
Techniques algébriques en calcul quantique

E. Jeandel

Laboratoire de l’Informatique du Parallélisme
LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

8 Avril 2005

E. Jeandel, LIP, ENS Lyon Techniques algébriques en calcul quantique 1/54



Algebraic Techniques in Quantum Computing

E. Jeandel

Laboratoire de l’Informatique du Parallélisme
LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

April 8th, 2005

E. Jeandel, LIP, ENS Lyon Algebraic Techniques in Quantum Computing 2/54



Outline

1 Combinatorial setting: Quantum gates
Definitions
Completeness and Universality

2 Algebraic setting
Quantum gates are unitary matrices
Computing the group
Density

3 Conclusion
Automata
Conclusion

E. Jeandel, LIP, ENS Lyon Algebraic Techniques in Quantum Computing 3/54



Introduction

Classical Quantum
State q

∑
αiqi

The system may be
in all states simultaneously

Operators Maps Unitary (hence reversible) maps
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What is a quantum gate ?
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What is a quantum gate ?
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What can we do with quantum gates ?
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(b) M[σ] (c) The operation M⊗I

A quantum circuit is everything we can obtain by applying these
constructions.
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What we cannot do
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Quantum mechanics implies no-cloning.
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Completeness

A (finite) set of gates is complete if every quantum gate can be
obtained by a quantum circuit built on these gates.

How to show that some set of gates is complete ?
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Game: Design this gate

i R GG i
i G BG i
i B RG i
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Toolkit 1
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Toolkit 1: Universality

Fact
If there are two wires set to 1, we can make the gate G.

This is called universality with ancillas .
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Toolkit 1: Non-completeness

Fact
If among the additional wires, strictly less than 2 are set to 1, the gate
G cannot be made.

Any circuit, even the most intricate, cannot produce any 1 using only
the gate M.
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Toolkit 1: Summary

Theorem (8.7)
There exists a set of gates Bi such that Bi is 2-universal but neither
1-universal nor k-complete.
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Toolkit 2
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Toolkit 2: Non-completeness

Fact
Without any additional wire, we cannot realise the gate G.

If the three given wires are set to 1,1 and 0 there is no mean to have
three 1 or three 0.
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Toolkit 2: 2 additional wires

We are given two additional 0/1-wires.

We have now five 0/1-wires. 3 of them must be equal !
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Problem: The wiring depends on the 3 equal wires.
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Toolkit 2: Solution

Consider the following circuit:
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Toolkit 2: Solution

If 4 bits are equal:
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Toolkit 2: Solution

If 3 bits are equal:
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Toolkit 2: Solution

If all 5 bits are equal:
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Toolkit 2: Summary

Fact
The previous circuit simulates the gate G whatever the bits on the
wires are.

This is called 2-completeness (since we use 2 additional wires).
Up to some technical details, we obtain:

Theorem (8.8)
There exists a set of gates Bi such that Bi is 3-complete but not
complete.
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What is a quantum gate ?
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What is a quantum gate ?

M

A quantum gate over n qubits

is a 2n × 2n unitary matrix
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Approximating Quantum Circuits

Problem
Given unitary matrices X1 . . .Xn and a unitary matrix M, is M in the
group generated by the Xi ?

In the real life, we do not try to obtain quantum gates, but rather to
approximate them.

Problem
Given unitary matrices X1 . . .Xn and a unitary matrix M, is M in the
euclidean closure of the group generated by the Xi ?
(More generally, investigate finitely generated compact groups)
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Why compact groups ?

Property
A compact group G of Mn(R) is algebraic. That is there exists
polynomials p1 . . .pk such that X ∈ G ⇐⇒ ∀i ,pi(X ) = 0

For instance, if G = O2(R), then

G =

{
X =

(
a b
c d

)
: XX T = I

}
=


(

a b
c d

)
:


a2 + b2 − 1 = 0
c2 + d2 − 1 = 0

ac + bd = 0


We can compute things !
Now we focus on algebraic groups.
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Question

Problem
Given matrices X1 . . .Xn, compute the algebraic group generated by
the matrices Xi .

Computing the group means finding polynomials pi such that

X ∈ G ⇐⇒ ∀i ,pi(X ) = 0

Algebraic sets (defined by polynomials) are the closed sets of a
topology called the Zariski topology.
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Irreducible groups

Theorem
If G1 and G2 are irreducible algebraic groups given by polynomials,
one may obtain polynomials for 〈G1,G2〉 by the following algorithm:

1 H := G1 ·G2

2 While H · H 6= H do
H := H · H

(A is the Zariski-closure of A, the smallest algebraic set containing A.
A · B may be obtained by using Groebner basis techniques)
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Irreducible groups

Theorem
If G1 and G2 are irreducible algebraic groups given by polynomials,
one may obtain polynomials for 〈G1,G2〉 by the following algorithm:

1 H := G1 ·G2

2 While H · H 6= H do
H := H · H

Sketch of proof: At each step H is an irreducible algebraic variety.
If H · H 6= H, H · H is of a greater dimension, which proves that the
algorithm terminates.
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General groups

Fact
Let G be an algebraic group generated by X1 . . .Xk . Then G = S · H
with

1 ∀i ,Xi ∈ S · H
2 H is an irreducible algebraic group
3 S · H · S · H = S · H
4 H is normal in G : S · H · S−1 = H
5 S is finite

Furthermore, if the conditions are satisfied by some S and H, then
G = S · H is the algebraic group generated by the Xi .
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Sketch of an algorithm

Define by induction
1 S0 = {Xi}, H0 = {I}
2 Hn+1 := Hn · Hn

3 Sn+1 := Sn.
For X ,Y in Sn, if X · Y 6∈ SnHn then Sn+1 := Sn+1 ∪ {X · Y}

4 For X in Sn do Hn+1 := X · Hn+1 · X−1 · Hn+1

Then the limit S =
⋃

Sn,H =
⋃

Hn satisfies all conditions of the
previous fact. . . except perhaps the last one.
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General groups revisited

Fact
Let G be an algebraic group generated by X1 . . .Xk . Then G = S · H
with

1 ∀i ,Xi ∈ S · H
2 H is an irreducible algebraic group
3 S · S ⊆ S · H
4 H is normal in G : S · H · S−1 = H
5 S is finite

Furthermore, if the conditions are satisfied by some S and H, then S is
finite and G = S · H is the algebraic group generated by the Xi .

E. Jeandel, LIP, ENS Lyon Algebraic Techniques in Quantum Computing 33/54



General groups revisited

Fact
Let G be an algebraic group generated by X1 . . .Xk . Then G = S · H
with

1 ∀i ,Xi ∈ S · H
2 H is an irreducible algebraic group
3 S · S ⊆ S · H
4 H is normal in G : S · H · S−1 = H
5 ∀X ∈ S there exists n > 0 such that X n ∈ H.

Furthermore, if the conditions are satisfied by some S and H, then S is
finite and G = S · H is the algebraic group generated by the Xi .
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Sketch of an algorithm, revisited

Define by induction
1 S0 = {Xi}, H = {I}
2 Hn+1 := Hn · Hn

3 Sn+1 := Sn.
For X ,Y in Sn, if X · Y 6∈ SnHn then Sn+1 := Sn+1 ∪ {X · Y}

4 For X in Sn do Hn+1 := X · Hn+1 · X−1 · Hn+1

5 For X in Sn, compute the group GX = SX HX generated by X and
add HX to Hn+1 : Hn+1 := HX · Hn+1

Then the limit S =
⋃

Sn,H =
⋃

Hn satisfies all conditions of the
previous fact. In particular, S is finite.
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The new algorithm works

Theorem
The previous algorithm terminates and gives sets S,H such that
G = S · H is the algebraic group generated by the Xi .

We need only to know how to compute the group generated by one
matrix.
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Group generated by one matrix : example

X =


β2 0 0 0
0 β 0 0
0 0 βγ−3 0
0 0 0 γ


The group generated by X is

〈X 〉 =



β2k 0 0 0
0 βk 0 0
0 0 βkγ−3k 0
0 0 0 γk

 , k ∈ Z


The algebraic group generated by X is


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 ,ab−2 = 1,b−1d3c = 1
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Group generated by one matrix

A unitary matrix, up to a change of basis is of the formα1 0 0

0
. . . 0

0 0 αn


(Multiplicative) relationships between the αi is the key point:

(m1, . . . ,mn) ∈ Γ ⇐⇒
∏

i α
mi
i = 1

The algebraic group generated by X is then
λ1 0 0

0
. . . 0

0 0 λn

 :
∏

i λ
mi
i = 1 ∀(m1, . . . ,mn) ∈ Γ


To find Γ, we must find bounds for the mi .
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Group generated by one matrix

Theorem (Ge)
There exists a polynomial-time algorithm which given the αi computes
the multiplicative relations between the αi .

Corollary
There exists an algorithm which computes the compact group
generated by a unitary matrix X .

Theorem
There exists an algorithm which computes the algebraic group
generated by a matrix X .
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Summary

Theorem (3.3)
There exists an algorithm which given matrices Xi computes the
algebraic group generated by the Xi .

Due to the method (keep going until it stabilises), there is absolutely no
bound of complexity for the algorithm.

Theorem
There exists an algorithm which given unitary matrices Xi computes
the compact group generated by the Xi .
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Question

Problem
Given matrices X1 . . .Xk , decide if the group generated by the
matrices Xi is dense in the algebraic group G.

The good notion of “density” for an algebraic group is the
Zariski-density.

Problem
Given unitary matrices X1 . . .Xk of dimension n, decide if the group
generated by the matrices Xi is dense in Un
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Simple groups

A simple group has no non-trivial normal irreducible subgroups.
This gives an algorithm for a simple group:

Theorem
H is dense in a simple group G iff H is infinite and H is normal in G.

There exists an algorithm from Babai, Beals and Rockmore to test if a
finitely generated group is finite.
We only have to find a way to show that H is normal in G.
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Normal groups

H is normal in G ⇐⇒ ∀X ∈ G,XHX−1 = H

Denote by KG the set {M 7→ XMX−1,X ∈ G}. KG is a set (in fact a
group) of endomorphisms of Mn.

H is normal in G ⇐⇒ ∀φ ∈ KG, φ(H) = H

Fact
∀φ ∈ KH , φ(H) = H.

Corollary
If KH = KG then H is normal in G.

Testing KH = KG is not that easy..
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Normal groups

Denote by Span(S) the vector space generated by S.

Theorem (2.5)
If Span(KH) = Span(KG), then H is normal in G.

Proof.
We use Lie algebras techniques. The condition implies that the Lie
algebra of H is an ideal of the Lie algebra of G.

Fact
Testing whether Span(KH) = Span(KG) is easy.
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Computing Span(KH)

Let E be the vector space generated by the morphisms M 7→ XiMX−1
i

While E is not stable by multiplication (composition), let
E := EE = {φ ◦ ψ : φ ∈ E , ψ ∈ E}

Theorem
For every simple group G, there exists a polynomial time algorithm
which decides if a finitely generated subgroup H is dense in G.
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Generalisation

Theorem (2.26)
For every reductive group G, there exists a polynomial time algorithm
which decides if a finitely generated subgroup H is Zariski-dense in G.

Theorem (2.27)
For every compact group G, there exists a polynomial time algorithm
which decides if a finitely generated subgroup H is dense in G.
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Back to circuits

Theorem (8.5)
There exists a polynomial time algorithm which decides if a set of
gates is complete.

Theorem (8.4)
There exists an algorithm which decides if a set of gates is universal.
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Automata (Sketch)

We are given a gate for each letter a,b, c . . . .

b... ...
bb

a bb
b

...
... b... ...

bb
b bb

b
...

... b... ...
bb

c bb
b

...
...

The value (or probability) of a word ω is function of the result of the
circuit corresponding to ω.
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Automata (Sketch)

0

0
0

b... ...
bb

a ...
... c ...

... c ...
... bb
bα0 + β1

acc is accepted with probability |α|2.

0

0
0

b... ...
bb

b ...
... b ...

... a ...
... b ...

... bb
bδ0 + ε1

bbab is accepted with probability |δ|2.
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Theorems

Some theorems about quantum automata :

Theorem (5.4)
We can decide given an automaton A and a threshold λ if there exists
a word accepted with a probability strictly greater than λ.

We use the algorithm which computes the group generated by some
matrices.

Theorem (7.1)
Non-deterministic quantum automata with an isolated threshold
recognise only regular languages.

The proof introduces a new model of automata, called topological
automata.
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Conclusion

Study of quantum objects using algebraic groups techniques.

New algorithms about algebraic groups.

Many other potentially interesting things.
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Perspectives and open problems

Problem
What if the number of auxiliary wires depends on the gate to realise
(∞-universality) ?
Is it equivalent to m-universality for some m ?

Problem
Find an efficient algorithm to decide whether some matrix X is in the
algebraic group generated by the matrices Xi .

More generally, use the structure of the algebraic groups more
efficiently.
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