji is a convex polygon17
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of the parameters in L is exponential in the size of L, which is at most 6; hence, thisnumber is O(1). By exploiting the fact that the edges of �kl keep constant orientations, wecompute the convex hull of the polygons spanned by the vertices of �kl in time O(rij). Thus,SCij is computed in total time O(rij(qiqj + log rij)). The logarithmic term comes from thecomputation of W ji .Let q be the maximal number of vertices in a part of A and n the length of the longest pathin the relation graph of A. The O(N2) small cones needed to the construction of the strongndbg of A are computed in time O(N2n(q2 + log n)).6 Weak NDBGIn Section 4 we de�ned the strong ndbg by replacing the set of dbgs associated with eacharc of the multi-valued ndbg by the union of these dbgs. We now replace this set by theintersection of the dbgs. We get another ndbg, which we call the weak ndbg. It describesblocking interferences that necessarily occur between the parts of A, whatever the value ofthe variational parameters.Assume that the strong ndbg yields no guaranteed assembly sequence. Then the pro-cedures partition and disassemble applied to the weak ndbg generate non-guaranteedassembly sequences whenever there exists an instance of A that can be assembled. A failureof disassemble now means that no instance of A can be assembled.The weak ndbg is interesting in several ways, e.g.:- There exists no guaranteed sequence: one may wish to generate non-guaranteed sequencesto estimate their probability of success using, say, Monte Carlo sampling techniques.- Some parts in an assembly are sealed together: for safety purposes (e.g., the product is atoy), one may wish to check that the resulting assembly cannot be disassembled.To construct the weak ndbg, we must �rst compute the large cones LCij of feasible transla-tions of Pi relative to Pj, for all pairs of parts in A. In general, if Pi and Pj are not convex,LCij is not equal to the cone of feasible translations of pi relative to the intersection of allthe regions Pj 	 Pi when the parameters in J [K [ L span their domain. This leads us todirectly form the union of the cones Cij of feasible translations of pi relative to Pj 	Pi whenthe parameters in J [K [L vary. But there is another, more basic di�culty: neither of thetwo rays bounding LCij may be passing through a vertex of Pj 	Pi, at a position attained bythis vertex when the parameters in L have extreme values. This subtle point is illustrated inFig. 13, where we assume for simplicity that d 2 L is the only variational parameter (i.e.,the tolerance zone of every other parameter has length zero). We consider two rays erectedfrom pi, one passing through vertex u, the other through vertex v. In Fig. 13.a, the valueof d is chosen in its tolerance zone so that both rays are aligned. Fig. 13.b and 13.c showthe rays (dotted lines) with the most counterclockwise orientations when d takes its extreme19
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Note that H2 is not a subset of H1: an extreme orientation for one ray, while it coincideswith other rays, is usually not an extreme orientation for that same ray, when no coincidenceis required. No point in VLn(H1 [ H2) can contribute a side of SL Cij that is not alreadycontributed by the points in H1 [H2.Since the coordinates of the vertices of the regions  kl are linear functions of d1; : : : ; d6, theextreme orientations of every vertex ray are obtained at vertices of VL. These vertices areall the points of H1. They are constant in number.The construction of H2 is more involved. Consider any two vertices v1 and v2. The vertexrays �(v1) and �(v2) are aligned (i.e., either coincide or points in exactly opposite directions)when the coordinates (x1; y1) of v1 and (x2; y2) of v2 satisfy the equation:x1y2 � x2y1 = 0: (1)Let us pose: xi = j=6Xj=1�ijdj + �i0 and yi = j=6Xj=1 �ijdj + �i0; for i = 1; 2;where all coe�cients �ij and �ij are constants. Equation (1) becomes:F (d1; : : : ; d6) = 0; (2)where F is a second-degree multivariate polynomial. Equation (2) describes a hyper-surfaceS.The extreme orientations of �(v1), while it coincides with �(v2), can be attained in theinterior or the boundary of VL:- In the interior of VL, they are obtained when:@(y1=x1)@dk = 0; k = 1; : : : ; 5; (3)where d6 is an implicit function of d1; : : : ; d5 de�ned by Equation (2). Thus, we must solve asystem of six polynomial equations in d1; : : : ; d6: Equation (2), which has degree 2, and the�ve Equations (3), which have degree 4 each. This takes time exponential in the number ofvariables and polynomial in the maximal degree of the polynomials [6]. Here, this time isO(1).- To get the extreme orientations of �(v1) when S intersects a face of VL of dimensionp 2 [1; 5], we must also solve a system of six polynomial equations. This system consistsof: Equation (2), the 6 � p equations de�ning the face, and p � 1 equations of the formof Equations (3), in which 6� p variational parameters are determined by the equations ofthe face and one other parameter is an implicit function of the remaining p � 1 parametersthrough Equation (2). When p = 1, the face is a one-dimensional edge and there is noequation of this last type. Each of these systems also takes time O(1) to solve.21



In total, there is a constant number of systems to solve. Hence, the computation of the pointsof VL where �(v1) achieves extreme orientations while coinciding with �(v2) has constantcomplexity.Up to 6 vertex rays may coincide simultaneously. The alignment of m rays (m 2 [2; 6])yields the intersection of m hyper-surfaces. The extremal orientations of these rays whilethey coincide are still solutions of systems each having 6 polynomial equations of constantdegree in d1; : : : ; d6. Again, such a system can be solved in constant time.By considering all combinations of m 2 [2; 6] vertices of the regions  kl, we obtain a setH2 of size O((qiqj)6). This size can be reduced as follows: we notice that, when d1; : : : ; d6vary, the supporting lines of at most 3 edges of Pi translate; hence, at most O(1) verticesmove; we refer to them as the special vertices of Pi. Similarly, the supporting lines of alledges in Pj , except a maximum of 3, translate by the same amount relative to Pj ; hence, allvertices, except O(1) of them, to which we refer as the special vertices of Pj , move in thesame way. Every vertex of a region  kl is of the form vj 	 vi, where vi and vj are vertices ofPi and Pj , respectively. We divide the vertices of all the regions  kl into two subsets: onecontains all vertices vj 	 vi where neither vi nor vj is special; its size is O(qiqj). The othercontains all the other vertices; its size is O(qi + qj). All vertices in the �rst subset move thesame. So, if v and v0 are two vertices of this subset and the rays �(v) and �(v0) coincide,this coincidence cannot create a side of Lij. Therefore, to construct H2, it is su�cient toconsider all combinations of m 2 [2; 6] vertices such that at most one belongs to the �rstsubset. Posing q = maxfqi; qjg, this remark reduces the size of H2 and the time to computeit to O(q7).We now have H1 and H2. We can compute the union SH1;H2 Cij of all the cones obtained atthe points of H1 [H2. If this union is a connected cone, it is SLCij. If, instead, it consistsof several disjoint cones (only connected at their common apex), it remains to determinewhich are the two sides of these cones that also bound SLCij . For that purpose, we considerthe complement of the union in S1 and we slightly perturb the points of H1 [H2 within VL,along the axes of VL. Eventually, all cones in S1nSH1;H2 Cij will shrink a bit, except one,which is S1nSLCij . Hence, SLCij is computed in time O(q9).Shape parameters (J): Now, let the parameters in J vary. Let Pi (resp. Pj) stand forPi (resp. Pj) when all the parameters in J are minimal. For any value of the parametersin L, Pi is included in every other instance of Pi. The same holds for Pj. Hence, when theparameters in both J and L vary, we obtain the union SJ;L Cij of all cones Cij by performingthe same computation as above, with Pi and Pj substituted for Pi and Pj, respectively.Position parameters (K): When the parameters in K vary, the polygon Pi 	 Pj keeps aconstant shape, but pj spans the constant-shape polygon W ji (see previous section). For anyvalue of the parameters in J and L, the extreme orientations of the vertex rays are obtainedwhen pj is at vertices of W ji . Hence, when all parameters in J [K [L vary, we perform theabove computation with pj successively located at every vertex of W ji . Since W ji has size22



O(rij), we obtain O(rij) cones SJ;LCij. If their union consists of a single cone, this cone isLCij; otherwise, we identify LCij by slightly perturbing the position of pj at each vertex ofW ji (within W ji ). LCij is thus obtained in total time O(rijq9).Computing the O(N2) large cones needed to construct the weak ndbg of A takes timeO(N2n(q9+log n)). While polynomial, this bound is too large for a practical implementation.Further e�ort is needed to reduce it, either by a tighter count of H2 (which we believe ispossible), or by �nding a suitable approximation algorithm.7 Polyhedral AssembliesIn this section we generalize the algorithms of Sections 4 and 5 to the cases where A is anassembly made of N polyhedral parts. The language of spatial relations between parts mustbe extended accordingly, but this raises no serious di�culty. There are only more ways toexpress spatial relations. The variational parameters of every part Pi in A are the distancesbetween pi and the planes supporting the faces of Pi. The tolerance zones are small enoughto guarantee that any two instances of the same part have the same topology.Let us �rst assume that A has a unique geometry. In 3D, directions span the unit sphereS2. The cone Cij of feasible in�nite translations of a part Pi relative to a part Pj is stillthe cone of all translations erected from pi and intersecting Pj 	 Pi. The region Pj 	 Pi is apolyhedron. Hence, Cij is a polyhedral cone whose intersection with the unit sphere centeredat its apex is a \polygon" bounded by arcs of great circles. The arcs obtained with all thecones Cij create an arrangement of regions in S2 such that the dbg of A remains constantover each one. This arrangement and the associated dbgs form the ndbg of A. A systemimplementing this computation is presented in [41].The computation does not require the explicit construction of the 3D region de�ned byPj 	Pi. We need only project its edges into S2, as follows: �rst, we compute the Minkowskidi�erence of every pair of faces of Pi and Pj using the algorithm given in [15]; next, we projectthe edges of all computed di�erences into S2. We get more arcs than actually needed, butin the worst case their asymptotic number is the same. Let q be the maximal number ofvertices in a part of A. Each pair of parts contributes O(q4) arcs of the arrangement onS2. The total arrangement has size O(N2q4) and is computed in time O(N2q4 log(Nq)). Inevery region the dbg is computed in time O(N2). The total ndbg is constructed in timeO((Nq)4+N2q4 log(Nq)). Each dbg has O(N2) arcs, so that �nding its strong componentstakes time O(N2). Hence, partition has complexity O((Nq)4).If A is made of toleranced parts, all small cones SCij can be computed as suggested inSection 5: S(Pj 	 Pi) is constructed by computing a �nite number (more than 6, however)of regions SJ;K(Pj 	 Pi). None of these regions need to be explicitly constructed in 3D. Foreach of them, we decompose Pi and Pj into convex components P ki and P lj and we project23



the edges of SJ;K(P lj 	 P ki ) = W ji � P lj 	 P ki into S2. Each pair of parts yields O(n2q4) arcsin the arrangement on S2. The arrangement de�ning the strong ndbg has size O((Nn)2q4)and is computed in time O((Nn)2q4 log(Nq)). The procedure partition has complexityO(N4n2q4).The computation of the large cones and therefore the weak ndbg seems much more prob-lematic, however.8 Inverting Disassembly SequencesSo far, our presentation has assumed that assembly and disassembly sequences are inverseof one another. This is clearly true when parts have unique geometry (and are rigid).When parts have toleranced geometry the relation between the two types of sequences is lessobvious. In this section we analyze this relation.Consider an assembly A of two parts P1 and P2 linked by a relation R. Let \Break A intofP1g and fP2g by translating fP1g along t" be a feasible disassembly operation. The inverseoperation, as de�ned in Section 3, is not truly an assembly operation: we do not know whereto exactly position P1 prior to translating it, since we do not accurately know in advance therelative position that P1 and P2 will have in A. In the disassembly operation, this issue doesnot arise, because P1 and P2 are de facto appropriately positioned prior to the translation.It does not arise either under the unique-geometry assumption, since the unique relativeposition of the two parts in A and the direction d + � then determine the line on which p1(the origin of P1's coordinate system) should lie prior to the translation of P1.We can get rid of this di�culty by assuming that some sensing operation locates the edgesand vertices of P1 and P2 involved in R with su�cient accuracy. We can then compute whereto place p1 prior to translating P1. In doing so, we make an assumption that is not requiredby the disassembly operation. But, as Pi and Pj are available prior to merging them, thisassumption seems reasonable. Furthermore, whatever assumptions are made in assemblysequencing, the actual execution of the assembly operation will require some sensing and/orpassive compliance to actually succeed.However, this sensing assumption may not be su�cient for assemblies made of more thantwo parts. Let D be a disassembly sequence of A that produces a subassembly S whoserelation graph (the subgraph obtained by restricting the relation graph of A to the parts inS) contains two connected components, or more. We call the subset of parts contained ineach such component a oat. While the relative positions of parts in a oat are uniquelydetermined by the parts in that oat, the relative position of any two oats in S dependson parts in AnS. Here, we do not extend the above sensing assumption, because it wouldrequire the availability of parts that are not involved in the merging operation that producesS. Therefore, this operation does not have a uniquely de�ned outcome: it can only producea temporary S. The relative positions of the oats in S will later have to be re-adjusted,24
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Figure 14: An N -part product requiring N hands to assemblewhen S is merged with other subassemblies. D still induces an assembly sequence, but thisassembly sequence is non-monotone in the sense that it produces non-�nal subassemblies. Itis also multi-handed since some assembly operations require more than two hands to holdthe various oats and adjust their relative positions.To illustrate this discussion, consider the product of Fig. 14, with N parts denoted by1; : : : ; N . Spatial relations are between 1 and 2, 1 and 3, ... , and 1 and N . The �rstoperation in any disassembly sequence partitions the product into 1 and f2; : : : ; Ng. Thesecond subassembly consists of N � 1 oats. The corresponding assembly operation requiresN hands to separately adjust the positions of parts 2; 3; : : : ; N relative to part 1.In general, one would like to generate a two-handed disassembly sequence that yields aminimally-handed assembly sequence, since this assembly sequence is likely to be more easilyexecuted than one that is not minimally-handed. If A admits a disassembly sequence Dyielding an m-handed assembly sequence, every subset of A (not necessarily one producedby D) admits a disassembly sequence yielding a p-handed assembly sequence with p � m.Therefore, we can easily modify partition so that disassemble only construct disassemblysequences yielding minimally-handed assembly sequences. The new partition always scansthe entire ndbg of the (sub)assembly S passed as argument, and selects a partitioningof S into two subassemblies such that the total number of oats in these subassemblies isminimal. On the average, this variant takes more time to run, but it has the same worst-casecomplexity as the original procedure.9 ConclusionPrevious research has thoroughly investigated assembly sequencing under the assumptionthat parts and products have unique geometry. It has produced useful algorithms to detect25



undesirable geometric interferences among parts. But these algorithms cannot help designersanalyze the e�ect of their tolerancing decisions on the assembly process. As product qualityand manufacturing automation increase, such analysis becomes more critical. This paper isa �rst attempt to �ll this need. It describes algorithms to generate assembly sequences forproducts made of toleranced parts. These algorithms could be embedded in an interactivecad environment to assist designers in the selection of appropriate tolerance values.Our approach to assembly sequencing with toleranced parts derives from the ndbg-basedapproach previously proposed in [41]. Two non-directional blocking graphs, the strong andthe weak, are precomputed. They respectively represent possible and necessary blockinginterferences among parts in an assembly. These ndbgs are then exploited in a query phaseto generate assembly sequences. Using the strong ndbg we determine if a product acceptsan assembly sequence that is always feasible, independent of the values of the variationalparameters in their tolerance zones. Using the weak ndbg we determine if a product is neverassemblable, or if it accepts non-guaranteed assembly sequences. One may use Monte Carlotechniques to estimate the probability of success of non-guaranteed sequences.At the core of this approach are two algorithms to compute cones of feasible in�nite trans-lations of one part Pi relative to another Pj , when both parts have toleranced geometry andtheir relative position varies due to the toleranced geometry of parts lying between them.The key observation underlying these two algorithms is that the number of variational pa-rameters that a�ect both the shapes of Pi and Pj and their relative position is constantand small. It is crucial because the time complexity of the algorithms is exponential in thisnumber. This observation remains valid in several generalizations presented in Section 7 andin [26].The tolerance language used to describe assemblies is simple and falls short of modeling allimperfections of a manufacturing process. It nevertheless captures several important featuresof the Y14.5 standard. Its main limitation is that it assumes perfect angles between edges.Removing this limitation would result in assembly instances where parts do not have thesame relative orientations. This would seriously complicate our algorithms. One ad hoc wayto accept toleranced angles is to discretize the corresponding tolerance zones and treat eachset of discrete values as perfect angles. One could also perform some Monte-Carlo-basedsensitivity analysis of a guaranteed assembly sequence around the nominal orientations ofthe edges. However, we believe that additional research should make it possible to providean exact solution (at least for planar assemblies).Another topic for future research is to go beyond in�nite translations and allow motions madeof several extended translations, as well as motions combining translation and rotation. Thecomputation of large cones in 3D seems a challenging issue as well.Acknowledgments: This work was supported by NSF/ARPA grant IRI-9306544, a grant from the StanfordIntegrated Manufacturing Association (SIMA), and Sandia National Laboratories under DOE contract DE-AC04-94AL85000. Part of this work was done while J.C. Latombe was a University SummerFaculty employee26
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Appendix: Computation of W jiIn this appendix we consider two parts Pi and Pj of the assembly A. Let rij be the numberof spatial relations de�ning the relative placement of Pi and Pj . We let Pk; : : : ; Pk+rij�2designate the (possibly empty) list of parts along the path connecting Pi to Pj in the relationgraph of A, i.e., Pi and Pk are linked by a spatial relation; so are Pk and Pk+1, ..., and Pk+rij�2and Pj . The variational parameters of Pk; : : : ; Pk+rij�2 that a�ect the relative position of Piand Pj form the set K de�ned in Section 5.We assume Pi �xed and we describe the computation of the locus W ji of the origin pj ofthe coordinate system attached to part Pj, when the parameters in K span their tolerancezones.As mentioned in Section 5, we distinguish among three cases:(1) rij = 1, (2) rij = 2, (3) rij > 2.In Case (1), Pi and Pj are directly linked by a spatial relation. Hence, K is empty, and W jireduces to a single point, whose coordinates are easily computed from the spatial relationlinking Pi and Pj .In Case (2), the set K contains variational parameters of a single part Pk. Let us assumefor an instant that we know how to compute W ji in this case.In Case (3), we have: W ji = W k+1i �W k+2k � : : :�W jk+rij�3:Indeed,W k+1i is the locus of pk+1 relative to the coordinate system of Pi, when the variationalparameters of Pk span their tolerance zones, all the other parameters being �xed. W k+2k isthe locus of pk+2 relative to the coordinate system of Pk, when the variational parameters ofPk+1 vary, all the other parameters being �xed. When we let the variational parameters ofboth Pk and Pk+1 vary, all the other parameters being �xed, we obtainW k+2i = W k+1i �W k+2k .And so on. Therefore, the computation of W ji can be done by performing the computationdone in Case (2) rij � 1 times.We now focus on Case (2). We classify the variational parameters of Pk that inuence therelative position of Pi and Pj into two types: the input parameters, which a�ect the positionof Pk relative to Pi, and the output parameters, which a�ect the position of Pj relative toPk. If a parameter is both an input and an output parameter, we call it an input-outputparameter.We break Case (2) into two subcases:(2.1) There exist no input-output parameters.(2.2) There exist input-output parameters.Fig. 15 illustrates Subcase (2.1): here, the input parameters are d1 and d2, while the outputparameters are d3 and d4. Fig. 16 shows two examples of (2.2). In (a), d2 is an inputparameter, d4 an output parameter, and d3 an input-output parameter. In (b), d1 is an input30
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parameter and d4 an output parameter, while both d2 and d3 are input-output parameters.In Subcase (2.1), the variation of each input or output parameter d yields pj to span a linesegment. Computing this segment is done by considering several cases, depending on whetherthe variation of d a�ects the location of an edge of Pk involved in the relation between Piand Pk (if d is an input parameter) or between Pk and Pj (if d is an output parameter), orthe location of a vertex, or the locations of both an edge and a vertex. The analysis of eachcase is fastidious, but straightforward. When all parameters vary, pj spans a polygon whichis the Minkowski sum of all the segments de�ned above. W ji has constant complexity and iscomputed in constant time.In Subcase (2.2), we handle the input-output parameters separately from the other inputand output parameters. The variation of the non input-output parameters (the input-outputparameters being �xed) leads pj to scan a polygon computed as W ji in Subcase (2.1). Thevariation of the input-output parameters (the other parameters being �xed) also leads pj toscan a polygon. Computing this second polygon also requires analyzing multiple cases. W jiis the Minkowski sum of the two polygons. It has constant complexity and is computed inconstant time.Finally, let us return to Case (3). It involves the computation of the Minkowski sum of rij�1polygons, each having constant complexity. The resulting polygon has complexity O(rij). Aclassical divide-and-conquer technique computes it in time O(rij log rij).

32


