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Figure 15: A S
hreier graph of the Grigor
huk group
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Figure 16: The orbit S
hreier graphs of the Grigor
huk group on the spa
e X

!

IMG(x

2

� 1). The iterated monodromy group of the polynomial x

2

� 1 is generated by two

generators a = (b; 1)� and b = (a; 1), where � is the transposition.

Some of the (simpli
ial) S
hreier graphs of the group IMG

�

z

2

� 1

�

a
ting on the �nite levels

are shown on Figure 17. Compare with the Julia set in Figure 20, page 49.

The S
hreier graphs of the groups IMG

�

z

2

� 1

�

are unions of 2

n

-gons.

The Fabrykowski-Gupta group. The S
hreier graph of this group, introdu
ed in Subse
-

tion 9.3, is planar and is a union of triangles. The �nite S
hreier graph �

6

(G;S) is given in

Figure 18. As 
an be seen, the limit spa
e and the S
hreier graph have a similar aspe
t.

Penrose tilings. If we take the group F generated by the transformations L, M and S de�ned

by the formul� from Theorem 3.1, then it will a
t on the spa
e P , with S
hreier graphs isomorphi


to the dual graphs of the Penrose tilings (i.e., to the graphs whose verti
es are tiles of the tiling,

with two verti
es 
onne
ted by an edge if and only if the respe
tive tiles have a 
ommon side),

ex
ept for the Penrose tilings having non-trivial symmetry. In that 
ase the 
orresponding S
hreier

graph will be isomorphi
 to the adja
en
y graph of the fundamental domain of the symmetry group

of the tiling, with loops at the verti
es bounding the domain.

8 Growth and languages

In its most general form, the problem we deal with here is the asso
iation to a geometri
 or


ombinatorial obje
t of a numeri
 invariant, the degree or rate of growth, or of a string of numeri


invariants, the growth power series. We sket
h in this se
tion the main notions of growth, and

present them in a uni�ed way.

The geometri
 obje
ts des
ribed in this paper are of two natures: some are 
ompa
t (X

!

, or

the 
losure of G in AutT (X)), while some are dis
rete (G, its Cayley graph, S
hreier graphs, et
.)

Some other, more algebrai
 notions of growth or dimension may also be integrated to this

pi
ture. To name the main ones, growth of monoids and automata (that are intimately 
onne
ted

to growth of groups); 
ogrowth of groups (related to spe
tral properties of groups| see Se
tion 12);
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�

3

�

4

�

5

�

6

Figure 17: The S
hreier graphs �

n

(IMG

�

z

2

� 1

�

; fa

�1

; b

�1

g) of the nth level a
tion, for 3 � n � 6

subgroup growth [Lub95℄; growth of number of irredu
ible representations [PT96℄; growth of planar

algebras [Jon01℄; growth of the lower 
entral series [Gri89, BG00a, Pet99℄, et
.

8.1 Compa
t spa
es

Let K be a 
ompa
t metri
 spa
e. Its Hausdor� dimension (see [Fal97, Mot01℄) is de�ned as

follows: for � > 0, the �-volume of K is

H

�

(K) = lim

�&0

inf


overs fU

i

g of K with

diameter at most �

X

diam(U

i

)

�

:

Clearly H

�

(K) is a de
reasing fun
tion of �. The Hausdor� dimension dim

H

(K) of K is de�ned

as the unique value in [0;1℄ su
h that H

�

(K) = 1 if 0 < � < dim

H

(K) and H

�

(K) = 0 if

� > dim

H

(K).

A 
onne
ted, but easier-to-grasp notion, is that of box dimension. It is de�ned, when it exists,

as

dim

�

(K) = � lim

�&0

ln(number of �-balls needed to 
over K)

ln �

:

If dim

�

(K) exists, then dim

H

(K) exists too and takes the same value.

For arbitrary topologi
al spa
es F , the following notion, whi
h does not refer to any metri
, has

been introdu
ed: the topologi
al dimension, also 
alled (Lebesgue) 
overing dimension dim

T

(F ) of

F is the minimal n 2 N su
h that any open 
over of F admits an open re�nement of order n+ 1,

i.e. su
h that no point of F is 
overed by more than n+ 1 open sets.

8.2 Dis
rete spa
es

Let � be a 
onne
ted, lo
ally �nite graph, viewed as a dis
rete metri
 spa
e by assigning length

1 to ea
h edge. Choose a base vertex v 2 V . Then the growth of � at v is the integer-valued

fun
tion 


�;v

: n 7! jB(v; n)j measuring the volume growth of balls at v.

We introdu
e a preorder on positive-real-valued fun
tions: say 
 - Æ if there is an N 2 N su
h

that 
(n) � Æ(n+N) for all n 2 N; and say 
 � Æ if 
 - Æ and Æ - 
.

Clearly 


�;v

(n) � 


�;w

(n + d(v; w)), so the �-equivalen
e 
lass of 


�;v

does not depend on v;

we 
all it the growth of �, written 


�

.

Note that if � has degree bounded by a 
onstantD, then 


�

- D

n

. The graph � has polynomial

growth if 


�

- Kn

d

for some K; d 2 R; the in�mal su
h d is 
alled the degree of �. The graph has
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Figure 18: The S
hreier graph �

6

(G;S) of the Fabrykowski-Gupta group

exponential growth if 


�

% b

n

for some b > 1; the supremum of su
h b's is 
alled the growth rate

of �. In all other 
ases, � has intermediate growth.

The (polynomial) degree of growth is an exa
t analogue of the box dimension de�ned above.

Indeed, given a graph � and a vertex v, 
onsider the metri
 spa
es K

n

=

1

n

B(v; n), namely the

balls of radius n with the metri
 s
aled down by a fa
tor of n. Then ea
h K

n

is 
ompa
t (of

diameter 1). Assume � has growth degree d. Take the limit K of a 
onvergent subsequen
e (in

the Gromov-Hausdor� metri
 [Gro81℄) of (K

n

)

n�1

. Then dim

�

(K) = d.

Conversely, let K be a 
ompa
t spa
e of box dimension d, with a �xed point �. For � = 1=n


overK by a minimal number of �-balls, and 
onsider the graph �

n

, with vertex set the set of balls,

and edges 
onne
ting adja
ent balls. Take the limit � of a 
onvergent subsequen
e of (�

n

)

n�0

(in

the lo
al topology), with ea
h �

n

based at the ball 
ontaining �. Then � is a graph of growth

degree d.

We shall see in Subse
tion 8.9 examples of S
hreier graphs of polynomial growth, with asso
i-

ated 
ompa
t spa
es of �nite box dimension.

8.3 Amenability

De�nition 8.1. Let G a
t on a set X . The a
tion is amenable (in the sense of von Neu-

mann [vN29℄) if there exists a �nitely additive measure � on X , invariant under the a
tion of

G, with �(X) = 1.

We then say a group is amenable if its left- (or right-) multipli
ation a
tion on itself is amenable.

Amenability 
an be tested using the following 
riterion, due to F�lner for the regular a
-

tion [F�l57℄ (see also [CSGH99℄ and the literature 
ited there):

Theorem 8.1. Assume the group G a
ts on a dis
rete set X. Then the a
tion is amenable if and
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Figure 20: The Julia set of the polynomial z

2

� 1.

Figure 21: The Julia set of the polynomial z

2

+ i.

5. The Julia sets of the polynomials z

2

+ 
, where 


3

+2


2

+ 
+1 = 0, are shown in Figure 22.

The left one, 
alled the \airplane", 
orresponds to the real root 
, while the right one, 
alled

\Douady's rabbit", 
orresponds to the 
omplex root with positive imaginary part. Their


orresponding groups have almost the same re
ursion | see Subse
tion 5.2.

9.4 The solenoid S

G

Let us �x a self-similar 
ontra
ting a
tion of a group G over the alphabet X . Denote by X

Z

the spa
e of all two-sided in�nite sequen
es over the alphabet X with the produ
t topology. The

elements of this spa
e have the form

� = : : : x

�3

x

�2

x

�1

: x

0

x

1

x

2

: : : ;

with x

i

2 X , and where the dot marks the pla
e between the (�1)-st and 0th 
oordinates. The

sequen
e x

0

x

1

x

2

: : : is 
alled the integer part of the sequen
e � and is written [�℄.

The map

s : : : : x

�3

x

�2

x

�1

: x

0

x

1

x

2

: : : 7! : : : x

�4

x

�3

x

�2

: x

�1

x

0

x

1

: : :

is 
alled the shift. It is a homeomorphism of the spa
e X

Z

.

We say that two sequen
es : : : x

�2

x

�1

: x

0

x

1

: : : and : : : y

�2

y

�1

: y

0

y

1

: : : 2 X

Z

are asymptoti-


ally equivalent if there exists a sequen
e fg

k

g

1

k=1

taking a �nite number of di�erent values in G,

su
h that

(x

�k

x

�k+1

x

�k+2

: : :)

g

k

= y

�k

y

�k+1

y

�k+2

: : : :
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Figure 23: The set of fra
tions bounded by the dragon 
urve.

Theorem 9.11. Two sequen
es (: : : x

2

x

1

) and (: : : y

2

y

1

) 2 X

�!

are asymptoti
ally equivalent if

and only if

1

X

k=1

�

k

(r

x

k

)�

1

X

k=1

�

k

(r

y

k

) 2 Z

n

:

Two sequen
es � = (: : : x

�2

x

�1

: x

0

x

1

: : :) and � = (: : : y

�2

y

�1

: y

0

y

1

: : :) 2 X

Z

are asymptoti-


ally equivalent if and only if

1

X

k=1

�

k

(r

x

�k

)�

1

X

k=1

�

k

(r

y

�k

) =

1

X

k=0

�

�k

(r

y

k

)�

1

X

k=0

�

�k

(r

x

k

);

where the left-hand side part is 
al
ulated in R

n

, while the right one is 
al
ulated in the 
losure

^

Z

n

of Z

n

; both di�eren
es must belong to Z

n

.

Let L be a leaf of the solenoid S

G

. Then it de
omposes into the union of its tiles, and thus


an be equipped with the dire
t limit topology 
oming from this de
omposition. More expli
itly,

a set A � L is open in the dire
t limit topology if and only if for any �nite union of tiles B the

set A \ B is open in the relative topology of B.

Corollary 9.12. Let (Z

n

; X

!

) be a self-similar re
urrent �nite-state a
tion. Then

1. the limit spa
e J

Z

n

is homeomorphi
 to the torus T

n

= R

n

=Z

n

;

2. for every leaf L (with its dire
t limit topology) of the solenoid S

Z

n

there exists a homeomor-

phism � : L ! R

n

su
h that for every tile T

w

of L we have �(T

w

) = T(�;R) + r(w) for

some r(w) 2 Z

n

.

Essentially, r(w) is the base-� evaluation of w.

It follows from the des
ription we obtained of the limit spa
e J

Z

n

that the shift s on it 
oin
ides

with the map on the torus (R=Z)

n

given by the linear transformation �

�1

. This map is obviously

a d-to-1 
overing. The tiles, just as in the general 
ase, de�ne a Markov partition for this toral

dynami
al system.

Corollary 9.12 shows that the tiled leaves of 
ontra
ting re
urrent self-similar a
tions of abelian

groups are the 
lassi
al digit tilings of Eu
lidean spa
e. For example, a part of the tiling by

\dragons" is shown on Figure 25. The union of the two marked 
entral tiles is similar to the

original tile.

52

Figure 25: Plane tiling by dragon 
urves

Proposition 9.9 remains true for 
ontra
ting a
tions of inverse semigroups. Therefore, for self-

similar 
ontra
ting inverse semigroups the tiling iterated fun
tion systems are also well de�ned.

The Fibona

i transformations. The semigroup generated by the Fibona

i transformations

is 
ontra
ting with 
ontra
ting 
oeÆ
ient �

�1

, where � =

1+

p

5

2

.

The 
orresponding iterated fun
tion system on the tiles is the Fibona

i iterated fun
tion system

des
ribed among the Examples of Subse
tion 3.2.

Penrose tilings. The semigroup related to the Penrose tilings is also 
ontra
ting, with 
on-

tra
tion 
oeÆ
ient �

�1

. The tiling iterated fun
tion system on the tiles 
orresponding to this

semigroup is exa
tly the Penrose iterated fun
tions system.

10 Hyperboli
 spa
es and groups

10.1 De�nitions

De�nition 10.1. A metri
 spa
e (X; d) is Æ-hyperboli
 (in the sense of M. Gromov) if for every

x

0

; x; y; z 2 X the inequality

hx � yi

x

0

� min fhx � zi

x

0

; hy � zi

x

0

g � Æ

holds, where

hx � yi

x

0

=

1

2

(d(x

0

; x) + d(x

0

; y)� d(x; y))

denotes the Gromov produ
t of the points x and y with respe
t to the base point x

0

.

Examples of hyperboli
 metri
 spa
es are all bounded spa
es (with Æ equal to the diameter of

the spa
e), trees (whi
h are 0-hyperboli
) and the usual hyperboli
 spa
e H

n

, whi
h is hyperboli


with Æ = log 3.

De�nition 10.2. A �nitely generated group is hyperboli
 if it is hyperboli
 as a word metri


spa
e.

The de�nition is independent of the 
hoi
e of the generating set with respe
t to whi
h the word

metri
 is de�ned. For the proof of this fa
t, and for the proof of other properties of hyperboli


groups, see [Gro87, CDP90, CP93, GH90℄.

Here is a short summary of examples and properties of hyperboli
 groups:

1. Every �nite group is hyperboli
.
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18 LAURENT BARTHOLDI AND VOLODYMYR NEKRASHEVYCH

Thurston’s Theorem 1.1 implies that Tm · fR is combinatorially equivalent to
exactly one polynomial in the set {fR, fA, fC}. There are no obstructions, since
the only obstructions for polynomials are Levy cycles, which cannot exist in the
case of a periodic critical point. Corollary 3.3 then tells us that ΛT m·fR

(π1 (C))
coincides with the iterated monodromy group of the associated polynomial. One
can prove that these groups are different (as sets), and therefore, if we prove that
ΛT m·fR

(π1 (C)) coincides with a given group IMG(f∗) for ∗ ∈ {R,A,C}, then we
can conclude that Tm · fR is equivalent to the respective f∗.

We therefore prove that the IMG(f∗) are all distinct. This is done by computing
their nuclei, and checking that they are distinct as finite automata; this is done in
Figure 4.

Figure 4. Nuclei of the “rabbit” (top), the “corabbit” (right) and
the “airplane” (bottom)

Proposition 4.4. The group IMG (T · fR) = ΛT ·fR
(π1 (C)) coincides with IMG (fA).

Indeed the homeomorphism h = TS−1a conjugates T · fR with fA, if the planes of
fR, fA are identified as above.

Proof. Let α, β, γ be the generators of IMG (fA). They are defined now as the
automorphisms of X∗ satisfying the recursion (compare with (8))

α =
〈〈
α−1, γα

〉〉
σ, β = 〈〈α, 1〉〉, γ =

〈〈
1, βγ−1

〉〉
.

Let α1, β1 and γ1 be the generators of IMG(T · fR). They are given by the
recursion (10):

α1 =
〈〈
α−1

1 β−1
1 , γ1β1α1

〉〉
σ, β1 =

〈〈
α

β−1

1

1 , 1
〉〉
, γ1 =

〈〈
β

α−1

1
β−1

1

1 , 1
〉〉
.

We claim that

α1 = αh = αβγ−1

αγβα, β1 = βh = βγ−1αγβα, γ1 = γh = γα.

L’avion, le lapin, le colapin


