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| CONTENTS '

e Definitions : Gates, completeness.

e Algorithm to test for completeness.
— Problem in terms of algebraic groups;
— Previously known algorithms for infinite groups;

— The algorithm.
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‘ QUANTUM COMPUTATION (1) '

e A qubit is a vector of norm 1 in C2.
The canonical basis of C* is denoted by |0) , |1).

The qubit p = « |0) + (3 |1) represents a system which is simultaneously in
the states 0 and 1, with respective amplitudes o and (3. If the system is
observed, it becomes the constant qubit |0) with probability || and the
constant qubit | 1) with probability |3]?.

e A quantum state is a vector of norm 1 in (C2)®”. The canonical basis of

(C?)®™ will be denoted by |w) where w is a word over {0, 1} of length 72 .

e A quantum state is then avector ¢ = >y, |w) with Y |a,|? = 1.
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‘ QUANTUM COMPUTATION (3) '

e A guantum gate M represents the basic operation on a quantum state. It is

an operation that maps quantum states into quantum states.

e Due to the particular structure of quantum states, a quantum gate M over n
qubits is a unitary matrix of dimension 2”. (More exactly, a quantum gate is
an element of Uan /U7)

e A quantum circuit over .S is a circuit obtained from quantum gates M, in S by

applying a finite set of operations.

4/ 24 Computing with Infinite Groups



| A QUANTUM GATE '

5/24 Computing with Infinite Groups



| OPERATIONS ON QUANTUM GATES '

(b) M/o] (permutations of wires) (c) The operation M ® 7
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APPROXIMATION '

e Let .S be a (finite) set of gates over n qubits.

e Denote by G,,(.5) the set of gates over p qubits obtained by circuits over S,
and by EP(S) its euclidean closure (the set of gates we can approximate by

circuits over 5).

e G,(S5) is generated by all matrices of the form (M ® Z,,_,)|o], where
M € S, hence is finitely generated if .S is.

e S is said to be complete if every gate over n qubits can be obtained from S :

G, (S) = Uyn or more accurately U1 G, (S) = Uan.
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| COMPLETE SETS '

e The set of all gates over 2 qubits.

e Barenco, 1995 : The gate

0 0
0 0

0
1
0 e’ cos 0 —ie' =) sin g
0

et gin g e'“ cos 0 )

Where ¢, o, 6 are fixed irrational multiples of 7 and of each other.
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DECIDING COMPLETENESS '

How to prove that the set .S is complete ?
e Show how to approximate every unitary operation by a quantum circuit in .S ;

e Given a complete set S’, show how to approximate every operation of S’ by

guantum circuits ;

e Use specific properties of Q(S), the set of quantum circuits generated by S
(object of this talk)
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STRUCTURE OF G(5)

e G(S) is finitely generated, given that S is finite;

° G(S) IS always a group (we can approximate the gate AL by successive

iterations of the gate A) ;

e G(.9) is even a compact group, hence algebraic : There exists polynomials

P1 - .. Pk Inx;; (entries of the matrix) such that

M e G(S) < pi(M)=ps(M) =...

e [Derksen, EJ, Koiran, 2003] There exists a general algorithm that compute
polynomials p; for finitely generated algebraic groups. However, the

complexity of the algorithm makes him uninteresting for practical purposes;
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COMPLETENESS IN TERMS OF GROUPS '

e Deciding if a finite set of gates is complete is the same as deciding if a finitely

generated subgroup of U,, is dense in U,,

e More generally, how to prove that some finitely generated subgroup of an

algebraic group 5 is dense in G ?

Density in algebraic groups is defined with the Zariski Topology : H is dense

in (7 if every polynomial which is identically zero on H vanishes on G.
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EASY THINGS TO COMPUTE '

What are we able to compute about finitely generated matrix groups ?

e [Babai, Beals and Rockmore, 1993] There exists a polynomial time algorithm

that decides if such a group is finite ;

e [Beals, 1997] There exists a polynomial time algorithm that decides if such a

group is abelian-by-finite, nilpotent-by-finite. . .

e [Ge, 1993] There exists a polynomial time algorithm that decides if two finitely

generated groups of diagonal matrices generate the same algebraic group.

Inputs are assumed to be in a finite extension [F of (), given by an irreducible

polynomial.
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TESTING DENSITY '

Our problem, for a given group GG and a finite extension IF of Q :

e Input: Matrices X1 ... X,, € GL, ().

X1 ...X,, generate an algebraic group H over C.
e Problem:I1s H =G ?

Is there a polynomial time algorithm to solve this problem ?

As (&, IF and n are not part of the input, complexity is in terms of the size of the

coefficients of the matrices.
e For which group G is there a polynomial time algorithm ?

Due to Ge’s algorithm, we know this is true when G is a group of diagonal

matrices.
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‘ EASY THINGS TO COMPUTE (2) '

e Given generators of (7, we can easily compute env (7, the vector space

generated by the matrices in GG

— Set £ = RT.
— While there exists X; such that £ # X, F, then E = E + X, B

e We can also easily compute env ¢((G) for any morphism ¢.

e We may obtain in this way a representation of G/Z(G) : Consider the

morphism 1) such that ¢ (M) is the matrix that represents the automorphism
envG: X — MXM™1

W(M)=1 < VXeenvG MXM1=X
— VXec G MXM'1=X
— M e Z(G)
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DENSITY FOR SIMPLE GROUPS '

Let G be a simple (connected) group, that is GG has no normal non trivial

subgroup.

To prove that H is dense in G, it is therefore sufficient to prove that the

algebraic group generated by H is a normal subgroup of (G and that H is
infinite.

Denote by ¢(X) the automorphism M — X MX ~1. We want to know if
VX € G,¢(X)H = H.

As H is obviously a normal subgroup of H, it is enough to prove

¢(G).
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‘ SIMPLE GROUPS (CONT’'D) '

e |dea : Test only if they span the same (linear) subspace.

H is dense in G if and only if H is infinite and env ¢(H ) = env ¢(G)

e Sketch of Proof : We use the Lie group structure of (7 : Instead of testing if

H = G, we test if the two groups have the same Lie Algebra.

The condition ensures that the Lie Algebra [j of H is an ideal of the Lie
Algebra g of (G, which is a simple Lie Algebra. Henceh = gorh = 0. As H

is infinite, the latter is not possible.

For every simple group (5, there exists a polynomial time algorithm which decides

if a finitely generated group H of (- is dense in .
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SIMPLE GROUPS . EXAMPLES '

e All the classical groups SO,,,n > 3,S5U,,, n > 2 are standard examples of

simple groups, with the remarkable exception of the group SO 4.

e The isometry group of the isocahedron, which may be seen as a finite

subgroup of SO3 provides an example of a finite group H such that

env ¢(H) = env ¢(G).
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| SEMISIMPLE GROUPS '

e A semisimple group GG has only finitely many normal subgroups G;.

H is dense in G if and only if env ¢(H ) = env ¢(G) and for all normal
subgroups G;, H/G; is infinite

e Totestif H/G, is infinite, we need a representation of G /G, that is a
morphism ¢; : G — GL, suchthat¢)(X) = < X € G;. The

existence of such a morphism is guaranteed by classical theorems.

For every semisimple group (5, there exists a polynomial time algorithm which

decides if a finitely generated group H of G is dense in (5.

The algorithm depends of the given group (&, as we need the morphisms 2);.

18/ 24 Computing with Infinite Groups



SEMISIMPLE GROUPS : EXAMPLES '

e SO, contains two normal subgroups

oc1(a,b,c,d) = oo(a,b,c,d) =

G; = {O'Z'(CL, b,c,d),a? +b* +c? +d* = 1} fori € {1,2}
e The representation of G /(31 is given by

py — 504

—  oq(a,b,c,d)T

e Testing if H is dense in SOy is equivalentto env ¢(H) = env ¢(G) and
Y1 (H) and 12 (H) are infinite.
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| CONNECTED REDUCTIVE GROUPS '

e A connected reductive group G is such that G = Z(G)D(G) where D(G)
is the derived group of GG. Furthermore, G/Z (G) is semisimple, and
G /D(G) is a commutative diagonalisable group.

For every connected reductive group (&, there exists a polynomial time algorithm

which decides if a finitely generated group H of (& is dense in (G : Simply decide
it H/Z(G) and H/D(G) are dense in G/Z(G) and G/ D(G).

The algorithm depends of the given group (&, as we need representations of

G/D(G) and G/Z(G).
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| NON-CONNECTED REDUCTIVE GROUPS '

e Denote by (G a non-connected group and by GV the connected component
containing the identity matrix. Choose for each connected component a

maitrix YJ

Let H be the group generated by the matrices X ;. Choose for each
connected component of (G a matrix YL7 € H. If no such matrix exists, then
H is notdense in G5.

H N GY is generated by the matrices YZ-Xij_1 that belong to GV.
(Schreier’'s Theorem)

Computing the matrices YJ IS easy as G/GO is finite. Deciding if H is dense

is then equivalent to decide H N GY is dense.

21/ 24 Computing with Infinite Groups



| COMPACT GROUPS '

For every reductive group (7, there exists a polynomial time algorithm which
decides if a finitely generated group H of (5 is dense in (G. The algorithm
depends of the given group G ;

Compact groups are reductive :

For every compact group (&, there exists a polynomial time algorithm which

decides if a finitely generated group H of (5 is dense in (G. The algorithm

depends of the given group G.
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COMPLETE SETS OF GATES '

For any n, there exists a polynomial time algorithm which decides if a set of
gates over n qubits is complete : Consider it as a problem about compact

groups and solve it using the previous algorithm;
We only need to use the previous algorithms for simple groups ;

We may even get a better result : there exists a polynomial time algorithm

which decides if a set of gates over n qubits is complete.

Note : The algorithm is polynomial on the size of the input, which is

exponential in n.
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| SUMMARY'

e An algorithm which decides if a finitely generated subgroup of a compact

group (G is dense in G.
e An algorithm which decides if a finite set of gates is complete.
e Generalise the algorithm for any algebraic group ?

e Give an algorithm for other models of computation (black box groups,

computation with reals).
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