Computing with Infinite Groups

with Applications to Quantum Computation

Emmanuel Jeandel LIP, École Normale Supérieure de Lyon (France) emmanuel.jeandel@ens-lyon.fr

- Definitions : Gates, completeness.
- Algorithm to test for completeness.
 - Problem in terms of algebraic groups;
 - Previously known algorithms for infinite groups;
 - The algorithm.

QUANTUM COMPUTATION (1)

• A qubit is a vector of norm 1 in \mathbb{C}^2 .

The canonical basis of \mathbb{C}^2 is denoted by $|0
angle\,, |1
angle.$

The qubit $\phi = \alpha |0\rangle + \beta |1\rangle$ represents a system which is simultaneously in the states 0 and 1, with respective amplitudes α and β . If the system is observed, it becomes the constant qubit $|0\rangle$ with probability $|\alpha|^2$ and the constant qubit $|1\rangle$ with probability $|\beta|^2$.

- A quantum state is a vector of norm 1 in $(\mathbb{C}^2)^{\otimes n}$. The canonical basis of $(\mathbb{C}^2)^{\otimes n}$ will be denoted by $|\omega\rangle$ where ω is a word over $\{0, 1\}$ of length n.
- A quantum state is then a vector $\phi = \sum_{\omega} \alpha_{\omega} |\omega\rangle$ with $\sum |\alpha_{\omega}|^2 = 1$.

- A quantum gate M represents the basic operation on a quantum state. It is an operation that maps quantum states into quantum states.
- Due to the particular structure of quantum states, a quantum gate M over n qubits is a unitary matrix of dimension 2^n . (More exactly, a quantum gate is an element of U_{2^n}/U_1)
- A quantum circuit over S is a circuit obtained from quantum gates M_i in S by applying a finite set of operations.

- Let S be a (finite) set of gates over n qubits.
- Denote by $\mathcal{G}_p(S)$ the set of gates over p qubits obtained by circuits over S, and by $\overline{\mathcal{G}}_p(S)$ its euclidean closure (the set of gates we can approximate by circuits over S).
- $\mathcal{G}_p(S)$ is generated by all matrices of the form $(M \otimes \mathcal{I}_{n-p})[\sigma]$, where $M \in S$, hence is finitely generated if S is.
- S is said to be complete if every gate over n qubits can be obtained from S: $\overline{\mathcal{G}}_n(S) = U_{2^n}$ or more accurately $U_1\overline{\mathcal{G}}_n(S) = U_{2^n}$.

COMPLETE SETS

- The set of all gates over 2 qubits.
- Barenco, 1995 : The gate

Where ϕ, α, θ are fixed irrational multiples of π and of each other.

DECIDING COMPLETENESS

How to prove that the set S is complete ?

- Show how to approximate every unitary operation by a quantum circuit in S;
- Given a complete set $S^\prime,$ show how to approximate every operation of S^\prime by quantum circuits ;
- Use specific properties of $\mathcal{G}(S)$, the set of quantum circuits generated by S (object of this talk)

Structure of $\mathcal{G}(S)$

- $\mathcal{G}(\mathcal{S})$ is finitely generated, given that S is finite;
- $\overline{\mathcal{G}}(S)$ is always a group (we can approximate the gate A^{-1} by successive iterations of the gate A);
- $\overline{\mathcal{G}}(S)$ is even a compact group, hence algebraic : There exists polynomials $p_1 \dots p_k$ in x_{ij} (entries of the matrix) such that

$$M \in \overline{\mathcal{G}}(S) \iff p_1(M) = p_2(M) = \ldots = p_k(M) = 0$$

• [Derksen, EJ, Koiran, 2003] There exists a general algorithm that compute polynomials p_i for finitely generated algebraic groups. However, the complexity of the algorithm makes him uninteresting for practical purposes;

COMPLETENESS IN TERMS OF GROUPS

- Deciding if a finite set of gates is complete is the same as deciding if a finitely generated subgroup of U_n is dense in U_n
- More generally, how to prove that some finitely generated subgroup of an algebraic group G is dense in G ?

Density in algebraic groups is defined with the Zariski Topology : H is dense in G if every polynomial which is identically zero on H vanishes on G. What are we able to compute about finitely generated matrix groups ?

- [Babai, Beals and Rockmore, 1993] There exists a polynomial time algorithm that decides if such a group is finite ;
- [Beals, 1997] There exists a polynomial time algorithm that decides if such a group is abelian-by-finite, nilpotent-by-finite...
- [Ge, 1993] There exists a polynomial time algorithm that decides if two finitely generated groups of diagonal matrices generate the same algebraic group.

Inputs are assumed to be in a finite extension \mathbb{F} of \mathbb{Q} , given by an irreducible polynomial.

Our problem, for a given group G and a finite extension \mathbb{F} of \mathbb{Q} :

• Input : Matrices $X_1 \dots X_m \in \operatorname{GL}_n(\mathbb{F})$.

 $X_1 \dots X_m$ generate an algebraic group H over \mathbb{C} .

• Problem : Is H = G ?

Is there a polynomial time algorithm to solve this problem ?

As G, \mathbb{F} and n are **not** part of the input, complexity is in terms of the size of the coefficients of the matrices.

• For which group G is there a polynomial time algorithm ?

Due to Ge's algorithm, we know this is true when G is a group of diagonal matrices.

- Given generators of G, we can easily compute env G, the vector space generated by the matrices in G.
 - Set $E = \mathbb{RI}$.
 - While there exists \mathcal{X}_i such that $E \neq \mathcal{X}_i E$, then $E = E + \mathcal{X}_i E$
- We can also easily compute $\operatorname{env} \phi(G)$ for any morphism ϕ .
- We may obtain in this way a representation of G/Z(G): Consider the morphism ψ such that $\psi(M)$ is the matrix that represents the automorphism $\operatorname{env} G: X \mapsto MXM^{-1}$

$$\psi(M) = I \quad \Longleftrightarrow \quad \forall X \in \operatorname{env} G, MXM^{-1} = X$$
$$\iff \quad \forall X \in G, MXM^{-1} = X$$
$$\iff \quad M \in Z(G)$$

- Let *G* be a simple (connected) group, that is *G* has no normal non trivial subgroup.
- To prove that *H* is dense in *G*, it is therefore sufficient to prove that the algebraic group generated by *H* is a normal subgroup of *G* and that *H* is infinite.
- Denote by $\phi(X)$ the automorphism $\mathcal{M} \mapsto \mathcal{X}\mathcal{M}\mathcal{X}^{-1}$. We want to know if $\forall X \in G, \phi(X)H = H$.
- As H is obviously a normal subgroup of H, it is enough to prove $\phi(\overline{H})=\phi(G).$

• Idea : Test only if they span the same (linear) subspace.

H is dense in G if and only if H is infinite and $\operatorname{env} \phi(H) = \operatorname{env} \phi(G)$

• Sketch of Proof : We use the Lie group structure of G : Instead of testing if $\overline{H} = G$, we test if the two groups have the same Lie Algebra.

The condition ensures that the Lie Algebra \mathfrak{h} of H is an ideal of the Lie Algebra \mathfrak{g} of G, which is a simple Lie Algebra. Hence $\mathfrak{h} = \mathfrak{g}$ or $\mathfrak{h} = 0$. As H is infinite, the latter is not possible.

For every simple group G, there exists a polynomial time algorithm which decides if a finitely generated group H of G is dense in G.

SIMPLE GROUPS : EXAMPLES

- All the classical groups SO_n , $n \ge 3$, SU_n , $n \ge 2$ are standard examples of simple groups, with the remarkable exception of the group SO_4 .
- The isometry group of the isocahedron, which may be seen as a finite subgroup of SO_3 provides an example of a finite group H such that $\operatorname{env} \phi(H) = \operatorname{env} \phi(G)$.

SEMISIMPLE GROUPS

• A semisimple group G has only finitely many normal subgroups G_i .

H is dense in G if and only if $\operatorname{env} \phi(H) = \operatorname{env} \phi(G)$ and for all normal subgroups $G_i, H/G_i$ is infinite

• To test if H/G_i is infinite, we need a representation of G/G_i that is a morphism $\psi_i : G \mapsto \operatorname{GL}_p$ such that $\psi(X) = I \iff X \in G_i$. The existence of such a morphism is guaranteed by classical theorems.

For every semisimple group G, there exists a polynomial time algorithm which decides if a finitely generated group H of G is dense in G.

The algorithm depends of the given group G, as we need the morphisms ψ_i .

SEMISIMPLE GROUPS : EXAMPLES

• SO_4 contains two normal subgroups

$$\sigma_{1}(a, b, c, d) = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \sigma_{2}(a, b, c, d) = \begin{pmatrix} a & b & c & -d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$$

$$G_i = \left\{ \sigma_i(a, b, c, d), a^2 + b^2 + c^2 + d^2 = 1 \right\} \text{ for } i \in \{1, 2\}$$

• The representation of G/G_1 is given by

• Testing if H is dense in SO_4 is equivalent to $env \ \phi(H) = env \ \phi(G)$ and $\psi_1(H)$ and $\psi_2(H)$ are infinite.

CONNECTED REDUCTIVE GROUPS

• A connected reductive group G is such that G = Z(G)D(G) where D(G) is the derived group of G. Furthermore, G/Z(G) is semisimple, and G/D(G) is a commutative diagonalisable group.

For every connected reductive group G, there exists a polynomial time algorithm which decides if a finitely generated group H of G is dense in G: Simply decide if H/Z(G) and H/D(G) are dense in G/Z(G) and G/D(G).

The algorithm depends of the given group G, as we need representations of G/D(G) and G/Z(G).

NON-CONNECTED REDUCTIVE GROUPS

- Denote by G a non-connected group and by G^0 the connected component containing the identity matrix. Choose for each connected component a matrix Y_j .
- Let H be the group generated by the matrices X_i . Choose for each connected component of G a matrix $Y_j \in H$. If no such matrix exists, then H is not dense in G.

 $H \cap G^0$ is generated by the matrices $Y_i X_j Y_k^{-1}$ that belong to G^0 . (Schreier's Theorem)

• Computing the matrices Y_j is easy as G/G^0 is finite. Deciding if H is dense is then equivalent to decide $H \cap G^0$ is dense.

For every reductive group G, there exists a polynomial time algorithm which decides if a finitely generated group H of G is dense in G. The algorithm depends of the given group G;

Compact groups are reductive :

For every compact group G, there exists a polynomial time algorithm which decides if a finitely generated group H of G is dense in G. The algorithm depends of the given group G.

- For any *n*, there exists a polynomial time algorithm which decides if a set of gates over *n* qubits is complete : Consider it as a problem about compact groups and solve it using the previous algorithm;
- We only need to use the previous algorithms for simple groups ;
- We may even get a better result : there exists a polynomial time algorithm which decides if a set of gates over *n* qubits is complete.
- Note : The algorithm is polynomial on the size of the input, which is exponential in *n*.

- An algorithm which decides if a finitely generated subgroup of a compact group G is dense in G.
- An algorithm which decides if a finite set of gates is complete.
- Generalise the algorithm for any algebraic group ?
- Give an algorithm for other models of computation (black box groups, computation with reals).