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Context

Turing machines with one head and one tape.
States Q.
Symbols Σ.
Transition map: Q × Σ→ Q × Σ× {−1,1}

Turing machines as a dynamical system: M : Q × ΣZ → Q × ΣZ

(the tape moves, not the head)

No specified initial state (very important)
No specified initial configuration (crucial)
Might have final states (anecdotal)
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TM as a DS

Seeing Turing machines as a dynamical system changes a lot of
things:

Interested in the behaviour starting from all configurations, not
only one configuration.
Hard to conceive of a TM with no (temporally) periodic
configurations.
Nevertheless, intricate TMs do exist.
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Interesting examples

1 2 3

a/a/→

b/b/←

a/a/←

b/b/→

a/a/→

b/b/→
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Interesting examples

0 1 2

3

a/a/→

b/a/→ a/b/←

b/b/→

a/a/←
b/b/→

?/a/→
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This talk

We will show why some thing are actually computable for 1-tape Turing
machines, namely:

its speed
its entropy
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Speed

For c a configuration, let Sn(c) be the set of (different) cells visited
during the first n steps of the computation on input c, and
sn(c) = #Sn(c)

sn(c) is (Kingman)-subadditive

sn+m(c) ≤ sn(c) + sm(Mn(c))

If d(x , y) ≤ 2−sn(x) then d(Mn(x),Mn(y)) ≤ 1/2.
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Speed

s(c) = lim sup
sn(c)

n
s(c) = lim inf

sn(c)

n

If lim inf = lim sup, we denote by s(c) the speed of c.
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The examples

In the first example
each symbol is read at most three times, so s(c) ≥ 1/3 for all c.
There exists configurations for which s(c) = 1

In the second example
Some parts of the configuration may be read n times. There are
configurations of arbitrary small speed (but no configurations of
zero speed)
There exists configurations for which s(c) = 1
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The speed

Definition

S(M) = max
c∈C

s(c) = max
c∈C

s(c) = lim
n

sup
c

sn(c)

n
= inf

n
sup

c

sn(c)

n

All definitions are indeed equivalent. This is due to compactness of the
set of configurations and subadditivity.
Note that it is a maximum, not a supremum.
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Entropy

Here is an equivalent definition, from Oprocha(2006).

For c a configuration, let T (c) be the trace of the configuration, i.e. the
sequence (states, symbols) visited by the machine. Let T be the set of
all traces

Definition (Oprocha (2006))

H(M) = H(T ) = lim
1
n

log |Tn|

where Tn are all possible words of length n of the trace
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The examples

The first example:

T ∼ {anbncn|n ∈ N}ω

Gives an entropy of log 3
√

2.

Second example:

T ∼ {an2−3b|n ≥ 2}ω

Gives an entropy of − log x where x = 0.820863 is solution of
θ3(0, x) = 1 + 2x + 2x2 (x is a transcendental number).
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In this talk

Theorem
Entropy and speed are computable for one-tape Turing machines.
That is, there is an algorithm, that given every ε, can compute an
approximation upto ε.
Furthermore, the speed is always a rational number

Plan of the talk
Link between entropy and speed
Some technical lemmas
Graphs
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Comments

Surprising, usually every dynamical quantity is semi-computable
but not computable
The speed is not computable as a rational number.

Starting from M, we can effectively produce a TM M ′ for which
S(M ′) ∼ 2−t where t is the number of steps before M halts on
empty input.

There is no algorithm to decide if the entropy is zero.
None of the techniques work with multi-tape TM. The entropy is
not computable anymore.
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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Entropy = Complexity

Kolmogorov complexity K (x) of a word x is the size of the
smallest program that outputs x
The (average) complexity of a infinite word u is

K (u) = lim sup
K (u1...n)

n

(same with K (u))

Theorem (Brudno 1983, see also Simpson 2013)
For a subshift T ,

h(T ) = max
u∈T

K (u) = max
u∈T

K (u)

(More exactly, the maximum is reached µ-a.e, for µ ergodic of maximal
entropy)
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Consequences

T (c)1...n can be computed if we know the sn(c) symbols read, the
initial position of the head, and the initial state. Hence

h(T ) = sup
c

lim sup
K (pn)

n

Where pn are the (new) letters read during the first n steps.

Proofs for entropy and speed are relatively the same.
We will deal with speed in the talk.
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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The goal

S(M) = max
c∈C

s(c) = inf
n

sup
c

sn(c)

n

S(M) (and H(M)) is computable from above due to the last definition.
We need to prove it is computable from below.
We need lower bounds on the speed and the entropy.
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Main idea

T ∼ {anbncn|n ≥ 1}ω

T ∼ {(ABC)(abc)n−1|n ≥ 0}ω

The entropy is easily computable for the second language:
T ∼ {ABC,abc}?

What is this transformation from the p.o.v. of the TM ?
For any configuration, let T ′(c) be the word that gives, for each
cell i , the symbol in position i , then the set of states going from
cell i to cell i + 1.
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Main idea

T ′(c) is well defined when c matters.
Speed and complexity can be read from T ′ instead of T .
T ′ is easy to understand.
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Lemma 1

If c is of maximum speed/entropy, then M will visit each cell finitely
many times.

If the TM zigzags on input c, then it is losing time.

Corollary
T ′(c) is well defined.
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Lemma 2

Let c of maximum speed/entropy.
Let fn be the first time we visit cell n, and ln the last time we visit cell n
Then fn ∼ ln

Corollary
The speed on c is the average number of letters.
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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T ′ can be obtained as a graph.

E. Jeandel, Entropy and Speed of Turing machines 25/31



The graph

1,2,3

1

3
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a

a

b

b

b

a,b

b
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The graph
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Formal definition

We define L and R inductively

(ε, ε,a) ∈ R

If by reading a from state q, we write b, go right in state q′

(qw ,q′w ′,a) ∈ L ⇐⇒ (w ,w ′,b) ∈ R

If by reading a from state q, we write b, go left in state q′

(qq′w ,w ′,a) ∈ L ⇐⇒ (w ,w ′,b) ∈ L

(Similar definition for R).
Now G is the set of all words where there is an edge from w to w ′

labeled by a if (w ,w ′,a) ∈ L.
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Lemmas

Size of the vertices are seen as weights.
Each execution of the TM corresponds to an infinite path
To each infinite path corresponds an execution of the TM, of
smaller weight

The speed corresponds to the maximum average weight of a path.
The entropy corresponds to the maximum weighted complexity of
a path.
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Key lemma

Speed and entropy are well approximated when considering only finite
subgraphs.

The maximum average weight of a path is the limit over all finite graphs
Gp of the maximum average weight of a path in Gp.

The maximum weighted complexity of a path is the limit over all finite
graphs Gp of the maximum weighted complexity of a path in Gp.
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The speed

Entropy and speed are computable

Because they are computable for finite graphs.

The speed is a rational number, and is achieved by a periodic
configuration
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Open problems

Characterize entropies of one-tape Turing machines.

The numbers are computable, and it cannot be all computable
numbers.

Find how to compute the average speed.

Find a Turing machine with two tapes for which the entropy (resp.
speed) is not a computable number.
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