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Abstract

The goal of assembly sequencing is to plan a feasible series of operations to con-
struct a product from its individual parts. Previous research has investigated assembly
sequencing under the assumption that parts have nominal geometry. This paper con-
siders the case where parts have toleranced geometry. Its main contribution is an
efficient procedure that decides if a product admits an assembly sequence with infinite
translations (i.e., translations that can be extended arbitrarily far along a fixed direc-
tion) that is feasible for all possible instances of the components within the specified
tolerances. If the product admits one such sequence, the procedure can also generate
it. For the cases where there exists no such assembly sequence, another procedure is
proposed which generates assembly sequences that are feasible only for some values
of the toleranced dimensions. If this procedure produces no such sequence, then no
instance of the product is assemblable. These two procedures are described for two-
dimensional assemblies made of polygonal parts and for three-dimensional assemblies
made of polyhedral parts. So far, only the first has been implemented (for the planar
case). This work assumes a simple, but non-trivial tolerance language that falls short
of capturing all imperfections of a manufacturing process. In particular, it assumes
that faces and edges have perfect relative orientations. Thus, it is only one step toward
dealing with tolerances in assembly sequencing.

Keywords: assembly planning, assembly sequencing, solid modeling, tolerancing, non-
directional blocking graph.
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1 Introduction

An assembly is described by a geometric model of its parts and their relative placement.
The goal of assembly sequencing is to plan a partial ordering of operations to construct this
product from its parts. Each operation generates a new subassembly by merging individ-
ual parts and/or subassemblies constructed by previous operations. It is specified by the
subassemblies it merges and their relative motions.

There has been considerable research in assembly sequencing during the past decade
(e.g., [p, 10, 18, 19, 20, 25, 28, 40, 41, 43, 44]). Early assembly sequencers were mainly
interactive sequence editors; geometric reasoning was supplied by a human who answered
questions asked by the system [10]. Automated geometric reasoning was then added to an-
swer these questions automatically [5, 20, 44]. This development first resulted in generate-
and-test sequencers, with a module guessing candidate sequences and geometric reasoning
modules checking their feasibility [20, 40]. More efficient techniques were later proposed to
replace time-consuming generate-and-test [4, 41]. Research on “separability problems” in
Computational Geometry is also related to assembly sequencing [8, 32, 35, 37].

Assembly sequencing has been shown to be intractable [21, 22, 23, 29, 44], leading researchers
to consider restricted, but still interesting subsets of assembly sequences, e.g.: monotone
sequences, where each operation generates a final subassembly, and two-handed sequences,
where every operation merges exactly two subassemblies. Often motions are also limited
to translations. Though restrictions vary slightly among the assembly sequencers proposed
so far, one is made in all of them: parts are uniquely defined by their nominal geometry.
In this paper we depart from this assumption by investigating assembly sequencing when
parts have toleranced geometry. This work has been motivated by the fact that for many
products, tolerances have crucial effect on assembly sequences and manufacturing costs.

Part tolerancing addresses the fact that manufacturing processes are inherently imprecise
and produce parts of variable shapes [34, 38]. A large body of work has been devoted to the
development of tolerance languages (e.g., Y14.5 [1, 39]) providing designers with symbolic
means to specify acceptable variations. One important goal is to guarantee part interchange-
ability in an assembly product [38]: given any set of parts manufactured according to the
specified tolerances, they should assemble satisfactorily. The basic tolerance analysis prob-
lem — determining where the boundary of a part might be located in a given coordinate
system — has attracted considerable interest (e.g., [7, 12, 16, 31]). But verifying part in-
terchangeability is much harder, and previous work has focused on checking the geometric
feasibility of the assembled state (i.e.: Does there exist an assembled state in which no two
parts overlap?), using stack-up, optimization, constraint propagation, statistical analysis,

and/or Monte Carlo techniques [3, 9, 11, 13, 31].

In this paper we go beyond the mere existence of an assembled state. We propose an efficient
procedure that decides whether a product made of toleranced parts admits a guaranteed as-
sembly sequence, i.e., a sequence that is feasible for all possible instances of the parts. This



procedure can also generate all such sequences. The existence of an assembled state is not
explicitly tested, but is implied by the existence of an assembly sequence. For the cases
where no guaranteed assembly sequence exists, we also propose another procedure that gen-
erates non-guaranteed assembly sequences, i.e., sequences that are only feasible for some
instances of the parts. This procedure returns no such sequence if and only if the product
is never assemblable. Our procedures assume a simple, but non-trivial tolerance language
which does not model some important imperfections of manufacturing processes. The work
reported in this paper is therefore only one limited step toward assembly sequencing with
toleranced parts. Nevertheless, we believe it contributes to the much-needed understanding
of what sort of tolerance language is suitable for assembly sequencing. Such understanding
is of major interest to the community of researchers who are trying to improve the mathe-
matical foundations of tolerancing [33, 36]. As of today, we have only implemented the first
procedure, for polygonal assemblies.

Section 2 describes the assembly-description language accepted by our algorithms. Section 3
gives technical background for the rest of the paper. It summarizes results previously re-
ported in [41, 42], including the concept of the non-directional blocking graph (NDBG) of a
nominal product, an algorithm to compute NDBGs, and a procedure to generate assembly
sequences from an NDBG. Section 4 develops the concept of a strong NDBG for products made
of toleranced parts; this NDBG represents all blocking interferences between parts when their
dimensions span the tolerance zones. It is used in the same way as a “classical” NDBG to
generate guaranteed assembly sequences. Section 5 describes in detail the algorithm enabling
the construction of the strong NDBG. The main difficulty faced here is that variations in the
dimensions of the parts also cause the relative positions of the parts in the products to vary.
Section 6 proposes the concept of a weak NDBG, which represents necessary blocking interfer-
ences between parts; this NDBG can be used to generate non-guaranteed assembly sequences.
Section 7 generalizes the algorithms of Section 4 and 5 (presented for planar polygonal as-
semblies) to polyhedral assemblies. Section 8 analyzes some subtle aspects of the relation
between assembly and disassembly sequences when parts have toleranced geometry.

2 Description of an Assembly

We consider a planar assembly product A made of N parts Py,..., Py. It is described by a
geometric model of the parts and spatial relations defining their relative placements.

We assume that each part P; is a polygon manufactured such that all instances of P; have
perfectly straight edges, the same topology, i.e., the same sequence of edges, and the same
angles between edges; but each edge may have different lengths in the various instances. The
geometry of P; is defined by its sequence of edges, with each edge specified by the orientation
of its supporting line relative to a unique coordinate system and the interval of acceptable
distances from the origin of this system to the supporting line.
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Figure 1: Part description

We will refer to the coordinate system used to specify the geometry of P; as the coordinate
system of P;. We denote its origin by p;. The distance between p; and the line supporting
an edge of P; is called a variational parameter and the interval of acceptable values for this
distance a tolerance zone. The tolerance zones of the variational parameters of each part
P; should be small enough to guarantee that all instances of P; have the same topology. A
sufficient condition is that no vertex falls into the intersection of more than two stripes swept
by edge-supporting lines when the variational parameters span the tolerance zones.

Fig. 1 illustrates the description of a part with seven edges. It shows a particular instance
of the part, the variational parameters dy,...,d;, and the extreme positions of the edge-
supporting lines.

The orientation of an edge-supporting line is defined by its angle in [0, 7) with the z-axis of
P;’s coordinate system. The distance from p; to this line is a real whose sign is set as follows:
if the outer normal to the corresponding edge points in the direction of p;, the distance is
negative; otherwise it is positive. For example, in Fig. 1 all variational parameters, except
ds, are positive. This convention has two advantages:

- It allows p; to lie without ambiguity in the stripe swept by an edge-supporting line when
the corresponding variational parameter spans its tolerance zone.

- There is one instance of P; that contains all other (called MMP, for Maximal Material Part).
With our convention, it is obtained when all variational parameters are maximal.

The relative placement of the N parts in A is defined by a set of spatial relations. Each
relation R uniquely defines the relative placement of two particular parts. This means that
for every possible geometry of these two parts, a single relative position of their coordinate
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Figure 2: Spatial relation between two parts

systems achieves K. We assume that R consists of two more elementary relations: one
states that two edges, one from each part, are parallel, with their outer normals pointing in
either the same or opposite directions and a signed distance between the lines supporting
the two edges; the other states that a vertex of one part is at some signed distance of the
line supporting an edge of the other part. (In addition, the three edges involved in R must
not be parallel.) This definition of spatial relations subsumes normal contact relationships
between parts: one specifies a contact between two edges by setting the distance between
them to zero. For simplifying our presentation, we assume zero tolerances in the distance
values of the spatial relations; removing this assumption in our algorithms is straighforward.

Fig. 2 illustrates a spatial relation between two parts P; and P;. Edges e and [ are parallel,
with their normals pointing in the same direction, at some distance of each other (the
distance, not given in the figure, is negative to indicate that e is ahead of f along the
direction of the outer normals). The vertex v is at some distance of the edge ¢ (again, the
value of this distance has been omitted in the figure).

The set of relations in the description of A must be complete and non-redundant. By
complete, we mean that if one randomly picks a geometry for every component of A, the
relations determine a unique geometry for A (such an assembly is said to be “static” [31]). By
non-redundant, we mean that removing any one of the relations makes the set incomplete. In
order for the set of relations to be complete and non-redundant, it is necessary and sufficient
that the undirected graph whose nodes are the components of A and whose links are the

spatial relations be connected and without cycles. We call this graph the relation graph of
A.

For any two parts, P; and P;, in their relative placement in A, we refer to the position of p;
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Figure 3: Part with imperfect edges

in the coordinate system of P; as the position of P; relative to P;. This relative position may
vary over several instances of A, due to variations in the geometry of the parts composing
A. On the other hand, the relative orientation of the two coordinate systems is fixed.

Let ¢; designate the number of edges of P, (: = 1 to N). @ = ¢1 + ...+ ¢qn is the total
number of edges in the parts of A. The geometry of any particular instance of A is defined
by a single value of the tuple (di,...,dg) of variational parameters. The space spanned
by this tuple is a ()-dimensional hyper-parallelepiped V. the Cartesian cross-product of the
tolerance zones. We call V the variational space of A. In the following, the same notation
P; (resp. A) will be used to designate both the variational class of parts (resp. assemblies)
determined by V and any instance in that class. Whenever some ambiguity may arise, we
will explicitly mention to which we refer.

There is no requirement that an assembly product specified as above be feasible.

Discussion: We now briefly discuss some of the shortcomings of our assembly-description
language. We focus on tolerancing, since this is the main theme of this paper.

First, let us remark that the assembly sequencing problem depends intimately on how we
describe an assembly A. We noticed before that each part admits an MMP. Suppose that,
instead of using spatial relations, we had defined the relative placement of every two parts
in A by the relative position of their coordinate systems. Then assembly sequencing would
trivially reduce to assembly planning with MMPs. This does not seem to make much sense,
however. Indeed, contacts and/or clearances between parts are crucial in assemblies. When
the relative positions of the coordinate systems are directly provided in the description of
the product, contacts can only be achieved at the ends of tolerance zones (otherwise parts
could overlap); similarly clearance constraints are only met for some values of the variational
parameters.

The most blatant assumption in our language is that edges are perfectly straight. Such edges
are impossible to manufacture. However, the assumption is not really needed. Consider a
part with imperfectly shaped edges as illustrated in Fig. 3.a. We can bring a straight line,



called a datum [31], into two-point contact with each edge and replace the imperfect edges
by the perfect ones defined by the datums (Fig. 3.b). Our algorithms apply to the parts
defined by these virtual edges and the vertices created by these edges.

In the Y14.5 standard, specitying a distance between two edges e and f leads to associating
a datum with one edge, say e. The tolerance zone defines the region (a stripe in 2D) within
which the other edge, f, should lie. In our case, the tolerance zone defines the locus of the
virtual edge. The constraint expressed in Y14.5 entails ours, but the converse is not true.
Although the relative weakness of our constraint would matter if we wanted to ensure that
parts be interchangeable in function, it does not affect their interchangeability in assembly,
which is our only concern in this paper. Said otherwise, the constraint expressed in Y14.5
can be translated into our language without affecting part interchangeability in assembly.

Another important limitation is that edges are cut with perfect angles between them (which
now only means that the virtual edges make perfect angles). Perfect angles are not possible
in practice, even between datums, and this assumption is the main limitation of our language.
See, however, the conclusion for a discussion of how it could be removed.

The coordinate system of a part P; can be located anywhere. In practice, dimensions are
specified relative to datums associated with edges. Then we could choose P;’s coordinate
system such that one of its axes is aligned with an edge and its origin coincides with one
extremity of that edge. But using a single “central” coordinate system may be a limitation,
since it often happens that datums in a single part are “chained” by distance specifications.
In [26] we show that a simple preprocessing allows our algorithms to handle multiple coordi-
nate systems per part. This consists of partitioning a part into a collection of subparts and
assigning a distinct coordinate system to each part. The relative placements of the subparts
in the part are defined by spatial relations having the same form as above. Our assembly
sequencing algorithms then treats subparts as parts with a single coordinate system, except
that they cannot be separated from one another.

The fact that we only consider planar assemblies is one important limitation not directly
related to tolerancing. In Section 7 we show that the algorithms of Sections 4 and 5 are
easily generalized to 3D polyhedral assemblies.

Another generalization of our algorithms discussed in [26] is the use of spatial relations
linking more than two parts.

3 Background

Let the assembly A be described as above, but with zero-length tolerance zones. Hence,
all parts and subassemblies are nominal. In this section we review previous techniques
that generate monotone two-handed assembly sequences for A. We present the NDBG of A
for infinite translations, i.e., translations that can be extended arbitrarily far along a fixed
direction.
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Figure 4: Examples of directional blocking graphs

An assembly sequence is a partial ordering on operations of the form: “Merge S; and 55 into
S by translating 57 along ¢.” Its inverse, a disassembly sequence, is obtained by reversing
the ordering and replacing each operation, such as the above, by: “Break S into S; and
Sy by translating S; along ¢t + #.” When parts are rigid, this inverse map is a bijection
between assembly and disassembly sequences. Any assembly sequence can thus be produced
by first generating a disassembly sequence and then inverting it. A disassembly sequence is
intuitively easier to produce since it starts from the highly constrained assembled state, in
which spatial relations may directly suggest candidate disassembly motions.

Let partition be a procedure that takes the description of an assembly S as input and
generates two subassemblies S7 and Sy (S; U Sy = 5), along with a direction ¢ such that
Sy can be removed from S and translated arbitrarily far along ¢ without colliding with
Sy. Whenever such subassemblies and direction don’t exist, the procedure returns failure.
Disassembly sequences are generated by applying partition to A and, recursively, to the
generated subassemblies that are not individual parts. Let disassemble designate this
recursive procedure.

In early sequence planners, partition was based on generate-and-test: given S, enumerate
all candidate partitions {S7, 52} of S, until a direction ¢ is found that separates Sy from
Sy without disturbing Sy. Finding ¢ often consists of inferring it from spatial relations
between parts (mainly from contacts), computing the region that will be swept by 53, and
checking that this region does not intersect S;. But the number of candidate partitions is
exponential in the number of parts in S, while the number of feasible partitions is usually
much smaller. The NDBG was introduced to avoid this combinatorial trap [41, 42]. The idea
is to precompute a structure, the NDBG, that represents all blocking interferences among the
parts in A, and to query this structure to generate one, several, or all disassembly sequences.

Consider two parts P; and P; in their relative position in A. Ignore all other parts. The
direction t is a feastble infinite translation for P; relative to P; if one can translate P; to
infinity along ¢ without colliding with P;. Now consider the full assembly A and a direction
t. The directional blocking graph, or DBG, of A fort is the directed graph whose nodes are the



Figure 5: Construction of a cone of feasible infinite translations

parts of A and whose arcs are all pairs of parts (F;, P;) such that ¢ is not a feasible infinite
translation of P; relative to P;. Fig. 4 shows DBGs of a simple assembly for two directions ¢4
and 7,.

In two dimensions the set of all directions is represented by the unit circle St. The set of
feasible infinite translations of P; relative to P; is a cone (;; that determines an arc in S*.
Hence, all the cones C;;, 7,5 € [1,N], i # j, partition S* into O(N?) arcs such that the
DBG of A remains constant over each arc. The sequence of arcs and their DBGs form the
non-directional blocking graph of A.

Assume that there are no tight insertions in A. Fach cone C;; can be constructed by erecting
the two extreme rays originating at p; (the origin of the coordinate system of P;) and tangent
to P; & P; (the Minkowski difference® of P; and P;). See Fig. 5, where the polygon in bold
contour is P; © P;. If P; and P; touch each other, then p; lies in the contour of P; © F;. If
they overlap (in which case, A is not a possible assembly), p; lies in the interior of P; & P;.
(If we allowed P; to be tightly inserted into P;, we would have to be more careful, since the
set of positions where P, touches P; would then be a superset of the boundary of P; & P;.)

If P; and P; are non-convex polygons with ¢; and ¢; edges, we decompose them into convex
components denoted by PF and Pj (k,1 = 1,2,...), respectively. We have: P; & P, =
U Pj & PF. A trapezoidalization of P; and P; yields O(¢;) and O(g;) components, each of
constant complexity, in times O(¢; log ¢;) and O(g; log ¢;) [30]. Each region le@Pf is a convex
polygon of constant complexity that takes constant time to compute. Let Cf;l be the cone
formed by the two rays stemming from p; and tangent to le@Pf. We have: Cs; = Ny, Cijl. All
cones Cf;l are computed in time O(¢;q;). They determine O(¢;q;) arcs in S*. The computation
of the arc where C;; intersects S' is thus done in total time O(¢;q; + ¢;log ¢; + ¢;log q;).

LGiven two sets of points, X and Y, we have: X oY ={z—ylr € X,ycY}and XY = {z +y|z €
X,yeY}.



Let ¢ be the maximal number of edges in a single part of A. The O(N?) cones (}; are
computed in time O((N¢)?). They determine O(N?) points in S* that are sorted in time
O(N?log N). The DBG in any arc can be obtained in time O(N?). However, between any
two adjacent arcs, the DBG undergoes a small number of changes that can be computed in
constant time. Thus, once a DBG has been computed, all other DBGs can be computed in
total time O(N?) by scanning the sequence of arcs in S' and, for each arc, modifying the
DBG constructed for the previous arc [41]. The complete NDBG takes time O(N?*(log N +¢?))
to compute.

Consider now the DBG G of A for some direction t. A can be partitioned into two subassem-
blies S; and S; by translating Sy along ¢ if and only if there exists no arc in G connecting a
part of 57 to a part of S3. Hence, A can be partitioned by a translation along ¢ if and only
if 7 is not strongly connected.? The strong components of (& yield all possible partitionings
of A. Notice also that the NDBG of any subassembly S of A is obtained by restricting every
DBG to the parts of S and merging adjacent arcs of S' having the same DBGs. Hence, given
the NDBG of A, partition can be implemented as follows:

procedure partition(S);
for every arc ¢ in the NDBG of S do:
if the DBG associated with ¢ is not strongly connected
then return ¢ and a feasible partition of S;
return failure;

Computing the strong components of a DBG takes time O(N?). (A better bound, O(N5),
can be obtained by taking advantage of the fact that any two successive DBGs differ by a
small amount [24].) Hence, partition runs in time O(N*) and disassemble generates an
assembly sequence in time O(N®).

The procedures partition and disassemble can easily be modified to generate all feasible
assembly sequences [41]. In the worst case, however, the number of these sequences is
exponential in V.

Remark: The above presentation has focused on planar assemblies and infinite translations.
However, NDBGs have been successtully extended both to deal with 3D assemblies and to
generate more complicated motions (e.g., rotational motions [14, 42] and multiple extended
translations [17, 43]). This requires adapting the definition of a feasible motion of P, relative
to P;. Another planning approach, based on “monotone paths,” has been proposed to avoid
the combinatorial trap of generate-and-test for assemblies of polygons in the plane [4]. But,
so far, this approach has only been introduced to generate translational assembly sequences
for planar polygonal assemblies. Attempts to efficiently generalize it to 3D assemblies and/or
rotational motions have failed.

2A strongly connected component (or strong component) of a directed graph is a maximal subset of nodes
such that for any pair of nodes in this subset there exists a path connecting them in the graph. A directed
graph is strongly connected if it has only one strong component.

10
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Figure 6: Multi-valued NDBG for two parts

4 Strong NDBG

From now on let the assembly A be made of toleranced parts, as described in Section 2.
While the question “Does there exist an assembly sequence to construct A?” had only two
possible answers, “yes” and “no”, when parts in A had unique geometry, it now has three
possible answers, “yes”, “no” and “maybe”. Moreover, if the answer is “yes”, two cases are
possible: there may, or may not exist an assembly sequence that is feasible for all values
of the variational parameters. We call such a sequence a guaranteed assembly sequence,
and a sequence that is only feasible in a non-empty subset of the variational space V a
non-guaranteed sequence.

In this section we focus on guaranteed assembly sequences. We extend the NDBG concept
to represent all blocking interferences among parts of A for infinite translations, when the
variational parameters span V. We call this extension the strong NDBG. The procedures
partition and disassemble apply to this NDBG without modification. The procedure
disassemble now produces guaranteed assembly sequences, whenever such sequences exist;
it returns failure otherwise.

Consider any two parts in A. Due to possible variations in their geometry and relative
position, the cone of feasible infinite translations of one part relative to the other is not
constant. Therefore, at each point in the variational space V, one may compute a distinct
NDBG. To be sure that A can be partitioned into two subassemblies by translating one to
infinity along some direction, this partitioning must be feasible in all NDBGs over V.

11
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As computing all NDBGs over V is impractical, we project these NDBGs onto S!: with every
direction ¢ of S, we associate the set of all distinct DBGs for direction ¢ when the variational
parameters span V. Usually, if two directions t; and t, are very close to each other, the
same set of DBGs is associated with both directions. But this is not true for some isolated
directions where a translated part collides with a new part or stops colliding with a part.
These directions partition ST into arcs such that a single set of DBGs is associated with every
arc. We call this structure the multi-valued NDBG of A.

To make this concept clearer, consider two parts F; and P; in A. For every value of the
variational parameters, we can compute a cone C;; of feasible infinite translations of P,
relative to P;. Let us intersect all cones C;; when the variational parameters span their
tolerance zones. The result is the possibly empty cone SC;; of infinite translations that are
feasible for all values of the variational parameters. We call it the small cone of feasible
translations of P; relative to P;. Similarly, the union LCj;; of all cones Cj; is the cone of
all infinite translations that are feasible for at least one value of the variational parameters
(LC;; may have a 27 angle). We call it the large cone. Inverting SC;; and LC;; yields SC;
and LC;, respectively. The four cones SC;;, LC;;, SC;, and LC; partition S into at most
8 arcs, such that a single set of DBGs reduced to P; and P; is associated with each cell. The
set of arcs and the associated sets of DBGs form the multi-valued NDBG of the subassembly
made of P, and P;. See Fig. 6, where the small (resp. large) cones are bounded by plain
(resp. dashed) lines.

In the example of Fig. 6, the small and large cones are respectively obtained for the maximal
material parts (Fig. 6.a) and least material parts (Fig. 6.b). But this is not always the case.
For example, Fig. 7 shows a 3-part assembly with two variational parameters d; and ds.
When d; is minimal and d; maximal, the peg P; can’t be translated vertically. When d; is
maximal and dy minimal, this translation is feasible.

Scanning all pairs of parts in A leads to partitioning S* into O(/N?) arcs. But in the worst

12
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case the set of DBGs associated with one arc has size O(2N2). We thus replace this set by the
union of the DBGs it contains. The result is called the strong DBG. The NDBG whose cells
are labeled by strong DBGs is called the strong NDBG; it describes all blocking interferences
among the parts of A when the variational parameters span V. Fig. 8 shows the strong NDBG
derived from the multi-valued NDBG of Fig. 6. Since several adjacent DBGs are identical, the
corresponding arcs should be merged. Clearly, only the small cones are needed to construct
the strong NDBG.

At the core of the computation of the strong NDBG is the algorithm that generates the small
cone SC;; for any two parts P; and P;. Considering all combinations of maximal and minimal
values of the variational parameters would yield an algorithm exponential in the number of
variational parameters. In the next section a different approach allows us to propose an
algorithm that computes all cones SC; in time O(N?n(¢* + logn)), where n < N is the
maximal length of a path in the relation graph of A and ¢ < () is the maximal number of
edges in a part of A. In general, n < N and ¢ < (). As in the nominal-geometry case,
the DBGs associated with two adjacent arcs in the strong NDBG differ by a small amount.
Hence, the DBG for one arc can still be computed in constant time by slightly moditying
the DBG computed for the previous arc. The total time to construct the strong NDBGs is
O(N?log N + N?n(q* +logn)). In most practical cases, this time is O(N?*ng?).

When applied to the strong NDBG, the procedure disassemble generates guaranteed se-
quences, whenever such sequences exist. If it returns failure, the product may still be always
assemblable, but with several sequences depending on the values of the variational parame-
ters, or it may be assemblable only for some values of these parameters, or it may never be

13
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Figure 9: Engine example: Nominal model and tolerance zone

assemblable.

Discussion: An alternative to the computation and exploitation of the strong NDBG would
be to compute the nominal NDBG of the assembly A and then perform sensitivity analysis
on a nominal assembly plan. However, our approach gives a much stronger result: while
sensitivity analysis would usually not be able to formally prove that a particular sequence
is feasible for all instances of the parts, our approach checks the existence of a guaranteed
sequence and, if one exists, produces it. Moreover, sensitivity analysis could be very time
consumming. Indeed, the number of variational parameters is often large and the number
of feasible nominal sequences can be exponential in the number of parts. Instead, the time
complexity of our method is both well-bounded and reasonable.

In this paper the only assembly motions we consider are infinite translations. As indicated
earlier, “classical” NDBGs have been applied to other types of motions. We hope that the
work reported here will also be eventually extended to produce assembly sequences with
various motions. Notice, however, that it is often desirable that products be manufacturable
with infinite translations only. The algorithms described here are directly relevant to that
case.

Implementation: We have implemented an assembly sequencer that computes and queries
the strong NDBG of a product, using the algorithms described above and in the next section.
This implementation was done within the CAS.CADE environment of Matra-Datavision [2],
which offers an extensive C++ geometric library. Although this environment does not include
Minkowski operations and NDBG computation, it provides more elementary data structures
and operations that make their implementation easier than in plain C+4. The implemen-
tation consists of 11000 lines of code.

We have run our sequancer on several examples, including the simplified six-part “engine”
shown in Fig. 9. In this figure, for any two parts that jointly participate in a spatial relation

14
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as specified in Section 2, the edges involved in the edge-edge relation are marked with short
bold line segments, while the vertex and the edge involved in the vertex-edge relation are
marked with a bullet and a line segment, respectively. Also, each part is identified by a
number. Its first edge is tagged with the number 0, while its other edges are labelled 1, 2,
..., in counterclockwise order.

For simplicity, let us focus our attention on edge 9 of part 3 and assume that this is the
only variational parameter with a non-zero tolerance zone. We consider two tolerance zones
for this parameter: the “positive-only” and the “negative-only” zones. Figure 9 depicts the
assembly at nominal size. The union of the two tolerance zones is shown between the two
dashed lines. The positive-only zone is on the left of edge 9 at its nominal position, while
the negative-only zone is on its right.

We have run our assembly sequencer in three cases derived from this example: (1) edge 9 of
part 3 is at its nominal location; (2) it lies anywhere in the positive-only zone; and (3) it lies
anywhere in the negative-only zone. In each case, we output two measures characterizing
some aspects of the NDBG: the number of guaranteed assembly sequences and the number
of parts that must be removed before part 1 can be removed.

In case (1), the strong NDBG coincides with the regular NDBG described in Section 3, since
all tolerance zones reduce to a single line. The NDBG then encodes 55 different assembly
sequences. The shortest sequence to access part 1 is by removing parts 3 and 6 (as a rigid
subassembly) with a vertical translation.

In case (2), the number of distinct guaranteed assembly sequences encoded by the strong
NDBG shrinks to 23. Accessing part 1 is also more involved. It is no longer possible to
vertically translate parts 3 and 6. Instead, part 4 can be removed first; then parts 3 and
6 can be translated toward the left-top (see Fig. 10, in which edge 9 of part 3 lies at the
extreme end of its tolerance zone). An alternative to this sequence is to remove 5 and 2 by
a vertical downward translation. If fixturing issues are ignored, this is a valid sequence. But
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Figure 11: Parameters influencing the relative position of two parts

if they are not, parts 4, 1, and 3 will then have to be appropriately fixtured.

Finally, in case (3), the NDBG contains no guaranteed sequence. As can easily be observed,
parts 4 and 6 can then overlap each other, which means that even the assembly state may
not exist.

5 Computation of Small Cones

We now describe an algorithm to compute the small cone SCj; of feasible infinite translations
of P; relative to P;. Recall from Section 3 that, if the geometry and relative position of P,
and P; are uniquely defined, then the cone of feasible infinite translations of P; relative to
P; is identical to the cone of feasible translations of the point p; (the origin of the coordinate
system of P;) relative to P; & P;. Here, both the geometry and the relative position of P,

and P; are functions of the variational parameters dy,...,dg. Thus, the small cone SC;; is
the cone of feasible translations of p; relative to the region Uy (FP; & P;) swept by P; & P,
when (dy,...,dg) spans the variational space V.

To compute Uy(P; & P;), we first remark that it only depends on a subset of variational
parameters. Indeed, the geometries of P; and P; depend on ¢; and ¢; parameters, respectively.
On the other hand, recall that the spatial relation between two parts consists of two more
elementary relations: one states that two edges, one in each part, are parallel at a given
distance; the other states that a vertex of one part is at some distance from an edge of the
other part. Hence, the relative position of two parts linked by a spatial relation depends on
at most 5 variational parameters: 2 are contributed by the distance between two parallel
edges, and are the variational parameters of these two edges; the other 3 are contributed by
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the distance between an edge and a vertex, and are the variational parameters of this edge
and the two edges intersecting at this vertex. For example, in Fig. 11, the relative position
of P, and P; depends on dy,...,ds. The relative position of P; and P; thus depends on 5r;
variational parameters, at most, where r;; is the number of spatial relations defining the
relative placement of P; and P; (i.e., r;; is the length of the path between P, and P; in the
relation graph of A). Moreover, among the r;; relations, one defines the relative placement of
P; and another part. Out of the 5 (or less) variational parameters that influence the relative
position of these two parts, 2 or 3 also affect the geometry of F;. The same remark holds for
P;. Therefore, a maximum of ¢; + ¢; + 5r;; — 4 variational parameters influence the cone of
feasible translations of F; relative to P;.

We divide these remaining parameters into three disjoint subsets, J, K, and L:

- J (shape parameters) contains the variational parameters of P; and P; that do not influence
the relative position of the two parts.

- K (position parameters) contains all parameters that are not variational parameters of P;
or P;; hence, they only affect the relative position of F; and P;.

- L (shape-position parameters) contains the variational parameters of P, and P; that do
influence the relative position of the two parts; it contains at most 6 parameters.

We now consider these three sets in sequence:

Shape parameters (J): Assume that we fix the parameters in K U L to some arbitrary
value in their tolerance zones, while we let the parameters in J span their domains. Let

Us(P; © P;) denote the region swept by P; & P,.

The value of the parameters in J affects the shapes of F; and P;, but not their relative
position. Let P; and P; stand for the regions swept by P, and P;, respectively, in the
coordinate systems of P; and P;. P; (resp. P;) is exactly equal to P; (resp. P;) when the
parameters in J have their maximal values, the parameters in K U L being set as above.
Thus, we have:

Us(P o P) =P 0P

Position parameters (K): Now let the parameters in J U K span their domains, while
the parameters in L keep the arbitrary value given above. U; i (F; © P;) denotes the region
swept by U;(P; & P;) as the parameters in K vary.

By definition, the parameters in K do not affect the shapes of I and P;. However, when the
parameters in K vary, the origin p; of the coordinate system of P; spans a region W} in the
coordinate system of P;. The geometry of VVZJ is independent of the values of the parameters
in JUL. If r;; =1, K is empty and VVZJ reduces to a single point. If r;; = 2, VVZJ is a convex
polygon of constant complexity, which may degenerate to a point or a line segment; Fig. 12
shows two examples: in the left example, W/ is a polygon, while in the right example, it is a

line segment. W/ then takes constant time to compute. If r;; > 2, W/ is a convex polygon
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Figure 12: Locus W7 of p; with respect to p;

K3

of complexity O(r;;), which is computed in time O(r;; logr;;). (The computation of W7 is
discussed in the appendix; it is not difficult, but requires analyzing multiple cases.) Thus,

while P; is fixed, P; sweeps the region W @ P;, where X @ Y denotes the Minkowski sum
of two sets X and Y. We have:

Usr (P 6 F) = W/ @ P; 0P

Shape-position parameters (1): We now obtain Uy(P; & P;) by letting the parameters
in L span their domain and constructing the region swept by U; i (P; © F;). The difficulty
here is that the parameters in L affect both the relative position and the shapes of P; and
P;.

For any value of the parameters in L, U; g (FP; © P;) is exactly the region bounded by the
outer contour of the union of the polygons ¢ = I/Vf@eé Sek, where ef and eé (k,1=1,2,...)
denote the edges of P; and P;, respectively.

As the parameters in L vary, P; and P; keep the “same” edges. Therefore the region swept

by Usx(P; © F;) is bounded by the outer contour of the union of the regions swept by
the sets ¢*'. Since the geometry of VVZJ and the orientations of the edges of P; and P; are
independent of the parameters in L, each ¢* also keeps the “same” edges with the same
orientations. Moreover, the coordinates of every vertex v in every ¢ are linear functions
of the parameters in L, whose domain is a hyper-parallelepiped. Hence, v spans a convex
polygon whose vertices are attained when the parameters in L take extreme values (i.e., are
at vertices of their domain). Consider two consecutive vertices v; and v, of any ¢*'. The
region swept by the edge connecting vy and vy is exactly the convex hull of the two polygons
spanned by v; and v,. It follows that the region swept by any ¢* is the convex hull of the

polygons spanned by its vertices.

To obtain SC;;, however, we do not need to explicitly compute Uy(P; & F;). Indeed, let
SC{;Z be the cone of feasible translations of p; relative to the region swept by ¢*. We have:
SCZ] — mk,l SCZ;Z

Each ¢* has O(r;;) vertices and is computed in time O(r;;). The number of extreme values
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of the parameters in L is exponential in the size of L, which is at most 6; hence, this
number is O(1). By exploiting the fact that the edges of ¢*' keep constant orientations, we
compute the convex hull of the polygons spanned by the vertices of ¢*' in time O(r;;). Thus,
SCy; is computed in total time O(r;;(¢iq; + logri;)). The logarithmic term comes from the
computation of W/.

Let ¢ be the maximal number of vertices in a part of A and n the length of the longest path
in the relation graph of A. The O(N?) small cones needed to the construction of the strong
NDBG of A are computed in time O(N?*n(q¢* + logn)).

6 Weak NDBG

In Section 4 we defined the strong NDBG by replacing the set of DBGs associated with each
arc of the multi-valued NDBG by the union of these DBGs. We now replace this set by the
intersection of the DBGs. We get another NDBG, which we call the weak NDBG. It describes
blocking interferences that necessarily occur between the parts of A, whatever the value of
the variational parameters.

Assume that the strong NDBG yields no guaranteed assembly sequence. Then the pro-
cedures partition and disassemble applied to the weak NDBG generate non-guaranteed
assembly sequences whenever there exists an instance of A that can be assembled. A failure
of disassemble now means that no instance of A can be assembled.

The weak NDBG is interesting in several ways, e.g.:

- There exists no guaranteed sequence: one may wish to generate non-guaranteed sequences
to estimate their probability of success using, say, Monte Carlo sampling techniques.

- Some parts in an assembly are sealed together: for safety purposes (e.g., the product is a
toy), one may wish to check that the resulting assembly cannot be disassembled.

To construct the weak NDBG, we must first compute the large cones LC; of feasible transla-
tions of F; relative to P;, for all pairs of parts in A. In general, if P; and P; are not convex,
LC;; is not equal to the cone of feasible translations of p; relative to the intersection of all
the regions P; © F; when the parameters in J U K U L span their domain. This leads us to
directly form the union of the cones C; of feasible translations of p; relative to P; © P; when
the parameters in J U K U L vary. But there is another, more basic difficulty: neither of the
two rays bounding LC;; may be passing through a vertex of P; © P;, at a posiltion attained by
this vertex when the parameters in L have extreme values. This subtle point is illustrated in
Fig. 13, where we assume for simplicity that d € L is the only variational parameter (i.e.,
the tolerance zone of every other parameter has length zero). We consider two rays erected
from p;, one passing through vertex wu, the other through vertex v. In Fig. 13.a, the value
of d is chosen in its tolerance zone so that both rays are aligned. Fig. 13.b and 13.c show
the rays (dotted lines) with the most counterclockwise orientations when d takes its extreme
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values (the dashed rays are identical to the one in Fig. 13.a; they are reproduced to facilitate
comparison betwen figures). As d varies, the two rays rotate in opposite directions. They
form one side of LCY; for the value of d where they coincide; this value is neither maximal,
nor minimal. More generally, let the parameters in L vary linearly. The vertices of P; © P,
then move along straight-line segments (some may remain fixed, however), but these seg-
ments may have different orientations and different lengths. Consequently, the rays erected
from p; and passing through the vertices of P; © P, rotate in different directions at different
rates. Each side of LC;; may be obtained when two rays coincide.

In the rest of this section we present an algorithm to compute LC;;. Since dealing with the
parameters in J and K is relatively easy, we first consider the parameters in L.

Shape-position parameters (1): We assume here that the parameters in J and K are
fixed to some arbitrary value. Let Uy, C;; be the union of all cones C;; when the parameters
in L span their domain (which we will designate by Vi). Without loss of generality, we
assume that the parameters in L are dy,...,ds (though there may be less than 6).

We denote the edges of P; and P; by fF (k=1,2,...) and f]l (I=1,2,...), respectively. Let
Cf;l be the cone of feasible translations of p; relative to " = f]l & fF. For any value of the
variational parameters, we have: Cy; = (N, Cf;l. We call a ray erected from p; and passing
through a vertex v of a region 1'* a vertex ray and we denote it by p(v). We refer to v as
the defining vertex of p(v). When the parameters in L span Vi, every 1" keeps the “same”
edges with the same orientations, and the coordinates of its vertices are linear functions of

dy,...,ds.

Our goal is to select a finite set of points in Vy, such that each of the two sides of Uy, C; is
a side of the cone (; computed at one of these points. We generate this set as the union
of two sets, Hy and Hy. H; is the set of all points where a vertex ray achieves an extreme
orientation. We initially define Hy as the set of all points where two or more coinciding
vertex rays achieve an extreme orientation (we will trim this conservative definition later).
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Note that H; is not a subset of Hy: an extreme orientation for one ray, while it coincides
with other rays, is usually not an extreme orientation for that same ray, when no coincidence
is required. No point in YV \(H; U Hy) can contribute a side of |J;, C;; that is not already
contributed by the points in Hy U H,.

Since the coordinates of the vertices of the regions *' are linear functions of di,. .., ds, the
extreme orientations of every vertex ray are obtained at vertices of V. These vertices are
all the points of Hy. They are constant in number.

The construction of H, is more involved. Consider any two vertices vy and vy. The vertex
rays p(vy) and p(vz) are aligned (i.e., either coincide or points in exactly opposite directions)
when the coordinates (21, y1) of vy and (a2, y2) of vy satisfy the equation:

T1y2 — x2y1 = 0. (1)
Let us pose:
7=6 7=6
ti= Zaijdj +a and y; = Zﬂijdj + Bio, for 1=1,2,
j=1 7=1

where all coefficients «;; and 3;; are constants. Equation (1) becomes:
F(dl,...,dg;):(), (2)

where F'is a second-degree multivariate polynomial. Equation (2) describes a hyper-surface

S.

The extreme orientations of p(vq), while it coincides with p(vq), can be attained in the
interior or the boundary of Vy:

- In the interior of Vp, they are obtained when:

Iy1/x1)
—— =0, k=1,...,5 3
adk b b b b ( )
where dg is an implicit function of dy, ..., ds defined by Equation (2). Thus, we must solve a

system of six polynomial equations in dy, ..., ds: Equation (2), which has degree 2, and the
five Equations (3), which have degree 4 each. This takes time exponential in the number of
variables and polynomial in the maximal degree of the polynomials [6]. Here, this time is
O(1).

- To get the extreme orientations of p(vy) when S intersects a face of Vi of dimension
p € [1,5], we must also solve a system of six polynomial equations. This system consists
of: Equation (2), the 6 — p equations defining the face, and p — 1 equations of the form
of Equations (3), in which 6 — p variational parameters are determined by the equations of
the face and one other parameter is an implicit function of the remaining p — 1 parameters
through Equation (2). When p = 1, the face is a one-dimensional edge and there is no
equation of this last type. Each of these systems also takes time O(1) to solve.

21



In total, there is a constant number of systems to solve. Hence, the computation of the points
of Vi where p(v1) achieves extreme orientations while coinciding with p(vs) has constant
complexity.

Up to 6 vertex rays may coincide simultaneously. The alignment of m rays (m € [2,6])
yields the intersection of m hyper-surfaces. The extremal orientations of these rays while
they coincide are still solutions of systems each having 6 polynomial equations of constant
degree in dy,...,ds. Again, such a system can be solved in constant time.

By considering all combinations of m € [2,6] vertices of the regions ¥*, we obtain a set
H, of size O((q;q;)®). This size can be reduced as follows: we notice that, when dy,. .., ds
vary, the supporting lines of at most 3 edges of P, translate; hence, at most O(1) vertices
move; we refer to them as the special vertices of P,. Similarly, the supporting lines of all
edges in P;, except a maximum of 3, translate by the same amount relative to P;; hence, all
vertices, except O(1) of them, to which we refer as the special vertices of P;, move in the
same way. Every vertex of a region ¥* is of the form v; & v;, where v; and v; are vertices of
P;: and P;, respectively. We divide the vertices of all the regions ¥*' into two subsets: one
contains all vertices v; & v; where neither v; nor v; is special; its size is O(¢;q;). The other
contains all the other vertices; its size is O(q; + ¢;). All vertices in the first subset move the
same. So, if v and v’ are two vertices of this subset and the rays p(v) and p(v’) coincide,
this coincidence cannot create a side of L;;. Therefore, to construct Hy, it is sufficient to
consider all combinations of m € [2,6] vertices such that at most one belongs to the first
subset. Posing ¢ = max{¢;, ¢;}, this remark reduces the size of Hy and the time to compute
it to O(q").

We now have I} and ;. We can compute the union Uy, g, Ci; of all the cones obtained at
the points of H; U H,. If this union is a connected cone, it is Uy, C;. If, instead, it consists
of several disjoint cones (only connected at their common apex), it remains to determine
which are the two sides of these cones that also bound J;, C;;. For that purpose, we consider
the complement of the union in S* and we slightly perturb the points of H; U Hy within Vy,
along the axes of V. Eventually, all cones in S\ Uy, g, Ci; will shrink a bit, except one,
which is S\ Uy, C;;. Hence, U;, C;; is computed in time O(¢?).

Shape parameters (J): Now, let the parameters in .J vary. Let P; (resp. P;) stand for
P; (resp. P;) when all the parameters in .J are minimal. For any value of the parameters
in L, P; is included in every other instance of ;. The same holds for P;. Hence, when the
parameters in both J and L vary, we obtain the union {J; 1, C;; of all cones C;; by performing
the same computation as above, with P; and P; substituted for P; and P;, respectively.

Position parameters (/K): When the parameters in K vary, the polygon P; © P; keeps a
constant shape, but p; spans the constant-shape polygon W7 (see previous section). For any
value of the parameters in J and L, the extreme orientations of the vertex rays are obtained
when p; is at vertices of VVZ] Hence, when all parameters in J U K U L vary, we perform the

above computation with p; successively located at every vertex of VVZ] Since VVZJ has size
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O(ry;), we obtain O(r;;) cones [y, Cy;. If their union consists of a single cone, this cone is
LC;;; otherwise, we identify LCy; by slightly perturbing the position of p; at each vertex of
W¢ (within WY). LC;; is thus obtained in total time O(r;;¢").

K3

Computing the O(N?) large cones needed to construct the weak NDBG of A takes time
O(N?*n(¢?+logn)). While polynomial, this bound is too large for a practical implementation.
Further effort is needed to reduce it, either by a tighter count of Hy (which we believe is
possible), or by finding a suitable approximation algorithm.

7 Polyhedral Assemblies

In this section we generalize the algorithms of Sections 4 and 5 to the cases where A is an
assembly made of N polyhedral parts. The language of spatial relations between parts must
be extended accordingly, but this raises no serious difficulty. There are only more ways to
express spatial relations. The variational parameters of every part P; in A are the distances
between p; and the planes supporting the faces of P;. The tolerance zones are small enough
to guarantee that any two instances of the same part have the same topology.

Let us first assume that A has a unique geometry. In 3D, directions span the unit sphere
S%. The cone (; of feasible infinite translations of a part P; relative to a part P; is still
the cone of all translations erected from p; and intersecting P; © P;. The region P; © P, is a
polyhedron. Hence, C; is a polyhedral cone whose intersection with the unit sphere centered
at its apex is a “polygon” bounded by arcs of great circles. The arcs obtained with all the
cones (;; create an arrangement of regions in S? such that the DBG of A remains constant
over each one. This arrangement and the associated DBGs form the NDBG of A. A system
implementing this computation is presented in [41].

The computation does not require the explicit construction of the 3D region defined by
P; & P;,. We need only project its edges into 52, as follows: first, we compute the Minkowski
difference of every pair of faces of P; and P; using the algorithm given in [15]; next, we project
the edges of all computed differences into S%. We get more arcs than actually needed, but
in the worst case their asymptotic number is the same. Let ¢ be the maximal number of
vertices in a part of A. Each pair of parts contributes O(q*) arcs of the arrangement on
S?. The total arrangement has size O(N?¢*) and is computed in time O(N?¢*log(Ngq)). In
every region the DBG is computed in time O(N?). The total NDBG is constructed in time
O((Ng)* + N%q*log(Ng)). Each DBG has O(N?) arcs, so that finding its strong components
takes time O(N?). Hence, partition has complexity O((Ng)?*).

If A is made of toleranced parts, all small cones SC;; can be computed as suggested in
Section 5: U(P; & P;) is constructed by computing a finite number (more than 6, however)
of regions U, i (P; © F;). None of these regions need to be explicitly constructed in 3D. For

each of them, we decompose P; and P; into convex components PF and Pj and we project
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the edges of U, x (P! & PF) = Wi @ P! & PFinto 52, Each pair of parts yields O(n?¢*) arcs
in the arrangement on S%. The arrangement defining the strong NDBG has size O((Nn)*¢*)
and is computed in time O((Nn)*q*log(Ngq)). The procedure partition has complexity
O(N*n?q*).

The computation of the large cones and therefore the weak NDBG seems much more prob-
lematic, however.

8 Inverting Disassembly Sequences

So far, our presentation has assumed that assembly and disassembly sequences are inverse
of one another. This is clearly true when parts have unique geometry (and are rigid).
When parts have toleranced geometry the relation between the two types of sequences is less
obvious. In this section we analyze this relation.

Consider an assembly A of two parts P; and P, linked by a relation K. Let “Break A into
{P;} and {P,} by translating { P, } along t” be a feasible disassembly operation. The inverse
operation, as defined in Section 3, is not truly an assembly operation: we do not know where
to exactly position P; prior to translating it, since we do not accurately know in advance the
relative position that P and P, will have in A. In the disassembly operation, this issue does
not arise, because P, and P, are de facto appropriately positioned prior to the translation.
It does not arise either under the unique-geometry assumption, since the unique relative
position of the two parts in A and the direction d + 7 then determine the line on which p;
(the origin of P;’s coordinate system) should lie prior to the translation of P;.

We can get rid of this difficulty by assuming that some sensing operation locates the edges
and vertices of P; and P, involved in R with sufficient accuracy. We can then compute where
to place p; prior to translating P;. In doing so, we make an assumption that is not required
by the disassembly operation. But, as F; and P; are available prior to merging them, this
assumption seems reasonable. Furthermore, whatever assumptions are made in assembly
sequencing, the actual execution of the assembly operation will require some sensing and/or
passive compliance to actually succeed.

However, this sensing assumption may not be sufficient for assemblies made of more than
two parts. Let D be a disassembly sequence of A that produces a subassembly S whose
relation graph (the subgraph obtained by restricting the relation graph of A to the parts in
S) contains two connected components, or more. We call the subset of parts contained in
each such component a float. While the relative positions of parts in a float are uniquely
determined by the parts in that float, the relative position of any two floats in S depends
on parts in A\S. Here, we do not extend the above sensing assumption, because it would
require the availability of parts that are not involved in the merging operation that produces
S. Therefore, this operation does not have a uniquely defined outcome: it can only produce
a temporary S. The relative positions of the floats in S will later have to be re-adjusted,
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Figure 14: An N-part product requiring N hands to assemble

when S is merged with other subassemblies. D still induces an assembly sequence, but this
assembly sequence is non-monotone in the sense that it produces non-final subassemblies. It
is also multi-handed since some assembly operations require more than two hands to hold
the various floats and adjust their relative positions.

To illustrate this discussion, consider the product of Fig. 14, with N parts denoted by
1,...,N. Spatial relations are between 1 and 2, 1 and 3, ... ; and 1 and N. The first
operation in any disassembly sequence partitions the product into 1 and {2,...,N}. The
second subassembly consists of N — 1 floats. The corresponding assembly operation requires
N hands to separately adjust the positions of parts 2,3,..., N relative to part 1.

In general, one would like to generate a two-handed disassembly sequence that yields a
minimally-handed assembly sequence, since this assembly sequence is likely to be more easily
executed than one that is not minimally-handed. If A admits a disassembly sequence D
yielding an m-handed assembly sequence, every subset of A (not necessarily one produced
by D) admits a disassembly sequence yielding a p-handed assembly sequence with p < m.
Therefore, we can easily modify partition so that disassemble only construct disassembly
sequences yielding minimally-handed assembly sequences. The new partition always scans
the entire NDBG of the (sub)assembly S passed as argument, and selects a partitioning
of S into two subassemblies such that the total number of floats in these subassemblies is
minimal. On the average, this variant takes more time to run, but it has the same worst-case
complexity as the original procedure.

9 Conclusion

Previous research has thoroughly investigated assembly sequencing under the assumption
that parts and products have unique geometry. It has produced useful algorithms to detect

25



undesirable geometric interferences among parts. But these algorithms cannot help designers
analyze the effect of their tolerancing decisions on the assembly process. As product quality
and manufacturing automation increase, such analysis becomes more critical. This paper is
a first attempt to fill this need. It describes algorithms to generate assembly sequences for
products made of toleranced parts. These algorithms could be embedded in an interactive
CAD environment to assist designers in the selection of appropriate tolerance values.

Our approach to assembly sequencing with toleranced parts derives from the NDBG-based
approach previously proposed in [41]. Two non-directional blocking graphs, the strong and
the weak, are precomputed. They respectively represent possible and necessary blocking
interferences among parts in an assembly. These NDBGs are then exploited in a query phase
to generate assembly sequences. Using the strong NDBG we determine if a product accepts
an assembly sequence that is always feasible, independent of the values of the variational
parameters in their tolerance zones. Using the weak NDBG we determine if a product is never
assemblable, or if it accepts non-guaranteed assembly sequences. One may use Monte Carlo
techniques to estimate the probability of success of non-guaranteed sequences.

At the core of this approach are two algorithms to compute cones of feasible infinite trans-
lations of one part P; relative to another P;, when both parts have toleranced geometry and
their relative position varies due to the toleranced geometry of parts lying between them.
The key observation underlying these two algorithms is that the number of variational pa-
rameters that affect both the shapes of P, and P; and their relative position is constant
and small. It is crucial because the time complexity of the algorithms is exponential in this
number. This observation remains valid in several generalizations presented in Section 7 and
in [26].

The tolerance language used to describe assemblies is simple and falls short of modeling all
imperfections of a manufacturing process. It nevertheless captures several important features
of the Y14.5 standard. Its main limitation is that it assumes perfect angles between edges.
Removing this limitation would result in assembly instances where parts do not have the
same relative orientations. This would seriously complicate our algorithms. One ad hoc way
to accept toleranced angles is to discretize the corresponding tolerance zones and treat each
set of discrete values as perfect angles. One could also perform some Monte-Carlo-based
sensitivity analysis of a guaranteed assembly sequence around the nominal orientations of
the edges. However, we believe that additional research should make it possible to provide
an exact solution (at least for planar assemblies).

Another topic for future research is to go beyond infinite translations and allow motions made
of several extended translations, as well as motions combining translation and rotation. The
computation of large cones in 3D seems a challenging issue as well.
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Appendix: Computation of WZJ

In this appendix we consider two parts P; and P; of the assembly A. Let r;; be the number
of spatial relations defining the relative placement of P; and P;. We let Py, ..., Pryy;—2
designate the (possibly empty) list of parts along the path connecting P; to P; in the relation
graph of A, i.e., P; and P are linked by a spatial relation; so are Py and Pyyy, ..., and Pry, o
and P;. The variational parameters of Py, ..., Pry,,,—2 that affect the relative position of F;
and P; form the set K defined in Section 5.

We assume P; fixed and we describe the computation of the locus VVZJ of the origin p; of
the coordinate system attached to part P;, when the parameters in K span their tolerance

zones.
As mentioned in Section 5, we distinguish among three cases:

W)rij =1, @2)rij =2, 3)ry>2.

In Case (1), P; and P; are directly linked by a spatial relation. Hence, K is empty, and W/
reduces to a single point, whose coordinates are easily computed from the spatial relation
linking P; and P;.

In Case (2), the set K contains variational parameters of a single part Py. Let us assume

for an instant that we know how to compute W/ in this case.

In Case (3), we have:

Wi =Wl W g o le+m—3‘

Indeed, W**! is the locus of pyiq relative to the coordinate system of P;, when the variational
parameters of P span their tolerance zones, all the other parameters being fixed. W} t? is
the locus of pyis relative to the coordinate system of P, when the variational parameters of
Py vary, all the other parameters being fixed. When we let the variational parameters of
both Pj, and Pyyq vary, all the other parameters being fixed, we obtain W/ = WWF+! @W,f"’z.
And so on. Therefore, the computation of VVZJ can be done by performing the computation
done in Case (2) r;; — 1 times.

We now focus on Case (2). We classify the variational parameters of Py that influence the
relative position of P; and P; into two types: the input parameters, which affect the position
of Py relative to P;, and the output parameters, which affect the position of P; relative to
P,. If a parameter is both an input and an output parameter, we call it an input-output
parameter.

We break Case (2) into two subcases:
(2.1) There exist no input-output parameters.
(2.2) There exist input-output parameters.

Fig. 15 illustrates Subcase (2.1): here, the input parameters are dy and dz, while the output
parameters are ds and dy. Fig. 16 shows two examples of (2.2). In (a), dy is an input
parameter, dy an output parameter, and ds an input-output parameter. In (b), dy is an input
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Figure 15: [lustration for Subcase (2.1)

X p =

Figure 16: [lustration for Subcase (2.2)
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parameter and d4 an output parameter, while both d; and ds are input-output parameters.

In Subcase (2.1), the variation of each input or output parameter d yields p; to span a line
segment. Computing this segment is done by considering several cases, depending on whether
the variation of d affects the location of an edge of Py involved in the relation between P,
and Py (if d is an input parameter) or between P, and P; (if d is an output parameter), or
the location of a vertex, or the locations of both an edge and a vertex. The analysis of each
case 1s fastidious, but straightforward. When all parameters vary, p; spans a polygon which
is the Minkowski sum of all the segments defined above. VVZJ has constant complexity and is
computed in constant time.

In Subcase (2.2), we handle the input-output parameters separately from the other input
and output parameters. The variation of the non input-output parameters (the input-output
parameters being fixed) leads p; to scan a polygon computed as VVZJ in Subcase (2.1). The
variation of the input-output parameters (the other parameters being fixed) also leads p; to
scan a polygon. Computing this second polygon also requires analyzing multiple cases. W/

is the Minkowski sum of the two polygons. It has constant complexity and is computed in
constant time.

Finally, let us return to Case (3). It involves the computation of the Minkowski sum of r;; — 1
polygons, each having constant complexity. The resulting polygon has complexity O(r;;). A
classical divide-and-conquer technique computes it in time O(r;; logr;;).
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