
Computing with Infinite Groups
with Applications to Quantum Computation

Emmanuel Jeandel

LIP, École Normale Supérieure de Lyon (France)

emmanuel.jeandel@ens-lyon.fr

1 / 24 Computing with Infinite Groups



CONTENTS

• Definitions : Gates, completeness.

• Algorithm to test for completeness.

– Problem in terms of algebraic groups;

– Previously known algorithms for infinite groups;

– The algorithm.

2 / 24 Computing with Infinite Groups



QUANTUM COMPUTATION (1)

• A qubit is a vector of norm 1 in C2.

The canonical basis of C2 is denoted by |0〉 , |1〉.

The qubit φ = α |0〉 + β |1〉 represents a system which is simultaneously in

the states 0 and 1, with respective amplitudes α and β. If the system is

observed, it becomes the constant qubit |0〉 with probability |α|2 and the

constant qubit |1〉 with probability |β|2.

• A quantum state is a vector of norm 1 in (C2)⊗n. The canonical basis of

(C2)⊗n will be denoted by |ω〉 where ω is a word over {0, 1} of length n .

• A quantum state is then a vector φ =
∑

ω αω |ω〉 with
∑

|αω|2 = 1.

3 / 24 Computing with Infinite Groups



QUANTUM COMPUTATION (3)

• A quantum gate M represents the basic operation on a quantum state. It is

an operation that maps quantum states into quantum states.

• Due to the particular structure of quantum states, a quantum gate M over n

qubits is a unitary matrix of dimension 2n. (More exactly, a quantum gate is

an element of U2n/U1)

• A quantum circuit over S is a circuit obtained from quantum gates Mi in S by

applying a finite set of operations.

4 / 24 Computing with Infinite Groups



A QUANTUM GATE

e

...
...

e

e

M

e

e

e

...
...

5 / 24 Computing with Infinite Groups



OPERATIONS ON QUANTUM GATES

b

...
...

b

b

N ...
... M

b

...
...

b

b

(a) The multiplication MN (composition of circuits)

b

b

b

b

�
�

@
@ M A

A
�
� b

b

b

b

b

...
...

b

b

M
b

b

b

...
...

b

b

b

b

(b) M[σ] (permutations of wires) (c) The operation M⊗I

6 / 24 Computing with Infinite Groups



APPROXIMATION

• Let S be a (finite) set of gates over n qubits.

• Denote by Gp(S) the set of gates over p qubits obtained by circuits over S,

and by Gp(S) its euclidean closure (the set of gates we can approximate by

circuits over S).

• Gp(S) is generated by all matrices of the form (M ⊗ In−p)[σ], where

M ∈ S, hence is finitely generated if S is.

• S is said to be complete if every gate over n qubits can be obtained from S :

Gn(S) = U2n or more accurately U1Gn(S) = U2n .

7 / 24 Computing with Infinite Groups



COMPLETE SETS

• The set of all gates over 2 qubits.

• Barenco, 1995 : The gate












1 0 0 0

0 1 0 0

0 0 e
iα

cos θ −ie
i(α−φ)

sin θ

0 0 −ie
i(α+φ)

sin θ e
iα

cos θ













Where φ, α, θ are fixed irrational multiples of π and of each other.

8 / 24 Computing with Infinite Groups



DECIDING COMPLETENESS

How to prove that the set S is complete ?

• Show how to approximate every unitary operation by a quantum circuit in S ;

• Given a complete set S′, show how to approximate every operation of S′ by

quantum circuits ;

• Use specific properties of G(S), the set of quantum circuits generated by S

(object of this talk)

9 / 24 Computing with Infinite Groups



STRUCTURE OF G(S)

• G(S) is finitely generated, given that S is finite;

• G(S) is always a group (we can approximate the gate A−1 by successive

iterations of the gate A) ;

• G(S) is even a compact group, hence algebraic : There exists polynomials

p1 . . . pk in xij (entries of the matrix) such that

M ∈ G(S) ⇐⇒ p1(M) = p2(M) = . . . = pk(M) = 0

• [Derksen, EJ, Koiran, 2003] There exists a general algorithm that compute

polynomials pi for finitely generated algebraic groups. However, the

complexity of the algorithm makes him uninteresting for practical purposes;

10 / 24 Computing with Infinite Groups



COMPLETENESS IN TERMS OF GROUPS

• Deciding if a finite set of gates is complete is the same as deciding if a finitely

generated subgroup of Un is dense in Un

• More generally, how to prove that some finitely generated subgroup of an

algebraic groupG is dense in G ?

Density in algebraic groups is defined with the Zariski Topology : H is dense

in G if every polynomial which is identically zero on H vanishes on G.

11 / 24 Computing with Infinite Groups



EASY THINGS TO COMPUTE

What are we able to compute about finitely generated matrix groups ?

• [Babai, Beals and Rockmore, 1993] There exists a polynomial time algorithm

that decides if such a group is finite ;

• [Beals, 1997] There exists a polynomial time algorithm that decides if such a

group is abelian-by-finite, nilpotent-by-finite. . .

• [Ge, 1993] There exists a polynomial time algorithm that decides if two finitely

generated groups of diagonal matrices generate the same algebraic group.

Inputs are assumed to be in a finite extension F of Q, given by an irreducible

polynomial.

12 / 24 Computing with Infinite Groups



TESTING DENSITY

Our problem, for a given groupG and a finite extension F of Q :

• Input : Matrices X1 . . .Xm ∈ GLn(F).

X1 . . .Xm generate an algebraic groupH over C.

• Problem : Is H = G ?

Is there a polynomial time algorithm to solve this problem ?

As G, F and n are not part of the input, complexity is in terms of the size of the

coefficients of the matrices.

• For which groupG is there a polynomial time algorithm ?

Due to Ge’s algorithm, we know this is true whenG is a group of diagonal

matrices.

13 / 24 Computing with Infinite Groups



EASY THINGS TO COMPUTE (2)

• Given generators of G, we can easily compute env G, the vector space

generated by the matrices in G.

– Set E = RI .

– While there exists Xi such that E 6= XiE, then E = E + XiE

• We can also easily compute env φ(G) for any morphism φ.

• We may obtain in this way a representation of G/Z(G) : Consider the

morphism ψ such that ψ(M) is the matrix that represents the automorphism

env G : X 7→MXM−1

ψ(M) = I ⇐⇒ ∀X ∈ env G,MXM−1 = X

⇐⇒ ∀X ∈ G,MXM−1 = X

⇐⇒ M ∈ Z(G)

14 / 24 Computing with Infinite Groups



DENSITY FOR SIMPLE GROUPS

• Let G be a simple (connected) group, that is G has no normal non trivial

subgroup.

• To prove that H is dense in G, it is therefore sufficient to prove that the

algebraic group generated by H is a normal subgroup of G and that H is

infinite.

• Denote by φ(X) the automorphism M 7→ XMX−1. We want to know if

∀X ∈ G, φ(X)H = H .

• As H is obviously a normal subgroup of H , it is enough to prove

φ(H) = φ(G).

15 / 24 Computing with Infinite Groups



SIMPLE GROUPS (CONT’D)

• Idea : Test only if they span the same (linear) subspace.

H is dense in G if and only if H is infinite and env φ(H) = env φ(G)

• Sketch of Proof : We use the Lie group structure of G : Instead of testing if

H = G, we test if the two groups have the same Lie Algebra.

The condition ensures that the Lie Algebra h of H is an ideal of the Lie

Algebra g of G, which is a simple Lie Algebra. Hence h = g or h = 0. As H

is infinite, the latter is not possible.

For every simple groupG, there exists a polynomial time algorithm which decides

if a finitely generated groupH of G is dense in G.

16 / 24 Computing with Infinite Groups



SIMPLE GROUPS : EXAMPLES

• All the classical groups SOn, n ≥ 3, SUn, n ≥ 2 are standard examples of

simple groups, with the remarkable exception of the group SO4.

• The isometry group of the isocahedron, which may be seen as a finite

subgroup of SO3 provides an example of a finite groupH such that

env φ(H) = env φ(G).

17 / 24 Computing with Infinite Groups



SEMISIMPLE GROUPS

• A semisimple groupG has only finitely many normal subgroupsGi.

H is dense in G if and only if env φ(H) = env φ(G) and for all normal

subgroupsGi, H/Gi is infinite

• To test if H/Gi is infinite, we need a representation of G/Gi that is a

morphism ψi : G 7→ GLp such that ψ(X) = I ⇐⇒ X ∈ Gi. The

existence of such a morphism is guaranteed by classical theorems.

For every semisimple groupG, there exists a polynomial time algorithm which

decides if a finitely generated groupH of G is dense in G.

The algorithm depends of the given groupG, as we need the morphisms ψi.

18 / 24 Computing with Infinite Groups



SEMISIMPLE GROUPS : EXAMPLES

• SO4 contains two normal subgroups

σ1(a, b, c, d) =

0

B

B

B

B

B

@

a −b −c −d

b a −d c

c d a −b

d −c b a

1

C

C

C

C

C

A

σ2(a, b, c, d) =

0

B

B

B

B

B

@

a b c −d

−b a −d c

−c d a −b

−d −c b a

1

C

C

C

C

C

A

Gi =
{

σi(a, b, c, d), a
2 + b2 + c2 + d2 = 1

}

for i ∈ {1, 2}

• The representation of G/G1 is given by

ψ1 : SO4 7→ SO4
0

B

B

B

B

B

@

a e i m

b f j n

c g k o

d h l p

1

C

C

C

C

C

A

7→ σ1(a, b, c, d)T

0

B

B

B

B

B

@

a e i m

b f j n

c g k o

d h l p

1

C

C

C

C

C

A

• Testing if H is dense in SO4 is equivalent to env φ(H) = env φ(G) and

ψ1(H) and ψ2(H) are infinite.

19 / 24 Computing with Infinite Groups



CONNECTED REDUCTIVE GROUPS

• A connected reductive groupG is such that G = Z(G)D(G) whereD(G)

is the derived group of G. Furthermore,G/Z(G) is semisimple, and

G/D(G) is a commutative diagonalisable group.

For every connected reductive groupG, there exists a polynomial time algorithm

which decides if a finitely generated groupH of G is dense in G : Simply decide

if H/Z(G) and H/D(G) are dense in G/Z(G) and G/D(G).

The algorithm depends of the given groupG, as we need representations of

G/D(G) and G/Z(G).

20 / 24 Computing with Infinite Groups



NON-CONNECTED REDUCTIVE GROUPS

• Denote by G a non-connected group and by G0 the connected component

containing the identity matrix. Choose for each connected component a

matrix Yj .

• Let H be the group generated by the matrices Xi. Choose for each

connected component of G a matrix Yj ∈ H . If no such matrix exists, then

H is not dense in G.

H ∩G0 is generated by the matrices YiXjY
−1

k that belong to G0.

(Schreier’s Theorem)

• Computing the matrices Yj is easy as G/G0 is finite. Deciding if H is dense

is then equivalent to decideH ∩G0 is dense.

21 / 24 Computing with Infinite Groups



COMPACT GROUPS

For every reductive groupG, there exists a polynomial time algorithm which

decides if a finitely generated groupH of G is dense in G. The algorithm

depends of the given groupG ;

Compact groups are reductive :

For every compact groupG, there exists a polynomial time algorithm which

decides if a finitely generated groupH of G is dense in G. The algorithm

depends of the given groupG.

22 / 24 Computing with Infinite Groups



COMPLETE SETS OF GATES

• For any n, there exists a polynomial time algorithm which decides if a set of

gates over n qubits is complete : Consider it as a problem about compact

groups and solve it using the previous algorithm;

• We only need to use the previous algorithms for simple groups ;

• We may even get a better result : there exists a polynomial time algorithm

which decides if a set of gates over n qubits is complete.

• Note : The algorithm is polynomial on the size of the input, which is

exponential in n.

23 / 24 Computing with Infinite Groups



SUMMARY

• An algorithm which decides if a finitely generated subgroup of a compact

groupG is dense in G.

• An algorithm which decides if a finite set of gates is complete.

• Generalise the algorithm for any algebraic group ?

• Give an algorithm for other models of computation (black box groups,

computation with reals).

24 / 24 Computing with Infinite Groups


