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Introduction GPAC

GPAC

General Purpose Analog Computer
@ by Claude Shanon (1941)
@ idealization of an analog computer: Differential Analyzer
@ circuit built from:

k —k 5 |+ ~u+v
A constant unit An adder unit
u— u —
v X [—uv v J = Juav
An multiplier unit An integrator unit
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Introduction GPAC

GPAC: beyond the circuit approach

y is generated by a GPAC iff it is a component of the solution y =
(¥1,--.,Yq) of the Polynomial Initial Value Problem (PIVP):

{ Yy =ply)
y(to)= Yo

where p is a vector of polynomials.
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Introduction GPAC

GPAC: beyond the circuit approach

y is generated by a GPAC iff it is a component of the solution y =
(¥1,--.,Yq) of the Polynomial Initial Value Problem (PIVP):

{ Yy =py)

y(t)= Yo

where p is a vector of polynomials. )
Remark

@ continuous dynamical system
@ the GPAC is just one reason to look at them?

4Ask question
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Introduction GPAC

GPAC: examples

Example (One variable, linear system)
e [ Y =y
TH-e {7

(1 J

y(0)=
Example (One variable, nonlinear system)
—$ | x
P I 1 y =-2ty?
—= I y(0)= 1
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Introduction GPAC

GPAC: examples

Example (One variable, linear system)
e [ Y =y
TH-e {7

(1 J

y(0)=
Example ( variable, nonlinear system)
] x [ y' =-2t?
X f 1 y(O): 1
_2 X _,_ 1+12 t/ == 1
, [ T t(0)=0
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Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

=
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Introduction GPAC

GPAC: examples

Example (Two variables, linear system

y' =2z
t— [—1 fofff sin(ty { 2=
= y(©0)=0
¢ z(0)=
Example (Not so nice example)
1= Y1
L L Vo= Y2,
t— | [ / soo—) | [f yn(t)q
n integrators Y= YnYp_1
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Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

y' =z
t 1 Lx—'_f—'_f sin(t) Z ==y
AT y(0)=0
¢ z(0)=
Example (Not so nice example)
Yi=%
L L V= Yoy
t— J J e ya(t) 9 .
n integrators Y= YnYn-1-""Ye)1
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Introduction GPAC

GPAC: examples

Example (Two variables, linear system

.. %=
tj 1] x l_ / . i sin(t) }Z’Eggio
Example (Not so nice example)
()= e’-‘t
T T e
n integrators yn(t)= ee".t

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 4/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:
o (asymptotical) (properties of) solutions

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:

o (asymptotical) (properties of) solutions
e reachability properties

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:

o (asymptotical) (properties of) solutions
e reachability properties
o attractors

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:

o (asymptotical) (properties of) solutions
e reachability properties
o attractors

@ Use these systems as a model of computation

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17



Introduction GPAC

Motivation

@ Study the computational power of such systems:

o (asymptotical) (properties of) solutions
e reachability properties
o attractors
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Introduction GPAC

Motivation

@ Study the computational power of such systems:
o (asymptotical) (properties of) solutions
e reachability properties
e attractors

@ Use these systems as a model of computation

@ on words
@ on real numbers

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 5/17
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Introduction Computable Analysis

Computable real

Definition (Computable Real)

A real r € R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p € N, compute rp s.t. [r —rp| <27P

Rational numbers, 7, e, ...

Example (Counter-Example)

r= i dp2~"
n=0

where
dn = 1 < the n' Turing Machine halts on input n
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Introduction Computable Analysis

Computable function

Definition (Computable Function)

A function f : R — R is computable if there exist a Turing Machine M
s.t. for any x € R and oracle O computing x, M© computes f(x).
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Computable function

Definition (Computable Function)

A function f : R — R is computable if there exist a Turing Machine M
s.t. for any x € R and oracle © computing x, M® computes f(x).

V.

Definition (Equivalent)
A function f : R — R is computable if f is continuous and for a any
rational r one can compute f(r).

v
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Introduction Computable Analysis

Computable function

Definition (Computable Function)

A function f : R — R is computable if there exist a Turing Machine M
s.t. for any x € R and oracle © computing x, M® computes f(x).

Definition (Equivalent)

A function f : R — R is computable if f is continuous and for a any
rational r one can compute f(r).

v

Polynomials, trigonometric functions, e, v/, ...

Example (Counter-Example)

f(x) = [x]

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 7/17
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Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
@ Solutions of a GPAC are analytic
@ x — |x| is computable but not analytic
Theorem (®)
Computable Analysis # General Purpose Analog Computer

Can we fix this ?

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 8/17



Introduction Analog Church Thesis

GPAC: back to the basics

Definition
y is generated by a GPAC iff it is a component of the solution y =
(y1,...,Yq) of the ordinary differential equation (ODE):

{ y' =py)

where p is a vector of polynomials
y(to)= Yo - -
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Introduction Analog Church Thesis

GPAC: back to the basics

Definition
y is generated by a GPAC iff it is a component of the solution y =
(y1,...,Yq) of the ordinary differential equation (ODE):

y' =ply) : -
where p is a vector of polynomials
{Y(fo)z Yo o -

Definition
f is computable by a GPAC iff for all x € R the solution y = (y4,. .., Yq)
of the ordinary differential equation (ODE):

Yy =ply) , ;
where p,q is a vector of polynomials
{y(m: q(x) 5 Y

satisfies for all f(x) = lim¢_oo y1 ().
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Introduction Analog Church Thesis

GPAC: back to the basics

Definition
f is computable by a GPAC iff for all x € R the solution y = (y1,. .., Yq4)
of the ordinary differential equation (ODE):

!/
{yy =p(y) where p,q is a vector of polynomials

(fo)=q(x)
satisfies for all f(x) = lim¢_oo y1(t).

NAAARE "

\/ V

q(x) 4
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Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem (®)

The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.
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Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem (®)

The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.

| \

@ Any solution to a PIVP is computable + convergence

\
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Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem (®)

The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.

| \

@ Any solution to a PIVP is computable + convergence
@ Simulate a Turing machine with a GPAC?

4Details on blackboard

\

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 10/17



Introduction Complexity

What about complexity ?
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Introduction Complexity

What about complexity ?

@ Computable Analysis: nice complexity theory (from Turing
Machines)

@ General Purpose Analog Computer: nothing

Computable Analysis = General Purpose Analog Computer, at the com-
plexity level

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 11/17



Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System | #1 | #2
(t)= p(y(1)) Z/Etgz ugt;p(Z(t))
y'(t)=p(y(t U(t) = u(t
ODE {y(1)=yo z(lo) = Yo
u(1)=1
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System | #1 | #2
()= p(y(1)) ZIE?: ugtgp(z(t))
y'(t)= p(y(t u(t)= u(t
OPE {}’(1)—}’0 z() = Yo
u(1)=1

Remark
Same curve, different speed: u(t) = e' and z(t) = y(é')

/\ \AA/ 4 £(x)

Yo(X) 1

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 12/17



Toward a Complexity Theory for the GPAC What is the problem

Time Scaling
System #1 #2
()= p(y(1)) Z,Et;: ugtip(zm)
y'(t)= p(y(t u(t)= u(t
ObE i 2(6) = o
u(1)=1
Computed Function f(x) = limio0 y1(t) = limi 00 21(1)

Remark
Same curve, different speed: u(t) = e! and z(t) = y(é')

/\ \AA/ 4 £(x)
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

Z'(t) = u(t)p(z(t))
ODE {y’(t) =py(t) | Ju(t)=u(t)
y(1)=yo 2(fo) = Yo
u(1)=
Computed Function f(x) = im0 Y1 (t) = limioo 21 (1)

Convergence Eventually \ Exponentially faster

A \/\A/ 4 f(x)

Yo(X) 1
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Toward a Complexity Theory for the GPAC

Time Scaling

What is the problem

ODE

t)= u(
u'(t)=u(t)
z(t) = Yo
u(1)=1

Computed Function

f(X) = liMi00 Y1 (F) = liMi_oo 21 (1)

Convergence

Eventually

Exponentially faster

Time for precision p

tm(u)

(1) = log(tm(y))

©e

f(x)

Pouly, Bournez, Graga

Computational Complexity of the GPAC

11 (em(p)) = FOII <

April 10, 2014 12/17



Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

' z'=up(2)
ODE y'=py) V= u

Computed Function f(x) =limi o0 y1( ) = im0 21(1)
Time for precision p tm(p) m'(u) = log(tm(u))

Bounding box for sp(t) sp/(t) = max(sp(e!), e!)

ODE at time t
sp'(t) l
/ sp(t) = sup [ly(&)ll
g1
u(t) 3 se/(t) = sup |2(€), u(€)]
€,
pt) =15 i3
i t
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling
Z'=up(z
ODE y'=p(y) Z, = Up(2)
Computed Function f(x) = limi_o0 y1( ) = im0 21(1)
Time for precision u tm(p) m'(u) = log(tm(p))
Bounding box for _ N
ODE at tlme t Sp(t) sp (t) - maX(Sp(e )7 e )
Bounding box for
ODE at precision . sp(tm(p)) | max(sp(tm(p)), tm(x))

Remark
@ tm(i) and sp(t) depend on the convergence rate
@ sp(tm(i)) seems not
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Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
@ time scaling invariant
@ property of the curve
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Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
@ time scaling invariant
@ property of the curve
Possible choices:
@ Bounding Box at precision . = Ok but geometric interpretation ?
@ Length of the curve until precision p = Much more intuitive
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Definition (Polytime GPAC-Computable Function)

f is polytime computable by a GPAC iff for all x € R the solution y =
(¥1,-..,yq) of the ordinary differential equation (ODE):

{ y' =py)
y(to)= q(x)

satisfies ||f(x) — y1(¢~"(1en(x, p))|| < e where
@ len is a polynomial [polytime]
@ /(1) is the length of the curve y from t, to t.
@ (~'(/) is the time to reach a length / on the curve y

where p,q are vectors of polynomials
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Definition (Polytime GPAC-Computable Function)

f is polytime computable by a GPAC iff for all x € R the solution y =
(¥1,-..,yq) of the ordinary differential equation (ODE):

!/
{yy =p(y) where p,q are vectors of polynomials

(to)=q(x)
satisfies ||f(x) — y1(¢~"(1en(x, p))|| < e where
@ len is a polynomial [polytime]
@ /(1) is the length of the curve y from t, to t.
@ (~'(/) is the time to reach a length / on the curve y

Remark
@ implies f(x) = lim;_oo Y1 (1)
@ length of a curve: 4(t) = ft lp(y(u))| du

@ y;(¢=1(1)) = position after travelllng a length / on the curve y

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 14 /17



Toward a Complexity Theory for the GPAC

Computational Complexity (Real Number)

Computable Analysis = GPAC ?

Theorem (Almost ®)

The polytime GPAC-computable functions are exactly the polytime com-
putable functions of the Computable Analysis.

Pouly, Bournez, Graga
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Computable Analysis = GPAC ?

Theorem (Almost ®)

The polytime GPAC-computable functions are exactly the polytime com-
putable functions of the Computable Analysis.

v

Remark (Polytime computable in CA)
f polytime computable:

@ polynomial modulus of continuity mc:
Ix = yll <27 = ||f(x) — f(y)|| < 27+
@ polynomial time computable over Q
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Conclusion
Conclusion

@ Complexity theory for the GPAC
@ Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:

@ The GPAC as a language recogniser
@ Equivalence with P and NP
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Conclusion

Future Work

@ Notion of reduction ?
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Conclusion

Future Work

@ Notion of reduction ?
@ Space complexity ?

Pouly, Bournez, Graga Computational Complexity of the GPAC April 10, 2014 17/17



Questions ?

@ Do you have any questions ?
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Classical Computational Complexity

GPAC as Language Recogniser

@ GPAC as computable real function — Computable Analysis
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GPAC as Language Recogniser

@ GPAC as computable real function — Computable Analysis
@ GPAC as language recogniser — classical computability ?

Remark
@ words ~ integers C real numbers
@ decide =~ { Yes, No} ~ {0,1} C real numbers
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Classical Computational Complexity

GPAC as Language Recogniser

@ GPAC as computable real function — Computable Analysis
@ GPAC as language recogniser — classical computability ?

Remark
@ words ~ integers C real numbers
@ decide =~ { Yes, No} ~ {0,1} C real numbers

@ language recogniser: special case of real function ?
f:NCR—{0,1}CR

@ Yes but there is more !
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Classical Computational Complexity

Definition (GPAC-Recognisable Language)
L C N GPAC-recognisable if for any x € N, the solution y to

{ y' =py)

y(to)= q(x)

satisfies for t > t;(x):
@ if x € L then y4(t)
o if x ¢ L then y4(t)

where p,q are vectors of polynomials

1 (accept)
—1  (reject)

VAN
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Definition (GPAC-Recognisable Language)

L C N GPAC-recognisable if for any x € N, the solution y to

y' =ply) ,
where p,qg are vectors of polynomials
{}’(fo)z q(x) A .
satisfies for t > t;(x):
@ if x € L then y4(t)
o if x ¢ L then y4(t)

Theorem

The GPAC-recognisable languages are exactly the recursive lan-
guages.

1 (accept)
—1  (reject)

VAN

v

v
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Classical Computational Complexity

Definition (GPAC-Recognisable Language)

L C N GPAC-recognisable if for any x € N, the solution y to

{ y' =py)
y(to)= q(x)

satisfies for t > t;(x):
@ if x € L then y4(t)
o if x ¢ L then y4(t)

Theorem

The GPAC-recognisable languages are exactly the recursive lan-
guages.

where p,q are vectors of polynomials

1 (accept)
—1  (reject)

VAN

v

v

Remark
What about complexity ?
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Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)
L C N poyltime GPAC-recognisable if for any x € N, the solution y to

oo atn

X)
satisfies for t > t;(x):
(
(

where p,q are vectors of polynomials

o if x € L then yy(1)
o if x ¢ L then yq(t)

1 (accept)
(reject)

//\ WV
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and len a polynomial.
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Definition (Polytime GPAC-Recognisable Language)
L C N poyltime GPAC-recognisable if for any x € N, the solution y to

oo atn

X)
satisfies for t > t;(x):
(
(

where p,q are vectors of polynomials

@ if x € Lthen y(t) > 1 (accept)
e if x ¢ L then y4(t) (reject)

where t;(x) = £~ (1en(log( )) where /(t) is the length of y from fp to t
and len a polynomial.

//\ WV

The class of polytime GPAC-recognisable languages is exactly P
Remark (Why log(x) ?)
Classical complexity measure: length of word ~ log of value ’
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Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L C N non-deterministic poyltime GPAC-recognisable if for any x € N,
the solution y to

{ y' =p(y,u)

y(to)= q(x)

satisfies for t > t;(x):
e if x € L then y4(t) > 1 for at least one digital controller u
e if x ¢ L then y4(f) < —1 for all digital controller u

where t;(x) = £~"(1en(log(x)) and 1en a polynomial.

where p,q are vectors of polynomials

AN\
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L C N non-deterministic poyltime GPAC-recognisable if for any x € N,
the solution y to

{ y' =ply,u)

y(to)= q(x)

satisfies for t > t;(x):
e if x € L then y4(t) > 1 for at least one digital controller u
e if x ¢ L then y4(f) < —1 for all digital controller u

where t;(x) = ¢~"(1en(log(x)) and 1en a polynomial.

where p,q are vectors of polynomials

AN\

Remark (Digital Controller)
Digital Controller ~ u: R — {0,1}
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Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L C N non-deterministic poyltime GPAC-recognisable if for any x € N,
the solution y to

{ y' =ply,u)

y(to)= q(x)

satisfies for t > t;(x):
e if x € L then y4(t) > 1 for at least one digital controller u
e if x ¢ L then y4(f) < —1 for all digital controller u

where t;(x) = ¢~"(1en(log(x)) and 1en a polynomial.

where p,q are vectors of polynomials

AN\

Remark (Digital Controller)
Digital Controller ~ u: R — {0,1}

Theorem

The class of non-deterministic polytime GPAC-recognisable languages
is exactly NP.
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