
Computational Complexity of the GPAC

Amaury Pouly
Joint work with Olivier Bournez and Daniel Graça

April 10, 2014

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 −∞ / 17

Outline

1 Introduction
GPAC
Computable Analysis
Analog Church Thesis
Complexity

2 Toward a Complexity Theory for the GPAC
What is the problem
Computational Complexity (Real Number)

3 Conclusion

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 −∞ / 17

Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)

idealization of an analog computer: Differential Analyzer
circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 1 / 17

Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)
idealization of an analog computer: Differential Analyzer

circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 1 / 17

Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)
idealization of an analog computer: Differential Analyzer
circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 1 / 17

Introduction GPAC

GPAC: beyond the circuit approach

Theorem
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd) of the Polynomial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.

Remark
continuous dynamical system
the GPAC is just one reason to look at thema

aAsk question

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 2 / 17

Introduction GPAC

GPAC: beyond the circuit approach

Theorem
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd) of the Polynomial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.

Remark
continuous dynamical system

the GPAC is just one reason to look at thema

aAsk question

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 2 / 17

Introduction GPAC

GPAC: beyond the circuit approach

Theorem
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd) of the Polynomial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.

Remark
continuous dynamical system
the GPAC is just one reason to look at thema

aAsk question

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 2 / 17

Introduction GPAC

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 3 / 17

Introduction GPAC

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t

Example (One variable, nonlinear system)

×

×−2
× ∫ 1

1+t2

{
y ′ = −2ty2

y(0)= 1

t

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 3 / 17

Introduction GPAC

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t

Example (Two variable, nonlinear system)

×

×−2
× ∫ 1

1+t2


y ′ = −2ty2

y(0)= 1
t ′ = 1

t(0)= 0
t

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 3 / 17

Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 4 / 17

Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Example (Not so nice example)

∫ ∫
. . .

∫
t yn(t)


y ′1= y1
y ′2= y2y ′1
...

y ′n= yny ′n−1n integrators

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 4 / 17

Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Example (Not so nice example)

∫ ∫
. . .

∫
t yn(t)


y ′1= y1
y ′2= y2y1
...

y ′n= ynyn−1 · · · y2y1n integrators

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 4 / 17

Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Example (Not so nice example)

∫ ∫
. . .

∫
t yn(t)


y1(t)= et

y2(t)= eet

. . .

yn(t)= ee. .
.t

n integrators

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 4 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:

(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation
on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions

reachability properties
attractors

2 Use these systems as a model of computation
on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions
reachability properties

attractors
2 Use these systems as a model of computation

on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation
on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation

on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation
on words

on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction GPAC

Motivation

1 Study the computational power of such systems:
(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation
on words
on real numbers

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 5 / 17

Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Counter-Example)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 6 / 17

Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Counter-Example)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 6 / 17

Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Counter-Example)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 6 / 17

Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Counter-Example)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 6 / 17

Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Counter-Example)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 6 / 17

Introduction Computable Analysis

Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 7 / 17

Introduction Computable Analysis

Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).

Definition (Equivalent)
A function f : R → R is computable if f is continuous and for a any
rational r one can compute f (r).

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 7 / 17

Introduction Computable Analysis

Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).

Definition (Equivalent)
A function f : R → R is computable if f is continuous and for a any
rational r one can compute f (r).

Example

Polynomials, trigonometric functions, e·,
√
·, . . .

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 7 / 17

Introduction Computable Analysis

Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).

Definition (Equivalent)
A function f : R → R is computable if f is continuous and for a any
rational r one can compute f (r).

Example

Polynomials, trigonometric functions, e·,
√
·, . . .

Example (Counter-Example)

f (x) = dxe

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 7 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ()
Computable Analysis 6= General Purpose Analog Computer

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 8 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:

Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ()
Computable Analysis 6= General Purpose Analog Computer

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 8 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic

x → |x | is computable but not analytic

Theorem ()
Computable Analysis 6= General Purpose Analog Computer

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 8 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ()
Computable Analysis 6= General Purpose Analog Computer

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 8 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ()
Computable Analysis 6= General Purpose Analog Computer

Can we fix this ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 8 / 17

Introduction Analog Church Thesis

GPAC: back to the basics
Definition
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd) of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials

Definition
f is computable by a GPAC iff for all x ∈ R the solution y = (y1, . . . , yd)
of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q is a vector of polynomials

satisfies for all f (x) = limt→∞ y1(t).

Example

t

f (x)

q(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 9 / 17

Introduction Analog Church Thesis

GPAC: back to the basics
Definition
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd) of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials

Definition
f is computable by a GPAC iff for all x ∈ R the solution y = (y1, . . . , yd)
of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q is a vector of polynomials

satisfies for all f (x) = limt→∞ y1(t).

Example

t

f (x)

q(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 9 / 17

Introduction Analog Church Thesis

GPAC: back to the basics

Definition
f is computable by a GPAC iff for all x ∈ R the solution y = (y1, . . . , yd)
of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q is a vector of polynomials

satisfies for all f (x) = limt→∞ y1(t).

Example

t

f (x)

q(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 9 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem ()
The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.
Any solution to a PIVP is computable + convergence
Simulate a Turing machine with a GPACa

aDetails on blackboard

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 10 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem ()
The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.
Any solution to a PIVP is computable + convergence

Simulate a Turing machine with a GPACa

aDetails on blackboard

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 10 / 17

Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem ()
The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.
Any solution to a PIVP is computable + convergence
Simulate a Turing machine with a GPACa

aDetails on blackboard

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 10 / 17

Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)
General Purpose Analog Computer: nothing

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 11 / 17

Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)

General Purpose Analog Computer: nothing

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 11 / 17

Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)
General Purpose Analog Computer: nothing

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 11 / 17

Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)
General Purpose Analog Computer: nothing

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 11 / 17

Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)
General Purpose Analog Computer: nothing

Conjecture ()
Computable Analysis = General Purpose Analog Computer, at the com-
plexity level

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 11 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

ODE
{

y ′(t)= p(y(t))
y(1)= y0


z ′(t)= u(t)p(z(t))
u′(t)= u(t)
z(t0)= y0
u(1)= 1

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

ODE
{

y ′(t)= p(y(t))
y(1)= y0


z ′(t)= u(t)p(z(t))
u′(t)= u(t)
z(t0)= y0
u(1)= 1

Remark

Same curve, different speed: u(t) = et and z(t) = y(et)

Example

t

f (x)

y0(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

ODE
{

y ′(t)= p(y(t))
y(1)= y0


z ′(t)= u(t)p(z(t))
u′(t)= u(t)
z(t0)= y0
u(1)= 1

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)

Remark

Same curve, different speed: u(t) = et and z(t) = y(et)

Example

t

f (x)

y0(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

ODE
{

y ′(t)= p(y(t))
y(1)= y0


z ′(t)= u(t)p(z(t))
u′(t)= u(t)
z(t0)= y0
u(1)= 1

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Convergence Eventually Exponentially faster

Example

t

f (x)

y0(x)

y(t)

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE
{

y ′(t)= p(y(t))
y(1)= y0


z ′(t)= u(t)p(z(t))
u′(t)= u(t)
z(t0)= y0
u(1)= 1

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Convergence Eventually Exponentially faster

Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Example

t

f (x)

y0(x)

y(t)

z(t)

tm(µ)tm′(µ)

µ
‖y1(tm(µ))− f (x)‖ 6 µ

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE y ′ = p(y)
{

z ′= up(z)
u′= u

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Bounding box for
ODE at time t

sp(t) sp′(t) = max(sp(et),et)

Example

t

f (x)
y(t)

z(t)
u(t)

sp(t)

sp′(t)

t

sp(t) = sup
ξ∈[1,t]

‖y(ξ)‖

sp′(t) = sup
ξ∈[1,t]

‖z(ξ),u(ξ)‖

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE y ′ = p(y)
{

z ′= up(z)
u′= u

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Bounding box for
ODE at time t

sp(t) sp′(t) = max(sp(et),et)

Bounding box for
ODE at precision µ

sp(tm(µ)) max(sp(tm(µ)),tm(µ))

Remark
tm(µ) and sp(t) depend on the convergence rate
sp(tm(µ)) seems not

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 12 / 17

Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
time scaling invariant
property of the curve

Possible choices:
Bounding Box at precision µ⇒ Ok but geometric interpretation ?
Length of the curve until precision µ⇒ Much more intuitive

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 13 / 17

Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
time scaling invariant
property of the curve

Possible choices:
Bounding Box at precision µ⇒ Ok but geometric interpretation ?

Length of the curve until precision µ⇒ Much more intuitive

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 13 / 17

Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
time scaling invariant
property of the curve

Possible choices:
Bounding Box at precision µ⇒ Ok but geometric interpretation ?
Length of the curve until precision µ⇒ Much more intuitive

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 13 / 17

Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Definition (Polytime GPAC-Computable Function)
f is polytime computable by a GPAC iff for all x ∈ R the solution y =
(y1, . . . , yd) of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies
∥∥f (x)− y1(`

−1(len(x , µ))
∥∥ 6 e−µ where

len is a polynomial [polytime]
`(t) is the length of the curve y from t0 to t .
`−1(l) is the time to reach a length l on the curve y

Remark
implies f (x) = limt→∞ y1(t)

length of a curve: `(t) =
∫ t

t0
‖p(y(u))‖du

y1(`
−1(l)) = position after travelling a length l on the curve y

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 14 / 17

Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Definition (Polytime GPAC-Computable Function)
f is polytime computable by a GPAC iff for all x ∈ R the solution y =
(y1, . . . , yd) of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies
∥∥f (x)− y1(`

−1(len(x , µ))
∥∥ 6 e−µ where

len is a polynomial [polytime]
`(t) is the length of the curve y from t0 to t .
`−1(l) is the time to reach a length l on the curve y

Remark
implies f (x) = limt→∞ y1(t)

length of a curve: `(t) =
∫ t

t0
‖p(y(u))‖du

y1(`
−1(l)) = position after travelling a length l on the curve y

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 14 / 17

Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Computable Analysis = GPAC ?

Theorem (Almost)
The polytime GPAC-computable functions are exactly the polytime com-
putable functions of the Computable Analysis.

Remark (Polytime computable in CA)
f polytime computable:

polynomial modulus of continuity mc:
‖x − y‖ 6 2−mc(µ) ⇒ ‖f (x)− f (y)‖ 6 2−µ

polynomial time computable over Q

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 15 / 17

Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Computable Analysis = GPAC ?

Theorem (Almost)
The polytime GPAC-computable functions are exactly the polytime com-
putable functions of the Computable Analysis.

Remark (Polytime computable in CA)
f polytime computable:

polynomial modulus of continuity mc:
‖x − y‖ 6 2−mc(µ) ⇒ ‖f (x)− f (y)‖ 6 2−µ

polynomial time computable over Q

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 15 / 17

Conclusion

Conclusion

Complexity theory for the GPAC

Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:
The GPAC as a language recogniser
Equivalence with P and NP

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 16 / 17

Conclusion

Conclusion

Complexity theory for the GPAC
Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:
The GPAC as a language recogniser
Equivalence with P and NP

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 16 / 17

Conclusion

Conclusion

Complexity theory for the GPAC
Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:
The GPAC as a language recogniser

Equivalence with P and NP

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 16 / 17

Conclusion

Conclusion

Complexity theory for the GPAC
Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:
The GPAC as a language recogniser
Equivalence with P and NP

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 16 / 17

Conclusion

Future Work

Notion of reduction ?

Space complexity ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 17 / 17

Conclusion

Future Work

Notion of reduction ?
Space complexity ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 17 / 17

Questions ?

Do you have any questions ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ∞ / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis

GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis
GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis
GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers

decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis
GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers

language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis
GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R

Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis
GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 1 / 17

Classical Computational Complexity

Definition (GPAC-Recognisable Language)

L ⊆ N GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

Theorem
The GPAC-recognisable languages are exactly the recursive lan-
guages.

Remark
What about complexity ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 2 / 17

Classical Computational Complexity

Definition (GPAC-Recognisable Language)

L ⊆ N GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

Theorem
The GPAC-recognisable languages are exactly the recursive lan-
guages.

Remark
What about complexity ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 2 / 17

Classical Computational Complexity

Definition (GPAC-Recognisable Language)

L ⊆ N GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

Theorem
The GPAC-recognisable languages are exactly the recursive lan-
guages.

Remark
What about complexity ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 2 / 17

Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)

L ⊆ N poyltime GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

where t1(x) = `−1(len(log(x)) where `(t) is the length of y from t0 to t
and len a polynomial.

Theorem
The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word ≈ log of value

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 3 / 17

Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)

L ⊆ N poyltime GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

where t1(x) = `−1(len(log(x)) where `(t) is the length of y from t0 to t
and len a polynomial.

Theorem
The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word ≈ log of value

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 3 / 17

Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)

L ⊆ N poyltime GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

where t1(x) = `−1(len(log(x)) where `(t) is the length of y from t0 to t
and len a polynomial.

Theorem
The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word ≈ log of value

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 3 / 17

Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)

L ⊆ N poyltime GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

where t1(x) = `−1(len(log(x)) where `(t) is the length of y from t0 to t
and len a polynomial.

Theorem
The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word ≈ log of value

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 3 / 17

Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L ⊆ N non-deterministic poyltime GPAC-recognisable if for any x ∈ N,
the solution y to{

y ′ = p(y ,u)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 for at least one digital controller u
if x /∈ L then y1(t) 6 −1 for all digital controller u

where t1(x) = `−1(len(log(x)) and len a polynomial.

Remark (Digital Controller)

Digital Controller ≈ u : R→ {0,1}

Theorem
The class of non-deterministic polytime GPAC-recognisable languages
is exactly NP.

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 4 / 17

Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L ⊆ N non-deterministic poyltime GPAC-recognisable if for any x ∈ N,
the solution y to{

y ′ = p(y ,u)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 for at least one digital controller u
if x /∈ L then y1(t) 6 −1 for all digital controller u

where t1(x) = `−1(len(log(x)) and len a polynomial.

Remark (Digital Controller)

Digital Controller ≈ u : R→ {0,1}

Theorem
The class of non-deterministic polytime GPAC-recognisable languages
is exactly NP.

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 4 / 17

Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L ⊆ N non-deterministic poyltime GPAC-recognisable if for any x ∈ N,
the solution y to{

y ′ = p(y ,u)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 for at least one digital controller u
if x /∈ L then y1(t) 6 −1 for all digital controller u

where t1(x) = `−1(len(log(x)) and len a polynomial.

Remark (Digital Controller)

Digital Controller ≈ u : R→ {0,1}

Theorem
The class of non-deterministic polytime GPAC-recognisable languages
is exactly NP.

Pouly, Bournez, Graça Computational Complexity of the GPAC April 10, 2014 ω + 4 / 17

	Introduction
	GPAC
	Computable Analysis
	Analog Church Thesis
	Complexity

	Toward a Complexity Theory for the GPAC
	What is the problem
	Computational Complexity (Real Number)

	Conclusion
	The End
	Classical Computational Complexity

