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Dyck shifts, Krieger et al.
Markov-Dyck shifts, Krieger and Matsumoto
Extensions of Markov-Dyck shifts, Inoue and Krieger
Shifts presented by R-graphs, Krieger



Contrained sequences of finite-type

A forbidden sequence:

· · · 0100101010100110001010 · · ·
Characterized by a finite set of forbidden blocks {11}.
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Sofic constraints

A forbidden sequence:

· · · 0100101010100110001010 · · ·
Characterized by a regular set of forbidden blocks: an odd number of 0
between two 1 is forbidden.
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Applications

Coding for storage devices

Magnetic and optical recording : i.e. 11, 101, 00000000 are
forbidden

Flash memories : 101 or (q − 1, 0, q − 1) is forbidden for q-ary
cells.

Flash memories : balanced sequences + 101 forbidden (During
reading, n/2 cells with lower voltage are read as 0 and n/2 cells
with higher voltage are read as 1).



Beyond sofic constraints: Dyck constraints

Allowed sequences:

· · · [ ( ( ) ) ] [ ] [ (· · ·
· · · [ ( ( [ ( [ ( [ ( · · ·
· · · ( ) ( ) ( ) ( ) ( ) · · ·

Forbidden sequences:

· · · [ ( ( ] ) ] [ ] [ (· · ·
· · · [ ( ( [ ( ] ( [ ( · · ·
· · · ( ) ( ( ) ( ) ] ) · · ·
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([

) ]

Each factor is a factor of a Dyck (or well-matched) word.



Beyond sofic constraints: Motzkin-Dyck constraints

An allowed sequence:

· · · [ i ( (i i ) ) ] i [ i i i ] [ (· · ·
A forbidden sequence:

· · · [ i ( (i i ) ) ] i [ i i i ) [ (· · ·
The Motzkin constraint: the symbol ”(” is matched with ”)”, the
symbol ”[” is matched with a ”]”.
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Sofic-Dyck and finite-type-Dyck constraints
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A sofic-Dyck constraint (left), a finite-type Dyck constraint (right)

The edge labeled by ”(” (resp. ”[”) is matched with the edge labeled
by ”)” (resp. ”]”).

An allowed sequence for the sofic-Dyck constraint

· · · [ i ( (i i ) ) i ] [ i i i i ] [ (· · ·
Generalize Markov-Dyck shifts (Inoue, Krieger and Matsumoto, 2010
and 2011).



Sofic-Dyck shifts

Shifts of sequences over a pushdown alphabet A which is the disjoint
union of (Ac ,Ar ,Ai ):
Ac is the set of call alphabet
Ar is the set of return alphabet
Ai is the set of internal alphabet

A Dyck automaton (A,M) over A is a directed labelled graph
A = (Q,E ,A) where E ⊂ Q × A× Q
M is the set of matched edges: a set of pairs ((p, a, q), (r , b, s)) of
edges of A with a ∈ Ac and b ∈ Ar

equipped with a graph semigroup S generated by the set
E ∪ {xpq | p, q ∈ Q} ∪ {0} with



Sofic-Dyck shifts

generators: E ∪ {xpq | p, q ∈ Q} ∪ {0}

0s = s0 = 0 for s ∈ S ,

xpqxqr = xpr for p, q, r ∈ Q,

xpqxrs = 0 for p, q, r , s ∈ Q, q 6= r ,

(p, ℓ, q) = xpq for p, q,∈ Q, ℓ ∈ Ai ,

(p, a, q)xqr (r , b, s) = xps for ((p, a, q), (r , b, s)) ∈ M,

(p, a, q)xqr (r , b, s) = 0 for ((p, a, q), (r , b, s)) /∈ M,

(p, a, q)(r , b, s) = 0, for p, q, r , s ∈ Q, q 6= r , a, b ∈ A,

xpp(p, a, q) = (p, a, q) = (p, a, q)xqq for p, q ∈ Q, a ∈ A,

xpq(r , a, s) = 0 = (r , a, s)xtu for p, q ∈ Q, a ∈ A, q 6= r , s 6= t.



Sofic-Dyck shifts

If π is a finite path, f (π) is its image in the graph semigroup S

A finite path is admissible if f (π) 6= 0

A word labeling an admissible path π such that f (π) = xpq is a
Dyck word or a well-matched word

A bi-infinite path is admissible if all its factors are admissible

A bi-infinite sequence is accepted by (A,M) if it is the label of a
bi-infinite admissible path of (A,M).

A sofic-Dyck shift is a set of bi-infinite sequences accepted by a Dyck
automaton.



Visibly pushdown automaton (Alur et al. 2004)

M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂











Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, ℓ, q) ∈ ∆ p,

α
...
β
⊥
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Visibly pushdown automaton (Alur et al. 2004)

M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂











Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, b, α, q) ∈ ∆ p,

α
...
β
⊥

b−−−→ q,
...
β
⊥



Sofic-Dyck shifts = Visibly pushdown shifts

Proposition (B., Blockelet, Dima, preprint 2013)

The set of allowed blocks of a sofic-Dyck shift is a visibly pushdown
language. Conversely, if L is a factorial extensible visibly pushdown
language, then the shift of sequences whose factors belong to L is a
sofic-Dyck shift.

It is not difficult to prove that the set of labels of finite admissible
paths is a visibly pushdown language.

It is more complicate to prove that it holds also for the set of (allowed)
blocks. Indeed, labels of finite admissible paths may not be blocks.
Culik and Yu showed that the subset of bi-extensible words of a
context-free language may not be context-free. It is true for factorial
languages. We adapt the construction for the visibly pushdown case.



Zeta functions of shifts

Let (X , σ) be a shift where σ : (xi )i∈Z → (xi+1)i∈Z.
Denoting by pn the number of sequences x ∈ X such that σn(x) = x ,
the zeta function of X is defined as

ζX (z) = exp
∑

n>0

pn
n
zn =

∏

γ periodic orbit

(1− z |γ|)−1.

Periodic pattern ababb

· · · ababb ababb ababb ababb · · ·



Formula of the zeta function

Sofic shifts
Manning 1971, Bowen 1978

Dyck shifts, Keller 1991

Motzkin shifts, Inoue 2006

Markov-Dyck shifts

Krieger and Matsumoto 2011

Shifts of finite type

Bowen and Lanford 1970
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Formula of the zeta function

Sofic shifts
N-rational, Reutenauer 1997

Shifts of finite type

N-rational



Formula of the zeta function

Sofic shifts
N-rational, Reutenauer 1997

Sofic-Dyck shifts

N-algebraic, soon

Shifts of finite type

N-rational

Finite-type Dyck shifts

N-algebraic, ITA2014



Zeta functions of sofic-Dyck shifts

Let (A,M) be a (deterministic, reduced) Dyck automaton.
We define the matrices

C = (Cpq), where Cpq is the set of prime Dyck words labeling a
path from p to q: well-matched words with no nonempty shorter
well-matched prefix.
Mc = (Mc,pq), (resp. Mr ) where Mc,pq is the sum of call (resp.
return) letters labeling an edge from p to q).
Cc (resp. Cr ) is the matrix CM∗

c (resp. the matrix M∗
r C ).

C (z) = (Cpq(z)), where Cpq(z) is the generating series of Cpq.

The matrices X = C ,Cc ,Cr ,Mc ,Mr , are circular:
x1 ∈ Xp0,p1 , x2 ∈ Xp1,p2 , ... ,xn ∈ Xpn−1p0 , y1 ∈ Xq0,q1 ,
y2 ∈ Xq1,q2 ,...,ym ∈ Xqm−1q0 and p ∈ A∗ and s ∈ A+,

sx2x3 · · · xnp = y1y2 · · · ym, (1)

x1 = ps (2)

implies n = m, p = ε and xi = yi .



Encoding of periodic sequences

Proposition (extending Krieger’s result for Markov-Dyck shifts)

The zeta function of a sofic-Dyck shift accepted by a (deterministic,
reduced) Dyck automaton (A,M) with matrices C ,Cc ,Cr ,Mc ,Mr is
given by the following formula.

ζX (z) =
ζXCc

(z)ζXCr
(z)ζXMc

(z)ζXMr
(z)

ζXC
(z)

.



Encoding of periodic sequences. Case balance(w) = 0

a call symbol, b return symbol
w = aabbbaba



Encoding of periodic sequences. Case balance(w) = 0

a call symbol, b return symbol
w = aabbbaba
u = abaaabbb ∈ C ∗



Encoding of periodic sequences. Case balance(w) = 0

a call symbol, b return symbol
w = aabbbaba
u = abaaabbb ∈ C ∗



Encoding of periodic sequences. Case balance(w) > 0

w = aabaababaaba



Encoding of periodic sequences. Case balance(w) > 0

u = abaababaabaa



Encoding of periodic sequences. Case balance(w) > 0

u = abaababaabaa ∈ (CAc
∗)∗



Zeta functions of sofic-Dyck shifts

Let (A = (Q,E ),M) be a (deterministic, reduced) Dyck automaton.

A⊗ℓ is the labelled graph with states Q⊗k , the set of all ordered
k-uples of states of Q, and edges:

(p1, . . . , pk)
a−→ (q′1, . . . , q

′
k)

if and only if

p1
a−→ q1

p2
a−→ q2

· · ·
pk

a−→ qk

and (q′1, . . . , q
′
k) is an even permutation of (q1, . . . , qk).



Zeta functions of sofic-Dyck shifts

Let (A = (Q,E ),M) be a (deterministic, reduced) Dyck automaton.

A⊗ℓ is the labelled graph with states Q⊗k , the set of all ordered
k-uples of states of Q, and edges:

(p1, . . . , pk)
−a−−→ (q′1, . . . , q

′
k)

if and only if

p1
a−→ q1

p2
a−→ q2

· · ·
pk

a−→ qk

and (q′1, . . . , q
′
k) is an odd permutation of (q1, . . . , qk).



Zeta functions of sofic-Dyck shifts

Let (A = (Q,E ),M) be a (deterministic, reduced) Dyck automaton.

A⊗ℓ is the labelled graph with states Q⊗k , the set of all ordered
k-uples of states of Q, and edges:

Proposition (B., Blockelet, Dima, preprint 2013)

ζX (z) =

|Q|
∏

ℓ=1

det(I − Cc,⊗ℓ(z))
(−1)ℓ det(I − Cr ,⊗ℓ(z))

(−1)ℓ

det(I −Mc,⊗ℓ(z))
(−1)ℓ det(I −Mr ,⊗ℓ(z))

(−1)ℓ det(I − C⊗ℓ(z))
(−1)ℓ+1.



Example

Let X accepted by (A,M) over A = ({(, [}, {), ]}, {i})
Matched edges: (1

(−→ 1, 1
)−→ 1),(1

[−→ 1, 1
]−→ 1).

1 2

(

[

)

]

i

i

1, 2

−i

C =

[

C11 C12

C21 C22

]

, =

[

( D11 ) + [ D11 ], i
i 0

]

, C⊗2 =
[

C(1,2),(1,2)

]

=
[

−i
]

where D11 = ( D11 ) D11 + [ D11 ] D11 + i i D11 + ε.



Example

Cc = CMc
∗ =

[

C11 i
i 0

] [

{(, [}∗ 0
0 ε

]

=

[

C11{(, [}∗ i
i{(, [}∗ 0

]

,

Cr = Mr
∗C =

[

{), ]}∗ 0
0 ε

] [

C11 i
i 0

]

=

[

{), ]}∗C11 {), ]}∗i
i 0

]

.

2
∏

ℓ=1

det(I −Mc,⊗ℓ(z))
(−1)ℓ =

2
∏

ℓ=1

det(I −Mr ,⊗ℓ(z))
(−1)ℓ =

1

1− 2z
.



Example

We finally get

ζX (z) =
(1 + z)(1− z2 − C11(z))

(1− 2z − z2 − C11(z))2
,

=
(1 + z)(1− z2 − 1−z2−

√
1−10z2+z4

2 )

(1− 2z − z2 − 1−z2−
√
1−10z2+z4

2 )2
.

The entropy (or capacity) of the shift is

h(X ) = log
1

ρ
= log

2√
13− 3

∼ log 3.3027.



N-algebricity of zeta functions

Proposition

The zeta function of a sofic-Dyck shift is a computable N-visibly
pushdown series, i.e. is the (ordinary) generating series of some visibly
pushdwon language.



Example continued

ζX (z) =
(1 + z)(1− z2 − C11(z))

(1− 2z − z2 − C11(z))2
,

=
(1 + z)(1− z2 − C11(z))

(1− 2z − z2 − C11(z))(1− z2 − C11(z)− 2z)
,

=
(1 + z)

(1− 2z − z2 − C11(z))(1− 2z(z2 + C11(z))∗)
,

= (1 + z)(2z + z2 + C11(z))
∗(2z(z2 + C11(z))

∗)∗.

and C11(z) is the generating series of a VPL.



Sketch of proof

Let (A,M) be a (deterministic, reduced) Dyck automaton.
1 Use another encoding of periodic sequences.

(Krieger) Mc , Mr , CMc
∗, Mr

∗C
Another encoding: C∗Mc , Mr + C

2 ζX (z) = ζXC∗Mc
(z)ζXMr+C

(z).
3 Let M be a matrix with coefficients in A+, P be a subset of the

set of all pairs of states of A and VM,P be the set of words
belonging to Mpq if and only if (p, q) ∈ P.

4 Let B = {aM,P} be a set of new symbols.
5 Let M = C ∗Mc or M = Mr + C .

If Mpq =
∑

P|(p,q)∈P VM,P we set Npq =
∑

P|(p,q)∈P aM,P .

ζXM
(z) = θZ (N)[aM,P → πVM,P ].

where Z (N) is the generalized zeta function of the set of labels of
bi-infinite paths defined by N (Berstel, Reutenauer).

6 Z (N) is N-rational (Reutenauer) and all VM,P are VPL. Thus
ζXM

(z) is the generating function of a VPL language.



Finite-type-Dyck shifts

Finite-type-Dyck shift are accepted by local (or definite) Dyck
automata.

We says that (A,M) is (m, a)-local if whenever two paths (or two
admissible paths) (pi , ai , pi+1)−m≤i≤a, (qi , ai , qi+1)−m≤i≤a, of A of
length m + a have the same label, then p0 = q0.



Proper block map

A map Φ : X → Y is called an (m, a)-local map (or an (m, a)-block
map) if there exists a function φ : Bm+a+1(X )→ B such that
Φ(x)i = φ(xi−m · · · xi−1xixi+1 · · · xi+a).

A block map Φ : XA → XA′ , where A = (Ac ,Ar , Ai ) and
A′ = (A′

c ,A
′
r ,A

′
i ), is proper if Φ(x)j ∈ A′

c (resp. A′
r , A

′
i ) whenever

xj ∈ Ac (resp. Ar , Ai ) for any j .

Proper conjugacy: conjugacy which is a proper block map.



Finite-type-Dyck shifts

Proposition

A subshift is a sofic-Dyck shift if and only it is the proper factor of a
finite-type-Dyck shift.

Corollary

A proper factor of a sofic-Dyck shift is a sofic-Dyck shift.



In-split of a Dyck automaton

(A = (Q,E ,A),M) over A = (Ac ,Ar ,Ai )
Let p ∈ Q and P a partition (P1, . . . ,Pk) of the edges coming in p.
(A′ = (Q ′,E ′,A),M ′) is defined by

Q ′ = Q \ {p} ∪ {p1, . . . , pk},
(q, a, r) ∈ E ′ if q, r 6= p and (p, a, r) ∈ E ,

(q, a, pi ) ∈ E ′ for each i such that (q, a, p) ∈ Pi ,
(pi , a, r) ∈ E ′ for each i such that (p, a, r) ∈ E .

M ′ is the set of pairs of edges (q, a, r), (s, b, t) where
a ∈ Ar , b ∈ Ac such that (π(q), a, π(r)), (π(s), b, π(t)) ∈ M where
π(q) = q for q 6= p and π(pi ) = p.



Example

A Dyck state-splitting of the state 1 into 1′ and 1”.

1

263

45

āb̄

ab

i

1′ 1′′

263

45

ā
b̄ ā

b̄

ab

i i



Trim in-split of a Dyck automaton

A trim Dyck state-splitting of the state 1 into 1′ and 1”.
Edges (pi , a, r) which are not essential in (A′,M ′) are removed from E ′.
Matched pairs (q, a, r), (pi , b, t) or (pi , b, t), (q, a, r) which are not
essential are removed from M ′.

1

263

45

āb̄

ab

i

1′ 1′′

263

45

b̄ ā

ab

i i



Edge-Dyck shifts

A Dyck graph (G = (Q,E ⊂ Q × Q),M) is composed of a graph G,
where the edges E = (Ec ,Er ,Ei ) are partitioned into three categories
(call edges, return edges, and internal edges).

An edge-Dyck shift X(G,M) is the set of admissible bi-infinite paths of a
Dyck graph.

Proposition

Each finite-type-Dyck shift is properly conjugate to a finite-type
edge-Dyck shift.



A decomposition theorem for edge-Dyck shifts

Theorem

Let (G ,M), (H,N) be two Dyck graphs such that X(G,M) and X(H,N)

are properly conjugate. Then there are finite sequences of Dyck graphs
(Gi ,Mi ), (Hj ,Nj) and Dyck (or trim Dyck) in-splittings
Ψi : (Gi ,Mi )→ (Gi+1,Mi+1), ∆j : (Hj ,Nj)→ (Hj+1,Nj+1), such that
(G1,M1) = (G,M), (H1,N1) = (H,N), and (Gk ,Mk) = (Hk ′ ,Nk ′), up
to renaming of the states.

(G,M)
Ψ1−→ . . .

Ψk−−→ (Gk ,Mk) = (Hk ′ ,Nk ′)
∆k′←−− . . .

∆1←−− (H,N)

In-splittings commute but (unfortunately) not trim in-splittings.


