Techniques algébriques en calcul quantique

E. Jeandel

Laboratoire de l'Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

8 Avril 2005

Algebraic Techniques in Quantum Computing

E. Jeandel
Laboratoire de l'Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon

April 8th, 2005

Outline

(1) Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality
(2) Algebraic setting
- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

Introduction

	Classical	Quantum
State	q	$\sum \alpha_{i} q_{i}$ The system may be in all states simultaneously
Operators	Maps	Unitary (hence reversible) maps

Outline

(1) Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

What is a quantum gate?

What is a quantum gate?

What is a quantum gate?

What can we do with quantum gates ?

(a) The multiplication $\mathcal{M N}$

(c) The operation $\mathcal{M} \otimes \mathcal{I}$

A quantum circuit is everything we can obtain by applying these constructions.

What we cannot do

Quantum mechanics implies no-cloning.

Outline

(1) Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(D) Conclusion
- Automata
- Conclusion

Completeness

- A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates.

Completeness

- A (finite) set of gates is complete if every quantum gate can be obtained by a quantum circuit built on these gates.
- How to show that some set of gates is complete?

Game: Design this gate

Toolkit 1

Toolkit 1: Universality

Fact

If there are two wires set to 1 , we can make the gate G.
This is called universality with ancillas.

Toolkit 1: Non-completeness

Fact

If among the additional wires, strictly less than 2 are set to 1 , the gate G cannot be made.

Any circuit, even the most intricate, cannot produce any 1 using only the gate \mathcal{M}.

Toolkit 1: Summary

Theorem (8.7)

There exists a set of gates \mathcal{B}_{i} such that \mathcal{B}_{i} is 2-universal but neither 1 -universal nor k-complete.

Toolkit 2

otherwise

Toolkit 2: Non-completeness

Fact

Without any additional wire, we cannot realise the gate G.
If the three given wires are set to 1,1 and 0 there is no mean to have three 1 or three 0 .

Toolkit 2: 2 additional wires

- We are given two additional 0/1-wires.

- We have now five 0/1-wires. 3 of them must be equal !

Problem: The wiring depends on the 3 equal wires.

Toolkit 2: 2 additional wires

- We are given two additional 0/1-wires.
- We have now five $0 / 1$-wires. 3 of them must be equal !

Problem: The wiring depends on the 3 equal wires.

Toolkit 2: Solution

Consider the following circuit:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 4 bits are equal:

Toolkit 2: Solution

If 3 bits are equal:

Toolkit 2: Solution

If all 5 bits are equal:

Toolkit 2: Summary

Fact

The previous circuit simulates the gate G whatever the bits on the wires are.

This is called 2-completeness (since we use 2 additional wires).
Up to some technical details, we obtain:

There exists a set of gates \mathcal{B}_{i} such that \mathcal{B}_{i} is 3 -complete but not complete.

Toolkit 2: Summary

Fact

The previous circuit simulates the gate G whatever the bits on the wires are.

This is called 2-completeness (since we use 2 additional wires). Up to some technical details, we obtain:

Theorem (8.8)

There exists a set of gates \mathcal{B}_{i} such that \mathcal{B}_{i} is 3 -complete but not complete.

Outline

Combinatorial setting: Quantum gates
 - Definitions
 - Completeness and Universality

(2) Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(5) Conclusion
- Automata
- Conclusion

What is a quantum gate?

What is a quantum gate?

What is a quantum gate?

What is a quantum gate?

\mathcal{M}

What is a quantum gate?

A quantum gate over n qubits

$$
\mathcal{M}
$$

is a $2^{n} \times 2^{n}$ unitary matrix

Approximating Quantum Circuits

Problem

Given unitary matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{n}$ and a unitary matrix \mathcal{M}, is \mathcal{M} in the group generated by the \mathcal{X}_{i} ?

```
In the real life, we do not try to obtain quantum gates, but rather to
approximate them.
Given unitary matrices }\mp@subsup{\mathcal{X}}{1}{}\ldots\mp@subsup{\mathcal{X}}{n}{}\mathrm{ and a unitary matrix }\mathcal{M}\mathrm{ , is }\mathcal{M}\mathrm{ in the
euclidean closure of the group generated by the }\mp@subsup{\mathcal{X}}{i}{}\mathrm{ ?
(More generally, investigate finitely generated compact groups)
```


Approximating Quantum Circuits

Problem

Given unitary matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{n}$ and a unitary matrix \mathcal{M}, is \mathcal{M} in the group generated by the \mathcal{X}_{i} ?

In the real life, we do not try to obtain quantum gates, but rather to approximate them.

Problem

Given unitary matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{n}$ and a unitary matrix \mathcal{M}, is \mathcal{M} in the euclidean closure of the group generated by the \mathcal{X}_{i} ? (More generally, investigate finitely generated compact groups)

Why compact groups?

Property

A compact group G of $M_{n}(\mathbb{R})$ is algebraic. That is there exists polynomials $p_{1} \ldots p_{k}$ such that $\mathcal{X} \in G \Longleftrightarrow \forall i, p_{i}(\mathcal{X})=0$

For instance, if $G=O_{2}(\mathbb{R})$, then
$G=\left\{X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): X X^{T}=\mathcal{I}\right\}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right):\left\{\begin{array}{r}a^{2}+b^{2}-1=0 \\ c^{2}+d^{2}-1=0 \\ a c+b d=0\end{array}\right\}\right.$
We can compute things !
Now we focus on algebraic groups.

Outline

Combinatorial setting: Quantum gates
 - Definitions
 - Completeness and Universality

(2) Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

Question

Problem

Given matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{n}$, compute the algebraic group generated by the matrices \mathcal{X}_{i}.

Computing the group means finding polynomials p_{i} such that

$$
\mathcal{X} \in G \Longleftrightarrow \forall i, p_{i}(\mathcal{X})=0
$$

Algebraic sets (defined by polynomials) are the closed sets of a topology called the Zariski topology.

Irreducible groups

Theorem

If G_{1} and G_{2} are irreducible algebraic groups given by polynomials, one may obtain polynomials for $\left\langle G_{1}, G_{2}\right\rangle$ by the following algorithm:
($H:=\overline{G_{1} \cdot G_{2}}$
(2) While $\overline{H \cdot H} \neq H$ do $H:=\overline{H \cdot H}$
(\bar{A} is the Zariski-closure of A, the smallest algebraic set containing A. $\overline{A \cdot B}$ may be obtained by using Groebner basis techniques)

Irreducible groups

Theorem

If G_{1} and G_{2} are irreducible algebraic groups given by polynomials, one may obtain polynomials for $\left\langle G_{1}, G_{2}\right\rangle$ by the following algorithm:
($H:=\overline{G_{1} \cdot G_{2}}$
(While $\overline{H \cdot H} \neq H$ do

$$
H:=\overline{H \cdot H}
$$

Sketch of proof: At each step H is an irreducible algebraic variety. If $H \cdot H \neq H, H \cdot H$ is of a greater dimension, which proves that the algorithm terminates.

General groups

Fact

Let G be an algebraic group generated by $X_{1} \ldots X_{k}$. Then $G=S \cdot H$ with

- $\forall i, X_{i} \in S \cdot H$
(2) H is an irreducible algebraic group
- S.H.S.H $=S \cdot H$
- H is normal in $G: S \cdot H \cdot S^{-1}=H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then $G=S \cdot H$ is the algebraic group generated by the X_{i}.

General groups

Fact

Let G be an algebraic group generated by $X_{1} \ldots X_{k}$. Then $G=S \cdot H$ with

- $\forall i, X_{i} \in S \cdot H$
(2) H is an irreducible algebraic group
- $S \cdot S \subseteq S \cdot H$
- H is normal in $G: S \cdot H \cdot S^{-1}=H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then $G=S \cdot H$ is the algebraic group generated by the X_{i}.

Sketch of an algorithm

Define by induction
($S_{0}=\left\{X_{i}\right\}, H_{0}=\{\mathcal{I}\}$
(2) $H_{n+1}:=\overline{H_{n} \cdot H_{n}}$
(3) $S_{n+1}:=S_{n}$.

For X, Y in S_{n}, if $X \cdot Y \notin S_{n} H_{n}$ then $S_{n+1}:=S_{n+1} \cup\{X \cdot Y\}$
(0) For X in S_{n} do $H_{n+1}:=\overline{X \cdot H_{n+1} \cdot X^{-1} \cdot H_{n+1}}$

Then the limit $S=\bigcup S_{n}, H=\bigcup H_{n}$ satisfies all conditions of the previous fact . except perhaps the last one.

Sketch of an algorithm

Define by induction

- $S_{0}=\left\{X_{i}\right\}, H_{0}=\{\mathcal{I}\}$
(2) $H_{n+1}:=\overline{H_{n} \cdot H_{n}}$
(-) $S_{n+1}:=S_{n}$.
For X, Y in S_{n}, if $X \cdot Y \notin S_{n} H_{n}$ then $S_{n+1}:=S_{n+1} \cup\{X \cdot Y\}$
(- For X in S_{n} do $H_{n+1}:=\overline{X \cdot H_{n+1} \cdot X-1 \cdot H_{n+1}}$
Then the limit $S=\bigcup S_{n}, H=\bigcup H_{n}$ satisfies all conditions of the previous fact. . . except perhaps the last one.

General groups revisited

Fact

Let G be an algebraic group generated by $X_{1} \ldots X_{k}$. Then $G=S \cdot H$ with

- $\forall i, X_{i} \in S \cdot H$
(2) H is an irreducible algebraic group
- $S \cdot S \subseteq S \cdot H$
- H is normal in $G: S \cdot H \cdot S^{-1}=H$
- S is finite

Furthermore, if the conditions are satisfied by some S and H, then S is finite and $G=S \cdot H$ is the algebraic group generated by the X_{i}.

General groups revisited

Fact

Let G be an algebraic group generated by $X_{1} \ldots X_{k}$. Then $G=S \cdot H$ with

- $\forall i, X_{i} \in S \cdot H$
(H is an irreducible algebraic group
- $S \cdot S \subseteq S \cdot H$
- H is normal in $G: S \cdot H \cdot S^{-1}=H$
- $\forall X \in S$ there exists $n>0$ such that $X^{n} \in H$.

Furthermore, if the conditions are satisfied by some S and H, then S is finite and $G=S \cdot H$ is the algebraic group generated by the X_{i}.

Sketch of an algorithm, revisited

Define by induction
($S_{0}=\left\{X_{i}\right\}, H=\{I\}$
(2) $H_{n+1}:=\overline{H_{n} \cdot H_{n}}$
() $S_{n+1}:=S_{n}$.

For X, Y in S_{n}, if $X \cdot Y \notin S_{n} H_{n}$ then $S_{n+1}:=S_{n+1} \cup\{X \cdot Y\}$
(For X in S_{n} do $H_{n+1}:=\overline{X \cdot H_{n+1} \cdot X^{-1} \cdot H_{n+1}}$
(6) For X in S_{n}, compute the group $G_{X}=S_{X} H_{X}$ generated by X and add H_{X} to $H_{n+1}: H_{n+1}:=\overline{H_{X} \cdot H_{n+1}}$
Then the limit $S=\bigcup S_{n}, H=\bigcup H_{n}$ satisfies all conditions of the previous fact. In particular, S is finite.

The new algorithm works

Theorem

The previous algorithm terminates and gives sets S, H such that $G=S \cdot H$ is the algebraic group generated by the X_{i}.

We need only to know how to compute the group generated by one matrix.

Group generated by one matrix : example

$$
X=\left(\begin{array}{cccc}
\beta^{2} & 0 & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & \beta \gamma^{-3} & 0 \\
0 & 0 & 0 & \gamma
\end{array}\right)
$$

The group generated by X is

$$
\langle\boldsymbol{X}\rangle=\left\{\left(\begin{array}{cccc}
\beta^{2 k} & 0 & 0 & 0 \\
0 & \beta^{k} & 0 & 0 \\
0 & 0 & \beta^{k} \gamma^{-3 k} & 0 \\
0 & 0 & 0 & \gamma^{k}
\end{array}\right), k \in \mathbb{Z}\right\}
$$

The algebraic group generated by X is

$$
\left\{\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right), a b^{-2}=1, b^{-1} d^{3} c=1\right\}
$$

Group generated by one matrix

A unitary matrix, up to a change of basis is of the form

$$
\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \alpha_{n}
\end{array}\right)
$$

(Multiplicative) relationships between the α_{i} is the key point:

$$
\left(m_{1}, \ldots, m_{n}\right) \in \Gamma \Longleftrightarrow \prod_{i} \alpha_{i}^{m_{i}}=1
$$

The algebraic group generated by X is then

$$
\left\{\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right): \prod_{i} \lambda_{i}^{m_{i}}=1 \forall\left(m_{1}, \ldots, m_{n}\right) \in \Gamma\right\}
$$

To find Γ, we must find bounds for the m_{i}.

Group generated by one matrix

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_{i} computes the multiplicative relations between the α_{i}.

There exists an algorithm which computes the compact group generated by a unitary matrix X.

There exists an algorithm which computes the algebraic group generated by a matrix X.

Group generated by one matrix

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_{i} computes the multiplicative relations between the α_{i}.

Corollary

There exists an algorithm which computes the compact group generated by a unitary matrix X.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { There exists an algorithm which computes the algebraic group } \\
& \text { generated by a matrix } X \text {. }
\end{aligned}
$$

Group generated by one matrix

Theorem (Ge)

There exists a polynomial-time algorithm which given the α_{i} computes the multiplicative relations between the α_{i}.

Corollary

There exists an algorithm which computes the compact group generated by a unitary matrix X.

Theorem

There exists an algorithm which computes the algebraic group generated by a matrix X.

Summary

Theorem (3.3)

There exists an algorithm which given matrices X_{i} computes the algebraic group generated by the X_{i}.

Due to the method (keep going until it stabilises), there is absolutely no bound of complexity for the algorithm.

There exists an algorithm which given unitary matrices X_{i} computes the compact group generated by the X_{i}.

Summary

Theorem (3.3)

There exists an algorithm which given matrices X_{i} computes the algebraic group generated by the X_{i}.

Due to the method (keep going until it stabilises), there is absolutely no bound of complexity for the algorithm.

Theorem

There exists an algorithm which given unitary matrices X_{i} computes the compact group generated by the X_{i}.

Outline

(1) Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality
(2) Algebraic setting
- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

Question

Problem

Given matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{k}$, decide if the group generated by the matrices \mathcal{X}_{i} is dense in the algebraic group G.

The good notion of "density" for an algebraic group is the Zariski-density.

Given unitary matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{k}$ of dimension n, decide if the group generated by the matrices \mathcal{X}_{i} is dense in U_{n}

Question

Problem

Given matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{k}$, decide if the group generated by the matrices \mathcal{X}_{i} is dense in the algebraic group G.

The good notion of "density" for an algebraic group is the Zariski-density.

Problem

Given unitary matrices $\mathcal{X}_{1} \ldots \mathcal{X}_{k}$ of dimension n, decide if the group generated by the matrices \mathcal{X}_{i} is dense in U_{n}

Simple groups

A simple group has no non-trivial normal irreducible subgroups. This gives an algorithm for a simple group:

Theorem

H is dense in a simple group G iff H is infinite and H is normal in G.
There exists an algorithm from Babai, Beals and Rockmore to test if a finitely generated group is finite.
We only have to find a way to show that H is normal in G.

Normal groups

H is normal in $G \Longleftrightarrow \forall X \in G, X H X^{-1}=H$

Denote by K_{G} the set $\left\{M \mapsto X M X^{-1}, X \in G\right\}$. K_{G} is a set (in fact a group) of endomorphisms of M_{n}.
H is normal in $G \longleftrightarrow \forall \phi \in K_{G}, \phi(H)=H$
$\forall \phi \in K_{H}, \phi(H)=H$.

Testing $K_{H}=K_{G}$ is not that easy..

Normal groups

H is normal in $G \Longleftrightarrow \forall X \in G, X H X^{-1}=H$
Denote by K_{G} the set $\left\{M \mapsto X M X^{-1}, X \in G\right\} . K_{G}$ is a set (in fact a group) of endomorphisms of M_{n}.

$$
H \text { is normal in } G \Longleftrightarrow \forall \phi \in K_{G}, \phi(H)=H
$$

$$
\text { If } K_{H}=K_{G} \text { then } H \text { is normal in } G \text {. }
$$

Testing $K_{H}=K_{G}$ is not that easy..

Normal groups

H is normal in $G \Longleftrightarrow \forall X \in G, X H X^{-1}=H$
Denote by K_{G} the set $\left\{M \mapsto X M X^{-1}, X \in G\right\} . K_{G}$ is a set (in fact a group) of endomorphisms of M_{n}.
H is normal in $G \Longleftrightarrow \forall \phi \in K_{G}, \phi(H)=H$

Fact

$\forall \phi \in K_{H}, \phi(H)=H$.

If $K_{H}=K_{G}$ then H is normal in G.
Testing $K_{H}=K_{G}$ is not that easy.

Normal groups

$$
H \text { is normal in } G \Longleftrightarrow \forall X \in G, X H X^{-1}=H
$$

Denote by K_{G} the set $\left\{M \mapsto X M X^{-1}, X \in G\right\} . K_{G}$ is a set (in fact a group) of endomorphisms of M_{n}.

$$
H \text { is normal in } G \Longleftrightarrow \forall \phi \in K_{G}, \phi(H)=H
$$

> Fact
> $\forall \phi \in K_{H}, \phi(H)=H$.

Corollary

If $K_{H}=K_{G}$ then H is normal in G.
Testing $K_{H}=K_{G}$ is not that easy..

Normal groups

Denote by $\operatorname{Span}(S)$ the vector space generated by S.

```
Theorem (2.5)
If \(\operatorname{Span}\left(K_{H}\right)=\operatorname{Span}\left(K_{G}\right)\), then \(H\) is normal in \(G\).
```


We use Lie algebras techniques. The condition implies that the Lie

 algebra of H is an ideal of the Lie algebra of G.
Testing whether $\operatorname{Span}\left(K_{H}\right)=\operatorname{Span}\left(K_{G}\right)$ is easy.

Normal groups

Denote by $\operatorname{Span}(S)$ the vector space generated by S.

```
Theorem (2.5)
If Span (K
```


Proof.

We use Lie algebras techniques. The condition implies that the Lie algebra of H is an ideal of the Lie algebra of G.

Testing whether $\operatorname{Span}\left(K_{H}\right)=\operatorname{Span}\left(K_{G}\right)$ is easy.

Normal groups

Denote by $\operatorname{Span}(S)$ the vector space generated by S.

```
Theorem (2.5)
If Span(\mp@subsup{K}{H}{})=\operatorname{Span}(\mp@subsup{K}{G}{})\mathrm{ , then H is normal in G.}
```


Proof.

We use Lie algebras techniques. The condition implies that the Lie algebra of H is an ideal of the Lie algebra of G.

Fact
 Testing whether $\operatorname{Span}\left(K_{H}\right)=\operatorname{Span}\left(K_{G}\right)$ is easy.

Computing $\operatorname{Span}\left(K_{H}\right)$

Let E be the vector space generated by the morphisms $M \mapsto X_{i} M X_{i}^{-1}$ While E is not stable by multiplication (composition), let $E:=E E=\{\phi \circ \psi: \phi \in E, \psi \in E\}$

For every simple group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Computing Span $\left(K_{H}\right)$

Let E be the vector space generated by the morphisms $M \mapsto X_{i} M X_{i}^{-1}$ While E is not stable by multiplication (composition), let

$$
E:=E E=\{\phi \circ \psi: \phi \in E, \psi \in E\}
$$

Theorem

For every simple group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Generalisation

Theorem (2.26)

For every reductive group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is Zariski-dense in G.

For every compact group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Generalisation

Theorem (2.26)

For every reductive group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is Zariski-dense in G.

Theorem (2.27)

For every compact group G, there exists a polynomial time algorithm which decides if a finitely generated subgroup H is dense in G.

Back to circuits

Theorem (8.5)

There exists a polynomial time algorithm which decides if a set of gates is complete.

There exists an algorithm which decides if a set of gates is universal.

Back to circuits

Theorem (8.5)

There exists a polynomial time algorithm which decides if a set of gates is complete.

Theorem (8.4)

There exists an algorithm which decides if a set of gates is universal.

Outline

- Combinatorial setting: Quantum gates
- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

Automata (Sketch)

We are given a gate for each letter $a, b, c \ldots$

The value (or probability) of a word ω is function of the result of the circuit corresponding to ω.

Automata (Sketch)

acc is accepted with probability $|\alpha|^{2}$.

$b b a b$ is accepted with probability $|\delta|^{2}$.

Theorems

Some theorems about quantum automata :

Theorem (5.4)

We can decide given an automaton A and a threshold λ if there exists a word accepted with a probability strictly greater than λ.

We use the algorithm which computes the group generated by some matrices.

Non-deterministic quantum automata with an isolated threshold recognise only regular languages.

The proof introduces a new model of automata, called topological automata.

Theorems

Some theorems about quantum automata :

Theorem (5.4)

We can decide given an automaton A and a threshold λ if there exists a word accepted with a probability strictly greater than λ.

We use the algorithm which computes the group generated by some matrices.

Theorem (7.1)

Non-deterministic quantum automata with an isolated threshold recognise only regular languages.

The proof introduces a new model of automata, called topological automata.

Outline

(1) Combinatorial setting: Quantum gates

- Definitions
- Completeness and Universality

Algebraic setting

- Quantum gates are unitary matrices
- Computing the group
- Density
(3) Conclusion
- Automata
- Conclusion

Conclusion

- Study of quantum objects using algebraic groups techniques.
- New algorithms about algebraic groups. - Many other potentially interesting things.

Conclusion

- Study of quantum objects using algebraic groups techniques.
- New algorithms about algebraic groups.
- Many other potentially interesting things.

Conclusion

- Study of quantum objects using algebraic groups techniques.
- New algorithms about algebraic groups.
- Many other potentially interesting things.

Perspectives and open problems

Problem

What if the number of auxiliary wires depends on the gate to realise (∞-universality) ?
Is it equivalent to m-universality for some m ?

Find an efficient algorithm to decide whether some matrix \mathcal{X} is in the algebraic group generated by the matrices \mathcal{X}_{i}

More generally, use the structure of the algebraic groups more efficiently.

Perspectives and open problems

Problem

What if the number of auxiliary wires depends on the gate to realise (∞-universality)?
Is it equivalent to m-universality for some m ?

Problem

Find an efficient algorithm to decide whether some matrix \mathcal{X} is in the algebraic group generated by the matrices \mathcal{X}_{i}.

More generally, use the structure of the algebraic groups more efficiently.

