Techniques algébriques en calcul quantique

E. Jeandel

Laboratoire de l'Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

8 Avril 2005

Algebraic Techniques in Quantum Computing

E. Jeandel

Laboratoire de l'Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

April 8th, 2005

E. Jeandel, LIP, ENS Lyor

Algebraic Techniques in Quantum Computing

Outline

Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

Conclusion

- Automata
- Conclusion

	Classical	Quantum
State	q	$\sum \alpha_i \mathbf{q}_i$
		The system may be
		in all states simultaneously
Operators	Maps	Unitary (hence reversible) maps

Outline

Combinatorial setting: Quantum gates Definitions

Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

3 Conclusion

- Automata
- Conclusion

What can we do with quantum gates ?

A quantum circuit is everything we can obtain by applying these constructions.

What we cannot do

Quantum mechanics implies no-cloning.

Outline

Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

3) Conclusion

- Automata
- Conclusion

- A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates.
- How to show that some set of gates is complete ?

- A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates.
- How to show that some set of gates is complete ?

Game: Design this gate

Toolkit 1

Fact

If there are two wires set to 1, we can make the gate G.

This is called **universality with ancillas**.

Fact

If among the additional wires, strictly less than 2 are set to 1, the gate G cannot be made.

Any circuit, even the most intricate, cannot produce any 1 using only the gate \mathcal{M} .

Theorem (8.7)

There exists a set of gates \mathcal{B}_i such that \mathcal{B}_i is 2-universal but neither 1-universal nor k-complete.

Toolkit 2

otherwise

Fact

Without any additional wire, we cannot realise the gate G.

If the three given wires are set to 1, 1 and 0 there is no mean to have three 1 or three 0.

Toolkit 2: 2 additional wires

• We are given two additional 0/1-wires.

• We have now five 0/1-wires. 3 of them must be equal !

Problem: The wiring depends on the 3 equal wires.

- We are given two additional 0/1-wires.
- We have now five 0/1-wires. 3 of them must be equal !

Problem: The wiring depends on the 3 equal wires.

Consider the following circuit:

If all 5 bits are equal:

Fact

The previous circuit simulates the gate G whatever the bits on the wires are.

This is called 2-**completeness** (since we use 2 additional wires). Up to some technical details, we obtain:

Theorem (8.8)

There exists a set of gates \mathcal{B}_i such that \mathcal{B}_i is 3-complete but not complete.

Fact

The previous circuit simulates the gate G whatever the bits on the wires are.

This is called 2-**completeness** (since we use 2 additional wires). Up to some technical details, we obtain:

Theorem (8.8)

There exists a set of gates \mathcal{B}_i such that \mathcal{B}_i is 3-complete but not complete.

Outline

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

3) Conclusion

- Automata
- Conclusion

What is a quantum gate ?

What is a quantum gate ?

E. Jeandel, LIP, ENS Lyor

Algebraic Techniques in Quantum Computin

A quantum gate over n qubits

 \mathcal{M}

is a $2^n \times 2^n$ unitary matrix

Problem

Given unitary matrices $X_1 \dots X_n$ and a unitary matrix \mathcal{M} , is \mathcal{M} in the group generated by the X_i ?

In the real life, we do not try to obtain quantum gates, but rather to approximate them.

Problem

Given unitary matrices $\mathcal{X}_1 \dots \mathcal{X}_n$ and a unitary matrix \mathcal{M} , is \mathcal{M} in the euclidean closure of the group generated by the \mathcal{X}_i ? (More generally, investigate finitely generated compact groups)

Problem

Given unitary matrices $X_1 \dots X_n$ and a unitary matrix \mathcal{M} , is \mathcal{M} in the group generated by the X_i ?

In the real life, we do not try to obtain quantum gates, but rather to approximate them.

Problem

Given unitary matrices $\mathcal{X}_1 \dots \mathcal{X}_n$ and a unitary matrix \mathcal{M} , is \mathcal{M} in the euclidean closure of the group generated by the \mathcal{X}_i ? (More generally, investigate finitely generated compact groups)

Property

A compact group G of $M_n(\mathbb{R})$ is algebraic. That is there exists polynomials $p_1 \dots p_k$ such that $\mathcal{X} \in G \iff \forall i, p_i(\mathcal{X}) = 0$

For instance, if $G = O_2(\mathbb{R})$, then

$$G = \left\{ X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : XX^{T} = \mathcal{I} \right\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \left\{ \begin{array}{ccc} a^{2} + b^{2} - 1 & = & 0 \\ c^{2} + d^{2} - 1 & = & 0 \\ ac + bd & = & 0 \end{array} \right\}$$

We can compute things ! Now we focus on algebraic groups.

Outline

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

3) Conclusion

- Automata
- Conclusion

Problem

Given matrices $\mathcal{X}_1 \dots \mathcal{X}_n$, compute the algebraic group generated by the matrices \mathcal{X}_i .

Computing the group means finding polynomials p_i such that

$$\mathcal{X} \in \mathbf{G} \iff \forall i, p_i(\mathcal{X}) = \mathbf{0}$$

Algebraic sets (defined by polynomials) are the closed sets of a topology called the Zariski topology.

Theorem

If G_1 and G_2 are irreducible algebraic groups given by polynomials, one may obtain polynomials for $\langle G_1, G_2 \rangle$ by the following algorithm:

$$\bigcirc H := \overline{G_1 \cdot G_2}$$

While
$$\overline{H \cdot H} \neq H$$
 do
 $H := \overline{H \cdot H}$

 $\overline{(A \text{ is the } Zariski\text{-}closure of } A$, the smallest algebraic set containing A. $\overline{A \cdot B}$ may be obtained by using Groebner basis techniques)

Theorem

If G_1 and G_2 are irreducible algebraic groups given by polynomials, one may obtain polynomials for $\langle G_1, G_2 \rangle$ by the following algorithm:

$$\bigcirc H := \overline{G_1 \cdot G_2}$$

While
$$\overline{H \cdot H} \neq H$$
 do
 $H := \overline{H \cdot H}$

Sketch of proof: At each step *H* is an irreducible algebraic variety. If $\overline{H \cdot H} \neq H$, $\overline{H \cdot H}$ is of a greater dimension, which proves that the algorithm terminates.

Fact

Let G be an algebraic group generated by $X_1 \dots X_k$. Then $G = S \cdot H$ with

- $\bigcirc \forall i, X_i \in S \cdot H$
- It is an irreducible algebraic group
- H is normal in G : $S \cdot H \cdot S^{-1} = H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then $G = S \cdot H$ is the algebraic group generated by the X_i .

Fact

Let G be an algebraic group generated by $X_1 \dots X_k$. Then $G = S \cdot H$ with

- $\bigcirc \forall i, X_i \in S \cdot H$
- It is an irreducible algebraic group
- $\bigcirc \ \mathsf{S} \cdot \mathsf{S} \subseteq \mathsf{S} \cdot \mathsf{H}$
- H is normal in G : $S \cdot H \cdot S^{-1} = H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then $G = S \cdot H$ is the algebraic group generated by the X_i .

Define by induction

 $S_0 = \{X_i\}, H_0 = \{\mathcal{I}\}$

$$I H_{n+1} := \overline{H_n \cdot H_n}$$

- $S_{n+1} := S_n$. For X, Y in S_n , if $X \cdot Y \notin S_nH_n$ then $S_{n+1} := S_{n+1} \cup \{X \cdot Y\}$
- For X in S_n do $H_{n+1} := \overline{X \cdot H_{n+1} \cdot X^{-1} \cdot H_{n+1}}$

Then the limit $S = \bigcup S_n$, $H = \bigcup H_n$ satisfies all conditions of the previous fact... except perhaps the last one.

Define by induction

 $S_0 = \{X_i\}, H_0 = \{\mathcal{I}\}$

$$I H_{n+1} := \overline{H_n \cdot H_n}$$

- $S_{n+1} := S_n$. For X, Y in S_n , if $X \cdot Y \notin S_nH_n$ then $S_{n+1} := S_{n+1} \cup \{X \cdot Y\}$
- For X in S_n do $H_{n+1} := \overline{X \cdot H_{n+1} \cdot X^{-1} \cdot H_{n+1}}$

Then the limit $S = \bigcup S_n$, $H = \bigcup H_n$ satisfies all conditions of the previous fact... except perhaps the last one.

Fact

Let G be an algebraic group generated by $X_1 \dots X_k$. Then $G = S \cdot H$ with

- $\bigcirc \forall i, X_i \in S \cdot H$
- It is an irreducible algebraic group
- $\bigcirc \ \mathsf{S} \cdot \mathsf{S} \subseteq \mathsf{S} \cdot \mathsf{H}$
- H is normal in G : $S \cdot H \cdot S^{-1} = H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then S is finite and $G = S \cdot H$ is the algebraic group generated by the X_i .

Fact

Let G be an algebraic group generated by $X_1 \dots X_k$. Then $G = S \cdot H$ with

- $\bigcirc \forall i, X_i \in S \cdot H$
- It is an irreducible algebraic group
- $\bigcirc \ \mathsf{S} \cdot \mathsf{S} \subseteq \mathsf{S} \cdot \mathsf{H}$
- *H* is normal in G : $S \cdot H \cdot S^{-1} = H$
- **(a)** $\forall X \in S$ there exists n > 0 such that $X^n \in H$.

Furthermore, if the conditions are satisfied by some S and H, then S is finite and $G = S \cdot H$ is the algebraic group generated by the X_i .

Sketch of an algorithm, revisited

Define by induction

- $S_0 = \{X_i\}, H = \{\mathcal{I}\}$
- $\bigcirc H_{n+1} := \overline{H_n \cdot H_n}$
- $S_{n+1} := S_n$. For *X*, *Y* in *S_n*, if *X* · *Y* \notin *S_nH_n* then *S_{n+1}* := *S_{n+1}* ∪ {*X* · *Y*}
- For X in S_n do $H_{n+1} := \overline{X \cdot H_{n+1} \cdot X^{-1} \cdot H_{n+1}}$
- So For X in S_n , compute the group $G_X = S_X H_X$ generated by X and add H_X to $H_{n+1} : H_{n+1} := \overline{H_X \cdot H_{n+1}}$

Then the limit $S = \bigcup S_n$, $H = \bigcup H_n$ satisfies all conditions of the previous fact. In particular, *S* is finite.

Theorem

The previous algorithm terminates and gives sets S, H such that $G = S \cdot H$ is the algebraic group generated by the X_i .

We need only to know how to compute the group generated by one matrix.

Group generated by one matrix : example

$$X=egin{pmatrix} eta^2 & 0 & 0 & 0 \ 0 & eta & 0 & 0 \ 0 & 0 & eta \gamma^{-3} & 0 \ 0 & 0 & 0 & \gamma \end{pmatrix}$$

The group generated by X is

$$\langle X \rangle = \left\{ egin{pmatrix} eta^{2k} & 0 & 0 & 0 \ 0 & eta^k & 0 & 0 \ 0 & 0 & eta^{k} \gamma^{-3k} & 0 \ 0 & 0 & 0 & \gamma^k \end{pmatrix}, k \in \mathbb{Z}
ight\}$$

The algebraic group generated by X is

$$\left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}, ab^{-2} = 1, b^{-1}d^3c = 1 \right\}$$

Group generated by one matrix

A unitary matrix, up to a change of basis is of the form

$\left(\alpha_{1}\right) $	0	0 /
0	۰.	0
0	0	α_n

(Multiplicative) relationships between the α_i is the key point:

$$(m_1,\ldots,m_n)\in\Gamma\iff\prod_i\alpha_i^{m_i}=1$$

The algebraic group generated by X is then

$$\left\{\begin{pmatrix}\lambda_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n\end{pmatrix}: \prod_i \lambda_i^{m_i} = \mathbf{1} \ \forall (m_1, \dots, m_n) \in \Gamma\right\}$$

To find Γ , we must find bounds for the m_i .

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_i computes the multiplicative relations between the α_i .

Corollary

There exists an algorithm which computes the compact group generated by a unitary matrix *X*.

Theorem

There exists an algorithm which computes the algebraic group generated by a matrix *X*.

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_i computes the multiplicative relations between the α_i .

Corollary

There exists an algorithm which computes the compact group generated by a unitary matrix *X*.

Theorem

There exists an algorithm which computes the algebraic group generated by a matrix *X*.

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_i computes the multiplicative relations between the α_i .

Corollary

There exists an algorithm which computes the compact group generated by a unitary matrix *X*.

Theorem

There exists an algorithm which computes the algebraic group generated by a matrix *X*.

Theorem (3.3)

There exists an algorithm which given matrices X_i computes the algebraic group generated by the X_i .

Due to the method (keep going until it stabilises), there is absolutely no bound of complexity for the algorithm.

Theorem

There exists an algorithm which given unitary matrices X_i computes the compact group generated by the X_i .

Theorem (3.3)

There exists an algorithm which given matrices X_i computes the algebraic group generated by the X_i .

Due to the method (keep going until it stabilises), there is absolutely no bound of complexity for the algorithm.

Theorem

There exists an algorithm which given unitary matrices X_i computes the compact group generated by the X_i .

Outline

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

Conclusion

- Automata
- Conclusion

Problem

Given matrices $\mathcal{X}_1 \dots \mathcal{X}_k$, decide if the group generated by the matrices \mathcal{X}_i is dense in the algebraic group G.

The good notion of "density" for an algebraic group is the Zariski-density.

Problem

Given unitary matrices $X_1 \dots X_k$ of dimension *n*, decide if the group generated by the matrices X_i is dense in U_n

Problem

Given matrices $\mathcal{X}_1 \dots \mathcal{X}_k$, decide if the group generated by the matrices \mathcal{X}_i is dense in the algebraic group G.

The good notion of "density" for an algebraic group is the Zariski-density.

Problem

Given unitary matrices $X_1 \dots X_k$ of dimension *n*, decide if the group generated by the matrices X_i is dense in U_n

A simple group has no non-trivial normal irreducible subgroups. This gives an algorithm for a simple group:

Theorem

H is dense in a simple group G iff H is infinite and H is normal in G.

There exists an algorithm from Babai, Beals and Rockmore to test if a finitely generated group is finite.

We only have to find a way to show that H is normal in G.

Denote by K_G the set $\{M \mapsto XMX^{-1}, X \in G\}$. K_G is a set (in fact a group) of endomorphisms of M_n .

H is normal in $G \iff \forall \phi \in K_G, \phi(H) = H$

Fact

 $\forall \phi \in \mathbf{K}_{\mathbf{H}}, \phi(\mathbf{H}) = \mathbf{H}.$

Corollary

If $K_{\rm H} = K_{\rm G}$ then H is normal in G.

Testing $K_H = K_G$ is not that easy..

Denote by K_G the set $\{M \mapsto XMX^{-1}, X \in G\}$. K_G is a set (in fact a group) of endomorphisms of M_n .

H is normal in $G \iff \forall \phi \in K_G, \phi(H) = H$

Fact $\forall \phi \in K_H, \phi(H) = H.$ Corollary If $K_H = K_G$ then H is normal in G. Testing $K_H = K_G$ is not that easy.

Denote by K_G the set $\{M \mapsto XMX^{-1}, X \in G\}$. K_G is a set (in fact a group) of endomorphisms of M_n .

H is normal in $G \iff \forall \phi \in K_G, \phi(H) = H$

Fact

 $\forall \phi \in K_H, \phi(H) = H.$

Corollary

If $K_H = K_G$ then H is normal in G.

Testing $K_H = K_G$ is not that easy..

Denote by K_G the set $\{M \mapsto XMX^{-1}, X \in G\}$. K_G is a set (in fact a group) of endomorphisms of M_n .

H is normal in $G \iff \forall \phi \in K_G, \phi(H) = H$

Fact

 $\forall \phi \in K_H, \phi(H) = H.$

Corollary

If $K_H = K_G$ then H is normal in G.

Testing $K_H = K_G$ is not that easy..

Denote by Span(S) the vector space generated by S.

Theorem (2.5)

If $\text{Span}(K_H) = \text{Span}(K_G)$, then H is normal in G.

Proof.

We use Lie algebras techniques. The condition implies that the Lie algebra of H is an ideal of the Lie algebra of G.

Fact

Testing whether $\text{Span}(K_H) = \text{Span}(K_G)$ is easy.

Denote by Span(S) the vector space generated by S.

Theorem (2.5)

If $\text{Span}(K_H) = \text{Span}(K_G)$, then H is normal in G.

Proof.

We use Lie algebras techniques. The condition implies that the Lie algebra of H is an ideal of the Lie algebra of G.

Fact

Testing whether $\text{Span}(K_H) = \text{Span}(K_G)$ is easy.

Denote by Span(S) the vector space generated by S.

Theorem (2.5)

If $\text{Span}(K_H) = \text{Span}(K_G)$, then H is normal in G.

Proof.

We use Lie algebras techniques. The condition implies that the Lie algebra of H is an ideal of the Lie algebra of G.

Fact

Testing whether $\text{Span}(K_H) = \text{Span}(K_G)$ is easy.

Let *E* be the vector space generated by the morphisms $M \mapsto X_i M X_i^{-1}$ While *E* is not stable by multiplication (composition), let $E := EE = \{\phi \circ \psi : \phi \in E, \psi \in E\}$

Theorem

For every simple group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Let *E* be the vector space generated by the morphisms $M \mapsto X_i M X_i^{-1}$ While *E* is not stable by multiplication (composition), let $E := EE = \{\phi \circ \psi : \phi \in E, \psi \in E\}$

Theorem

For every simple group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Theorem (2.26)

For every reductive group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is Zariski-dense in G.

Theorem (2.27)

For every compact group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Theorem (2.26)

For every reductive group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is Zariski-dense in G.

Theorem (2.27)

For every compact group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Theorem (8.5)

There exists a polynomial time algorithm which decides if a set of gates is complete.

Theorem (8.4)

There exists an algorithm which decides if a set of gates is universal.

Theorem (8.5)

There exists a polynomial time algorithm which decides if a set of gates is complete.

Theorem (8.4)

There exists an algorithm which decides if a set of gates is universal.

Outline

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

We are given a gate for each letter $a, b, c \dots$

The value (or probability) of a word ω is function of the result of the circuit corresponding to ω .

Automata (Sketch)

acc is accepted with probability $|\alpha|^2$.

bbab is accepted with probability $|\delta|^2$.

Some theorems about quantum automata :

Theorem (5.4)

We can decide given an automaton A and a threshold λ if there exists a word accepted with a probability strictly greater than λ .

We use the algorithm which computes the group generated by some matrices.

Theorem (7.1)

Non-deterministic quantum automata with an isolated threshold recognise only regular languages.

The proof introduces a new model of automata, called topological automata.

Some theorems about quantum automata :

Theorem (5.4)

We can decide given an automaton A and a threshold λ if there exists a word accepted with a probability strictly greater than λ .

We use the algorithm which computes the group generated by some matrices.

Theorem (7.1)

Non-deterministic quantum automata with an isolated threshold recognise only regular languages.

The proof introduces a new model of automata, called topological automata.

Outline

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density

Conclusion Automata

Conclusion

• Study of quantum objects using algebraic groups techniques.

- New algorithms about algebraic groups.
- Many other potentially interesting things.

- Study of quantum objects using algebraic groups techniques.
- New algorithms about algebraic groups.
- Many other potentially interesting things.

- Study of quantum objects using algebraic groups techniques.
- New algorithms about algebraic groups.
- Many other potentially interesting things.

Problem

What if the number of auxiliary wires depends on the gate to realise $(\infty$ -universality) ? Is it equivalent to m-universality for some m ?

Problem

Find an efficient algorithm to decide whether some matrix \mathcal{X} is in the algebraic group generated by the matrices \mathcal{X}_i .

More generally, use the structure of the algebraic groups more efficiently.

Problem

What if the number of auxiliary wires depends on the gate to realise $(\infty$ -universality) ? Is it equivalent to m-universality for some m ?

Problem

Find an efficient algorithm to decide whether some matrix X is in the algebraic group generated by the matrices X_i .

More generally, use the structure of the algebraic groups more efficiently.